Things you don't want to see in your diffraction data

(Why we do want to see diffraction patterns in 3D)

Andrey Lebedev, CCP4

Do images indicate crystal pathologies?

If yes:

- successful structure solution is less likely
- even if structure is solved, bad refinement stats are very likely
 - explain in the manuscript (e.g. picture from dials.reciprocal_lattice_viewer)

A few examples are presented in this talk

- Graphical facilities in DIALS
- Low resolution and anisotropy
- Inter-grown crystals
- OD-structures
- Partially disordered OD-structures
- Pseudo-translation
- Non-commensurate modulated structures

Graphical facilities in DIALS

- A simple example
- Operating DIALS and viewers from the command line

Import and image viewer

Cubic insulin, the experiment 1 from HZB MX tutorial

dials.import template=images/exp1_ins_ssad_###.img dials.image_viewer datablock.json

Sweep of images as 3D map

dials.rs_mapper map_file=output.ccp4 datablock.json coot --map output.ccp4

PyMol can be used as well

Sweep of images: spots positions in 3D

dials.find_spots datablock.json dials.reciprocal_lattice_viewer datablock.json strong.pickle

More details are available after indexing

dials.index datablock.json strong.pickle
dials.refine experiments.json indexed.pickle scan_varying=True
dials.reciprocal_lattice_viewer refined.pickle refined_experiments.json
dials.image_viewer datablock.json

orange: indexed white: not indexed

Visualising XDS results

• XDS results can be imported to DIALS and visualised in 3D

dials.import_xds xds/
dials.import_xds method=reflections xds/SPOT.XDS
dials.reciprocal_lattice_viewer experiments.json spot_xds.pickle

UglyMol

- Viewer for web-browsers combining both views, intensities as maps and spots as dots (by Marcin Wojdyr, CCP4, https://github.com/uglymol)
 - xia2 task in jscofe

Low resolution data and anisotropy

Low resolution data

dials.reciprocal_lattice_viewer experiments.json spot_xds.pickle

Anisotropy: viewer, CC_{1/2} plots

spot representation in DIALS viewer

CC(1/2) plots for three orthogonal directions in Aimless

IFSC/CCP4 MX School, São Carlos

STARANISO Server

staraniso.globalphasing.org

|| û || 0 || +

The STARANISO Server Anisotropy of the Diffraction Limit

and Bayesian Estimation of Structure Amplitudes

0

Ċ

- <u>ABOUT ANISOTROPY</u>
- <u>ABOUT THIS SERVER</u>
- Gallery of results obtained from the STARANISO server contributed by our users.

If you have some results that illustrate some beneficial effect of using the server on your data, and that you are happy to share with the community, please email the contact address at the bottom of the page.

Non-spherical data truncation

- Removes noise
 - Better refinement stats
- Keeps (and optionally corrects) all useful data
 - In some cases is critical for structure solution, model building and ligand fitting

Inter-grown crystals (multi-lattice data)

Example of random crystal inter-growth

dials.rs_mapper ...
coot --map output.ccp4

beta-lactamase OXA-163 PDB ID 4s2m

Data from Vlatko Stojanoski Baylor College of Medicine

Example of random crystal inter-growth

dials.index datablock.json strong.pickle max_lattices=3 hkl_tolerance=0.1
dials.reciprocal_lattice_viewer refined.pickle refined_experiments.json

- different colour means different lattice
- individual lattices can be switched off and on

Example of random crystal inter-growth

Easy case:

- Lattices are mainly separated, with only very few reflection overlapping
- Signal from one lattice is substantially higher than from others

The intensities for the strongest lattice were processed, structure solved and refined to R=0.20 R-free=0.26

An extreme case

Example from Leela Ruckthong

• How many lattices you can spot here?

Click and drag to pan; middle-click and drag to plot intensity profile, right-click to zoom

IFSC/CCP4 MX School, São Carlos

20

November 16, 2018 Picture: slow=1860.000 / fast=2944.000 pixels. Readout: slow=1860.000 / fast=2944.000 pixels. I=13.000 Resolution: 2.406

November 16, 2018 Picture: slow=1900.000 / fast=2992.000 pixels. Readout: slow=1900.000 / fast=2992.000 pixels. I=15.000 Resolution: 2.301

November 16, 2018 Picture: slow=2152.000 / fást=3312.000 pixels. Readout: slow=2152.000 / fást=3312.000 pixels. I=7.0000 Resolution: 1.761

November 16, 2018 Picture: slow=1752.000 / fast=3296.000 pixels. Readout: slow=1752.000 / fast=3296.000 pixels. I=13.000 Resolution: 1.771

Seven lattices: too many overlapping spots?

- Only the strongest single lattice gave reasonable merged data
 - » all others were incomplete or had much lower I/sig(I)
 - » merging data from several lattices did not work well
- Unfortunately, the merged data were not good enough for modelling the protein residues of interest
 - » possibly because of too many overlapping reflections from different lattices.

Summary on multiple lattices

- Usually it is reasonable to use the data derived from one singe lattice
- Sometimes completeness can be improved by merging datasets derived from two or more lattices
- Sometimes the best lattice is not the first found by Dials
- DIALS: Indexing all the lattices together facilitates refinement of the parameters for each individual lattice

Order-Disorder structures (OD-structures)

- Definition
- Example of an OD twin
- Example of allotwin

Order-disorder structures (OD-structures)

- identical layers
- identical interfaces between the layers
- but: two or more ways of packing three adjacent layers
 - *) MX: "identical" means Ca r.m.s.d. < 1 A

- *) S_1 and S_2 . are called stacking vectors
- two-dimensional periodicity
- a potential for disorder in the third dimension

OD-structures

Examples in the next section

Partially

disordered

Example 1

Example 2

Example 1: OD-twin

L-2-haloacid dehalogenase from *Sulfolobus tokodaii* Rye *et al.* (2007) *Acta Cryst.* **D**67

The diffraction images can be indexed in C2 with two different orientation of the crystal

Some reflections from two lattices overlap (arrows).

C2

C2

Example 1: OD-twin

Morphological classification **OD-twin**

Geometrical classification Twinning by reticular pseudomerohedry

Synonym Non-merohedral twinning

dials.rs_mapper + coot

Real and reciprocal lattices

Twinning by reticular pseudo-merohedry (Non-merohedral twinning)

- Process data from one lattice and ignore twinning
- Process data from one lattice and demodulate the data
- Record total intensity of overlapping spots (SAINT, iMosflm) and deal with it at refinement (SHELXL)
Intensities of the overlapping reflections

Fourier transform of the tetramer

Diffraction pattern of domain 1

Diffraction pattern of domain 2

Tetramers in different twin domains are in the same orientation

Therefore, if reflections of the two lattices overlap, they have close intensities. The stronger the overlap, the closer the intensities are.

Demodulation

Original data: R / R-free = 0.21 / 0.27

Modulation function

 $q'(h) = p_0 + p_1 \cos(2\pi th) + p_2 \cos(4\pi th) + \dots$

Corrected data: R / R-free = 0.16 / 0.23

Improvement in the electron density

Visually, improvement occurred only for the electron density for solvent molecules (Poor density for solvent was the original reason for data revision)

The electron density maps (2-1 at 1.5 σ and 1-1 at 3 σ) around the L-lactate molecule before and after demodulation

R / R-free = 0.21 / 0.27

R / R-free = 0.16 / 0.23

Example 2: allotwin

Crystals of Lon protease Resolution 3Å

Dauter *et al.* (2005). *Acta Cryst.* D**61**, 967-975.

P2₁ a = 48.5 Åb = 86.3 Åc = 138.0 Å $\beta = 92.3^{\circ}$

P2₁2₁2₁

a = 86.3 Å b = 90.6 Å c = 148.0 Å

Example 2: allotwin

Crystals of Lon protease Resolution 3Å

Dauter et al. (2005). Acta Cryst. D61, 967-975.

Structures of both crystal forms were solved

P2₁2₁2₁

P2₁

R / R-free

0.19 / 0.35

0.21/0.31

Example 2: allotwin

- More frequently, the presence of very different indexing solutions means that the indexing program is struggling rather than domains belonging to different space groups actually exist.
- 3D viewers will help to check what is actually happening.
- Merging several fine-sliced images together may help indexing

Partially disordered OD-structures

- Visualisation (detection)
- Ghost density
- Indexing
- Effect on structure solution

OD-structures

Examples 1,2 & 3

Partially disordered OD structures

Diffraction of partially disordered structures

White arrow - direction in which global periodicity is missing

dials.rs_mapper + coot

Example 1: ghost density

White arrow - direction in which global periodicity is missing

dials.rs_mapper + coot

An example from **Rafael Ciges**, Biomedical Institute of Valencia

- Space group P2₁2₁2
- Resolution 1.2Å
- The diffraction images were processed with XDS
- Structure was solved with MR
- Preliminary refinement R_{free} = 0.35
- Extra residues were expected compared to MR model

L		
	P2.2.2	
	•=1=1=	

Example 1: after initial refinement

Example 1: helix added

Example 1: after refinement with extra helix

Example 1: demodulation of intensities

•	Data were demodulated and		D	
	structure re-refined		K	R-free
	» demodulation procedure was	Original data	0.33	0.34
	conceptually similar to the one used in the OD-twin example	Corrected data	0.25	0.26

Example 1: after refinement with extra helix

Example 1: after refinement against demodulated data ...

Example 1: ... there is no ED for the extra helix

Example 1: ghost density

White arrow direction in which global periodicity is missing

											ļ.,	
					語の		- ANDER					
/					N. Carlor		ないのない					
				figfight			96(B)	فالانجارية				
			La						enter:			
								ර්දාවුව	ng kalu			eafler
			御堂			-				-		
			夏福	经营销权								4864-
	Ŷ			929°-					on the second			
			e Jane And	en series and series a				e parte d				
								Birthe We				
					1925			19 10				
					rafilter.							
							th Bigh-					

Example 1: Summary

- Partial disorder in OD structures results in a ghost density
- Structure can be solved and refined ignoring partial disorder
- Demodulation procedure removes ghost density and therefore helps with interpretation of the ED maps
 - » Not always badly needed and not always works
 - » There are several bespoke scripts around
 - » A general automated software solution is needed

Example 2: auto-indexing failure

Fast DP @ DIAM	OND					Refineme	ent	
R_{meas} CC(1/2) = 0.3	= 0.12 at 1.56 Å	?				R _{cryst} R _{free}	= 0.33 = 0.36	?
	Μ	olecu	lar Repla	acement	on Functio	on		
	†		theta	phi	chi	Rf/sigma	+	
		1 2 3 4 5 6 7 8 9 10	63.62 80.19 149.48 107.22 87.46 111.97 157.20 58.77 75.76 102.46	174.24 -58.05 -148.30 84.22 75.99 -14.20 173.73 -96.16 -63.11 82.67	148.98 61.61 170.26 129.22 136.16 175.28 153.99 51.96 54.46 133.90	13.70 13.63 13.34 13.04 12.18 12.10 11.25 11.24 6.21 5.83		

Example 2: evidences of wrong indexing

Maps

R/RC Map ⊙ ⊕ ♥

Example 2: evidences of partial disorder

front view

There is global 2D translational symmetry in the plane of figure

side view

White arrow indicates direction in which translational symmetry is not global (only within individual domains)

Example 2: correct indexing

White arrow indicates direction in which translational symmetry is not global (only within individual domains) There are also areas with less spots White "spots" are not indexed; actually, these are tails of diffuse reflections

Indexing program may take them for real spots and produce wrong result.

Example 2: what initially was wrong

Example 2: happy end

Maps

Refinement

 $R_{cryst} = 0.23$ $R_{free} = 0.26$

Example 2: wrong and correct

Example 2: Summary

- Partial disorder a frequent reason of indexing failure
- Use 3d viewers for diagnostics
- Warning: high contrast in MR can be obtained even for wrongly indexed data provided that the search model is highly similar to the target
- Molecular replacement is quite tolerant to partial crystal disorder
 - » Especially RF
 - » In the next example this property of RF will be utilised

Example 3: unsolvable structure

Input information:

Example from Rui Wu

- Images are good
 - But there a several different indexing solutions
- 99% homologue for Molecular Replacement
 - But no MR solution
 - Even more, no contrast on Rotation Function
- Twinning?

Example 3: first and last images

Partial disorder was not detected directly from images

first image

Blue arrow – direction of missing global translation

Example 3: checking diffraction in 3D

front view

side view

Clear partial disorder

Example 3: wrong and correct indexing

• Yellow spots are indexed, the white ones are not.

Example 3: wrong and correct indexing

2, C (wrong)

222, C (correct)

Example 3: unsolvable structure

Input information:

- Images are good
 - But there a several different indexing solutions
- 99% homologue for Molecular Replacement
 - But no MR solution
 - Even more, no contrast on Rotation Function
- Twinning?

Example 3: MR against PDB (Simbad; less happy end)

Despite very clean sample a minor contaminant has crystallised:

Crystal pathology is not necessarily a reason for failure to solve structure!

	Apple iClo	ud Yahoo Bing Google W	ikipedia Facebook	Twitter LinkedIn	The Weather Channel	Yelp TripAdvisor
	CP4	Collabora	tive Computa	tional Projec	st No. 4	
/ 01	n-line	Software for M	acromolecula	ar X-Ray Crys	stallography	
ome (Logo	ut) > Login > Program	IS > SIMBAD > View Results				Username: new
Eegan et a	VERSITY OF VERPOOI al.; Acta Cryst. (201 1419445452 HAS	Please cite the solution of th	following paper, if	you used a solutio	on from SIMBAD:	
Neare	st Cell Report	Contaminants Report	Full Report	Summary		
	G	iraph Data	0.60			REFMAC R-Fact
	▼ Scores Vs.	Rank (by R-Free)	0.00			REFMAC R-Free
	MOLREP s	core Vs. Rank	0.55			
	MOLREP 1	F/sig Vs. Rank	0			
			ية 1. 0.50			
			ict/R			
			윤 쑫 0.45			
			0.40			
			0.35			
			0.33			
		Print	0.55	20 40	60 80 100 120	0 140 160 180

Partial disordered OD structures

- Data processing
 - Indexing can go wrong (use higher "gain" parameter, merge several adjacent images together etc. to get it right)
- Structure solution:
 - Molecular Replacement yes
 - Experimental phasing may be problematic
- Refinement / model building:
 - Some features of electron density may not be interpreted (ghost density)
 - Expect higher R-factors
- Crystals with translocation defects
 - Term usually used in MX for partially disordered OD-structures
Pseudo-translation

- Visualisation
- Effect on indexing
- Pseudo-origin MR solutions

Pseudotranslation

No pseudotranslation

Pseudotranslation

c' = 2 c $c'^* = c^*/2$

С

*c**

Planes 2L+1 contain weak reflections

Crystallographic translation

November 16, 2018

Example: two pseudo-translation vectors

Example from Victor Lamzin, YSBL-DESY

	point group	lattice type	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)
Space group	222	С	74.9	122.8	125.0
Pseudo-symmetry space group	222	1	37.5	61.4	125.0

IFSC/CCP4 MX School, São Carlos

Example: two pseudo-translation vectors

Images imported as they were, oscillation 0.1°

dials.import template=images/SeMet_38_04_0####.cbf
dials.find_spots ...
dials.index ...
dials.refine ...
dials.reciprocal_lattice_viewer ...

white – not indexed orange – indexed

November 16, 2018

IFSC/CCP4 MX School, São Carlos

Example: two pseudo-translation vectors

Merged each 5 adjacent images to make oscillation 0.5°, then imported

dials.merge_cbf images/SeMet_38_04_0####.cbf merge_n_images=5
dials.import template=sum_####.cbf
dials.find_spots ...
dials.index ...
dials.refine ...
dials.reciprocal_lattice_viewer ...

white – not indexed orange – indexed

November 16, 2018

IFSC/CCP4 MX School, São Carlos

Pseudo-translation and indexing

The last example:

- structure solved using SAD
- then native structure was solved by MR

Week reflections may confuse indexing programs

Visual control using 3D viewers is useful

- check if pseudo-translation is not overlooked
- check if pseudo-translation is not an indexing artefact

How important is to use the weak reflections?

- usually improve both density and refinement stats
- there are examples when these only make refinement stats worse
- sometimes ignored to simplify the first steps of structure solution and used later

Non-commensurate modulated structures

• Example

» from Ivan Campeotto, Oxford and Arwen Pearson, DESY (PDB id 2wnq)

Non-commensurate modulated structure

END