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Propagador de uma partícula sob uma força constante
Considere uma partícula de massa m restrita ao movimento unidimensional sob a ação de um potencial linear

V̂ (x) = max̂. Obtenha o propagador i!G(x, t, 0, 0) dessa partícula ir da coordenada (xi, ti) = (0, 0) até a coordenada
(xf , tf ) = (x, t).

Dica: Reescreva as trajetórias em relação à trajetória clássica x = xcl + η e use que o propagador da partícula livre

é igual a i!G(xf , tf , xi,ti) =
√

m
2πi!(tf −ti) exp

(

i
!

×
m(xf −xi)2

2(tf −ti)

)

.



- Relação de Jarzynski (                               ) para sistemas clássicos.

Figura: Representação esquemática do sistema de interesse. 
N partículas de massa m estão conectadas à duas paredes 
através de molas harmônicas. Todas as molas são idênticas, 
com frequência angular ω  e comprimento natural l0. O 
protocolo de trabalho consistirá em variar a distância entre 
as paredes, de tal modo que o parâmetro L indicado na 
figura será uma função do tempo, i.e., L = L(t). Assim, as 
variáveis estocásticas do problema são as posições e 
momenta das partículas e o agente externo pode realizar 
trabalho alterando a distância entre as paredes.

 - Para este sistema a diferença de energia livre de 
Helmholtz entre estados de equilíbrio à temperatura T 
com L = L1 e L = L0 é dada por:     

Para verificar Jarzynski no protocolo descrito, siga os passos:

a) Determine o Hamiltoniano do sistema.
b) Perceba que a equação de movimento da n-ésima partícula não depende de L(t), sendo:

c) Verifique que o trabalho realizado sobre a n-ésima partícula não depende das suas condições 
iniciais, sendo dado por:

d) Calcule                   assumindo que o sistema de N partículas está inicialmente em equilíbrio 
térmico com temperatura T e que L(tf)= L1 e L(ti)= L0 . (Fim da verificação).

Um resultado imediato da análise descrita é o de que a densidade de probabilidade do trabalho no 
protocolo considerado é uma função delta de Dirac no valor                                            .

Híjae e Zárate (Eur. J. Phys. 31, 1097 (2010)) analisaram este mesmo problema considerando que 
apenas a parede da direita se movia. Supondo um protocolo linear L(t)= L0 + V t, eles obtiveram 
que o trabalho sobre a n-ésima partícula dependia das suas condições iniciais e que a densidade 
de probabilidade era uma gaussiana, a saber:

Naturalmente, apesar dessas diferenças, eles também verificaram que a relação de Jarzynski era 
satisfeita.

Você teria alguma intuição física da razão pela qual o trabalho calculado e a sua densidade de 
probabilidade do nosso problema foram tão diferentes do resultado de Híjae e Zárate?
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Abstract
The Jarzynski theorem is perhaps the most recently discovered simple general
formula in elementary statistical physics. In this paper, written with a
pedagogical aim, we illustrate the physical concepts under the Jarzynski and
related results by a detailed calculation with a representative example. The
physics of the model is sufficiently transparent so that it becomes suitable to
incorporate in a general course of statistical physics.

1. Introduction

The Jarzynski theorem is perhaps the most recently discovered simple general formula in
elementary statistical physics [1]. In its most common expression it is formulated as

⟨e−W/kBT ⟩ = e−!F/kBT . (1)

Equality (1) refers to two different equilibrium thermodynamic states of an arbitrary system
which we refer to as the initial and the final state. These two states must have the same
temperature T, but differ in some other thermodynamic variable so that there is a difference
in the Helmholtz free energy !F between them. For instance, in a regular fluid system,
the variable distinguishing the two states can be the volume V. From a microscopic point of
view, the variable discriminating between the two states enters as an external parameter in
the Hamiltonian of the system. It is known from elementary thermodynamics that when the
system is driven from the initial to the final state by a reversible process, a workW is performed
so that W = −!F (isothermal process). If, in contrast, the process connecting initial and
final states is irreversible, the work W differs in general from the free-energy difference. Of
course, there are many irreversible processes (potentially infinity) connecting the initial and
the final states (only one isothermal reversible, though), and in each of these processes the
work performed will be different. Therefore, one can treat the ensemble of possible processes
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Figure 1. Schematic representation of the system under consideration in section 2. There are
N particles of mass m connected by harmonic springs to two bounding walls. All springs are
identical, with the constant k and equilibrium length l0.

grounds. The objections raised appear to be rebutted in our opinion [13]. We will comment
more on these issues of thermodynamic work and heat at the end of the paper, but a complete
understanding of nonequilibriumwork theorems may still require somemore scientific debate.

Wenow stop commenting on Jarzynski’s and related results because our purpose here is not
a systematic review. The goal of this paper is to illustrate the Jarzynski and Crooks fluctuation
theorems by detailed calculations using simple representatives examples. Of course, the
Jarzynski and Crooks theorems are exact and hold for any system. The interest of performing
a detailed calculation is purely pedagogical. In the example that we examine in detail here,
the (irreversible) work probability distribution can be readily calculated analytically. Most
importantly, in our example the central physical insight behind these results is clearly shown,
namely that in an isothermal process starting at an equilibrium state the work performed
depends on the initial phase space position of the system within the corresponding canonical
distribution. Furthermore, our example here is based on one of the typical model systems often
used to teach the introductory courses of statistical physics, being sufficiently transparent to
incorporate in one of these elementary courses, effortlessly exposing the students to cutting-
edge research.

2. Two plates joined by springs

Let us consider a system of N identical particles of mass m which are joined to two parallel
plates by a set of 2N springs. The setup under consideration is shown schematically in figure 1.
All the springs are equal, with the constant k and equilibrium length l0, and the corresponding
potentials are assumed to be harmonic.

The Hamiltonian of the mechanical system depicted in figure 1 is readily expressed as

H(pn, qn) =
N∑

n=1

p2n
2m

+
mω2

2
[(xn − l0)

2 + (xn − L − l0)
2], (4)
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where ω2 = k/m is the frequency corresponding to the set of 2N identical springs and 2l0 +L

is the distance between the bounding plates. The position of the n particle is measured by its
distance xn to the left plane, pn being the corresponding momentum. We note in equation (4)
the dependence of the Hamiltonian on the extensive parameter L; Jarzynski’s equality refers
to the changes in the free energy of the system when L is varied. From Hamiltonian (4) the
equations of motion of the individual particles follow:

m
d2xn

dt2
= −2k(xn − l0) + kL. (5)

If the system is in equilibrium at temperature T, the free energy of the system F(L, T) can
be easily obtained from a canonical distribution, since all integrals are Gaussian. It results in

F(L, T ) = −NkBT

[
ln

(
kBT√
2h̄ω

)
− mω2L2

4kBT

]
, (6)

where kB is the Boltzmann constant. In equations (4)–(6) it is implicitly assumed that the
particles move in one dimension and can occupy any position xn ∈ {−∞,+∞}. The model
can be complicated by introducing, for instance, impervious walls or more spatial dimensions.
Any complication introduced into the model does not affect the validity of Jarzynski’s
result, so for the illustration goals intended here it is preferable to keep the model (and the
calculations) as simple as possible. All the thermodynamics of the system can be deduced from
equation (6), which gives the Helmholtz free energy in terms of its natural variables. In
particular, the free-energy difference between a final state with L = L1 and an initial state
with L = L0, appearing on the right-hand side of Jarzynsk’s equality (1), will be given by

"F = N
mω2

4
(
L21 − L20

)
. (7)

To verify Jarzynski’s theorem for our system we can imagine that at t = 0 the right wall
starts to move with a uniform velocity V, so that L(t) = (L0 + V t)θ(t), where θ(t) is a step
function. By substituting L(t) into the equations of motion, equation (5), it is relatively easy
to obtain the general solution of the corresponding differential equation, namely

xn(t) = An,0 cos(
√
2ωt + θn,0) + l0 + 1

2 (L0 + V t), for t > 0. (8)

The integration constants An,0 and θn,0 are related to the position and linear momentum of the
n-particle at t = 0. Let us consider next the energy of the n-particle for t > 0, which will be
given by

En(t) = 1
2m[ẋn(t)]2 + 1

2k[xn(t) − l0]2 + 1
2k[xn(t) − l0 − L(t)]2. (9)

The work Wn required to move the n-particle from its position at t = 0 to its position at time
t will be given by the difference between the corresponding energies. Some simple algebra
allows us to express it as

Wn = En(t) − En(0)

= φ(t) − p0
V

2
(1− cos

√
2ωt) −

(
x0 − l0 − 1

2
L0

)
mωV√
2
sin

√
2ωt, (10)

where p0 and x0 are the linearmomentumand the position of the n-particle at t = 0, respectively.
The function φ(t) in equation (10) is given by

φ(t) = mV 2

4

[
1 + ω2t

(
t +

2L0
V

)
− cos

√
2ωt

]
,

= mω2

4

[
L21 − L20 +

V 2

ω2
(1− cos

√
2ωt)

]
, (11)
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where L1 = L0 + V t is the position reached by the right wall after a time t has elapsed. The
total workW required to move the left wall to its location at time t will be obtained by adding
all the contributions of the individual particles W =

∑
n Wn. As is well known, the initial

positions and velocities of the particles at a given temperature are the stochastic variables,
with the probability distribution given by the canonical ensemble. Consequently, the work
required to move the left wall will be a stochastic variable also. The probability distribution
P(W) of the stochastic variableW can be easily calculated by averaging over initial positions
and velocities of the particles, namely

PF(W) =
〈

δ

(

W −
N∑

n=1
Wn

)〉

=
∫ ∞

−∞

dq
2π

exp[iqW ]⟨exp[−iqWn]⟩N, (12)

where we represented the delta function as an integral, and used the fact that the system under
consideration is ideal, so that averages are the same for any particle. For later use, we have
introduced the subindex ‘F’ to denote the forward work probability distribution.

The average contained in equation (12) can be exactly calculated for the simple dynamics
under consideration here, since all integrals are Gaussian. Indeed, using equation (10) and the
canonical ensemble with Hamiltonian (4) evaluated at L = L0, one obtains

⟨exp[−iqWn]⟩ = βω√
2π

e
1
4 βmω2L20 e−iqφ

∫ ∞

−∞
dp0 exp

[
−

βp20
2m

+ iq
V

2
p0(1− cos(

√
2ωt)

]

×
∫ ∞

−∞
dx0 exp

[
−βmω2

2
(x0 − l0)

2 − βmω2

2
(x0 − l0 − L0)

2

+ iq
mωV√
2

(
x0 − l0 − L0

2

)
sin(

√
2ωt)

]

= exp
[
−iqφ − q2

mV 2

4β
(1− cos

√
2ωt)

]
, (13)

where, as usual, β = 1/kBT . Next, substituting into equation (12), one obtains a Gaussian
probability distribution for the work performed when the right plate moves, namely

PF(W) = 1√
2πσ

exp
[
− (W − Nφ)2

2σ 2

]
, (14)

where the variance σ is given by

σ =
√

N

[
mV 2(1− cos

√
2ωt)

2β

]1/2
. (15)

We note that the variance of the probability distribution PF(W) vanishes for times multiples of
π/

√
2ω. This strange feature is a consequence of the simplicity of our noninteracting model,

and is also present in other ideal systems [14]. For systems with interaction this oscillatory
behaviour in the moments of the work probability distribution is not present [15]. This feature
will be discussed in more detail in section 3, where a slightly interacting variation of the
current model will be considered.

Now we are in a position to readily verify Jarzynski’s equality, namely

⟨e−βW ⟩ = exp
[
β

2
(βσ 2 − 2Nφ)

]
= exp

[
−β

4
Nmω2

[
L21 − L20

]]
= e−β'F , (16)

where the difference between free energies is to be calculated from equation (6) by taking
L = L0 as the initial state and L = L1 as the final state.

Wn

R +l0+L
2

�l0�L
2

(·)dx ⇡
R +1
�1 (·)dxOnde consideramos que:


