Likelihood and SAD phasing in *Phaser*

R J Read, Department of Haematology Cambridge Institute for Medical Research

Concept of likelihood

Likelihood with dice

Principle of maximum likelihood

- Best model is most consistent with data
- Measure consistency by probabilities
- Optimise model by adjusting parameters in probability distribution

Least squares and likelihood

- Most experiments have multiple sources of error: Gaussian error in observations
 - Central Limit Theorem
- Likelihood for Gaussians = least squares

Why not least squares in crystallography?

- Gaussian error for observations
- Error in predicting observation generally includes difference between structure factors
 - this is Gaussian in *phased* difference
 - *e.g.* \mathbf{F} *vs.* \mathbf{F}_C from model, \mathbf{F}_P *vs.* \mathbf{F}_{PH}
- Phased error usually dominates
 - elimination of unknown phase changes probabilities

Applying likelihood to crystallography

- Find probability distribution for observations
 - start from structure factor probabilities
 - eliminate unknown phase angles
- Adjust parameters to optimise likelihood
- Applications:
 - calculating model phase probabilities
 - structure refinement
 - experimental phasing (isomorphous/anomalous)
 - likelihood-based molecular replacement

Effect of atomic errors (or differences)

- Atomic errors give "boomerang" distribution of possible atomic contributions
- Portion of atomic contribution is correct

Structure factor with coordinate errors

- Same direction as the sum of the atomic *f*
 - but shorter by 0 < D < 1
 - D=f(resolution)
- Central Limit Theorem
 - Many small atoms
 - Gaussian distribution for the total summed F
 - $\sigma_{\Delta} = f(resolution)$

Probability distribution for related structure factors

• Fraction of calculated structure factor correlated to true structure factor: *D*

$$p(\mathbf{F};\mathbf{F}_{C}) = \frac{1}{\pi\varepsilon\sigma_{\Delta}^{2}} \exp\left(-\frac{|\mathbf{F}-D\mathbf{F}_{C}|^{2}}{\varepsilon\sigma_{\Delta}^{2}}\right) \qquad D\mathbf{F}_{C}$$

F

• (Sim, Luzzati, Srinivasan...)

Takes form of complex normal distribution

Amplitude probability distribution

 Integrate over unknown phase angle to get Rice (Luzzati, Sim, Srinivasan) distribution

SAD: single-wavelength anomalous diffraction

- Most popular way to solve structures by experimental phasing (over 70% and rising)
- Can be done with intrinsic S and CuK $\!\alpha$ X-rays
- SAD phasing theory is very good
- Easy to automate
- Can be very fast
 - Can be done from single dataset
- May need multiple crystals
 - And careful data processing

Anomalous scattering

- Anomalous scattering is due to the electrons being tightly bound (particularly in K & L shells)
- In classical terms, the electrons scatter as though they have resonant frequencies

Driven Mechanical Oscillator

MIT Physics Lecture Demonstration Group

https://www.youtube.com/watch?v=aZNnwQ8HJHU

Diffraction with anomalous scatterers

• SAD: single-wavelength anomalous diffraction

Diffraction with anomalous scatterers

• SAD: single-wavelength anomalous diffraction

Harker construction for SAD phasing

SAD likelihood function

• Factor joint probability into two parts

$$p\left(\mathbf{F}_{O}^{+},\mathbf{F}_{O}^{-};\mathbf{H}^{+},\mathbf{H}^{-}\right) = p\left(\mathbf{F}_{O}^{+};\mathbf{F}_{O}^{-},\mathbf{H}^{+},\mathbf{H}^{-}\right)p\left(\mathbf{F}_{O}^{-};\mathbf{H}^{-}\right)$$

• Integrate out unknown phases, α ⁺ and α ⁻

Intuitive understanding of SAD phasing

Intuitive understanding of SAD phasing

Total likelihood is integral of the product of the two distributions under the black circle

Best (centroid) map for SAD phasing

animation produced by Airlie McCoy

SAD log-likelihood gradient (LLG) map

- Compute derivative of log-likelihood with respect to heavy atom structure factor
- Fourier transform gives map of where likelihood target would like to see changes in anomalous scatterer model
- Very sensitive to minor sites
 - picks up sites identified as water molecules in refined structures determined by halide soaks
- Used to improve substructure determination in phenix.hyss (Tom Terwilliger, Gabór Bunkóczi)
- <u>http://www.phaser.cimr.cam.ac.uk/index.php/Tutorials</u>
 - tutorial with data for lysozyme iodide soak

Locating anomalous scatterers in model solved by MR

- Structure of thyroxine-binding globulin
 - thyroxine doesn't bind where most people expected
- Thyroxine contains 4 iodine atoms
 - f'' \approx 3e for λ =0.979Å
- Compare conventional model-phased
 anomalous difference map with *Phaser* LLG map

Combining MR and SAD

- CuK α data to 1.9Å on hen egg-white lysozyme
 - can't find sulfurs with HySS or SHELXD
- Solve by MR with goat alpha-lactalbumin (40% identical)
- Use MR model as "substructure" for SAD
 - look for S atoms in LLG map (finds all 10 S, 5-9 Cl⁻)
 - phases automatically combine MR and SAD
- Automated fitting with density-modified map
 - tutorial with these data is available

Breakdown of Friedel's law

• Friedel's law breaks down for mixture of scatterers differing in real:anomalous ratio

Nitrate reductase (Natalie Strynadka)

- Integral membrane protein, 1976 residues
 - contains 21 Fe atoms, 1 Mo, 118 S, 5 P (146 total)
 - solved using combination of Fe-MAD, MIRAS

SAD phasing of nitrate reductase

- Fe peak SAD data only
 - find 11 "Fe" sites with phenix.hyss
 - several are super-sites of Fe₄S₄ clusters
 - phase and complete adding Fe, Mo, S with *Phaser*
 - total of 57 sites: 20 Fe, 6 Mo, 31 S
 - superatoms are resolved, 51 of 57 are identified correctly
 - correct hand indicated by number of sites, LLG score

Iterative model-building and phasing

- Improve phases by density modification
- Build with ARP/wARP (or Resolve)
 - 1607 residues, 1368 docked in sequence
- LLG completion from ARP/wARP model
 - 105 sites, 92 correctly identified
- Repeat DM and ARP/wARP
 - 1813 residues, 1775 docked in sequence

Automation of SAD phasing

- Functions are all available from Python
 - used for SAD in PHENIX AutoSol GUI
 - used as optional substructure completion method in phenix.hyss
- Log-likelihood-gradient completion
 - look for one or several types of scatterer
 - start from MR model (atoms or density) or partial substructure
 - analyse map to add sites, make atoms anisotropic
 - delete atoms that fade away
 - repeat to convergence

Practical aspects of SAD phasing in *Phaser*

- Provide information about cell content
 - sequence, molecular weight, percent solvent...
 - used to put data on absolute scale
 - occupancies are reasonably accurate
- Provide information about f" values
 - wavelength (table lookup) or measured
 - refined by default if near edge
- Try both hands if uncertain
 - separate completion if mixture of atom types

SAD phasing in CCP4

- ccp4i GUI
 - modes for SAD phasing or MR+SAD
 - SAD phasing pipeline
 - find substructure with Hyss or SHELXD
 - phase both hands
 - density modification with parrot
 - quick model-building with buccaneer
 - MR+SAD
 - provide MR model
 - only phase in hand of MR solution

SAD phasing in Phenix

- AutoSol GUI
 - finds sites with Hyss
 - new brute-force method uses *Phaser* to complete partial substructures
 - automatically uses *Phaser* for phasing if SAD data
 - tests both hands, chooses best hand
 - carries out Resolve density modification and modelbuilding

Background information

- "*Phaser* crystallographic software", McCoy, Grosse-Kunstleve, Adams, Winn, Storoni & Read (2007), *J. Appl. Cryst.* 40, 658-674.
 - plus papers cited here
- "Liking likelihood", Airlie J. McCoy (2004), *Acta Cryst. D***60**, 2169-2183.
- http://www.phaser.cimr.cam.ac.uk/index.php
- <u>http://www.phaser.cimr.cam.ac.uk/index.php/Tutorials</u>
- <u>http://www-structmed.cimr.cam.ac.uk/Course</u>

Contributors

- Experimental phasing
 - Airlie McCoy, Laurent Storoni
- "BEST" data
 - Sasha Popov
- PHENIX collaboration
 - Ralf Grosse-Kunstleve, Nigel Moriarty, Paul Adams
 - Tom Terwilliger
- CCP4 SAD pipeline
 - Kevin Cowtan