

Exame da Escola Avançada de Física Teórica

Nome:

29 de julho de 2016

Propagador de uma partícula sob uma força constante
Considere uma partícula de massa m restrita ao movimento unidimensional sob a ação de um potencial linear $\hat{V}(x)=m a \hat{x}$. Obtenha o propagador $i \hbar G(x, t, 0,0)$ dessa partícula ir da coordenada $\left(x_{i}, t_{i}\right)=(0,0)$ até a coordenada $\left(x_{f}, t_{f}\right)=(x, t)$.

Dica: Reescreva as trajetórias em relação à trajetória clássica $x=x_{\mathrm{cl}}+\eta$ e use que o propagador da partícula livre é igual a $i \hbar G\left(x_{f}, t_{f}, x_{i}, t_{i}\right)=\sqrt{\frac{m}{2 \pi i \hbar\left(t_{f}-t_{i}\right)}} \exp \left(\frac{i}{\hbar} \times \frac{m\left(x_{f}-x_{i}\right)^{2}}{2\left(t_{f}-t_{i}\right)}\right)$.

- Relação de Jarzynski $\left(\left\langle\mathrm{e}^{-W / k_{\mathrm{B}} T}\right\rangle=\mathrm{e}^{-\Delta F / k_{\mathrm{B}} T}\right)$ para sistemas clássicos.

Figura: Representação esquemática do sistema de interesse. \mathbf{N} partículas de massa \mathbf{m} estão conectadas à duas paredes através de molas harmônicas. Todas as molas são idênticas, com frequência angular ω e comprimento natural ℓ_{0}. O protocolo de trabalho consistirá em variar a distância entre as paredes, de tal modo que o parâmetro \mathbf{L} indicado na figura será uma função do tempo, i.e., $\mathbf{L}=\mathbf{L}(\mathrm{t})$. Assim, as variáveis estocásticas do problema são as posições e momenta das partículas e o agente externo pode realizar trabalho alterando a distância entre as paredes.

- Para este sistema a diferença de energia livre de Helmholtz entre estados de equilíbrio à temperatura \mathbf{T} $\operatorname{com} \mathbf{L}=\mathbf{L}_{\mathbf{1}} \mathbf{e} \mathbf{L}=\mathrm{L}_{0}$ é dada por:

$$
\Delta F \equiv F\left(L_{1}, T\right)-F\left(L_{0}, T\right)=N \frac{m \omega^{2}}{4}\left(L_{1}^{2}-L_{0}^{2}\right)
$$

Onde consideramos que: $\int_{-l_{0}-\frac{L}{2}}^{+l_{0}+\frac{L}{2}}(\cdot) d x \approx \int_{-\infty}^{+\infty}(\cdot) d x$

Para verificar Jarzynski no protocolo descrito, siga os passos:
a) Determine o Hamiltoniano do sistema.
b) Perceba que a equação de movimento da n-ésima partícula não depende de $L(t)$, sendo:

$$
\frac{\mathrm{d}^{2} x_{n}}{\mathrm{~d} t^{2}}=-2 \omega^{2} x_{n} \quad \Rightarrow x_{n}(t)=x_{n}(0) \cos (\sqrt{2} \omega t)+\frac{\dot{x}_{n}(0)}{\sqrt{2} \omega} \sin (\sqrt{2} \omega t)
$$

c) Verifique que o trabalho realizado sobre a n-ésima partícula não depende das suas condições iniciais, sendo dado por:

$$
W_{n}=\frac{m \omega^{2}}{4}\left(L\left(t_{f}\right)^{2}-L\left(t_{i}\right)^{2}\right)
$$

d) Calcule $\left\langle e^{-W / k_{b} T}\right\rangle$ assumindo que o sistema de \mathbf{N} partículas está inicialmente em equilíbrio térmico com temperatura \mathbf{T} e que $\mathbf{L}\left(\mathbf{t}_{\mathrm{f}}\right)=\mathbf{L}_{\mathbf{1}}$ e $\mathbf{L}\left(\mathbf{t}_{\mathrm{i}}\right)=\mathbf{L}_{0}$. (Fim da verificação).

Um resultado imediato da análise descrita é o de que a densidade de probabilidade do trabalho no protocolo considerado é uma função delta de Dirac no valor $W=N m \omega^{2}\left(L_{1}^{2}-L_{0}^{2}\right) / 4$.

Híjae e Zárate (Eur. J. Phys. 31, 1097 (2010)) analisaram este mesmo problema considerando que apenas a parede da direita se movia. Supondo um protocolo linear $L(t)=L_{0}+V t$, eles obtiveram que o trabalho sobre a n-ésima partícula dependia das suas condições iniciais e que a densidade de probabilidade era uma gaussiana, a saber:

$$
\begin{aligned}
& W_{n}=\phi(t)-p_{0} \frac{V}{2}(1-\cos \sqrt{2} \omega t)-\left(x_{0}-l_{0}-\frac{1}{2} L_{0}\right) \frac{m \omega V}{\sqrt{2}} \sin \sqrt{2} \omega t \\
& P_{\mathrm{F}}(W)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(W-N \phi)^{2}}{2 \sigma^{2}}\right]
\end{aligned}
$$

Naturalmente, apesar dessas diferenças, eles também verificaram que a relação de Jarzynski era satisfeita.

Você teria alguma intuição física da razão pela qual o trabalho calculado e a sua densidade de probabilidade do nosso problema foram tão diferentes do resultado de Híjae e Zárate?

