Automated Model Building
Buccaneer and Nautilus

Paul Bond, Kevin Cowtan
kevin.cowtan@york.ac.uk
X-ray structure solution pipeline...

Data collection

Data processing

Experimental phasing

Molecular Replacement

Density Modification

Model building

Refinement

Rebuilding Validation
Buccaneer

Statistical model building software based on the use of a reference structure to construct likelihood targets for protein features.

- 2006 – Initial release, main chain tracing

- 2008 – Sequencing, NCS

- 2012 – Loop building, sloop
Buccaneer: Method

Compare simulated map and known model to obtain likelihood target, then search for this target in the unknown map.
Buccaneer: Method

- Compile statistics for reference map in 4A sphere about C_α => LLK target.

- Use mean/variance.
Buccaneer

Use a likelihood function based on conserved density features.
The same likelihood function is used several times. This makes the
program very simple, and the whole calculation works over a range of
resolutions.

Finding, growing: Look for C-alpha environment

Sequencing: Look for C-beta environment

(4.0A sphere about Cα)

(5.5A sphere about Cβ)

ALA CYS HIS MET THR ... x20
Buccaneer

10 Steps per cycle:

- **Find** candidate C-alpha positions
- **Grow** them into chain fragments
- **Join** and merge the fragments, resolving branches
- **Link** nearby N and C terminii
- **Sequence** the chains (i.e. dock sequence)
- **Correct** insertions/deletions
- **Filter** based on poor density
- **NCS Rebuild** to complete NCS copies of chains
- **Prune** any remaining clashing chains
- **Rebuild** side chains
Case Study:

A difficult loop in a 2.9Å map, calculated using real data from the JCSG.
Find candidate C-alpha positions
Grow into chain fragments
Join and merge chain fragments
Sequence the chains
Correct insertions/deletions
Prune any remaining clashing chains
Rebuild side chains
Comparison to the final model
Buccaneer

Model completion uses “Lateral growing”:
Grow sideways from existing chain fragments by looking for new C-alphas at an appropriate distance “sideways” from the existing chain:
Lateral growing likelihood function
New C-alpha candidates
Buccaneer: Pipeline

CCP4i2 pipeline that iterates model building and refinement:

- **Buccaneer**
 - Model Building
 - 3/2 cycles

- **Coot**
 - Real Space Operation (optional)

- **REFMAC**
 - Refinement
 - 10 Cycles

5 Iterations
Buccaneer: Results

Model completeness not very dependent on resolution:

![Graph showing model completeness versus initial map resolution](image)
Buccaneer: Results

Model completeness dependent on initial phases:
Buccaneer: CCP4i2
Buccaneer: CCP4i2
Results

118 residues were built in 2 fragments. Of these, 114 residues were assigned to the sequence.

The number of chains is estimated to be 1. Of these chains, 88.1% of the residues have been built. Of the residues that were built, 100.0% were assigned to a chain.

The refinement R-factor is 0.30, and the free-R factor is 0.34. The RMS bond deviation is 0.017 Å. On the basis of the refinement statistics, the model is approaching completion.
Buccaneer

What you need to do afterwards:

- **Tidy up with Coot:**
 - Connect up any broken chains.
 - Use density fit and rotamer analysis.
 - Check Ramachandran, molprobity, etc.
 - Add waters, ligands, check un-modeled blobs.
 - Re-refine, examine difference maps.

- **If completion is very low:**
 - Increase number of pipeline iterations.
 - Try using different options.
 - Pass partially built buccaneer model to ARP/wARP.
Buccaneer: Summary

- A simple, (i.e. MTZ and sequence), very fast method of model building which is robust against resolution.
- User reports for structures down to 3.7A when phasing is good.
- Results can be further improved by iterating with refinement in refmac (and in future, density modification).
- Proven on real world problems.
- Use it when resolution is poor or you are in a hurry. If resolution is good and phases are poor, then ARP/wARP may do better. Best approach: Run both!
Nautilus

- Automatic model building of nucleotide structures in electron density maps.
- Automated (CCP4i2) or interactive (Coot)
- Able to:
 - Start from an empty map
 - Extend an existing nucleotide model
 - Add nucleotide to a protein complex

- K. Cowtan, IUCrJ (2014). 1, 387-392 DOI
Nautilus

'Fingerprint' detection:

- Identify high and low density features consistent with the presence of nucleic acid features.
- Sugar / phosphate / base
- Very fast.
- Related to 'Essens' (Kleywegt and Jones), but with looks at both ridges and troughs.
Sugar:
Phosphate:
Nautilus: Target Scoring

S-mean
Use the difference between the mean of the 'high' points and the mean of the 'low' points as a score indicating how likely it is the given group is present at a given position and orientation.

S-minmax
Need to search positions and orientations – a more optimized version of the same target uses the minimum of the highs minus the maximum of the lows – can often stop the calculation before testing all the sample points.
Nautilus

Steps:

● Find chain seeds
● Grow into chains
● Join overlapping chains
● Link nearby chains
● Prune clashing chains
● Rebuild chains to ensure connectivity
● Assign sequence
● Build bases
Nautilus

Find:
• Optimised 6-d rotation-translation using the sugar or phosphate fingerprint.
 - ~5 seconds for whole ASU
• Sugar:
 - Build a single nucleic acid using the best matching equivalent from the database, scored by
 1 x sugar + 2 x phosphate fingerprints
• Phosphate:
 - Build a pair of nucleic acids using the best matching equivalent from the database, scored by
 1 x phosphate + 2 x sugar fingerprints
Nautilus

Grow:
 • Try adding additional nucleic acids to either end of each fragment, scored by the sugar fingerprint and the intermediate phosphate fingerprint.
 - ~1-2 second

Join:
 • Merge overlapping fragments into longer fragments
 - <0.1 second

Link:
 • Join fragments with nearby 3' and 5' terminii
 - ~0.5 second
Nautilus

Prune:
• Eliminate clashing regions
 – <0.1 second

Rebuild:
• Rebuild each sugar-sugar link using a fragment from the database
 – ~0.3 seconds

Sequence:
• Score base-type fingerprints at each position and assign sequence
 – <0.1 second
Base:
Adenine-Uracil
Base:
Adenine-Uracil
Nautilus

Adenine:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adenine:
Nautilus

Cytosine:

<table>
<thead>
<tr>
<th></th>
<th>U:</th>
<th>U:</th>
<th>G:</th>
<th>G:</th>
<th>G:</th>
<th>G:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O4</td>
<td>O2</td>
<td>O6</td>
<td>N1</td>
<td>C2</td>
<td>N2</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cytosine:
Nautilus

Guanine:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nautilus

Uracil:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>U</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Nautilus

But the real world isn't black and white. Ideally we want a probability of a base being of a particular type.

- Calculate z-scored densities for the density at each of the 6 sample positions for 200 bases (50 of each type), to form a sample database.
- Calculate z-scored densities for the 6 sample positions of the unknown base.
- Find the 50 closest matches to the unknown base from the database.
- Assign probability of being A/C/G/U on the basis of the proportion of the 50 closest matches being of each type (+ an error term).

Google: k-NN (k-Nearest Neighbour)
Nautilus
Nautilus
Nautilus: CCP4i2
Nautilus

Results:

- Good results on synthetic noisy data at 3.5A and user reports on real data at 3.8A.
 - Need more data

- Like 'buccaneer', phases are more important than resolution.

- Failed on a quadruplex structure with good phases.
 - Try a different database?
Acknowledgments

Help:
• JCSG data archive: www.jcsg.org
• Garib Murshudov, Raj Pannu, Pavol Skubak
• Eleanor Dodson, Paul Emsley, Randy Read, Clemens Vonrhein

Funding:
• The Royal Society, BBSRC