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Why sines and cosines, and complex numbers, 
can be any good for crystallography??

X-ray diffraction of a protein crystal, is light 
interacting with matter: scattering and 
interference… 

light can be represented as electromagnetic 
waves (sinusoidal functions describe the 
electric and the magnetic fields!)



Electromagnetic waves

from “Biomolecular Crystallography” Bernhard Rupp, Garland Science 2010



…so this introduction, will try and refresh 
very few math elements, about 

- complex numbers and some trigonometry: 
both useful when it comes to dealing with 
waves! 

- a little bit of vectors (structures have 
lots to do with positions & distances…and 
these are well described with vectors!)
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what could be the risk?…
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“One language is never enough”
…only garbage  
I made up!!! !



?????

Fhkl = V ρxyz
xyz
∫ e[2π i(hx+ky+lz)]δxyz



Fourier theory 

The diffraction pattern is related to the object that 
made  waves  diffract,  by  a  direct  mathematical 
operation called Fourier transform

Fhkl = V ρxyz
xyz
∫ e[2π i(hx+ky+lz)]δxyz



F  is a complex number 
…and it is a function of h,k,l (reciprocal space)



The complex numbers

� 

x = −b ± b2 − 4ac
2a

� 

ax 2 + bx + c = 0

a + ib

They arise from certain solutions of quadratic equations :

…when b2 < 4ac…



Complex numbers are 
of the type

F = a + ib

where   i = √-1

Rotation is posible by 
multiplying vectors

√i = 45°  (i = 90°)
Argand diagram 
(complex plane)

The complex numbers



• They are not vectors, but 
they  share  with  2-
dimensional  vectors  a 
similar  notation (see  e.g. 
the Argand diagram)

• Adding complex numbers 
and vectors is similar

• ..but  multiplication  is 
different!  no  scalar  or 
cross  products  for 
complex numbers… 

Argand diagram 
(complex plane)

The complex numbers



real axis

imaginary 
axis

F

a

b

F = a + ib

…implying that        cosθ + i sinθ = eiθ

θ

f = |F|

i

R

a + i b = f cosθ + i f sinθ = 

f (cosθ + i sinθ) = f eiθ



Euler’s theorem…

The sum of cosine α plus i times sine α is equal 
to the exponent of i times α.



Euler’s theorem…

eiα = cosα + i sinα
…and knowing,Given,



Trigonometry

"the measurement of triangles"

cos θ = a/c sin θ = b/c tan θ = b/a

tan θ = sin θ/cos θ

θ

a

c

b



Trigonometry

"the measurement of triangles"

cos θ = a/c sin θ = b/c 

θ

a

c

b

Sinusoidal functions are symmetrical : 

cos θ = cos -θ (“symmetric”)

sin θ = - sin -θ     (“antisymmetric”)

a2 + b2 = c2 cos2 θ + sin2 θ = 1



Differentiation of sinusoidal functions

� 

d(sin(θ ))
dθ

= cos(θ )

� 

d(cos(θ ))
dθ

= −sin(θ )

sin θ

cos θ

-sin θ

perimeter/radius = 2π

one full cycle is 2π radians
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Some  properties  of  complex  numbers  are  important  for  the 
manipulation of structure factors. 

A simple operation is to take the complex conjugate, which means 
changing the sign of the imaginary part.



Some  properties  of  complex  numbers  are  important  for  the 
manipulation of structure factors. 

A simple operation is to take the complex conjugate, which means 
changing the sign of the imaginary part.

(a + i b) (a + i b)* = (a + i b) (a - i b) = a2 - i a b + i a b - i2 b2 = a2 + b2 = r2

…remember this!

Thus, the complex conjugate of the complex number a + ib is written 
as (a + ib)* , and is equal to a – ib

You should be able to confirm that multiplying a complex number by 
its complex conjugate gives a real number which is the square of the 
modulus:



Why sines and cosines, and complex numbers, 
can be any good for crystallography??

X-ray diffraction of a protein crystal, is light 
interacting with matter: scattering and 
interference… 

light can be represented as electromagnetic 
waves (sinusoidal functions describe the 
electric and the magnetic fields!)



Electromagnetic waves

from “Biomolecular Crystallography” Bernhard Rupp, Garland Science 2010



Waves

E
A (amplitude)

λ (wavelength) 
e.g. meters

E(t) = A cos(ωt + α)

α

ω=2πν

(phase angle) 
e.g. rads

t
e.g. Volts/meter

adapted from http://www-structmed.cimr.cam.ac.uk/Course/Basic_diffraction/Diffraction.html

http://www-structmed.cimr.cam.ac.uk/Course/Basic_diffraction/Diffraction.html


Addition of plane waves

+

=



Addition of plane waves (2)

+

=



i

The Argand diagram

F = F eiϕ

eiϕ = cos ϕ + i sin ϕ

where

from “Biomolecular Crystallography” Bernhard Rupp, Garland Science 2010



Addition of plane waves

from “Biomolecular Crystallography” Bernhard Rupp, Garland Science 2010



Waves and complex numbers

F(ϕ) = F eiϕ

F(-ϕ) = F*(ϕ) 

-F(ϕ) = F(ϕ+!)

from “Biomolecular Crystallography” Bernhard Rupp, Garland Science 2010



Waves and complex numbers

F(ϕ) = F eiϕ     = A + iB

F = |F| 

|F| = (A2 + B2)1/2 

F = ((A + iB)(A-iB))1/2 
∴ 
F = (FF*)1/2

from “Biomolecular Crystallography” Bernhard Rupp, Garland Science 2010



…coming back to vectors, they are of 
course also present and useful in physics 
(in particular  crystallography)

they have magnitude and direction, as opposed to a scalar 
which only has magnitude

Vector addition :
algebraically expressed as

a + b = c 

a
b

c

b = c - a think of b = c + (-a) 



If vectors a and c give the positions of two atoms in the cell, they 
are known as position vectors; b is known as a displacement 
vector, as it gives the displacement of one atom relative to the 
other.

a
b

c

…coming back to vectors, they are of 
course also present and useful in physics 
(in particular  crystallography)



Vectors

In the unit cell, the position vector x has components (x, y, z) 
such that

x = a x + b y + c z 

where a, b and c are the lattice translation vectors (the edges 
of the unit cell) and x, y and z are the fractional coordinates 
of the point.

Similarly, the position of a point in reciprocal space is given 
by the vector h, which has components (h, k, l) such that:

h = a*h + b*k + c*l



The scalar (dot) product of the two vectors x and h is a scalar:

h.x = h x + k y + l z

…an  expression  found  in  both  the  structure  factor  and  electron  density 
equations. 

The vector (cross) product gives a third vector (normal n to the multiplied 
ones),  used  e.g.  in  the  relationships  between  the  direct  and  reciprocal 
lattices:

� 

a*= bxc
V

� 

b* = axc
V

� 

c* = axb
V

� 

axb = ab sinγn

remember…

� 

a.b = ab cosγ

� 

V = a.bxc

Vectors Fhkl = V ρxyz
xyz
∫ e[2π i(hx+ky+lz)]δxyz

^

^



The scalar (dot) product of the two vectors x and h is a scalar:

h.x = h x + k y + l z

…an  expression  found  in  both  the  structure  factor  and  electron  density 
equations. 

The vector (cross) product gives a third vector (normal n to the multiplied 
ones),  used  e.g.  in  the  relationships  between  the  direct  and  reciprocal 
lattices:

� 

a*= bxc
V

� 

b* = axc
V

� 

c* = axb
V

� 

axb = ab sinγn

remember…

� 

a.b = ab cosγ

� 

V = a.bxc

Vectors

^

^



3D vectors and dot product

� 

axb = ab sinγn

remember…

� 

a.b = ab cosγ

Vectors

then for any given vector 
a=(r,φ,θ)=(a1,a2,a3)   it follows 

a1 = r cosφ sinθ             b1 = r’ cosφ’ sinθ’   
a2 = r sinφ sinθ             b2 = r’ sinφ’ sinθ’ 
a3 = r cosθ                    b3 = r’ cosθ’ 

such that  

a⋅b = r r’ [cos(φ−φ’) sinθ sinθ’ + cosθ cosθ’] 

∴ it holds that  

a⋅b = a1 b1  + a2 b2 + a3 b3 ^



This… 

� 

V = a.bxc

� 

V = abc 1− cos2α− cos2 β − cos2 γ + 2cosα cosβ cosγ

…is easier than this… 

the volume of the unit cell



coming back to our Fourier transform equation, 
connecting the electron density function to a 
reciprocally related structure factor function…

it’s getting a little bit clearer…

Fhkl = V ρxyz
xyz
∫ e[2π i(hx+ky+lz)]δxyz



we’ll not go now into calculus, but 
think of the integral as a summation 
over all real space xyz

we’ll see later why the physical diffraction 
actually comprises this Fourier transform in real 
action, transforming the electron density of the 
crystal into an image function (structure factors 
Fhkl) that we measure in the experiment

Fhkl = V ρxyz
xyz
∫ e[2π i(hx+ky+lz)]δxyz



so you can see, that for each h,k,l adopting a 
particular F value (it is a complex number value, 
with amplitude and phase), you need to sum ALL 
the values of ρ for all the x,y,z space!!! and it is 
non linear, because we have wave (sinusoidal) 
components 

Fhkl = V ρxyz
xyz
∫ e[2π i(hx+ky+lz)]δxyz



also cool is that the Fourier transform can be inverted :

ρxyz= 1
V

Fhkl
hkl
∑ e[−2π i(hx+ky+lz)]



also cool is that the Fourier transform can be inverted :

ρxyz= 1
V

Fhkl
hkl
∑ e[−2π i(hx+ky+lz)]

watch out for the 
change of sign here 



also cool is that the Fourier transform can be inverted :

ρxyz= 1
V

Fhkl
hkl
∑ e[−2π i(hx+ky+lz)]

this is interesting!  since we are actually 
faced to this problem, once we’ve 
measured the diffracted structure 
factors, and want to reconstruct the 3D 
electron density of the protein xtal!!



Waves, structure factors and how Fourier helps us

X  rays  have  wave  properties,  hence  the  utility  of 
mathematical descriptors of waves : the sinusoidal functions 
describe "simple" waves (those that have a single frecuency)

space or time domain
(…periodic for these functions) 

frequency domain
(…discrete) 

cosine function and its Fourier transform

sine function and its Fourier transform
x 1/x

00

0

0
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(periodic) space or 

time domain

frequency domain

3 cosine functions combined in one 
"composite" wave

Waves and structure factors
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Waves and structure factors

taken from  https://en.wikipedia.org/wiki/User:LucasVB/Gallery#/media/File:Fourier_transform_time_and_frequency_domains.gif
Further material at http://1ucasvb.tumblr.com/post/44489240563/the-continuous-fourier-transform-takes-an-input

https://en.wikipedia.org/wiki/User:LucasVB/Gallery#/media/File:Fourier_transform_time_and_frequency_domains.gif


adapted from https://www.youtube.com/watch?v=LznjC4Lo7lE
Matlab code available there 

https://www.youtube.com/watch?v=LznjC4Lo7lE


yet one more example of how Fourier works for us…

taken from https://www.youtube.com/watch?v=-GYB7khbIA0
Matlab code available there 

https://www.youtube.com/watch?v=-GYB7khbIA0


Microscopy and diffraction: cousins

?

light

object
visible λ

scattered 
radiation lens

magnified 
image

scattered 
radiation

Microscopy

Diffraction light

objectX-rays λ



Microscopy and diffraction: cousins

?
FT-1

detector

light

object

light

object

scattered 
radiation lens

magnified 
image

scattered 
radiation

magnified 
image

Microscopy

Diffraction

FT
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Apart from these concepts, we don’t have time now to 
go into a few other tools in Math that can help in 
several different aspects and stages of the process: 

- Matrix algebra  (to deal with vector manipulations, as 
in calculating atomic distances, as in rotating 
coordinate references and objects, etc) 

- Statistics: maximum likelihood, probabilities, 
distributions, random and systematic errors  
(extremely valuable in all stages, since we are typically 
collecting many observations in each experiment, data 
processing, phasing, direct methods, refinement, etc) 



Unit of Protein Crystallography

thank you! 
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