Introduction to symmetry

Andrey Lebedev, CCP4

The Reference

Crystal: unit cell + lattice

Conventional (constructive) definition of crystal structure.

Good for start? Examine symmetry using Coot

Symmetry view in Coot

Opposite sides of molecules a denoted with different colours

Orange and blue represent opposite sides of molecules

There is the third dimension.

A slice is shown, where

- column 1, 3 : orange-sided molecules on top
- column 2, 4: blue-sided molecules on top
- etc.

Translation 1

Vector maps 1 -> 2

Translation 1 is global

Translation 2

Highlighted vector maps 1 -> 2

Translation 2 is global

Highlighted vector maps the whole crystal onto itself

Translation 3

Highlighted vector maps 1 -> 2

Translation 3 is global

Highlighted vector maps the whole crystal onto itself

Translation 4

Translation 4 is global

All translations form an infinite group

An infinite group (over sum):

- reverse translations included
- sum of any two vectors from the group belongs to the group

Basis set

All the translations that map the crystal onto itself can be produced from a basis set: **a**, **b**, **c**

(c is perpendicular to the plane)

Basis set

For example, the highlighted vector is expressed as 2 **a** + **b**.

Lattice

All the crystallographic translations can be represented as a lattice.

Translations live in a separate pace, not connected to crystal (for now)

Unit cell

A compact representation of translational symmetry and base vectors.

Unit cell

Can be fully characterised by six numbers (the third dimension is not shown here)

Unit cell parameters (3D view)

Translation symmetry is defined Z by three base vectors **a**, **b**, and **c**. C a

Unit cells are usually defined in terms of the *lengths* of these vectors and angles between them. For example,

a=94.2Å, b=72.6Å, c=30.1Å, α =90°, β =102.1°, γ =90°.

`Choice of unit cell

The top two do define all translations = primitive unit cells

The bottom two do NOT define all translations = non-primitive unit cells

The top left: primitive reduced – the standard for <u>some</u> space groups (including $P2_12_12_1$)

Back to example

Screw rotation 1

Screw rotation 1 is global

Operation 1->2 maps the whole crystal onto itself:

this is a crystallographic operation

The axis is a crystallographic symmetry element,

it can be mapped into the structure

Screw rotation 1 - symbol

 2_1 (plane of figure): --

Screw rotation 1 - repeats

action of top axis

×

translation a

=

action of bottom axis

(elements of a group)

The operation on the top axis, combined with translation **a**, can be used to recreate the bottom axis. Here this also means that a rotation/translation offset by ½ **a** is also available.

Screw rotation 1 - repeats

 2_1 (plane of figure): -

Also repeated in 3d dimension with offset of ½ **c**

Screw rotations parallel to a and b

 2_1 (plane of figure): -

Series of 2₁ axes offset by ½ unit cell from each other.

Screw rotation 3 – into plane

A rotation of 180° with a translation of ½ unit cell from the figure.

Screw rotation 3 is global

Screw rotation 3 maps the whole crystal onto itself:

this is a crystallographic operation

The rotation axis is a crystallographic symmetry element,

it can be mapped into the structure

Screw rotation 3 - symbol

2₁ (along view):

Screw rotation 3 - repeats

2₁ (along view):

All axes together

 2_1 (plane of figure): --

2₁ (along view):

we have built a space group

Relative positions of axes

 2_1 (plane of figure): --

2₁ (along view):

Relative positions of axes

 2_1 (plane of figure): --

2₁ (along view):

The adjacent axes running in different directions are offset by ¼ unit cell edge from each other.

The horizontal ¼ indicates a offset of ¼ **c** into the figure.

Relative positions of axes

 2_1 (plane of figure): --

2₁ (along view):

Choice of origin is a convention. Notation

The origin in this particular space group: is chosen to be equidistant from adjacent axes

 2_1 (plane of figure): --

2₁ (along view):

The unit cell placed on picture with symmetry elements means a choice of origin.

Such a choice is a convention.

Equivalent and alternative origins

The origin (x=0, y=0, z=0)

Solid arrows – origins, which are equivalent to the one chosen

Dashed arrows – alternative origins.

Altogether:

- infinite number of conventional origins
- eight types of equivalent origins in this example

The origin in this particular space group: is chosen to be equidistant from adjacent axes

Complete picture

 2_1 (plane of figure): --

2₁ (along view):

Compact representation

$$P2_12_12_1$$
No. 19

Compact representation -> space group symbol -> more info in International Tables

Presentation in International Tables

Presentation in International Tables

Symmetry operations and elements

Apart from the identity and translational symmetry, macromolecular crystals can only contain the following symmetry elements:

Proper rotation: Rotate by 360°/n.

Screw rotation: Rotate by $360^{\circ}/n$ & translate by d(m/n); d= unit cell edge.

Proper R	Rotations		Screw Rotations	
	Symbol	(\mathbf{n})	Symbol	(\mathbf{n}_{m})
Two-fold		2	f	2_1
Three-fold		3		$3_1, 3_2$
Four-fold		4		$4_1, 4_2, 4_3$
Six-fold		6		$6_1, 6_2, 6_3, 6_4, 6_5$

Symmetry elements disallowed by chiral centres

Small molecules also face other symmetry operations

- Mirror plane m
- Glide planes **a**, **b**, **c**, **n** or **d**: reflection across plane followed by translation (usually ½) unit cell parallel to plane along **a**, **b**, **c**, **face diagonal** or **body diagonal**, respectively
- Rotation inversion $\bar{1}, \bar{3}, \bar{4}, \bar{6}$: a rotation followed by inversion

Space groups

- All possible combinations of symmetry elements => 230 space groups
- Because protein and nucleic acid molecules are chiral, there are only 65 "biological" space groups.
- Space groups are divided on 7 crystal system based on
 - the presence of symmetry elements of a certain order (6, 4, 3, 2)
 - the number of different orientations of these elements

Crystal Systems

* In macromolecular crystals the symmetry elements are all rotations

Crystal System	Characteristic symmetry elements	Convention
1. Triclinic	Translations only	
2. Monoclinic	2-fold axes, all parallel	along b
3. Orthorhombic	2-fold axes in three perpendicular directions	along a, b and c
4. Tetragonal	4-fold axes, all parallel	along c
5. Trigonal	3-fold axes, all parallel	along c
6. Hexagonal	6-fold axes, all parallel	along c
7. Cubic	3-fold axes in four different orientations	along body diagonals

Crystal Systems

* In macromolecular crystals the symmetry elements are all rotations

Crystal System	Characteristic symmetry elements	Convention
1. Triclinic	Translations only	
2. Monoclinic	2-fold axes, all parallel	along b
3. Orthorhombic	2-fold axes in three perpendicular directions	along a, b and c
4. Tetragonal	4-fold axes, all parallel	along c
5. Trigonal	3-fold axes, all parallel	along c
6. Hexagonal	6-fold axes, all parallel	along c
7. Cubic	3-fold axes in four different orientations	along body diagonals

example

Crystal Systems

Some SGs require use of centred (non-primitive) unit cells —

Crystal System	Characteristic symmetry elements	Convention
1. Triclinic	Translations only	
2. Monoclinic	2-fold axes, all parallel	along b
3. Orthorhombic	2-fold axes in three perpendicular directions	along a, b and c
4. Tetragonal	4-fold axes, all parallel	along c
5. Trigonal	3-fold axes, all parallel	along c
6. Hexagonal	6-fold axes, all parallel	along c
7. Cubic	3-fold axes in four different orientations	along body diagonals

C222: an example of a centred cell

C222
as presented in the
International Tables
for Crystallography

Standard unit cell; C means additional translation ½ (a + b) If we were using a primitive cell

2-fold axes are along **a**, **b** and **c** (conventional setting)

Some 2-fold axes are along face diagonals (non-conventional crystal setting)

Centred cells in pictures

Also:
H - Hexagonal setting of rhombohedral space groups

P – Primitive

A – Face centred (A)

I – Body centred

B – Face centred (B)

F – Face centred (all)

C – Face centred (C)

Bravais lattices

- 7 crystal systems, combined with some of the centring types
 (P, C, I, F or H) gives 14 Bravais lattices
 - excluded are impossible combinations (e.g. A4)
 - or equivalent combinations (e.g. C4 and P4)

Bravais lattices

Crystal System	Bravais Lattices
1. Triclinic	1. Primitive (<i>P</i>)
2. Monoclinic	2. Primitive (<i>P</i>) 3. Base-Centered (<i>C</i>)
3. Orthorhombic	 4. Primitive (P) 5. Base-Centered (C) 6. Body-Centered (I) 7. Face-Centered (F)
4. Tetragonal	8. Primitive (<i>P</i>) 9. Body-Centered (<i>I</i>)
5. Trigonal	10. Primitive (<i>P</i>)
	11. Rhombohedral (<i>R or H</i>)
6. Hexagonal	10. Primitive (<i>P</i>)
7. Cubic	12. Primitive (<i>P</i>) 13. Body-Centered (<i>I</i>) 14. Face-Centered (<i>F</i>)

example

Triclinic P 1

"P" means primitive lattice type

"1" means no symmetry operations except for translations

No constraints on a, b, c, α , β , γ

Monoclinic

$$P 1 2 1 P 1 2_1 1$$

 $C 1 2 1$

P or C

1

1

"1" means no symmetry axes in a given direction "2" or "2₁" means 2-fold axes in a given direction

$$\alpha = \gamma = 90^{\circ}$$

Note: by convention the 2-fold is along **b** (other settings are sometimes used as well)

Orthorhombic

$$P \ 2 \ 2 \ 2$$
 $P \ 2 \ 2 \ 2_1$ $P \ 2_1 \ 2_1 \ 2$ $P \ 2_1 \ 2_1 \ 2$ $P \ 2_1 \ 2_1 \ 2$ $P \ 2_2 \ 2$ $P \ 2_2 \ 2$ $P \ 2_1 \ 2_1 \ 2$

P, C, I or F

"2" or "2₁" means 2-fold axes in a given direction

$$\alpha = \beta = \gamma = 90^{\circ}$$

Tetragonal

$$P 4 2_1 2 P 4_1 2_1 2 P 4_2 2_1 2 P 4_3 2_1 2 $P 4 2 2 P 4_1 2 2 P 4_2 2 2 P 4_3 2 2 $I 4 2 2 I 4_1 2 2$$$$

P or I

2, 2₁ or None

2 or None

$$\alpha = \beta = \gamma = 90^{\circ}$$
 $a = b$

 $a \equiv b$ due to the 4-fold relating them

All 2-fold axes are also related via 4-fold rotations and either

- all of them are present or
- none of them are present

C4: an example of a redundant space group symbol

*P*4 as presented in the **International Tables** for Crystallography

and with base vectors shown

*C*4

This is a valid, but redundant spacegroup as it is obtained from P4

- by rotation 45° and
- redefining base vectors
- additional translation (a + b)/ 2

Trigonal

$$P \ 3 \ 2 \ 1$$
 $P \ 3_1 \ 2 \ 1$ $P \ 3_2 \ 2 \ 1$ $P \ 3_1 \ 2$ $P \ 3_2 \ 1 \ 2$

P3 P3₁ P3₂

H 3 2

*H*3

P or *H*(*)

2 or None

$$\alpha = \beta = 90^{\circ}$$
 $\gamma = 120^{\circ}$
 $a = b$

(*) an alternative rhombohedral (R) is also used

Hexagonal

P 6 2 2 $P 6_1 2 2$ $P 6_2 2 2$ $P 6_3 2 2$ $P 6_5 2 2$ $P 6_4 2 2$

 $P6 P6_1 P6_2 P6_3$ $P6_5 P6_4$

Р

 6_N

2 or None

2 or None

 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$ a = b

Cubic

P432 $P4_132$ $P4_232$ $P4_332$ I432 $I4_132$ F432 $F4_132$

P, I or F

 4_N or 2_N

3

2 or None

$$\alpha = \beta = \gamma = 90^{\circ}$$
 $a = b = c$

Monoclinic (lattice based setting)

$$\alpha = \gamma = 90^{\circ}$$

additional condition: $\beta < 120^{\circ}$

In orange frame:

- the same space group
- different crystal setting

Orthorhombic (lattice based setting)

$$\alpha = \beta = \gamma = 90^{\circ}$$

additional condition: a < b < c

In orange frames:

- the same space group
- different crystal setting

Rules in a Table

Crystal System	Characteristic symmetry elements	Bravais Lattices	Unit Cell Geometry
1. Triclinic	None	1. Primitive (<i>P</i>)	$a \neq b \neq c;$ $\alpha \neq \beta \neq \gamma$
2. Monoclinic	2-fold axes, all parallel	2. Primitive (<i>P</i>) 3. Base-Centered (<i>C</i>)	$a \neq b \neq c;$ $\alpha = \gamma = 90^{\circ} \neq \beta$
3. Orthorhombic	2-fold axes in three perpendicular directions	4. Primitive (<i>P</i>) 5. Base-Centered (<i>C</i>) 6. Body-Centered (<i>I</i>) 7. Face-Centered (<i>F</i>)	$a \neq b \neq c;$ $\alpha = \beta = \gamma = 90^{\circ}$
4. Tetragonal	4-fold axes, all parallel	8. Primitive (<i>P</i>) 9. Body-Centered (<i>I</i>)	$a = b \neq c;$ $\alpha = \beta = \gamma = 90^{\circ}$
5. Trigonal	3-fold axes, all parallel	10. Primitive (<i>P</i>) 11. Rhombohedral (<i>H</i> - setting)	$a = b \neq c;$ $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$
6. Hexagonal	6-fold axes, all parallel	10. Primitive (<i>P</i>)	$a = b \neq c;$ $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$
7. Cubic	3-fold axes in four different orientations	12. Primitive (<i>P</i>) 13. Body-Centered (<i>I</i>) 14. Face-Centered (<i>F</i>)	a = b = c; $\alpha = \beta = \gamma = 90^{\circ}$

Symmetry of intensities

The concept of reciprocal lattice is based on angular relation between the incident beam and the Bragg planes. Therefore:

- Reciprocal lattice rotates together with crystal
- However, reciprocal lattice is not translated together with crystal

Symmetry of intensities

All axes of the same order and in the same direction are "merged" together to give an element of a point group.

Symmetry of intensities

Space group and point group

Crystal space group

Arithmetic crystal class

International Tables for Crystallography (2006). Vol. A,

*P*2

 C_2^1

No. 3

P121

UNIQUE AXIS b

2*P*

Crystal point group

Space group and point group

Crystal space group

Arithmetic crystal class

International Tables for Crystallography (2006). Vol. A,

222*C*

Crystal point group

Space group and point group

Crystal space group

Arithmetic crystal class

International Tables for Crystallography (2006). Vol. A,

422*P*

Crystal point group

Friedel's law

- Bragg planes
 - define reference phase
- Probe atom:

$$\Delta\varphi\left(\overline{h},\overline{k},\overline{l}\right) = -\Delta\varphi\left(h,k,l\right)$$

$$\Delta F(\overline{h}, \overline{k}, \overline{l}) = \Delta F^*(h, k, l)$$

• Total:

$$F(\overline{h},\overline{k},\overline{l}) = F^*(h,k,l)$$

$$I(\overline{h},\overline{k},\overline{l}) = I(h,k,l)$$

Friedel's law

$$I(\overline{3},7,0) = I(3,\overline{7},0)$$

Point group and Laue group

+ inversion =

Arithmetic crystal class

2*P*

Crystal point group

2

Patterson space group

Laue point group

Point group and Laue group

+ inversion =

Arithmetic crystal class

222*C*

Crystal point group

Patterson space group

Laue point group

Point group and Laue group

+ inversion =

Arithmetic crystal class

422*P*

Crystal point group

Patterson space group

Laue point group

The eleven point groups or crystal classes

Crystal system	Laue point group	Non-centrosymmetric point groups belonging to the Laue point group
Cubic	m3m m3	432 43 <i>m</i> 23
Tetragonal	4/mmm 4/m	$\begin{array}{ccccc} 422 & 4mm & \overline{4}2m \\ 4 & \overline{4} \end{array}$
Orthorhombic	mmm	222 mm2
Trigonal	3 <i>m</i> 3	32 3 <i>m</i> 3
Hexagonal	6/mmm 6/m	$\begin{array}{cccc} 622 & 6mm & \overline{6}m2 \\ 6 & \overline{6} \end{array}$
Monoclinic	2/m	2 m
Triclinic	1	1

The point groups that can exist in protein crystals

If it helps view as sphere

422

The point groups that can exist in protein crystals

How do we deduce the Space Group in practice?

- We start in reciprocal space (point group)
- We go all way back from symmetry in reciprocal space to crystal space group
 - Data processing gives values of the unit cell parameters
 - Lattice symmetry is derived from the unit cell parameters
 - Comparison of related intensities gives crystal point group
 - Systematic absences allow to reduce the number of possible space groups.
 - Space group is only a hypothesis until structure is complete

Space group assignment (e.g. Pointless)

User: decision making, structure solution, final space group assignment

End

Conventional diffraction scheme

C4: an example of a redundant space group

P4
as presented in the
International Tables
for Crystallography

Standard unit cell; C means additional translation **a** + **b** *C*4

This is a valid, but redundant spacegroup as it is obtained from P4 by

rotation 45° and redefining base vectors

A new slide; it needs a bit of thinking and some reforamtting + one more slide on impossible combination of crystal class and centring type

$$I(s') = I(s)$$

Monoclinic

(lattice based setting)

$$\alpha = \gamma = 90^{\circ}$$

additional condition: $\beta < 120^{\circ}$

In orange frame:

- the same space group
- different crystal setting

Orthorhombic

(lattice based setting)

$$\alpha = \beta = \gamma = 90^{\circ}$$

additional condition: a < b < c

In orange frames:

- the same space group
- different crystal setting

Orthorhombic (lattice based setting)

$$\alpha = \beta = \gamma = 90^{\circ}$$

additional condition: a < b < c

In orange frames:

- the same space group
- different crystal setting

Centred (non-primitive) unit cells

Highlighted in orange

- Triclinic: P1, P1
- *Monoclinic*: P2, P2₁, C2, ...
- Orthorhombic: P222, P222₁, P2₁2₁2, P2₁2₁2₁, C222, C222₁, F222, I222, I2₁2₁2₁, ...

•