Molecular replacement

Attacking difficult problems

R J Read, Department of Haematology Cambridge Institute for Medical Research

Phasing by molecular replacement

- Phases can be calculated from atomic model
- Rotate and translate related structure
- Only one data set required!

What makes MR difficult?

- Poor model
 - low sequence identity
 - altered conformation
- Incomplete model, or many copies
 - high non-crystallographic symmetry (NCS)
 - part of complex
 - protein with domain(s) of unknown structure
- Poor data
 - low resolution
 - data pathologies (*e.g.* anisotropy, twinning, tNCS)

Solving the MR problem *vs.* solving the structure

- Solution may be unambiguous but map may be too poor to allow model improvement
 - particularly with lower resolution data
- Model completion is an integral part of structure solution by MR

Why likelihood?

- Accounts explicitly for effects of different sources of error
 - model error
 - measurement error
- More sensitive than other methods
 - especially for multiple copies or small fragments
- Exploits information from partial solutions
- Natural framework for ensemble models
- Absolute score gives good basis for automation
 - choose among different possibilities

Likelihood-based molecular replacement in *Phaser*

- Likelihood target:
 - probability of observed intensity given structure factor contributions from model(s)
- Log-likelihood-gain (LLG)
 - difference between the logarithm of the likelihood for the model and of the likelihood for the data given a random atom model

LLG: measure of confidence in solution (Rob Oeffner)

Can I solve it?

- What is the lowest sequence identity template that I can get away with?
 - depends on fold, can be improved by using ensembles or sophisticated homology modelling
 - further improvement from weighting by expected error
 - some structures with <15% identity can be solved
- How small can a fragment be?

eLLG: assessing difficulty of MR

- Likelihood provides the most sensitive score for MR searches: *Phaser*
 - log-likelihood gain: LLG
 - how much better does model explain data than random atoms?
- LLG score can be estimated in advance of the search: expected LLG, <LLG>, or eLLG
 - LLG/reflection depends on σ_A :
 - function of estimated RMS error and completeness of model
 - total number of reflections, resolution of data
 - no simple rules of thumb!

A priori σ_A curve

- σ_A^2 : fraction of scattering explained by model
 - RMS errors and completeness of model, effects of disordered solvent

Predicting LLG signal

- Signal-to-noise depends on:
 - the fraction of scattering accounted for by the model
 - expected RMSD of model
 - number of reflections (size and resolution)
- Use this to:
 - predict what is possible
 - develop optimal strategies

Predicting course of MR from <LLG>

 Consider case of good model (0.8Å rms) vs bad model (1.5Å rms), both 60% complete, 10000 reflections to 2.5Å resolution

Attacking the ribosome by MR

- 2j00: *Thermus thermophilus* 70S ribosome
 - two copies in a.u.
 - 1.3M reflections to 2.8Å resolution
- Models:
 - 1j5e: *Thermus thermophilus* 30S small subunit
 - 1ffk: Haloarcula marismortui 50S large subunit
- *Phaser* chooses limit of 7.5Å (79K reflections)
 - sufficient to use data to 12Å (19K reflections)

Arcimboldo

- Isabel Usón
- Place common fragments (*e.g.* helices) with *Phaser*
- Density-modify and trace with *SHELXE*
- High success rate if resolution better than about 2 Å

Aldose reductase

- 36 kDa, 0.78Å resolution (3bcj)
- <LLG> for 1 S is 4.1
 - higher if well-ordered
- Find 4 S (<3h)
- Complete with N atoms (3h)
- 2525 non-H atoms in structure
 - none heavier than S

How to attack a difficult MR problem

- Collect the best data possible
 - higher resolution helps
 - more signal with good models
 - more power for model completion algorithms
 - anomalous differences are very useful!
 - pathologies hinder progress
 - anisotropy reduces signal, makes maps harder to interpret
 - translational non-crystallographic symmetry (tNCS) must be accounted for
- Prepare the best possible model
 - consider possible domain movements
- Use likelihood as a target

Getting the best model before MR

- Use sensitive algorithm to find and align
 - HHpred works well for distant homologues
- Try many alternatives
 - correlation between sequence identity and quality is approximate
 - conformational change
 - easier in a pipeline: phaser.MRage, Balbes, MrBUMP
- Improve the model
 - use an ensemble
 - edit the model to remove parts that don't belong
 - use sophisticated homology modelling
- Did you crystallise the right thing?
 - Search database of common contaminants (ContaMiner, SIMBAD) or entire PDB (WSMR, SIMBAD)

Model manipulation

- Sculptor (also Chainsaw, Molrep)
 - use sequence alignment to:
 - trim parts of template not in target
 - adjust B-factors of poorly-conserved regions
 - use surface accessibility to:
 - adjust B-factors of surface regions
- Ensembler
 - multiple structure superposition to make ensemble of possible models
 - optionally trim non-conserved surface loops
- Divide into domains, if appropriate

Streptomyces griseus trypsin (1980-84)

- MR using bovine trypsin (34% identical)
 - Sculptor: trim according to sequence alignment
 - Gábor Bunkóczi
 - Phaser: clear solution in < 1 minute
 - ARP/wARP: R_{free}<25% in 15 minutes
- Effect of Sculptor
 - LLG increases: 117 to 172
 - CPU decreases: 109s to 22s

DprE1 (Andrea Mattevi & Claudia Binda) Ensemble of 6 models, 14-19% identical

Ensemble

Trimmed

Homology modeling and MR

- Rosetta: sophisticated modeling program from David Baker's group
 - computationally intensive (Rosetta@home)
- Templates from NMR structures and distant homologues can be improved for MR
 - Bin Qian, Rhiju Das *et al.* (2007)
- Complete (possibly ambiguous) solution from poor model: phenix.mr_rosetta
 - Frank diMaio, Tom Terwilliger *et al.* (2011)
- Can get away with less extensive modelling
 - AMPLE

DprE1 (Andrea Mattevi & Claudia Binda) Ensemble of 6 models, 14-19% identical

Likelihood is sensitive...

- ...to correct orientation and position of molecular replacement model
 - successful in solving structures with distant relatives, small fragments, or many copies in asymmetric unit
- ...to violations of assumptions
 - data implicitly assumed to be isotropic
 - important to account for anisotropy
 - components may not be equally well-ordered
 - important to correct for differences in overall B-factors

β-lactamase:BLIP complex

- Solved with great difficulty using AMoRe (Strynadka, James, Alzari)
- β-lactamase
 - 62% of the structure
 - easy to find
- BLIP
 - 38% of the structure
 - hard to find
- Anisotropic diffraction

β-lactamase:BLIP complex with *Phaser*

- Likelihood-based target
- fix β -lactamase
- Anisotropy corrected
- Clear peak
- Result in minutes
- Even solve with BLIP component first

New pathologies become bottlenecks: translational NCS (tNCS)

• Found in about 8% of PDB entries

Photo courtesy of Laurie Betts

Effect of tNCS on diffraction

- Diffraction from copies in different orientations is uncorrelated
- Diffraction from copies in the same orientation is correlated

Accounting for translational NCS

• Model effect of translation combined with small rotation and random differences between copies

Pulling out the stops: combining sources of information

- Electron density as a model
- NCS and multi-crystal averaging
- MR-SAD
 - use MR solution to extract (even weak) experimental phase information
 - prime SIRAS or MIRAS phasing by using model to determine heavy-atom sites

Real-space molecular replacement

- Use phase information in two ways:
 - use electron density as model
 - calculate structure factors from isolated density, then proceed as with atomic model
 - also works with cryoEM image reconstruction
 - *e.g.* Cascade structure (Jackson *et al.*, 2014)
 - fit model into electron density
 - "domain rotation function"
 - "phased translation function"

Domain rotation function

Phased translation function

Human angiotensinogen: molecular replacement

Human angiotensinogen: molecular replacement

human

Solving angiotensinogen structures

Acknowledgements

- Phaser: Airlie McCoy, Gábor Bunkóczi, Rob Oeffner
- Arcimboldo: Isabel Usón, Claudia Millan, Massimo Sammito
- Angiotensinogen: Penny Stein, Robin Carrell, Aiwu Zhou, Yahui Yan
- Hyp-1: Mariusz Jaskolski, Joanna Sliwiak, Zbyszek Dauter

