DEEP SATURATION DYNAMICS IN A FREE ELECTRON LASER

R. Bachelard, M.-E. Couprie, Synchrotron SOLEIL, BP 48, F-91192 Gif-sur-Yvette Cedex, France
P. de Buyl, Université Libre de Bruxelles, B-1050 Brussels, Belgium
G. De Ninno, Phys. Dept., Nova Gorica Univ., Slovenia & Sincrotrone Trieste, 34012 Trieste, Italy
D. Fanelli, S. Ruffo, Università di Firenze, via S. Marta 3, 50139 Firenze, Italy
C. Chandre, X. Leoncini, Centre de Physique Théorique, CNRS – Aix-Marseille Universités, 13009 Marseille, France

Abstract

The Free Electron Laser (FEL) regime is investigated long after saturation using the Colson-Bonifacio model. This regime is actually an out-of-equilibrium metastable state, which slowly relaxes toward thermodynamical equilibrium. This specific dynamics is characterized by a strong regularity, unexpected for an interaction between waves and large number of particles, as well as by low-dimensional phase-space structures in the electron-beam phase space. In this context, the switch from regimes associated to high gain (for small electron-beam energy spread) or very low gain (for large energy spread) is interpreted as out-of-equilibrium phase transitions, a phenomenon which was recently described by a mechanism of entropy maximization.

INTRODUCTION

The wave-particle interaction in a FEL has the particularity to be long-ranged, which means that the collective field generated by the particles dominate over the local effects (e.g. space-charge effects). Such interactions are characterized by the existence of out-of-equilibrium nearly stable states in which the system often gets trapped. Typically, starting from an unstable state, systems with long-range interactions [1, 2] violently relax toward a long-lived regime, called Quasi-stationary State (QSS), whose features can significantly differ from those of thermodynamic equilibrium. Although the system will eventually reach equilibrium, the QSSs lifetime has been shown to diverge with the number of particles [3, 4], which potentially makes them the sole regimes accessible experimentally.

Since it concentrates the main features of long-range interactions with amenable mathematical treatment, the Hamiltonian Mean-Field (HMF) model [5] was widely used to explore the properties of these systems. Apart from the properties of very slow relaxation toward equilibrium, out-of-equilibrium phase transitions were detected and adequately predicted by a statistical theory [6]. Furthermore, a strong regularity was shown to characterize these states, where the particles are nearly trapped on low-dimensional structures of phase space [7], each having a nearly periodic motion.

In the case of FEL, starting from an unstable state with negligible intensity, the wave first grows exponentially before it reaches saturation. Then the wave starts oscillating for very long times - the so-called QSS. Note that the fluctuations will eventually reduce to thermodynamic fluctuations, but only over very long times.

In this paper, we describe the QSS features in the FEL, with a focus on the low-dimensional structures which emerge from the particles dynamics. The out-of-equilibrium statistical theory is briefly reviewed, which gives a different insight into the quasi-stationary dynamics. Finally, the out-of-equilibrium phase transition in the FEL is presented, where dynamical and statistical approaches provide crossed information.

THE COLSON-BONIFACIO MODEL AND ITS VLASOV FORMULATION

In the one-dimensional limit, the FEL dynamics is well described by the Colson-Bonifacio model [8], whose N-particle description reads:

$$\frac{d\theta_j}{dz} = p_j, \quad \frac{dp_j}{dz} = -2\sqrt{I}\cos (\theta_j - \phi),$$

$$\frac{d\phi}{dz} = \frac{1}{\sqrt{I}} \sum_{j=1}^{N} \sin (\theta_j - \phi),$$

$$\frac{dI}{dz} = 2\sqrt{I} \sum_{j=1}^{N} \cos (\theta_j - \phi),$$

where z is the rescaled undulator length, (θ_j, p_j) are the ponderomotive phase and relative momentum (with respect to the resonant one) of particle j, while (ϕ, I) correspond to the phase and intensity of the radiated wave. For large number of particles, the system is equally described by the Vlasov equation, where the particles are represented by a density function in phase-space $f(\theta, p)$. The associated equations of motion are:

$$\frac{\partial f}{\partial z} = -p \frac{\partial f}{\partial \theta} + 2\sqrt{I}\cos (\theta - \phi) \frac{\partial f}{\partial p},$$

$$\dot{\phi} = \frac{1}{\sqrt{I}} \int d\theta dp f \sin (\theta - \phi),$$

$$\dot{I} = 2\sqrt{I} \int d\theta dp f \cos (\theta - \phi).$$

We here consider water-bag initial conditions, which means that the particles are uniformly spread in the
[-\alpha;+\alpha] \times [-\Delta p;+\Delta p] \text{ part of phase-space. Then, the}
(rescaled) energy of the waterbag is \(\epsilon = \Delta p^2 / 6 \), while the
initial bunching is \(b_0 = \sin(\alpha) / \alpha \). As can be observed in

Figure 1: Evolution of the intensity inside the undulator,
for the \(N \)-body model with \(N = 100000 \) for an initially
unbunched waterbag \((b_0 = 0) \) with no energy spread \((\epsilon = 0) \).

Fig. 1, the intensity initially quickly grows (linear regime
characterized by an exponential growth of the wave), after
which the intensity saturates and starts oscillating with a
large amplitude of fluctuations.

The \(N \)-particle model and the Vlasov equation natu-
really yield the same dynamics for large number of parti-
cles. However, for a finite number of bodies, the so-called
granularity progressively drives the system toward ther-
modynamic equilibrium, while the Vlasov system will re-
main trapped into a stationary state. The time required for
the \(N \)-body system to reach equilibrium has been shown
to diverge with the number of particles, although the rate
of divergence may differ depending on the initial condi-
tions [3, 4].

PHASE-SPACE STRUCTURES AND
REGULARITY OF THE DEEP
SATURATION DYNAMICS

Despite the complexity of phase space, which is \(2N + 2 \)-dimensional for the \(N \)-particle system, and infinite-
dimensional in the Vlasov limit, the particle dynamics fea-
tures can be investigated by a technique close to strobo-
scoptic plot, which can be assimilated to a Poincaré section:
Each time the intensity crosses its average saturated value,
going from below to above, the position and momentum of
each particle is recorded. In Fig. 2 are plotted the positions
of a few particles in the \((\theta, p)\) space.

Thus, it appears that most particles are nearly trapped
on one-dimensional structures of the \((\theta, p)\) space. These
structures are similar to KAM-tori [9], which are structures
on which particles are trapped for infinite times in the case
of two-degree-of-freedom models. However, in the present
case, because of finite-\(N \) effects (the so-called “granu-
ularity”), the particles slowly diffuse through the \((\theta, p)\)-
space, an effect which gives the tori a finite “thickness”.

This phenomenon has been demonstrated to depend on the
number of particles involved in the interaction for a sim-
lar model, the so-called Hamiltonian Mean-Field [5]: In
particular, this thickness was shown to tend toward zero
when the number of particles grows to infinity (see Fig. 3).
This indicates that both the HMF model and the Colson-
Bonifacio model saturated dynamics are characterized by
low-dimensional chaos, and that the more particles there
are, the closer the system dynamics is to a low-dimensional
one.

Figure 2: Poincaré section of the \(N \)-body dynamics: A few
particles positions in phase-space are represented for each
time the intensity crosses its saturated intensity (each color
codes for a different particle).

Figure 3: Thickness of the tori as a function of the number
of particles for the HMF model [7]. It is equivalent to mea-
suring the variation of energy of an individual particle over
a given period of time.

LYNDEN-BELL PREDICTION FOR THE
OUT-OF-EQUILIBRIUM DYNAMICS

In order to predict some features of the saturated regime,
such as the intensity of the laser field, one can resort to a
theory originally devised by Lynden-Bell [10]. This theory,
suited for collisionless dynamics (i.e. obeying a Vlasov
equation), is based on the optimization of an entropy func-
tional, under macroscopic constraints of mass, energy and
momentum. Starting from an initial waterbag, one obtains
as a result \(\tilde{f}(\theta, p) \), a distribution function for the electrons in phase-space valid on a coarse grained level, and the associated laser field \(I \).

This framework has been used to predict the saturated intensity of the FEL [11], as a function of the detuning parameter in particular. More recently, it allowed to evidence the out-of-equilibrium phase transition present in the FEL [12]. Indeed, QSS are then interpreted as being dynamically close to one of the two solutions of Lynden-Bell’s theory. The first one, called LB0, has zero field intensity, and the electrons are not organized coherently (no micro-bunching). The other one has a finite field intensity and a finite bunching factor. However, the first solution may be unstable, and the wave will then eventually grows. Depending on the initial conditions, the system may be able to evolve toward one solution or the other. Figure 4 shows the evolution of the saturated intensity for a bunching factor and a wave intensity initially zero. In this case, the system naturally follows the evolution of the LB0 solution predicted by Lynden Bell’s theory.

A complete predictive theory is still lacking at the present time, which will determine which solution the system will choose. Still, the QSS predictions given by Lynden-Bell’s theory provides a phase-space density distribution to which the phase-space portrait of the FEL will tend, and that can be compared to experimental or numerical results.

![Figure 4](image_url)

Figure 4: The prediction of the saturated intensity \(I \) from Lynden-Bell’s theory (LBA and LB0), for an the initial bunching \(b_0 = 0 \). The WB curve corresponds to Vlasov simulations of the dynamics.

OUT-OF-EQUILIBRIUM PHASE TRANSITION

In the HMF model, an out-of-equilibrium phase transition was evidenced when the energy of the system is increased [6], which was interpreted as a change in stability of Lynden-Bell solutions. This approach provides a framework where both intensity and particles distribution can be described. It however lacks of insight into the dynamics, since it describes a *stationary* state of the Vlasov equation. Thanks to the Poincaré section technique, one can observe that the changes in the macroscopic observables (macroscopic field such as the field intensity, bunching factor) are associated to changes in the phase-space structures of the particles dynamics (see [7] for details on the HMF model).

Recent works on the Colson-Bonifacio model allowed to evidence a similar phase transition in the FEL [12]. In the case of a waterbag with low energy spread (see Fig. 2), the resonance created by the wave traps most particles. Whereas at high energies (larger energy spread \(\Delta p \)), as can be observed in Fig. 5, the saturated intensity collapses, which results in a tiny resonance. Less particles get trapped in the wave potential, whereas more particles have ballistic trajectories, nearly without interaction with the field. Unfortunately, this transition could not yet be interpreted in term of change in stability for Lynden-Bell solutions, but rather as a dynamical switch between different existing solutions.

![Figure 5](image_url)

Figure 5: Upper panel: Poincaré section at large energy spread (\(\Delta p = 3 \) and \(\alpha = 0 \)); each color codes for a different particle. Lower panel: Evolution of the intensity.

CONCLUSION AND PERSPECTIVES

In this Proceedings, we described the saturated regime of the FEL, using both the Poincaré section technique and the statistical theory of Lynden-Bell, which provide crossed information. A natural extension of this work is to make the bridge between the two approaches, linking the specific phase-space structures observed with the predictions of the statistical theory. Finally, the out-of-equilibrium phase transition in the FEL still lacks a comprehensive framework, and its understanding will be the object of future works.

REFERENCES

FEL Theory 25

