Molecular Replacement

Andrey Lebedev CCP4

MR Problem

Known crystal structure

New crystal structure

Given:

Crystal structure of a homologue
New X-ray data

Find: • The new crystal structure

MR Technique

Known crystal structure

New crystal structure

Method:

- 6×N dimensional global optimisation
 - one 6-d search for each molecule in the AU
 > split further to orientation + translation searches = 3 + 3
 > fast search step using FFT

Required:

- Scoring
 - the match between the data and an (incomplete) crystal model
 - ideally: the highest score = correct solution

Real and Reciprocal spaces

- Terms may refer real space but actual calculations may be performed in the reciprocal space:
 - "Search in the electron density"
 - "Patterson search"
- The concepts formulated in real space are more intuitive

Functions in Real and Reciprocal spaces

Structure factors and Electron density map

Structure factors F(h,k,l)

- A discrete complex function in the reciprocal space
- At given h, k, l
- Complex number:

F = A + iB

- Can be expressed via structure amplitude and phase $F = |F| \exp(i\phi)$

	Open	P	rint	PDF/I) PS	Сору		General	Summary	HKL List HKL Z]▶ on
Π		1						_		т	ït
_		/	\sim								
		h	k	- 1	Free	eR_flag	F	SIGF	parrot.F_phi.F	parrot.F_phi.phi	1
	1168+	14	2	37		18	146.69	3.12	122.01	22.80	
	11635	14	2	38	_ \	7	134.61	3 26	94.11	164.66	
	11686	14	2	39		7	41.34	10.84	104.88	346.16	
	116 87	14	2	40		12	195.94	3.04	192.02	149.45	
	11638	14	2	41		3	117.36	3 76	87.03	39.69	
	11689	14	2	42		14	108.63	3.17	41.80	142.52	
	11690	14	2	43		13	194.47	2.93	252.73	17.39	
	11601	14	2	44		12	90.95	4 95	57 49	212 32	
	NL	<u></u>	mk	or 1	6	0010				IESC	1

Electron density map

- periodic 3-d function in real space

is directly interpretable

- model building
- real-space fitting of fragments

November 16, 2018

Intensities and Patterson map

Intensities

I(h,k,l)

 - 3-d discrete real function in the reciprocal space

Patterson map:

- 3-d function in real^(*) space

 No features resembling a protein molecule
 Model building, residue by residue, is impossible

Data and MR

MR: Two distinct cases dependent on availability of phases

- Data = structure factors (include phases)
 - "Search in the electron density"
 - Electron density maps are compared: calculated *vs*. observed
 - Model building is a more straightforward approach
 - » Useful in special cases
- Data = observed intensities (no phases)
 - "Patterson search"
 - Patterson maps are compared: calculated *vs*. observed
 - Direct model building is impossible in the absence of phases
 - » The most common case of MR

As a rule, all computations are in the reciprocal space

Self and cross vectors

Electron density map = peaks from all atoms Patterson map = peaks from all interatomic vectors

- self-vectors: vectors between atoms belonging to the same molecule
- cross-vectors: vectors between atoms belonging to different molecules

Patterson search

Patterson map:

- Contribution from self-vectors is centred at the origin
- Self-vectors are, in average, shorter than cross-vectors
 - Peaks from self-vectors dominates in a vicinity of the origin
 - Peaks from cross-vector dominates away from the origin
- One 6-dimensional search splits into
 - Rotation Function: 3-dimensional search (using self-vectors)
 - Translation Function: 3-dimensional search (using cross-vectors)

Rotation Function

$$RF(\alpha,\beta,\gamma) = \iiint P^{\text{obs}}(\mathbf{r}) \times P^{\text{calc}}_{\text{self}}(\alpha,\beta,\gamma,\mathbf{r}) d\mathbf{r}^{3}$$

 $P_{\rm self}^{\rm calc}(\alpha,\beta,\gamma,{f r})$ contains only

self-vectors

$P^{ m obs}({f r})$ contains

- self-vectors (signal from one of the orientations in the crystal)
- cross-vectors (noise)

Rotation Function

Translation Function

$$TF(\mathbf{t}) = \iiint P^{\text{obs}}(\mathbf{r}) \times P_{\text{cross}}^{\text{calc}}(\mathbf{t}, \mathbf{r}) d\mathbf{r}^{3}$$

 $P_{\mathrm{cross}}^{\mathrm{calc}}(\mathbf{t},\mathbf{r})$ contains

- self-vectors (background)
- cross-vectors

 $P^{
m obs}({f r})$ contains

- self-vectors (background or noise)
- cross-vectors (relevant vectors: signal, others: noise)

Translation Function

- Translation t does not change the structure
 - can be compensated with shift of crystallographic origin
- TF step is not needed

- The centre of molecule 1:
 - parameter **t**
- Centres of molecules 2, 3 and 4
 - from symmetry operation
- MR program matches P_{calc}(t) to P_{obs} to find the best matching t

Fixed partial model

Almost the same equation as for a single molecule search,

$$TF(\mathbf{t}) = \sum_{\mathbf{h}} I_{\mathbf{h}}^{\text{obs}} \times \left| F_{\mathbf{h}}^{\text{fixed}} + F_{\mathbf{h}}^{\text{calc}}(\mathbf{t}) \right|^{2}$$

- Again FFT technique can be used
- No exception for the space group *P*1 anymore!
 - translation of the second copy relative to the first one cannot be compensated by a shift of crystallographic origin

Packing considerations

Molecules in the crystal do not overlap

How can we use this information?

» Patterson map does not explicitly reveal molecular packing

Reject MR solutions

- Restrict distance between centres of molecules
- Count close interatomic contacts

Modify TF

- Divide TF by Overlap Function
- Multiply TF by Packing function

- Search in the density (phased MR)
- Handling Translational Non-Crystallographic symmetry
 - Non-origin peaks in the Patterson map indicate the presence of TNCS
 - Requires special handling of model errors (Phaser)
 - Molecules related by TNCS can be found in one go as they have nearly the same orientation
- Self Rotation Function
- Locked RF and TF
 - Using point symmetry of oligomers
- Exhaustive searches
- Stochastic searches

Molrep

Alexey Vagin YSBL University of York

Molrep

molrep -f data.mtz -m model.pdb -mx fixed.pdb -s target.seq

000	🗴 CCP4 Program
Molecular Replacement	- Proje
Analysis	
Model Generation	
Run Phaser	
Run Molrep - auto MR	
Run MrBUMP	
Run Balbes	
AMORE SUITE Itilities	
V Caminos	
	Molecular Replacement Analysis Model Generation Run Phaser Run Molrep - auto MR Run MrBUMP Run Balbes AMoRe Suite Utilities

			He
This intern	ace is for version 9.2 of Molrep		
Job title [IEMO		
Do	molecular replacement 📃 performing rotation and translation fun	ction	-
Get input	structure factors from MTZ file 🚄		
🔳 Input f	xed model		
🔲 Multi-c	opy search		
🔳 Use se	quence		
MTZ in	DEMO 🚽 data.mtz	Browse	View
Use 🔲 In	tensities		
FP	FP SIGFP SIGFP		
Model in	DEMO 🛁 model.pdb	Browse	View
Fixed in	DEMO - fixed.pdb	Browse	View
Coords ou	t DEMO - model_molrep1.pdb	Browse	View
Experimen	ital Data (Resolution,ANISO,DIFF,BADD,INVER,DSCALE,)		
The Mode	(SIM,COMPL,SURF,NMR,NCSM,DSCALEM)		
Search Pa	rameters (NMON,NP,NPT,PST,STICK,LOCK,)		
Parameter	for SEQ		I
O a a in	DEMO 🛁 target.seq	Browse	View
Sed in			
Infrequent	ty Used Parameters (MODE,SAPTF,RAD,PACK,SCORE,LMIN,NOSG)		

Log-file

00	00					X CC	P4I fileviev	ver 1_molre	ep.log				
													Help
IN	14 FO:	4 con	tras	8.444 t is goo	2.920 d enough	1.00 . Stop tl	1.00 - his run	21.06	0.599	0.110	7.33 (0.242)	
- L	Summary												
ļ		RF	TF	theta	phi	chi	tx	ty	tz	TFent	wRfac	Score	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 2 4 7 3 6 13 14 9 8 5 12 10 11	$ \begin{array}{c} 1\\1\\1\\2\\10\\12\\4\\13\\3\\1\\2\\9\end{array}\right) $	$\begin{array}{c} 72.59\\ 72.41\\ 72.18\\ 77.85\\ 107.48\\ 52.26\\ 82.51\\ 81.86\\ 113.57\\ 87.47\\ 108.24\\ 97.58\\ 98.10\\ 36.40 \end{array}$	$\begin{array}{r} 38.64\\ 38.93\\ 38.99\\ 58.68\\ -166.00\\ 91.15\\ 133.98\\ 91.66\\ 167.71\\ 114.84\\ -136.26\\ 104.76\\ 104.76\\ 73.27\end{array}$	$\begin{array}{c} 179.42\\ 177.39\\ 176.40\\ 142.53\\ 160.39\\ 50.93\\ 129.34\\ 108.52\\ 124.63\\ 104.62\\ 176.12\\ 90.32\\ 89.79\\ 110.10 \end{array}$	$\begin{array}{c} 0.825\\ 0.820\\ 0.819\\ 0.445\\ 0.637\\ 0.416\\ 0.542\\ 0.780\\ 0.757\\ 0.644\\ 0.816\\ 0.585\\ 0.586\\ 0.394 \end{array}$	$\begin{array}{c} 0.649\\ 0.650\\ 0.652\\ 0.292\\ 0.790\\ 0.376\\ 0.566\\ 0.260\\ 0.436\\ 0.955\\ 0.651\\ 0.049\\ 0.049\\ 0.165 \end{array}$	$\begin{array}{c} 0.480\\ 0.480\\ 0.483\\ 0.175\\ 0.163\\ 0.253\\ 0.469\\ 0.021\\ 0.369\\ 0.369\\ 0.479\\ 0.166\\ 0.166\\ 0.289 \end{array}$	$\begin{array}{r} 10.06\\ 10.91\\ 9.61\\ 5.03\\ 4.51\\ 1.95\\ 2.80\\ 2.92\\ 3.39\\ 1.21\\ 2.79\\ 2.33\\ 1.93\\ 1.16\end{array}$	$\begin{array}{c} 0.560\\ 0.565\\ 0.573\\ 0.602\\ 0.599\\ 0.603\\ 0.601\\ 0.599\\ 0.603\\ 0.605\\ 0.605\\ 0.605\\ 0.607\\ 0.607\\ 0.610 \end{array}$	0.242 0.217 0.195 0.121 0.120 0.111 0.110 0.110 0.110 0.109 0.109 0.107 0.107 0.097	
<pre> 14 11 5 36.40 73.27 110.10 0.394 0.165 0.209 1.16 0.610 0.097 +</pre>										Score 0.242			
		Find			Show	Log Graphs			Show Su	immary		Quit	

CCP4I2

Default protocol

molrep -f data.mtz -m model.pdb -mx fixed.pdb -s target.seq

- model correction based on sequence and structure information
- defines the number of molecules per AU
- anisotropic correction of the data
- weighting the data according to model completeness and similarity
- check for pseudotranslation and use it if present
- 30+ peaks in Cross RF for use in TF (accounts for close peaks)
- applied packing function
- make use of partial structure (fixed model)

Model modification in MOLREP

molrep -m model.pdb -s target.seq

- Performs model correction:
 - Identifies secondary structure in the model
 - Aligns target and model sequences
 - » no deletions or insertions in α -helixes or β -strands
 - Retains aligned residues
 - Retains "aligned" atoms in aligned residues
- Adds B-factor to residues exposed to solvent
- Uses sequence identity to down-weight high resolution data

Molrep protocol for two copies of a model

X-ray data —> all steps

$$RF = \sum_{hkl} w * I_{O} * I_{C}(\alpha\beta\gamma)$$

 $TF = \sum_{hkl} w * I_{O} * I_{C}(xyz)$

Rescoring: Correlation Coefficient* PF

Molrep protocol for two copies of a model

X-ray data —> all steps

$$RF = \sum_{hkl} w * I_{O} * I_{C}(\alpha\beta\gamma)$$

 $TF = \sum_{hkl} w * I_{O} * I_{C}(xyz)$

Rescoring: Correlation Coefficient* PF

Molrep vs Phaser

Single solution is taken forward TF/ sig(TF) CC

LS rigid body refinement and more

- >> More sophisticated search strategy
- = TFZ
- >> Log-likelihood gain (LLG)
- >> LL-based rigid body refinement

Improved scoring

- is crucial for using distant homologues successfully in MR method
- allows correct placement of small fragment models (even single atom)

Molrep protocol for two copies of a model

X-ray data —> all steps

$$RF = \sum_{hkl} w * I_{O} * I_{C}(\alpha\beta\gamma)$$

 $TF = \sum_{hkl} w * I_{O} * I_{C}(xyz)$

Rescoring: Correlation Coefficient* PF

Search in the electron density map

Search in the map

- Calculate 2-1 or 1-1 maps after restrained refinement of partial structure
- Flatten the map corresponding to the known substructure
- Calculate structure amplitudes from the modified map
- Use these modified amplitudes in Rotation Function
- And finally Phased TF

Molrep: SAPTF

Spherically Averaged Phased Translation Function (FFT based algorithm)

SAPTF(s) =
$$\int \overline{\rho}_{Map}(s,r) \overline{\rho}_{Model}(r) r^2 dr$$

Molrep: Search in the map with SAPTF

1. Find approximate position:

Spherically Averaged Phased Translation Function

2. Find orientation:

Local Phased Rotation Function

- Local search of the orientation in the density
- Verify and adjust position:
 Phased Translation Function

Molrep: Search in the map with SAPTF

1. Find approximate position:

Spherically Averaged Phased Translation Function

- 2. Find orientation:
 - Local Rotation Function
 - Structure amplitudes from the density within the SAPTF sphere
- Verify and adjust position:
 Phased Translation Function
 - Local RF is less sensitive than Phased RF to inaccuracy of the model position

Example

Usher complex structure solution

1. Conventional MR

- FimC-N + FimC-C
- FimH-L + FimH-P
- FimD-Pore

- 2. Jelly body refinement (Refmac)
 - FimD-Pore

- 3. Fitting into the electron density
 - FimD-Plug
 - FimD-NTD
 - FimD-CTD-2

- 4. Manual building
 - FimD-CTD-1

Performance of fitting methods

Trying several methods is a good practice (also because of cross-validation)

Fitting into EM maps

SPP1 portal protein

Self Rotation Function (SRF)

Example of SRF

- Space group P21
- One 222-tetramer in the AU

Preliminary analysis of X-ray data

- Oligomeric state of the protein in crystal
- Selection of oligomeric search model

Limited use

- No clear interpretation or even artifact peaks in high symmetry point groups (e.g. 622)
- different oligomers with the same symmetry

Locked Rotation Function

- Uses SRF to derive NCS operations
- Averages RF over NCS operations
- In favorable cases Improves signal to noise ratio in RF

Automatic mode:

```
molrep -f s100.mtz -m monomer.pdb -s s100.seq -i <<+
lock y
+</pre>
```

There is an option of selecting specific SRF peaks Available from CCP4I

One-dimensional exhaustive search (exotic case)

SRF helps restrict dimensionality in an exhaustive search

- Orientation of the trimer is known from the analysis of SRF
- Unknown parameter: rotation about 3-fold axis
- One-parametric exhaustive search using TF as score function

MR substructure solution (exotic case)

- Select isomorphous derivative
 - by comparing native SRF and SRF from D-iso

- Hg-substructure is a 13-atom ring (from native SRF analysis)
 - Orientation of the ring is known from the analysis of SRF
 - Unknown parameters: radius of the ring, rotation about 13-fold axis
- Two-parametric exhaustive search

Which direction does MR go?

Automation:

✗ Collection of tricks

Improvement of "standard" methods
 Better scoring system

✓✓ Models

November 16, 2018