Entanglement and decoherence: From Einstein and Schrödinger to quantum information and quantum metrology

Luiz Davidovich
Instituto de Física
Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil

Outline of the talk

- Decoherence and the classical limit of the quantum world
- Multiparticle systems and decoherence
- Quantum metrology and decoherence

Quantum physics and localization

Letter from Einstein to Born, January 1, 1954

Quantum physics and localization

- "Let Ψ_{1} and Ψ_{2} be two solutions of the same Schrödinger equation. Then $\Psi=\Psi_{1}+\Psi_{2}$ also represents a solution of the Schrödinger equation, with equal claim to describe a possible real state. When the system is a macrosystem, and when Ψ_{1} and Ψ_{2} are 'narrow' with respect to the macro-coordinates, then in by far the greater number of cases, this is no longer true for Ψ. Narrowness in Letter from Einstein to regard to macro-coordinates is a requirement which is not only independent of the principles of quantum mechanics, but, moreover, incompatible with them."

Quantum measurement

Quantum measurement

Quantum measurement

Quantum measurement

$\left|\Psi_{2}\right\rangle$

0

Quantum measurement

$\left|\psi_{1}\right\rangle \underline{\square}+\bar{\square}\left|\psi_{2}\right\rangle$

Linear evolution:
\mid Before $\rangle=\left(\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle\right)|\uparrow\rangle / \sqrt{2}$

Quantum measurement

Linear evolution:
\mid BEFORE $\rangle=\left(\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle\right)|\uparrow\rangle / \sqrt{2}$
『
\mid AFTER $\rangle=\left(\left|\psi_{1}^{\prime}\right\rangle|\nearrow\rangle+\left|\Psi_{2}^{\prime}\right\rangle|R\rangle\right) / \sqrt{2}$

Quantum measurement

Linear evolution:

$$
\begin{array}{l}
\left.\mid \text { BEFORE }\rangle=\left(\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle\right)|\uparrow\rangle / \sqrt{2}\right) \\
\mid \text { AFTER }\rangle=(\underbrace{\left|\Psi_{1}^{\prime}\right\rangle \mid \nearrow}_{|\nearrow\rangle^{\prime}}\rangle
\end{array}+\underbrace{\left|\Psi_{2}^{\prime}\right\rangle|R\rangle}_{|R\rangle^{\prime}}) / \sqrt{2}
$$

Quantum measurement

Linear evolution:
\mid before $\rangle=\left(\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle\right)|\uparrow\rangle / \sqrt{2}$

Why interference cannot be seen?

Why interference cannot be seen?

- Decoherence: entanglement with the environment - same process by which quantum computers become classical computers!

Why interference cannot be seen?

- Decoherence: entanglement with the environment - same process by which quantum computers become classical computers!
- Dynamics of decoherence: related to elusive boundary between quantum and classical world

Decoherence dynamics

$$
\begin{aligned}
& \frac{1}{\mathcal{N}}(|\alpha\rangle+|-\alpha\rangle) \\
& \rightarrow \frac{1}{2}(|\alpha\rangle\langle\alpha|+|-\alpha\rangle\langle-\alpha|)
\end{aligned}
$$

Volume 77, Number 24	PHYSICAL REVIEW LETTERS	9 December 1996

Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement
M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche

Laboratoire Kastler Brossel,* Département de Physique de l'Ecole Normale Supérieure, 24 Rue Lhomond,
F.75231 Paris Cedex 05, France
(Received 10 September 1996)

Decoherence dynamics

$$
\begin{aligned}
& \frac{1}{\mathcal{N}}(|\alpha\rangle+|-\alpha\rangle) \\
& \rightarrow \frac{1}{2}(|\alpha\rangle\langle\alpha|+|-\alpha\rangle\langle-\alpha|)
\end{aligned}
$$

Volume 77, Number 24	PHYSICAL REVIEW LETTERS	9 December 1996

Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement
M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche

Laboratoire Kastler Brossel,* Département de Physique de l'Ecole Normale Supérieure, 24 Rue Lhomond,
F.75231 Paris Cedex 05, France
(Received 10 September 1996)

Decoherence dynamics

$$
\begin{aligned}
& \frac{1}{\mathcal{N}}(|\alpha\rangle+|-\alpha\rangle) \\
& \rightarrow \frac{1}{2}(|\alpha\rangle\langle\alpha|+|-\alpha\rangle\langle-\alpha|)
\end{aligned}
$$

Volume 77, Number 24	PHYSICAL REVIEW LETTERS

Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement
M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche

Laboratoire Kastler Brossel,* Département de Physique de l'Ecole Normale Supérieure, 24 Rue Lhomond,
F.75231 Paris Cedex 05, France
(Received 10 September 1996)

Decoherence dynamics

$\frac{1}{\mathcal{N}}(|\alpha\rangle+|-\alpha\rangle)$
$\rightarrow \frac{1}{2}(|\alpha\rangle\langle\alpha|+|-\alpha\rangle\langle-\alpha|)$
Exponential decay: $t_{\text {dec }} \approx t_{\text {cav }} /\langle n\rangle$

Volume 77, Number 24	PHYSICAL REVIEW LETTERS

Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement
M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche

Laboratoire Kastler Brossel,* Département de Physique de l'Ecole Normale Supérieure, 24 Rue Lhomond,
F.75231 Paris Cedex 05, France
(Received 10 September 1996)

Dynamics of entanglement

Dynamics of entanglement

- Multiparticle system, initially entangled, with individual couplings of particles to independent environments: each particle undergoes decay, dephasing, diffusion.

Dynamics of entanglement

- Multiparticle system, initially entangled, with individual couplings of particles to independent environments: each particle undergoes decay, dephasing, diffusion.
- How is local dynamics related to nonlocal loss of entanglement?

Dynamics of entanglement

- Multiparticle system, initially entangled, with individual couplings of particles to independent environments: each particle undergoes decay, dephasing, diffusion.
- How is local dynamics related to nonlocal loss of entanglement?
- How does loss of entanglement scale with number of particles?

1935

©he Aew dork Eimes

EINSTEIN ATTAGKS QUANTUM THEORY

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

PRINCETON, N. J., May 3.-Professor Albert Einstein will attack science's important theory of quantum mechanics, a theory of which he was a sort of grandfather. He concludes that while it is "correct" it is not "complete."
With two colleagues at the Institute for Advanced Study here, the noted'scientist is about to report to the American Physical Society what is wrong with the theory of quantum mechanics, it has been learned exclusively by Science Service.

The quantum theory, with which science predicts with some success inter-atomic happenings, does not meet the requirements for a satisfactory physical theory, Professor Einstein will report in a joint paper with Dr. Boris Podolsky and Dr. N. Rosen.

Scrhödinger on Entanglement

Naturwissenschaften 23, 807 (1935)

"This is the reason that knowledge of the individual systems can decline to the scantiest, even zero, while that of the combined system remains continually maximal. Best possible knowledge of a whole does not include best possible knowledge of its parts - and that is what keeps coming back to haunt us."

Emaranhamento átomo-fóton

16 JUNE 2000 VOL 288 SCIENCE

Step-by-Step Engineered
Multiparticle Entanglement
Arno Rauschenbeutel, Gilles Nogues, Stefano Osnaghi, Patrice Bertet, Michel Brune, Jean-Michel Raimond,* Serge Haroche

Atom-photon entangement

The best of bothquantum worlds

Biodefence

The scarch for at safe smallpox vaccins
Muman liflespan
Older women
rulethe roast

Particlephysies

Have we discovered the Higes howon?

```
nebumpots lle roed to China
```


Blinov et al, C. Nature 428, 153 (2004)

Emaranhamento de muitas partículas

Emaranhamento de muitas partículas

Creation of a six-atom 'Schrödinger cat' state

D. Leibfried ${ }^{1}$, E. Knill ${ }^{1}$, S. Seidelin ${ }^{1}$, J. Britton ${ }^{1}$, R. B. Blakestad ${ }^{1}$, J. Chiaverini't, D. B. Hume ${ }^{1}$, W. M. Itano ${ }^{1}$,
J. D. Jost ${ }^{1}$, C. Langer ${ }^{1}$, R Ozeri ${ }^{1}$, R. Reichle ${ }^{1}$ \& D. J. Wineland ${ }^{1}$

Scalable multiparticle entanglement of trapped ions

H. Häffner ${ }^{1,3}$, W. Hãnsel ${ }^{1}$, C. F. Roos ${ }^{1,3}$, J. Benhelm ${ }^{13}$, D. Chek-al-kar ${ }^{1}$, M. Chwalla ${ }^{1}$, T. Körber ${ }^{1,3}$, U. D. Rapol ${ }^{1,3}$, M. Riebe ${ }^{1}$, P. O. Schmidt ${ }^{1}$, C. Becher ${ }^{1}$, O. Gūhne ${ }^{3}$, W. Dür ${ }^{23} \& R$. Blatt ${ }^{1,3}$

Emaranhamento multifotônico

letters to nature

NATURE| VOI. 430|1 JUIY 2004| Wwwalatercen/ satare

Experimental demonstration of five-photon entanglement and open-destination teleportation

Zhi Zhao ${ }^{1}$, Yu-Ao Chen ${ }^{1}$, An-Ning Zhang ${ }^{1}$, Tao Yang ${ }^{1}$, Hans J. Briegel ${ }^{2}$ \& Jian-Wei Pan ${ }^{1 / 3}$
${ }^{1}$ Department of Modern Physics and Hefei National Laboratory for Physical Scienoes at Microscale, University of Science and Technology of China, Hefei,

Experimental entanglement of six photons in graph states

EMARANHAMENTO COMO UM RECURSO

- Emaranhamento é útil para comunicação, computação quântica e metrologia quântica!

Entangled and separable states

- Separable states:
- Pure states:

$$
\left|\Psi_{12 \ldots n}\right\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots\left|\psi_{n}\right\rangle
$$

- Mixed states (R. F. Werner, PRA, 1989):

$$
\begin{aligned}
& \rho_{12 \ldots n}=\sum_{\mu} p_{\mu} \rho_{1}^{\mu} \otimes \rho_{2}^{\mu} \otimes \ldots \rho_{n}^{\mu} \\
& \quad 0 \leq p_{\mu} \leq 1
\end{aligned}
$$

- Entangled state: non-separable

Entangled and separable states

- Separable states:
- Pure states:

$$
\left|\Psi_{12 \ldots n}\right\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots\left|\psi_{n}\right\rangle
$$

- Mixed states (R. F. Werner, PRA, 1989):

$$
\begin{aligned}
& \rho_{12 \ldots n}=\sum_{\mu} p_{\mu} \rho_{1}^{\mu} \otimes \rho_{2}^{\mu} \otimes \ldots \rho_{n}^{\mu} \\
& \quad 0 \leq p_{\mu} \leq 1
\end{aligned}
$$

$\begin{array}{ll}\text { - Entangled state: non-separable } \\ \begin{array}{l}\text { Bell states - Maximally } \\ \text { entangled states: complete }\end{array} & \left|\Psi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle \pm|10\rangle) \\ \left|\Phi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle \pm|11\rangle)\end{array}$
Bell states - Maximally ignorance on each qubit

Entangled and separable states

- Separable states:
- Pure states:

$$
\left|\Psi_{12 \ldots n}\right\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots\left|\psi_{n}\right\rangle
$$

- Mixed states (R. F. Werner, PRA, 1989):

$$
\begin{aligned}
& \rho_{12 \ldots n}=\sum_{\mu} p_{\mu} \rho_{1}^{\mu} \otimes \rho_{2}^{\mu} \otimes \ldots \rho_{n}^{\mu} \\
& \quad 0 \leq p_{\mu} \leq 1
\end{aligned}
$$

Bell states - Maximally ignorance on each qubit

Measures of entanglement for pure states
 Von Neumann entropy

$S_{N}\left(\rho_{r}\right)=-\operatorname{Tr}\left[\rho_{r} \log _{2} \rho_{r}\right]$
$\rho_{r} \rightarrow$ reduced density matrix of A or B

Separable state (two qubits):

$$
S\left(\rho_{r}\right)=0
$$

Maximally entangled state:

$$
\rho_{A}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \Rightarrow S\left(\rho_{A}\right)=1
$$

Mixed states: Separability criterium

- If ρ is separable, then the partially transposed matrix is positive (Asher Peres, PRL, 1996):

- For 2X2 and 2 X 3 systems, ρ is separable iff it remains a density operator under the operation of partial transposition (Horodecki family 1996)
- that is, it has a partial positive transpose (PPT)

Negativity as a measure of entanglement

K. Zyczkowski, P. Horodecki, A. Sampera, and M. Lewenstein, PRA, 1998

Vidal and Werner, PRA, 2002

$$
\mathcal{N}\left(\rho_{A B}\right) \equiv 2 \sum_{i}\left|\lambda_{i-}\right|
$$

$\lambda_{i_{-}} \rightarrow$ Negative eigenvalues of partially transposed matrix

Negativity as a measure of entanglement

K. Zyczkowski, P. Horodecki, A. Sampera, and M. Lewenstein, PRA, 1998

Vidal and Werner, PRA, 2002

$$
\mathcal{N}\left(\rho_{A B}\right) \equiv 2 \sum_{i}\left|\lambda_{i-}\right|
$$

$\lambda_{i_{-}} \rightarrow$ Negative eigenvalues of partially transposed matrix $\mathcal{N}=1$ for a Bell state

Negativity as a measure of entanglement

K. Zyczkowski, P. Horodecki, A. Sampera, and M. Lewenstein, PRA, 1998

Vidal and Werner, PRA, 2002

$$
\mathcal{N}\left(\rho_{A B}\right) \equiv 2 \sum_{i}\left|\lambda_{i-}\right|
$$

$\lambda_{i_{-}} \rightarrow$ Negative eigenvalues of partially transposed matrix $\mathcal{N}=1$ for a Bell state

Dimensions higher than 6: $\mathcal{N}=0$ does not imply separability!

REPORTS

Environment-Induced Sudden Death of Entanglement

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich*

We demonstrate the difference between local, single-particle dynamics and global dynamics of entangled quantum systems coupled to independent environments. Using an all-optical experimental setup, we showed that, even when the environment-induced decay of each system is asymptotic, quantum entanglement may suddenly disappear. This "sudden death" constitutes yet another distinct and counterintuitive trait of entanglement.

The real-world success of quantum computation (1,2) and communication (3-9) relies on the longevity of entanglement in multiparticle quantum states. The presence of
decoherence (10) in communication channels and computing devices, which stems from the unavoidable interaction between these systems and the environment, degrades the entanglement
when the particles propagate or the computation evolves. Decoherence leads to local dynamics, associated with single-particle dissipation, diffusion, and decay, as well as to global dynamics, which may provoke the disappearance of entanglement at a finite time ($11-15$). This phenomenon, known as "entanglement sudden death" (15), is strikingly different from singleparticle dynamics, which occurs asymptotically, and has thus stimulated much recent theoretical work (11-15). Here we demonstrate the sudden death of entanglement of a two-qubit system under the influence of independent environ-

Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro R] 21941-972, BraziL
*To whom correspondence should be addressed. E-mail: Idavid@if.ufri.br

Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment

A. Salles, ${ }^{1, *}$ F. de Melo, ${ }^{1,2}$ M. P. Almeida, ${ }^{1,3}$ M. Hor-Meyll, ${ }^{1}$ S. P. Walborn, ${ }^{1}$ P. H. Souto Ribeiro, ${ }^{1}$ and L. Davidovich ${ }^{1}$
${ }^{1}$ Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
${ }^{2}$ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
${ }^{3}$ Centre for Quantum Computer Technology, Department of Physics, University of Queensland, Brisbane, Queensland 4072, Australia
(Received 30 April 2008; published 13 August 2008)

REPORTS

Environment-Induced Sudden Death of Entanglement

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto Ribeiro L. Davidovich*

We demonstrate the difference between local, single-particle dynamics and global dynamics of entangled quantum systems coupled to independent environments. Using an all-optical experimental setup, we showed that, even when the environment-induced decay of each system is asymptotic, quantum entanglement may suddenly disappear. This "sudden death" constitutes yet another distinct and counterintuitive trait of entanglement.

The real-world success of quantum computation (1,2) and communication (3-9) relies on the longevity of entanglement in multiparticle quantum states. The presence of
decoherence (10) in communication channels and computing devices, which stems from the unavoidable interaction between these systems and the environment, degrades the entanglement
when the particles propagate or the computation evolves. Decoherence leads to local dynamics, associated with single-particle dissipation, diffusion, and decay, as well as to global dynamics, which may provoke the disappearance of entanglement at a finite time (11-15). This phenomenon, known as "entanglement sudden death" (15), is strikingly different from singleparticle dynamics, which occurs asymptotically, and has thus stimulated much recent theoretical work (11-15). Here we demonstrate the sudden death of entanglement of a two-qubit system under the influence of independent environ-

Instituto de Fisica, Universidade Federal do Rio de laneiro, Caixa Postal 68528, Rio de Janeiro R] 21941-972, BraziL
"To whom correspondence should be addressed. E-mail: Idavid@if.ufrj.br

Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment

A. Salles, ${ }^{1, *}$ F. de Melo, ${ }^{1,2}$ M. P. Almeida, ${ }^{1,3}$ M. Hor-Meyll, ${ }^{1}$ S. P. Walborn, ${ }^{1}$ P. H. Souto Ribeiro, ${ }^{1}$ and L. Davidovich ${ }^{1}$
${ }^{1}$ Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
${ }^{2}$ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
${ }^{3}$ Centre for Quantum Computer Technology, Department of Physics, University of Queensland, Brisbane, Queensland 4072, Australia
(Received 30 April 2008; published 13 August 2008)

A paradigmatic example: Atomic decay

-Qubit states: $\quad|0\rangle \leftrightarrow|g\rangle,|1\rangle \leftrightarrow|e\rangle$
-"Amplitude channel":
$|g\rangle_{S} \otimes|0\rangle_{E} \rightarrow|g\rangle_{S} \otimes|0\rangle_{E}$
$|e\rangle_{S} \otimes|0\rangle_{E} \rightarrow \sqrt{1-p}|e\rangle_{S} \otimes|0\rangle_{E}+\sqrt{p}|g\rangle_{S} \otimes|1\rangle_{E}$

A paradigmatic example: Atomic decay

-Qubit states: $\quad|0\rangle \leftrightarrow|g\rangle,|1\rangle \leftrightarrow|e\rangle$
-"Amplitude channel":

$$
\begin{aligned}
& |g\rangle_{S} \otimes|0\rangle_{E} \rightarrow|g\rangle_{S} \otimes|0\rangle_{E} \\
& |e\rangle_{S} \otimes|0\rangle_{E} \rightarrow \sqrt{1-p}|e\rangle_{S} \otimes|0\rangle_{E}+\sqrt{p}|g\rangle_{S} \otimes|1\rangle_{E}
\end{aligned}
$$

Usual master equation for
$p=1-\exp (-\Gamma t) \longmapsto$ decay of two-level atom, upon tracing on environment (Markovian approximation)

A paradigmatic example: Atomic decay

-Qubit states: $\quad|0\rangle \leftrightarrow|g\rangle,|1\rangle \leftrightarrow|e\rangle$
-"Amplitude channel":

$$
\begin{aligned}
|g\rangle_{S} \otimes|0\rangle_{E} & \rightarrow|g\rangle_{S} \otimes|0\rangle_{E} \\
|e\rangle_{S} \otimes|0\rangle_{E} & \rightarrow \sqrt{1-p}|e\rangle_{S} \otimes|0\rangle_{E}+\sqrt{p}|g\rangle_{S} \otimes|1\rangle_{E}
\end{aligned}
$$

Usual master equation for $p=1-\exp (-\Gamma t) \longrightarrow$ decay of two-level atom, upon tracing on environment (Markovian approximation)

A paradigmatic example: Atomic decay

-Qubit states: $\quad|0\rangle \leftrightarrow|g\rangle,|1\rangle \leftrightarrow|e\rangle$
Our strategy: follow evolution as a function of p, not t
-"Amplitude channel":

$$
\begin{aligned}
& |g\rangle_{S} \otimes|0\rangle_{E} \rightarrow|g\rangle_{S} \otimes|0\rangle_{E} \\
& |e\rangle_{S} \otimes|0\rangle_{E} \rightarrow \sqrt{1-p}|e\rangle_{S} \otimes|0\rangle_{E}+\sqrt{p}|g\rangle_{S} \otimes|1\rangle_{E}
\end{aligned}
$$

Usual master equation for

$$
p=1-\exp (-\Gamma t) \quad \text { decay of two-level atom, }
$$ upon tracing on environment (Markovian approximation)

A paradigmatic example: Atomic decay

-Qubit states: $\quad|0\rangle \leftrightarrow|g\rangle,|1\rangle \leftrightarrow|e\rangle$
-"Amplitude channel":
$|g\rangle_{S} \otimes|0\rangle_{E} \rightarrow|g\rangle_{S} \otimes|0\rangle_{E}$
$|e\rangle_{S} \otimes|0\rangle_{E} \rightarrow \sqrt{1-p}|e\rangle_{S} \otimes|0\rangle_{E}+\sqrt{p}|g\rangle_{S} \otimes|1\rangle_{E}$
Usual master equation for $p=1-\exp (-\Gamma t) \longmapsto$ decay of two-level atom, upon tracing on environment (Markovian approximation)

Apply evolution to two qubits, take trace with respect to environment degrees of freedom, find evolution of twoqubit reduced density matrix, calculate entanglement

"Sudden death"

of entanglement $|\Psi(0)\rangle=\alpha\left|g g^{\prime}\right\rangle+\beta|e c\rangle$

$$
C(p=0)=2|\alpha \beta|
$$

"Sudden death"

of entanglement $|\Psi(0)\rangle=\alpha\left|g g^{\prime}\right\rangle+\beta|e c\rangle$

$$
C(p=0)=2|\alpha \beta|
$$

"Entanglement Sudden Death"(Yu and Eberly)

Decay of entanglement for N qubits, other environments?

Scaling Laws for the Decay of Multiqubit Entanglement
L. Aolita, ${ }^{1}$ R. Chaves, ${ }^{1}$ D. Cavalcanti, ${ }^{2}$ A. Acín, ${ }^{2,3}$ and L. Davidovich ${ }^{1}$ ${ }^{1}$ Instituto de Física, Universidade Federal do Rio de Janeiro. Caixa Postal 68528, $21941-972$ Rio de Janeiro, RJ, Brasil ${ }^{2}$ ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain ${ }^{3}$ ICREA-Institució Catalana de Recerca i Estudis Avançats, Lluis Companys 23, 08010 Barcelona, Spain (Received 23 October 2007; published 27 February 2008)

$$
\left|\Psi_{0}\right\rangle=\alpha|0\rangle^{\otimes N}+\beta|1\rangle^{\otimes N}
$$

- Independent individual environments:

$$
\begin{aligned}
& \mathcal{E}_{i}^{D} \rho_{i}=(1-p) \rho_{i}+(p) 1 / 2 \quad \text { Depolarization } \\
& \mathcal{E}_{i}^{P D} \rho_{i}=(1-p) \rho_{i}+p\left(|0\rangle\langle 0| \rho_{i}|0\rangle\langle 0|+|1\rangle\langle 1| \rho_{i}|1\rangle\langle 1|\right)
\end{aligned}
$$

+ Thermal

Does entanglement become more robust with increasing N ?

$$
\left|\Psi_{0}\right\rangle=\alpha|0\rangle^{\otimes N}+\beta|1\rangle^{\otimes N} \mathcal{E}_{i}^{D} \rho_{i}=(1-p) \rho_{i}+(p) 1 / 2
$$

Is ESD relevant for many particles?

$$
\left|\Psi_{0}\right\rangle=\alpha|0\rangle^{\otimes N}+\beta|1\rangle^{\otimes N} \mathcal{E}_{i}^{D} \rho_{i}=(1-p) \rho_{i}+(p) 1 / 2
$$

Is ESD relevant for many particles?

$$
\left|\Psi_{0}\right\rangle=\alpha|0\rangle^{\otimes N}+\beta|1\rangle^{\otimes N} \mathcal{E}_{i}^{D} \rho_{i}=(1-p) \rho_{i}+(p) 1 / 2
$$

LETTERS

Experimental multiparticle entanglement dynamics induced by decoherence

Julio T. Barreiro ${ }^{1 \star}$, Philipp Schindler ${ }^{1}$, Otfried Gühne ${ }^{2,3,4 \star}$, Thomas Monz ${ }^{1}$, Michael Chwalla¹, Christian F. Roos ${ }^{1,2}$, Markus Hennrich ${ }^{1}$ and Rainer Blatt ${ }^{1,2}$

Entanglement and quantum metrology

Standard limit: $\quad \delta \theta \approx \frac{1}{\sqrt{\langle n\rangle}}$
(Ignoring repetitions of the experiment)

Entanglement and quantum metrology

Standard limit: $\quad \delta \theta \approx \frac{1}{\sqrt{\langle n\rangle}}$
(Ignoring repetitions of the experiment)

$$
\begin{aligned}
& \left|\left\langle\alpha \mid \alpha e^{i \delta \theta}\right\rangle\right|^{2}=\exp \left(-\left|\alpha\left(1-e^{i \delta \theta}\right)\right|^{2}\right) \\
& \approx \exp \left[-\langle n\rangle(\delta \theta)^{2}\right] \Rightarrow \delta \theta \approx 1 / \sqrt{\langle n\rangle}
\end{aligned}
$$

Entanglement and quantum metrology

Standard limit: $\quad \delta \theta \approx \frac{1}{\sqrt{\langle n\rangle}}$
(Ignoring repetitions of the experiment)

$$
\begin{aligned}
& \left|\left\langle\alpha \mid \alpha e^{i \delta \theta}\right\rangle\right|^{2}=\exp \left(-\left|\alpha\left(1-e^{i \delta \theta}\right)\right|^{2}\right) \\
& \approx \exp \left[-\langle n\rangle(\delta \theta)^{2}\right] \Rightarrow \delta \theta \approx 1 / \sqrt{\langle n\rangle}
\end{aligned}
$$

Possible method to increase precision for the same average number of photons: Use NOON states [J. P. Dowling, PRA 57, 4736 (1998)]

$$
|\psi(N)\rangle=(|N, 0\rangle+|0, N\rangle) / \sqrt{2} \rightarrow|\psi(N, \theta)\rangle=\left(|N, 0\rangle+e^{i N \theta}|0, N\rangle\right) / \sqrt{2}, \quad(\langle n\rangle=N)
$$

Entanglement and quantum metrology

Standard limit: $\quad \delta \theta \approx \frac{1}{\sqrt{\langle n\rangle}}$
(Ignoring repetitions of the experiment)

$$
\begin{aligned}
& \left|\left\langle\alpha \mid \alpha e^{i \delta \theta}\right\rangle\right|^{2}=\exp \left(-\left|\alpha\left(1-e^{i \delta \theta}\right)\right|^{2}\right) \\
& \approx \exp \left[-\langle n\rangle(\delta \theta)^{2}\right] \Rightarrow \delta \theta \approx 1 / \sqrt{\langle n\rangle}
\end{aligned}
$$

Possible method to increase precision for the same average number of photons: Use NOON states [J. P. Dowling, PRA 57, 4736 (1998)]

$$
|\psi(N)\rangle=(|N, 0\rangle+|0, N\rangle) / \sqrt{2} \rightarrow|\psi(N, \theta)\rangle=\left(|N, 0\rangle+e^{i N \theta}|0, N\rangle\right) / \sqrt{2}, \quad(\langle n\rangle=N)
$$

$$
\left\langle\left.\langle\psi(N) \mid \psi(N, \delta \theta)\rangle\right|^{2}=\cos ^{2}(N \delta \theta / 2) \Rightarrow \delta \theta \approx 1 / N\right.
$$

Entanglement and quantum metrology

Standard limit: $\quad \delta \theta \approx \frac{1}{\sqrt{\langle n\rangle}}$
(Ignoring repetitions of the experiment)

$$
\begin{aligned}
& \left|\left\langle\alpha \mid \alpha e^{i \delta \theta}\right\rangle\right|^{2}=\exp \left(-\left|\alpha\left(1-e^{i \delta \theta}\right)\right|^{2}\right) \\
& \approx \exp \left[-\langle n\rangle(\delta \theta)^{2}\right] \Rightarrow \delta \theta \approx 1 / \sqrt{\langle n\rangle}
\end{aligned}
$$

Possible method to increase precision for the same average number of photons: Use NOON states [J. P. Dowling, PRA 57, 4736 (1998)]

$$
|\psi(N)\rangle=(|N, 0\rangle+|0, N\rangle) / \sqrt{2} \rightarrow|\psi(N, \theta)\rangle=\left(|N, 0\rangle+e^{i N \theta}|0, N\rangle\right) / \sqrt{2}, \quad(\langle n\rangle=N)
$$

$$
\left.\langle\psi(N) \mid \psi(N, \delta \theta)\rangle\right|^{2}=\cos ^{2}(N \delta \theta / 2) \Rightarrow \delta \theta \approx 1 / N \text { Heisenberg limit }
$$

Entanglement and quantum metrology

Standard limit: $\quad \delta \theta \approx \frac{1}{\sqrt{\langle n\rangle}}$
(Ignoring repetitions of the experiment)

$$
\begin{aligned}
& \left|\left\langle\alpha \mid \alpha e^{i \delta \theta}\right\rangle\right|^{2}=\exp \left(-\left|\alpha\left(1-e^{i \delta \theta}\right)\right|^{2}\right) \\
& \approx \exp \left[-\langle n\rangle(\delta \theta)^{2}\right] \Rightarrow \delta \theta \approx 1 / \sqrt{\langle n\rangle}
\end{aligned}
$$

Possible method to increase precision for the same average number of photons: Use NOON states [J. P. Dowling, PRA 57, 4736 (1998)]

$$
|\psi(N)\rangle=(|N, 0\rangle+|0, N\rangle) / \sqrt{2} \rightarrow|\psi(N, \theta)\rangle=\left(|N, 0\rangle+e^{i N \theta}|0, N\rangle\right) / \sqrt{2}, \quad(\langle n\rangle=N)
$$

$$
\left\langle\left.\langle\psi(N) \mid \psi(N, \delta \theta)\rangle\right|^{2}=\cos ^{2}(N \delta \theta / 2) \Rightarrow \delta \theta \approx 1 / N\right.
$$

Precision is better, for the same amount of resources (average number of photons)!

Example: Frequency measurements in ion traps

Optimal frequency measurements with maximally correlated states

J. J. Bollinger, Wayne M. Itano, and D. J. Wineland

Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80303
D. J. Heinzen

Physics Department, University of Texas, Austin, Texas 78712
(Received 16 August 1996)
Independent atoms:

$$
\frac{1}{2^{N / 2}} \underbrace{(|g\rangle+|e\rangle) \otimes \cdots \otimes(|g\rangle+|e\rangle)}_{N} \rightarrow \frac{1}{2^{N / 2}} \underbrace{\left(|g\rangle+e^{i T \delta \omega}|e\rangle\right) \otimes \cdots \otimes\left(|g\rangle+e^{i T \delta \omega}|e\rangle\right)}_{N}
$$

$(\delta \omega) T=\pi$ for orthogonality. Yields frequency uncertainty
T time for single measurement

Example: Frequency measurements in ion traps

Optimal frequency measurements with maximally correlated states

J. J . Bollinger, Wayne M. Itano, and D. J. Wineland

Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80303

D. J. Heinzen

Physics Department, University of Texas, Austin, Texas 78712
(Received 16 August 1996)
Independent atoms:

$$
\frac{1}{2^{N / 2}} \underbrace{(|g\rangle+|e\rangle) \otimes \cdots \otimes(|g\rangle+|e\rangle)}_{N} \rightarrow \frac{1}{2^{N / 2}} \underbrace{\left(|g\rangle+e^{i T \delta \omega}|e\rangle\right) \otimes \cdots \otimes\left(|g\rangle+e^{i T \delta \omega}|e\rangle\right)}_{N}
$$

$(\delta \omega) T=\pi$ for orthogonality. Yields frequency uncertainty $\quad 1 /(\sqrt{N} T)$ T time for single measurement

Correlated atoms:

$$
\frac{1}{\sqrt{2}}(\underbrace{|g g \cdots g\rangle}_{N}+\underbrace{|e e \cdots e\rangle}_{N}) \rightarrow \frac{1}{\sqrt{2}}(\underbrace{|g g \cdots g\rangle}_{N}+e^{i N t \delta \omega \omega} \underbrace{|e e \cdots e\rangle}_{N})
$$

$(\delta \omega) T=\pi / \Lambda$ for orthogonality. Yields frequency uncertainty $1 / \mathrm{NT}, \mathrm{T}$ time for single measurement

Steps in parameter estimation

1. Prepare probe in suitable initial state
2. Send probe through process to be investigated
3. Choose suitable measurement
4. Associate each experimental result j with estimation

Steps in parameter estimation

1. Prepare probe in suitable initial state
2. Send probe through process to be investigated
3. Choose suitable measurement
4. Associate each experimental result j with estimation

$$
\begin{gathered}
\delta X \equiv \sqrt{\left.\left\langle\left[X_{\text {est }}(j)-X\right]^{2}\right\rangle_{j}\right|_{X=X_{\text {real }}}} \rightarrow \text { Merit quantifier } \\
\left\langle X_{\text {est }}\right\rangle=X_{\text {real }}, d\left\langle X_{\text {est }}\right\rangle / d X=1 \rightarrow \text { Unbiased estimator }
\end{gathered}
$$

Classical parameter estimation

H. Cramér

C. R. Rao

R.A. Fisher

Cramér-Rao bound for unbiased estimators:
$\delta X \geq 1 / \sqrt{v F\left(X_{\text {real }}\right)}, \quad F(X) \equiv \sum_{j} p_{j}(X)\left(\frac{d \ln \left[p_{j}(X)\right]}{d x}\right)^{2}$
$v \rightarrow$ Number of repetitions of the experiment
$p_{j}(X) \rightarrow$ probability of getting an experimental result j

Classical parameter estimation

H. Cramér

C. R. Rao

R.A. Fisher

Cramér-Rao bound for unbiased estimators:

$v \rightarrow$ Number of repetitions of the experiment
$p_{j}(X) \rightarrow$ probability of getting an experimental result j

Classical parameter estimation

H. Cramér

C. R. Rao

R.A. Fisher

Cramér-Rao bound for unbiased estimators:

$v \rightarrow$ Number of repetitions of the experiment
$p_{j}(X) \rightarrow$ probability of getting an experimental result j
Fisher's theorem: Inequality can be saturated (i.e., it is possible to make it an equality) when $\nu \rightarrow \infty$, by choosing an appropriate estimator $X_{\text {est }}$.

Quantum parameter estimation
 Physical process dependent

on parameter x

Quantum parameter estimation
 Physical process dependent

 on parameter x

- First step: Prepare Closed systems: $\hat{\rho}(X)=\hat{U}(X) \hat{\rho} \hat{U}^{\dagger}(X)$ initial state and send probe through quantum channel

Quantum parameter estimation
 Physical process dependent

 on parameter x

- First step: Prepare Closed systems: $\hat{\rho}(X)=\hat{U}(X) \hat{\rho} \hat{U}^{\dagger}(X)$ initial state and send General case: probe through quantum channel

Quantum parameter estimation

Detection

- First step: Prepare Closed systems: $\hat{\rho}(X)=\hat{U}(X) \hat{\rho} \hat{U}^{\dagger}(X)$

initial state and send General case:

probe through quantum $|\Psi(X)\rangle=\hat{U}_{S, E}(X)|\psi(0)\rangle_{S}|0\rangle_{E}=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi(0)\rangle_{S}|\ell\rangle_{E}$, channel

$$
\text { where } \hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E} \quad \text { (Kraus operators) }
$$

$$
\hat{\rho}_{S}(X)=\sum_{\ell}\langle\ell \mid \Psi(X)\rangle\langle\Psi(X) \mid \ell\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{S}(0) \hat{\Pi}_{\ell}^{\dagger}(X), \quad \sum_{\ell} \hat{\Pi}_{\ell}^{\dagger}(X) \hat{\Pi}_{\ell}(X)=1
$$

Quantum parameter estimation

- First step: Prepare Closed systems: $\hat{\rho}(X)=\hat{U}(X) \hat{\rho} \hat{U}^{\dagger}(X)$

initial state and send General case:

 probe through quantum $|\Psi(X)\rangle=\hat{U}_{S, E}(X)|\psi(0)\rangle_{S}|0\rangle_{E}=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi(0)\rangle_{S}|\ell\rangle_{E}$, channel$$
\text { where } \hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E} \quad \text { (Kraus operators) }
$$

$$
\hat{\rho}_{S}(X)=\sum_{\ell}\langle\ell \mid \Psi(X)\rangle\langle\Psi(X) \mid \ell\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{S}(0) \hat{\Pi}_{\ell}^{\dagger}(X), \quad \sum_{\ell} \hat{\Pi}_{\ell}^{\dagger}(X) \hat{\Pi}_{\ell}(X)=1
$$

$$
\begin{aligned}
& \text { - Second step: Choose } \operatorname{POVM} \hat{E}_{j}, \sum_{j} \hat{E}_{j}=1, p_{j}(X)=\operatorname{Tr}\left[\hat{\rho}(X) \hat{E}_{j}\right] \\
& \text { suitable measurement }
\end{aligned}
$$

Quantum parameter estimation

- First step: Prepare Closed systems: $\hat{\rho}(X)=\hat{U}(X) \hat{\rho} \hat{U}^{\dagger}(X)$
initial state and send General case: probe through quantum $|\Psi(X)\rangle=\hat{U}_{S, E}(X)|\psi(0)\rangle_{S}|0\rangle_{E}=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi(0)\rangle_{S}|\ell\rangle_{E}$, channel
where $\hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E}$ (Kraus operators)
$\hat{\rho}_{S}(X)=\sum_{\ell}\langle\ell \mid \Psi(X)\rangle\langle\Psi(X) \mid \ell\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{S}(0) \hat{\Pi}_{\ell}^{\dagger}(X), \quad \sum_{\ell} \hat{\Pi}_{\ell}^{\dagger}(X) \hat{\Pi}_{\ell}(X)=1$

$$
\begin{aligned}
& \text { - Second step: Choose } \operatorname{POVM} \hat{E}_{j}, \sum_{j} \hat{E}_{j}=1, p_{j}(X)=\operatorname{Tr}\left[\hat{\rho}(X) \hat{E}_{j}\right] \\
& \text { suitable measurement }
\end{aligned}
$$

- Third step: Associate each experimental result j with estimation $X_{\text {est }}(j)$

Quantum parameter estimation

-First step: Prepare Closed systems: $\hat{\rho}(X)=\hat{U}(X) \hat{\rho} \hat{U}^{\dagger}(X)$
initial state and send General case: probe through quantum $|\Psi(X)\rangle=\hat{U}_{S, E}(X)|\psi(0)\rangle_{S}|0\rangle_{E}=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi(0)\rangle_{S}|\ell\rangle_{E}$, channel
where $\hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E}$ (Kraus operators)
$\hat{\rho}_{S}(X)=\sum_{\ell}\langle\ell \mid \Psi(X)\rangle\langle\Psi(X) \mid \ell\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{S}(0) \hat{\Pi}_{\ell}^{\dagger}(X), \quad \sum_{\ell} \hat{\Pi}_{\ell}^{\dagger}(X) \hat{\Pi}_{\ell}(X)=1$

$$
\begin{aligned}
& \text { - Second step: Choose } \operatorname{POVM} \hat{E}_{j}, \sum_{j} \hat{E}_{j}=1, p_{j}(X)=\operatorname{Tr}\left[\hat{\rho}(X) \hat{E}_{j}\right] \\
& \text { suitable measurement }
\end{aligned}
$$

-Third step: Associate each experimental result j with estimation $X_{\text {est }}(j)$

$$
\delta X \equiv \sqrt{\left\langle\left[X_{\text {est }}(j)-X_{\text {real }}\right]^{2}\right\rangle_{j}} \rightarrow \text { Merit quantifier for unbiased estimators }
$$

Quantum Fisher information for pure states

Initial state of the probe: $|\psi(0)\rangle$ Final X-dependent state: $|\psi(X)\rangle=\hat{U}(X)|\psi(0)\rangle, \hat{U}(x)$ unitary operator.

Then (Helstrom 1976):

$$
\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{H})^{2}\right\rangle_{0}, \quad\left\langle(\Delta \hat{H})^{2}\right\rangle_{0} \equiv\langle\psi(0)|\left[\hat{H}(X)-\langle\hat{H}(X)\rangle_{0}\right]^{2}|\psi(0)\rangle
$$

where

$$
\hat{H}(X) \equiv i \frac{d \hat{U}^{\dagger}(X)}{d X} \hat{U}(X)
$$

Quantum Fisher information for pure states

Initial state of the probe: $|\psi(0)\rangle$ Final X-dependent state: $|\psi(X)\rangle=\hat{U}(X)|\psi(0)\rangle, \hat{U}(x)$ unitary operator.

Then (Helstrom 1976):

$$
\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{H})^{2}\right\rangle_{0}, \quad\left\langle(\Delta \hat{H})^{2}\right\rangle_{0} \equiv\langle\psi(0)|\left[\hat{H}(X)-\langle\hat{H}(X)\rangle_{0}\right]^{2}|\psi(0)\rangle
$$

where

$$
\hat{H}(X) \equiv i \frac{d \hat{U}^{\dagger}(X)}{d X} \hat{U}(X)
$$

If $\hat{U}(X)=\exp (i \hat{O} X)$, \hat{O} independent of \mathbf{X}, then $\hat{H}=\hat{O}$

Quantum Fisher information for pure states

Initial state of the probe: $|\psi(0)\rangle$ Final X-dependent state: $|\psi(X)\rangle=\hat{U}(X)|\psi(0)\rangle, \hat{U}(x)$ unitary operator.

Then (Helstrom 1976):

$$
\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{H})^{2}\right\rangle_{0}, \quad\left\langle(\Delta \hat{H})^{2}\right\rangle_{0} \equiv\langle\psi(0)|\left[\hat{H}(X)-\langle\hat{H}(X)\rangle_{0}\right]^{2}|\psi(0)\rangle
$$

where

$$
\hat{H}(X) \equiv i \frac{d \hat{U}^{\dagger}(X)}{d X} \hat{U}(X)
$$

If $\hat{U}(X)=\exp (i \hat{O} X), \hat{O}$ independent of X, then $\hat{H}=\hat{O}$
$\delta x \geq 1 / 2 \sqrt{v\left\langle\Delta \hat{H}^{2}\right\rangle} \Rightarrow \begin{aligned} & \text { Generalized uncertainty relation: } \\ & \text { Should maximize the variance to }\end{aligned}$ get better precision!

Example of Generalized Uncertainty Relations:

Spatial displacement and momentum

[For more details, see Braunstein, Caves, and Milburn, Annals of Physics 247, 135 (1996)]

$$
\begin{aligned}
|\psi(X)\rangle & =e^{i X \hat{P}}|\psi(0)\rangle \Rightarrow \hat{H}=i \frac{d \hat{U}^{\dagger}(X)}{d X} \hat{U}(X)=\hat{P} \\
\mathcal{F}_{Q}(X) & =\left\langle(\Delta \hat{P})^{2}\right\rangle_{0} \Rightarrow\left\langle(\delta X)^{2}\right\rangle \geq \frac{1}{\nu\left\langle(\Delta \hat{P})^{2}\right\rangle_{0}}
\end{aligned}
$$

Example of Generalized Uncertainty Relations:

Spatial displacement and momentum

[For more details, see Braunstein, Caves, and Milburn, Annals of Physics 247, 135 (1996)]

$$
\begin{aligned}
|\psi(X)\rangle & =e^{i X \hat{P}}|\psi(0)\rangle \Rightarrow \hat{H}=i \frac{d \hat{U}^{\dagger}(X)}{d X} \hat{U}(X)=\hat{P} \\
\mathcal{F}_{Q}(X) & =\left\langle(\Delta \hat{P})^{2}\right\rangle_{0} \Rightarrow\left\langle(\delta X)^{2}\right\rangle \geq \frac{1}{\nu\left\langle(\Delta \hat{P})^{2}\right\rangle_{0}}
\end{aligned}
$$

Example of Generalized Uncertainty Relations:

Spatial displacement and momentum

[For more details, see Braunstein, Caves, and Milburn, Annals of Physics 247, 135 (1996)]

$$
\begin{aligned}
|\psi(X)\rangle & =e^{i X \hat{P}}|\psi(0)\rangle \Rightarrow \hat{H}=i \frac{d \hat{U}^{\dagger}(X)}{d X} \hat{U}(X)=\hat{P} \\
\mathcal{F}_{Q}(X) & =\left\langle(\Delta \hat{P})^{2}\right\rangle_{0} \Rightarrow\left\langle(\delta X)^{2}\right\rangle \geq \frac{1}{\nu\left\langle(\Delta \hat{P})^{2}\right\rangle_{0}}
\end{aligned}
$$

Example of Generalized Uncertainty Relations:

Spatial displacement and momentum

[For more details, see Braunstein, Caves, and Milburn, Annals of Physics 247, 135 (1996)]

$$
\begin{aligned}
& |\psi(X)\rangle=e^{i X \hat{P}}|\psi(0)\rangle \Rightarrow \hat{H}=i \frac{d \hat{U}^{\dagger}(X)}{d X} \hat{U}(X)=\hat{P} \\
& \mathcal{F}_{Q}(X)=\left\langle(\Delta \hat{P})^{2}\right\rangle_{0} \Rightarrow\left\langle(\delta X)^{2}\right\rangle \geq \frac{1}{\nu\left\langle(\Delta \hat{P})^{2}\right\rangle_{0}}
\end{aligned}
$$

Coherent state: $\left((\Delta \hat{P})^{2}\right\rangle_{0}=1 \Rightarrow\left\langle(\delta X)^{2}\right\rangle \geq 1 / \nu$ standard quantum limit

Example of Generalized Uncertainty Relations:

Spatial displacement and momentum

[For more details, see Braunstein, Caves, and Milburn, Annals of Physics 247, 135 (1996)]

$$
\begin{aligned}
& |\psi(X)\rangle=e^{i X \hat{P}}|\psi(0)\rangle \Rightarrow \hat{H}=i \frac{d \hat{U}^{\dagger}(X)}{d X} \hat{U}(X)=\hat{P} \\
& \mathcal{F}_{Q}(X)=\left\langle(\Delta \hat{P})^{2}\right\rangle_{0} \Rightarrow\left\langle(\delta X)^{2}\right\rangle \geq \frac{1}{\nu\left\langle(\Delta \hat{P})^{2}\right\rangle_{0}}
\end{aligned}
$$

Coherent state: $\left\langle(\Delta \hat{P})^{2}\right\rangle_{0}=1 \Rightarrow\left\langle(\delta X)^{2}\right\rangle \geq 1 / \nu$ standard quantum limit
Maximizing variance of P for better precision: squeezed states or superpositions of coherent states

Example of Generalized Uncertainty Relations (2):

 Revisiting optical interferometry
$\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}$ where $\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}$ is the photon-number variance in the upper arm.

Standard limit: coherent states
(Ignoring repetitions of the experiment)

$$
\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}=4\langle\hat{n}\rangle \Rightarrow \delta \theta \geq \frac{1}{2 \sqrt{\langle n\rangle}}
$$

Example of Generalized Uncertainty Relations (2): Revisiting optical interferometry

$\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}$ where $\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}$ is the photon-number variance in the upper arm.

Standard limit: coherent states
(Ignoring repetitions of the experiment)

$$
\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}=4\langle\hat{n}\rangle \Rightarrow \delta \theta \geq \frac{1}{2 \sqrt{\langle n\rangle}}
$$

Increasing the precision: maximize variance with NOON states:

$$
|\psi(N)\rangle=(|N, 0\rangle+|0, N\rangle) / \sqrt{2} \rightarrow|\psi(N, \theta)\rangle=\left(|N, 0\rangle+e^{i N \theta}|0, N\rangle\right) / \sqrt{2}
$$

Example of Generalized Uncertainty Relations (2): Revisiting optical interferometry

$\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}$ where $\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}$ is the photon-number variance in the upper arm.

Standard limit: coherent states
(Ignoring repetitions of the experiment)

$$
\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}=4\langle\hat{n}\rangle \Rightarrow \delta \theta \geq \frac{1}{2 \sqrt{\langle n\rangle}}
$$

Increasing the precision: maximize variance with NOON states:

$$
|\psi(N)\rangle=(|N, 0\rangle+|0, N\rangle) / \sqrt{2} \rightarrow|\psi(N, \theta)\rangle=\left(|N, 0\rangle+e^{i N \theta}|0, N\rangle\right) / \sqrt{2}
$$

$$
\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}=\frac{N^{2}}{4} \Rightarrow \delta \theta \geq \frac{1}{N}
$$

Example of Generalized Uncertainty Relations (2): Revisiting optical interferometry

$\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}$ where $\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}$ is the photon-number variance in the upper arm.

Standard limit: coherent states
(Ignoring repetitions of the experiment)

$$
\mathcal{F}_{Q}(X)=4\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}=4\langle\hat{n}\rangle \Rightarrow \delta \theta \geq \frac{1}{2 \sqrt{\langle n\rangle}}
$$

Increasing the precision: maximize variance with NOON states:

$$
|\psi(N)\rangle=(|N, 0\rangle+|0, N\rangle) / \sqrt{2} \rightarrow|\psi(N, \theta)\rangle=\left(|N, 0\rangle+e^{i N \theta}|0, N\rangle\right) / \sqrt{2}
$$

$$
\left\langle(\Delta \hat{n})^{2}\right\rangle_{0}=\frac{N^{2}}{4} \Rightarrow \delta \theta \geq \frac{1}{N}
$$

Precision is better, for the same amount of resources.

Parameter estimation with decoherence

Loss of a single photon transforms NOON state into a separable state!

$$
|\psi(N)\rangle=\frac{|N, 0\rangle+|0, N\rangle}{\sqrt{2}} \rightarrow|N-1,0\rangle \text { or }|0, N-1\rangle
$$

No simple analytical expression for Fisher information! For small N, more robust states can be numerically calculated

Parameter estimation with decoherence

Loss of a single photon transforms NOON state into a separable state!

$$
|\psi(N)\rangle=\frac{|N, 0\rangle+|0, N\rangle}{\sqrt{2}} \rightarrow|N-1,0\rangle \text { or }|0, N-1\rangle
$$

No simple analytical expression for Fisher information!
For small N, more robust states can be numerically calculated
Experimental test with more robust states:

nature
 photonics

Experimental quantum-enhanced estimation of a lossy phase shift

M. Kacprowicz¹, R. Demkowicz-Dobrzański ${ }^{1,2 \star}$, W. Wasilewski ${ }^{2}$, K. Banaszek ${ }^{1.2}$ and I. A. Walmsley ${ }^{3}$

General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology

B. M. Escher*, R. L. de Matos Filho and L. Davidovich

```
Braz J Phys
DOI 10.1007/s13538-011-0037-y
```

GENERAL AND APPLIED PHYSICS

Quantum Metrology for Noisy Systems
B. M. Escher • R. L. de Matos Filho - L. Davidovich

General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology

B. M. Escher*, R. L. de Matos Filho and L. Davidovich

news \& views

QUANTUM METROLOGY

Beauty and the noisy beast

> Elegant but extremely delicate quantum procedures can increase the precision of measurements. Characterizing how they cope with the detrimental effects of noise is essential for deployment to the real world.
> Lorenzo Maccone and Vittorio Giovannetti

```
Braz J Phys
DOI 10.1007/s13538-011-0037-y
```

GENERAL AND APPLIED PHYSICS

Quantum Metrology for Noisy Systems

B. M. Escher • R. L. de Matos Filho - L. Davidovich

Parameter estimation with losses:

Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics

Given $\hat{\rho}_{0}=|\psi\rangle\langle\psi|$ so that $\hat{\rho}(x)=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{0} \hat{\Pi}_{\ell}^{\dagger}(X)$, define in S+E

$$
|\Psi(x)\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi\rangle_{S}|l\rangle_{E}=\hat{U}_{S, E}(X)|\psi\rangle_{S}|0\rangle_{E}
$$

$$
\text { where } \hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E}
$$

Then
$\mathscr{F}_{Q} \equiv \max _{\hat{E}_{j}^{(S)} \otimes \hat{1}} F\left(\hat{E}_{j}^{(S)} \otimes \hat{1}\right) \leq \max _{\hat{E}_{j}^{(S, E)}} F\left(\hat{E}_{j}^{(S, E)}\right) \equiv \mathscr{C}_{Q}$

Parameter estimation with losses: Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics

Given $\hat{\rho}_{0}=|\psi\rangle\langle\psi| \quad$ so that $\hat{\rho}(x)=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{0} \hat{\Pi}_{\ell}^{\dagger}(X)$, define in S+E

$$
\begin{aligned}
& |\Psi(x)\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi\rangle_{S}|l\rangle_{E}=\hat{U}_{S, E}(X)|\psi\rangle_{S}|0\rangle_{E}, \\
& \text { where } \hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E}
\end{aligned}
$$

Then

$$
\mathscr{F}_{Q} \equiv \max _{\hat{E}_{j}^{(S)} \otimes \mathrm{i}} F\left(\hat{E}_{j}^{(S)} \otimes \hat{1}\right) \leq \max _{\hat{E}_{j}^{(S, E)}} F\left(\hat{E}_{j}^{(S, E)}\right) \equiv \mathscr{C}_{Q}
$$

$$
\begin{aligned}
\mathscr{C}_{\ell}\left(\hat{\rho}_{0},\left\langle\hat{\Pi}_{\ell}(X)\right\}\right) & =4\left[\left\langle\hat{H}_{1}(X)\right\rangle_{0}-\left\langle\hat{H}_{2}(X)\right\rangle_{0}^{2}\right] \\
\hat{H}_{1}(X) & \equiv \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)}{d X} \frac{d \hat{\Pi}_{\ell}(X)}{d X} \\
\hat{H}_{2}(X) & \equiv i \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)^{2}}{d X} \hat{\Pi}_{\ell}(X)
\end{aligned}
$$

Parameter estimation with losses: Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics

Given $\hat{\rho}_{0}=|\psi\rangle\langle\psi|$ so that $\hat{\rho}(x)=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{0} \hat{\Pi}_{\ell}^{\dagger}(X)$, define in $S+E$

$$
\begin{aligned}
& |\Psi(x)\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi\rangle_{S}|l\rangle_{E}=\hat{U}_{S, E}(X)|\psi\rangle_{S}|0\rangle_{E} \\
& \text { where } \hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E}
\end{aligned}
$$

Then

$$
\mathscr{F}_{Q} \equiv \max _{\hat{E}_{j}^{(S)} \otimes \hat{1}} F\left(\hat{E}_{j}^{(S)} \otimes \hat{1}\right) \leq \max _{\hat{E}_{j}^{(S, E)}} F\left(\hat{E}_{j}^{(S, E)}\right) \equiv \mathscr{C}_{Q}
$$

$$
\begin{aligned}
\mathscr{O}_{\ell}\left(\hat{\rho}_{0},\left\{\hat{\Pi}_{\ell}(X)\right\}\right) & =4\left[\left\langle\hat{H}_{1}(X)\right\rangle_{0}-\left\langle\hat{H}_{2}(X)\right\rangle_{0}^{2}\right] \\
\hat{H}_{1}(X) & \equiv \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)}{d X} \frac{d \hat{\Pi}_{\ell}(X)}{d X} \\
\hat{H}_{2}(X) & \equiv i \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)}{d X} \hat{\Pi}_{\ell}(X)
\end{aligned}
$$

Parameter estimation with losses: Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics

Given $\hat{\rho}_{0}=|\psi\rangle\langle\psi|$ so that $\hat{\rho}(x)=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{0} \hat{\Pi}_{\ell}^{\dagger}(X)$, define in S+E

$$
\begin{aligned}
& |\Psi(x)\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi\rangle_{S}|l\rangle_{E}=\hat{U}_{S, E}(X)|\psi\rangle_{S}|0\rangle_{E} \\
& \text { where } \hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E}
\end{aligned}
$$

Then

$$
\mathscr{F}_{Q} \equiv \max _{\hat{E}_{j}^{(S)} \otimes \hat{1}} F\left(\hat{E}_{j}^{(S)} \otimes \hat{1}\right) \leq \max _{\hat{E}_{j}^{(S, E)}} F\left(\hat{E}_{j}^{(S, E)}\right) \equiv \mathscr{C}_{Q}
$$

$$
\begin{aligned}
\mathscr{C}_{Q}\left(\hat{\rho}_{0},\left\{\hat{\Pi}_{\ell}(X)\right\}\right) & =4\left[\left\langle\hat{H}_{1}(X)\right\rangle_{0}-\left\langle\hat{H}_{2}(X)\right\rangle_{0}^{2}\right] \\
\hat{H}_{1}(X) & \equiv \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)}{d X} \frac{d \hat{\Pi}_{\ell}(X)}{d X} \\
\hat{H}_{2}(X) & \equiv i \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)}{d X} \hat{\Pi}_{\ell}(X)
\end{aligned}
$$

Physical meaning of this bound: information obtained about parameter when $\mathrm{S}+\mathrm{E}$ is monitored

Parameter estimation with losses: Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics

Given $\hat{\rho}_{0}=|\psi\rangle\langle\psi|$ so that $\hat{\rho}(x)=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{0} \hat{\Pi}_{\ell}^{\dagger}(X)$, define in S+E

Physical meaning of this bound: information obtained about parameter when $\mathrm{S}+\mathrm{E}$ is monitored

$$
\begin{aligned}
& |\Psi(x)\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi\rangle_{S}|l\rangle_{E}=\hat{U}_{S, E}(X)|\psi\rangle_{S}|0\rangle_{E}, \\
& \text { where } \hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E}
\end{aligned}
$$

Then

$$
\mathscr{F}_{Q} \equiv \max _{\hat{E}_{j}^{(S)} \otimes \hat{1}} F\left(\hat{E}_{j}^{(S)} \otimes \hat{1}\right) \leq \max _{\hat{E}_{j}^{(S, E)}} F\left(\hat{E}_{j}^{(S, E)}\right) \equiv \mathscr{G}_{Q}^{\mathcal{Q}}
$$

$$
\mathscr{O}_{Q}\left(\hat{\rho}_{0},\left\{\hat{\Pi}_{\ell}(X)\right\}\right)=4\left[\left\langle\hat{H}_{1}(X)\right\rangle_{0}-\left\langle\hat{H}_{2}(X)\right\rangle_{0}^{2}\right]
$$

$$
\hat{H}_{1}(X) \equiv \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)}{d X} \frac{d \hat{\Pi}_{\ell}(X)}{d X}
$$

$$
\hat{H}_{2}(X) \equiv i \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)^{d}}{d X} \hat{\Pi}_{\ell}(X)
$$

Least upper bound:
Minimization over all Kraus operators difficult problem

Bound is attainable - there is always a choice of Kraus operators such that

$$
\mathscr{O}_{Q}=\mathscr{T}_{Q}
$$

Parameter estimation with losses:

Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics

Given $\hat{\rho}_{0}=|\psi\rangle\langle\psi| \quad$ so that $\hat{\rho}(x)=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{0} \hat{\Pi}_{\ell}^{\dagger}(X)$, define in $S+E$

Physical meaning of this bound: information obtained about parameter when S+E is monitored

$$
\begin{aligned}
& |\Psi(x)\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi\rangle_{S}|l\rangle_{E}=\hat{U}_{S, E}(X)|\psi\rangle_{S}|0\rangle_{E}, \\
& \text { where } \hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E}
\end{aligned}
$$

Then

$$
\mathscr{T}_{Q} \equiv \max _{\hat{E}_{j}^{(S)} \otimes \hat{1}} F\left(\hat{E}_{j}^{(S)} \otimes \hat{1}\right) \leq \max _{\hat{E}_{j}^{(S, E)}} F\left(\hat{E}_{j}^{(S, E)}\right) \equiv \mathscr{C}_{Q}
$$

$$
\mathscr{C}_{Q}\left(\hat{\rho}_{0},\left\{\hat{\Pi}_{\ell}(X)\right\}\right)=4\left[\left\langle\hat{H}_{1}(X)\right\rangle_{0}-\left\langle\hat{H}_{2}(X)\right\rangle_{0}^{2}\right]
$$

$$
\hat{H}_{1}(X) \equiv \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)}{d X} \frac{d \hat{\Pi}_{\ell}(X)}{d X}
$$

$$
\hat{H}_{2}(X) \equiv i \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)^{d}}{d X} \hat{\Pi}_{\ell}(X)
$$

Least upper bound:
Minimization over all Kraus operators difficult problem

Bound is attainable - there is always a choice of Kraus operators such that

Then, monitoring S+E gives same information as monitoring S

Parameter estimation with losses:

Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics

Given $\hat{\rho}_{0}=|\psi\rangle\langle\psi|$ so that $\hat{\rho}(x)=\sum_{\ell} \hat{\Pi}_{\ell}(X) \hat{\rho}_{0} \hat{\Pi}_{\ell}^{\dagger}(X)$, define in $S+E$

$$
\begin{aligned}
& |\Psi(x)\rangle=\sum_{\ell} \hat{\Pi}_{\ell}(X)|\psi\rangle_{S}|l\rangle_{E}=\hat{U}_{S, E}(X)|\psi\rangle_{S}|0\rangle_{E}, \\
& \text { where } \hat{\Pi}_{\ell}(X)={ }_{E}\langle\ell| \hat{U}_{S, E}(X)|0\rangle_{E}
\end{aligned}
$$

Then

$$
\mathscr{T}_{Q} \equiv \max _{\hat{E}_{j}^{(S)} \otimes \hat{1}} F\left(\hat{E}_{j}^{(S)} \otimes \hat{1}\right) \leq \max _{\hat{E}_{f}^{(S, E)}} F\left(\hat{E}_{j}^{(S, E)}\right) \equiv \mathscr{C}_{Q}
$$

$$
\begin{aligned}
\mathscr{E}_{\ell}\left(\hat{\rho}_{0},\left\langle\hat{\Pi}_{\ell}(X)\right\}\right) & =4\left[\left\langle\hat{H}_{1}(X)\right\rangle_{0}-\left\langle\hat{H}_{2}(X)\right\rangle_{0}^{2}\right] \\
\hat{H}_{1}(X) & \equiv \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)}{d X} \frac{d \hat{\Pi}_{\ell}(X)}{d X} \\
\hat{H}_{2}(X) & \equiv i \sum_{\ell} \frac{d \hat{\Pi}_{\ell}^{\dagger}(X)}{d X} \hat{\Pi}_{\ell}(X)
\end{aligned}
$$

Bound is attainable - there is always a choice of Kraus operators such that

Then, monitoring S+E gives same information as monitoring S

Quantum limits for lossy optical interferometry

$$
\begin{aligned}
& \text { With losses } \frac{d \hat{\rho}(t)}{d t}=-i \omega[\hat{n}, \hat{\rho}(t)]+\gamma\left[\hat{a} \hat{\rho}(t) \hat{a}^{\dagger}-\frac{1}{2}(\hat{n} \hat{\rho}(t)-\hat{\rho}(t) \hat{n})\right], \hat{n}=\hat{a}^{\dagger} \hat{a} \\
& \text { (upper arm): }
\end{aligned}
$$

$\langle\hat{n}\rangle \rightarrow$ Average number of photons in the upper arm
Equivalent description in terms of the Kraus operators:

$$
\hat{\rho}(t)=\sum_{\ell} \Pi_{\ell}(t) \hat{\rho}(0) \Pi_{\ell}^{\dagger}(t)
$$

Upon deriving this equation with respect to t, one should find the master equation - there are many possible choices of Kraus operators that lead to the above master equation.

Quantum limits for lossy optical interferometry

States with well-defined total photon number: $\quad\left|\psi_{0}\right\rangle=\sum_{n=0}^{N} \beta_{n}|n, N-n\rangle$

$$
2 \sqrt{v} \delta \theta \geq\left[1+\sqrt{1+\frac{1-\eta}{\eta} N}\right] / N, \eta=e^{-\gamma t}
$$

$\nu \rightarrow$ Number of repetitions

$$
\begin{aligned}
& \eta=1 \rightarrow \text { no absorption } \\
& \eta=0 \rightarrow \text { complete absorption }
\end{aligned}
$$

Quantum limits for lossy optical interferometry

States with well-defined total photon number: $\quad\left|\psi_{0}\right\rangle=\sum_{n=0}^{N} \beta_{n}|n, N-n\rangle$

$$
2 \sqrt{v} \delta \theta \geq\left[1+\sqrt{1+\frac{1-\eta}{\eta} N}\right] / N, \eta=e^{-\gamma t}
$$

$\eta=1 \rightarrow$ no absorption
$\eta=0 \rightarrow$ complete absorption
$\nu \rightarrow$ Number of repetitions

$$
\eta \rightarrow 1 \text { or } N \ll \frac{\eta}{1-\eta} \Rightarrow \sqrt{v} \delta \theta \geq 1 / N \rightarrow \text { Heisenberg limit }
$$

$$
N \gg \frac{\eta}{1-\eta} \Rightarrow \delta \theta \geq \frac{\sqrt{1-\eta}}{2 \sqrt{v \eta N}}
$$

Quantum limits for lossy optical interferometry

States with well-defined total photon number: $\left|\psi_{0}\right\rangle=\sum_{n=0}^{N} \beta_{n}|n, N-n\rangle$

$$
2 \sqrt{v} \delta \theta \geq\left[1+\sqrt{1+\frac{1-\eta}{\eta} N}\right] / N, \eta=e^{-\gamma t}
$$

$$
\begin{aligned}
& \eta=1 \rightarrow \text { no absorption } \\
& \eta=0 \rightarrow \text { complete absorption }
\end{aligned}
$$

$\nu \rightarrow$ Number of repetitions

$$
\begin{aligned}
& \eta \rightarrow 1 \text { or } N \ll \frac{\eta}{1-\eta} \Rightarrow \sqrt{v} \delta \theta \geq 1 / N \rightarrow \text { Heisenberg limit } \\
& N \gg \frac{\eta}{1-\eta} \Rightarrow \delta \theta \geq \frac{\sqrt{1-\eta}}{2 \sqrt{v \eta N}}
\end{aligned}
$$

For N sufficiently large, $1 / \sqrt{N}$ behavior is always reached!

How good is this bound?

Comparison between numerical maximum value of \mathscr{F}_{Q} and upper bound \mathscr{G}_{Q} as a function of η, for $N=10$ (blue), $N=20$ (red), $N=30$ (green), and $N=40$ (black).

Behavior of the minimum for all values of η, as a function of N

$$
1 / \sqrt{\nu \tilde{C}_{Q}} \leq \delta \theta \leq 1.25 / \sqrt{\nu \tilde{C}_{Q}}
$$

Conclusions

Entanglement: from a puzzling quantum-mechanical effect to a useful tool: quantum communications, quantum computation, quantum metrology
Open problems: characterization of multiparticle entanglement, physical interpretation of entanglement measures, effect of decoherence on multi-particle entanglement
OTwin-photon beams: useful for studying decoherence and disentanglement \rightarrow local X global behavior of entangled states
Quantum metrology: intense activity today

Realization of amplitude map with photons

Realization of amplitude map with photons

$[\cos 2 \theta|V\rangle+\sin 2 \theta|H\rangle]$ HWPC@0

$$
\left\lvert\, \begin{array}{ll}
H\rangle|0\rangle & \rightarrow|H\rangle|0\rangle \\
|V\rangle|0\rangle & \rightarrow \sqrt{1-p}|V\rangle|0\rangle+\sqrt{p}|H\rangle|1\rangle
\end{array}\right.
$$

Tomography
QWP2 HWP2 PBS2

Incoming photon

Realization of amplitude map with photons

$[\cos 2 \theta|V\rangle+\sin 2 \theta|H\rangle]$ HWPC@0

$$
\left\lvert\, \begin{array}{ll}
H\rangle|0\rangle & \rightarrow|H\rangle|0\rangle \\
|V\rangle|0\rangle & \rightarrow \sqrt{1-p|V\rangle|0\rangle+\sqrt{p}|H\rangle|1\rangle}\rangle
\end{array}\right.
$$

Tomography
$\left\lvert\, \begin{aligned} & 10\rangle \\ & \rangle_{E}\end{aligned}\right.$
PBS1

Incoming photon

Investigating the dynamics of entanglement

Parameter estimation with losses - experiments

States leading to minimum uncertainty in the presence of noise:

$$
|\psi\rangle=\sqrt{x_{2}}|20\rangle+\sqrt{x_{1}}|11\rangle-\sqrt{x_{0}}|02\rangle
$$

Parameter estimation with losses - experiments

States leading to minimum uncertainty in the presence of noise:

$$
|\psi\rangle=\sqrt{x_{2}}|20\rangle+\sqrt{x_{1}}|11\rangle-\sqrt{x_{0}}|02\rangle
$$

Coefficients are determined numerically for each value of η. Losses simulated by a beam splitter in the upper arm. States prepared by two beam splitters.

Parameter estimation with losses - experiments

States leading to minimum uncertainty in the presence of noise:

$$
|\psi\rangle=\sqrt{x_{2}}|20\rangle+\sqrt{x_{1}}|11\rangle-\sqrt{x_{0}}|02\rangle
$$

Coefficients are determined numerically for each value of η. Losses simulated by a beam splitter in the upper arm. States prepared by two beam splitters.

Parameter estimation with losses - experiments

States leading to minimum uncertainty in the presence of noise:

$$
|\psi\rangle=\sqrt{x_{2}}|20\rangle+\sqrt{x_{1}}|11\rangle-\sqrt{x_{0}}|02\rangle
$$

Coefficients are determined numerically for each value of η. Losses simulated by a beam splitter in the upper arm. States prepared by two beam splitters.

Figure 5 | Uncertainty of phase estimates. Uncertainties obtained using two-photon optimal (circles) and NOON (squares) states, as well as attenuated laser pulses in the SIL regime (diamonds), rescaled by the square root of the number of coincidences. For each transmission η data are shown for five phases $\varphi=0, \pm 0.2, \pm 0.4$ rad. Horizontal lines represent the
theoretical Cramer-Rao bounds for given classes of input states, taking into account imperfections of the interferometer.

Parameter estimation with losses - experiments

States leading to minimum uncertainty in the presence of noise:

$$
|\psi\rangle=\sqrt{x_{2}}|20\rangle+\sqrt{x_{1}}|11\rangle-\sqrt{x_{0}}|02\rangle
$$

Coefficients are determined numerically for each value of η. Losses simulated by a beam splitter in the upper arm. States prepared by two beam splitters.

Figure 5 | Uncertainty of phase estimates. Uncertainties obtained using two-photon optimal (circles) and NOON (squares) states, as well as attenuated laser pulses in the SIL regime (diamonds), rescaled by the square root of the number of coincidences. For each transmission η data are shown for five phases $\varphi=0, \pm 0.2, \pm 0.4$ rad. Horizontal lines represent the theoretical Cramer-Rao bounds for given classes of input states, taking into account imperfections of the interferometer.

Possible model for photon loss: beam splitter

Possible model for photon loss: beam splitter

Possible model for photon loss: beam splitter

$$
\begin{aligned}
& |\Psi\rangle_{\text {out }}=\sum_{\ell=0}^{n}\binom{n}{\ell}^{1 / 2} r^{\ell} t^{n-\ell}|n-\ell, \ell\rangle \\
& \xrightarrow{t=\sqrt{\eta}} \rightarrow \text { transmissivity, } r=\sqrt{1-t^{2}} \rightarrow \text { reflectivity } \\
& \text { mode } a \\
& \Psi\rangle_{i n}=|n, 0\rangle_{0} \uparrow \\
& n) r^{2 \ell} t^{2(n-\ell)} \rightarrow \begin{array}{l}
\text { Probability that photons } \\
\text { are reflected and } n-l
\end{array} \\
& \text { transmitted }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If }|\Psi\rangle_{\text {in }}=\left(\sum_{n=0}^{\infty} a_{n}|\eta\rangle\right)_{a} \otimes|0\rangle_{b} \Rightarrow \rho_{\text {out }}^{(a)}(\eta)=\sum_{\ell=0}^{\infty} \hat{\Pi}_{\ell}(\eta)\left|\Psi^{(a)}\right\rangle_{\text {in in }}\left\langle\Psi^{(a)}\right| \hat{\Pi}_{\ell}^{\dagger}(\eta) \text { (A) } \\
& \text { where } \hat{\Pi}_{\ell}(\eta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} \eta^{\hat{n} / 2} \hat{a}^{\ell} \Rightarrow \sum_{\ell} \hat{\Pi}_{\ell}^{\dagger}(\eta) \hat{\Pi}_{\ell}(\eta)=1
\end{aligned}
$$

Possible model for photon loss: beam splitter

$$
\begin{aligned}
& \text { mode } b \\
& |\Psi\rangle_{i n}=|n, 0\rangle_{0} \uparrow \mid \\
& |\Psi\rangle_{\text {out }}=\sum_{\ell=0}^{n}\binom{n}{\ell}^{1 / 2} r^{\ell} t^{n-\ell}|n-\ell, \ell\rangle \\
& \xrightarrow[\text { mode } a]{t=\sqrt{\eta}} \rightarrow \text { transmissivity, } r=\sqrt{1-t^{2}} \rightarrow \text { reflectivity } \\
& \text { If }|\Psi\rangle_{\text {in }}=\left(\sum_{n=0}^{\infty} a_{n}|n\rangle\right)_{a} \otimes|0\rangle_{b} \Rightarrow \rho_{\text {out }}^{(a)}(\eta)=\sum_{\ell=0}^{\infty} \hat{\Pi}_{\ell}(\eta)\left|\Psi^{(a)}\right\rangle_{\text {in in }}\left\langle\Psi^{(a)}\right| \hat{\Pi}_{\ell}^{\dagger}(\eta) \text { (A) } \\
& \text { where } \hat{\Pi}_{\ell}(\eta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} \eta^{\hat{\lambda} / 2} \hat{a}^{\ell} \Rightarrow \sum_{\ell} \hat{\Pi}_{\ell}^{\dagger}(\eta) \hat{\Pi}_{\ell}(\eta)=1
\end{aligned}
$$

Set $\eta=\exp (-\gamma t)$)derive (A) with respect to \dagger, find previous master equation beam splitter is one of the possible realizations of the reservoir.

Lossy optical interferometry and Kraus operators

Lossy optical interferometry and Kraus operators

$$
\hat{\Gamma}_{\ell}(\theta)=\sqrt{\frac{(1-n)^{\ell}}{\ell!}} e^{i \theta \hat{n}_{n} \hat{n} / 2 \hat{a}^{\ell}}
$$

\rightarrow Beam splitter placed before dispersive element

$$
\eta=e^{-\gamma t} \quad \theta=\omega t
$$

Lossy optical interferometry and Kraus operators

$$
\hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} e^{i \theta \hat{n}} \eta^{\hat{n} / 2} \hat{a}^{\ell}
$$

$$
\eta=e^{-\gamma t} \quad \theta=\omega t
$$

\rightarrow Beam splitter placed before dispersive element

P'artial recovery of information upon monitoring the environment: scattered photons do not carry phase information

Lossy optical interferometry and Kraus operators

$$
\hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} e^{i \theta} \hat{n}_{\eta} \hat{n} / 2 \hat{a}^{\ell}
$$

$$
\eta=e^{-\gamma t} \quad \theta=\omega t
$$

$$
\hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} \underbrace{\eta^{\hat{n} / 2} \hat{a}^{\ell} e^{i \theta \hat{n}}}_{e^{i \theta(\hat{n}+\ell)} \eta^{\hat{n} / 2} \hat{a}^{\ell}}
$$

\rightarrow Beam splitter placed before dispersive element

P'artial recovery of information upon monitoring the environment: scattered photons do not carry phase information
Beam splitter placed after dispersive element

Lossy optical interferometry and Kraus operators

$$
\begin{aligned}
& \hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!} e^{i \theta} \hat{n}^{\eta} \hat{\eta}^{n} / 2 \hat{a}^{\ell}} \rightarrow \\
& \eta=e^{-\gamma t} \quad \theta=\omega t \\
& \hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} \underbrace{\hat{a}^{\ell}}_{e^{i \theta(\hat{n}+\ell)} \eta^{\hat{n} / 2} \hat{a}^{\ell} e^{i \theta \hat{n}}}
\end{aligned}
$$

\rightarrow Beam splitter placed before dispersive element

P'artial recovery of information upon monitoring the environment: scattered photons do not carry phase information
Beam splitter placed after dispersive element

Full recovery of information upon monitoring the environment: same bound as in the lossless case (poor bound...)

Lossy optical interferometry and Kraus operators

$$
\hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} e^{i \theta} \hat{n}^{\eta} \hat{n} / 2 \hat{a}^{\ell}
$$

$$
\eta=e^{-\gamma t} \quad \theta=\omega t
$$

$$
\hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} \underbrace{i \theta(\hat{n}+\ell) \eta^{\hat{n} / 2} \hat{a}^{\ell}}
$$

General expression:
$\hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!} e^{i \theta(\hat{n}-\alpha \ell)} \eta^{\hat{n} / 2} \hat{a}^{\ell}}$

Partial recovery of information upon monitoring the environment: scattered photons do not carry phase information
Beam splitter placed after dispersive element

Full recovery of information upon monitoring the environment: same bound as in the lossless case (poor bound...)
$\alpha=0$: Beam splitter placed before dispersion $\alpha=-1$: Beam splitter placed after dispersion

Lossy optical interferometry and Kraus operators

$$
\hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} e^{i \theta} \hat{n} \eta^{\hat{n} / 2} \hat{a}^{\ell}
$$

\rightarrow Beam splitter placed before dispersive element
$\eta=e^{-\gamma t} \quad \theta=\omega t$
$\hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} \underbrace{\eta^{\hat{n} / 2} \hat{a}^{\ell} e^{i \theta \hat{n}}}_{e^{i \theta(\hat{n}+\ell)} \eta^{\hat{n} / 2} \hat{a}^{\ell}}$

General expression:
$\hat{\Pi}_{\ell}(\theta)=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} e^{i \theta(\hat{n}-\alpha \ell)} \eta^{\hat{n} / 2} \hat{a}^{\ell}$

P'artial recovery of information upon monitoring the environment: scattered photons do not carry phase information
Beam splitter placed after dispersive element

Full recovery of information upon monitoring the environment: same bound as in the lossless case (poor bound...)
$\alpha=0$: Beam splitter placed before dispersion $\alpha=-1$: Beam splitter placed after dispersion Choose α that miminizes \mathcal{C}_{Q} !

