Ondas acústicas de superfície como ferramenta para estudo de nanoestruturas

Odilon D. D. Couto Jr.

UNICAMP

Outline

Introdução

Espectroscopia ótica de nanoestruturas semicondutoras

Ondas acústicas de superfície (SAW)

Transporte induzido acusticamente

- ✓ Portadores (elétrons e buracos)
 - ✓ Spins
- ✓ Injeção de portadores

✓ Fonte de fótons únicos bombeada acusticamente

Perspectivas

Conclusão

SAW

Elastic wave propagating on the surface of solids

Love Wave

Applications:

- Mobile, Wireless communication
 - Sensors, filters, resonators....

<u>Estimate</u>

• 3 million SAW devices are manufactured **every day!!!**

SAW Touch Screen Technology

SAW

Motivação (a melhor que já vi)

- "Chemical and biological-based surface acoustic wave (SAW) sensors will be an important part of fulfilling the Air Force goal of global situational awareness (GSA). "
- "A part of GSA, the Air Force Research Laboratories Focused Long Term Challenge (FLTC) # 3's stated goal is to have the ability to "detect, identify, tag, track, and target adversaries, improvised explosive devices (IED), and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) weapons in congested or concealed environments" ".

How to generate SAWs

Photolithography

- Thin metal (Al) layer on top
- Interdigital transducers (IDTs)
- \bullet Defines the acoustic wavelength λ_{saw}

Poço Quântico ←

How to generate SAWs

Piezoelectric substrate

- LiNbO₃, ZnO
- GaAs (in our case)

rf-signal

- Efeito piezoelétrico inverso
- Feixe de SAW é lançado

Linear dispersion:
$$\implies \omega_{SAW} \times k_S$$

Well-defined velocity $f_{SAW} = \frac{v_{SAW}}{\lambda_{SAW}}$

In GaAs
$$\rightarrow \frac{v_{SAW} \approx 3000 \, m/s}{f_{SAW} \approx MHz - GHz}$$

Acoustic modulation

Acoustic Modulation

✓ Local non-destructive tool for application of piezoelectric and strain fields

On the surface

✓ Waveguides, quantum wires
Few nanometers bellow the surface

✓ Quantum wells, quatum dots

x (XSAW)

Acoustically induced transport 🥌

Strain field (S)

Piezoelectric field (E)

- F_x drags carriers along SAW propagation
- F_z modulates confinement potential
 - Electrons and holes confined in the minima of moving potential
 - Longer carrier lifetimes (τ_{PL})

An electron is created at time t_0 , is it possible to know where it will be at $t>t_0$?

Carriers are transported by the SAW with a well-defined velocity

$m^*v_{SAW} = \hbar \langle k \rangle$

If t < τ_s : information about the spin state of the particle!!!

Experiments

Optical orientation

 $\rho_z = \frac{I_+ - I_-}{I_+ + I_-}$

light

- Absorbed light has well-defined angular momentum $\sigma^{\text{-}}$
- N (s = $\frac{1}{2}$) > N (s = - $\frac{1}{2}$) in the CB

✓ PL is polarized

Time scales

After relaxation to the bottom of CB

Electron dynamics

- \checkmark Carrier lifetime $\rightarrow \tau_{\mathsf{PL}}$
- ✓ Spin relaxation time → T_1

If there is a transverse magnetic field

✓ Spin decoherence time → $T_2 > T_2^*$

Spin lifetime

$$\frac{1}{\tau_{s}} = \frac{1}{T_{1}} + \frac{1}{T_{2}^{*}}$$

Carrier transport

Continuous PL detection

Carrier transport

 \checkmark <u>SAW</u> off

 \checkmark Carrier diffusion $\rightarrow \tau_{PL} \sim 1 \text{ ns}$

✓ <u>SAW on</u>

✓ PL quenching ~ 90 times for high acoustic powers

✓ Efficient carrier transport → τ_{PL} > 50 ns

Time-resolved detection

Coherent carrier transport

✓ Well-defined carrier packets

 $\checkmark \mathbf{v}_{spin} = \mathbf{v}_{SAW}$

5.6

Spin transport (110) QWs

Time-resolved PL detection

• Electron-heavy hole transition

Spin relaxation

Transport along [001] direction

- ✓ Spin lifetime : $T_1 = (22 \pm 2)ns$
- ✓ Spin transport length: $L_s = T_1 v_{SAW} = (63 \pm 5) \mu m$

Longest spin lifetime and transport distance for this type of quantum well!!!!

Suppression of relaxation for z-oriented spins

0. D. D. Couto Jr. et al, *Phys. Rev. Lett.* **98**, 036603

Increasing temperature

Temperature

- \checkmark Spin decay is independent of T up to 75 K
 - ✓ SAW piezoelectric field avoids
 - electron-hole recombination
 - ✓ Spin transport at liquid nitrogen temperature
 - ✓ Interesting for future applications

Spin manipulation

B_e

S,

• High in-plane relaxation rates appear

Effective spin dephasing time: $T_2^* = 2.3 ns$

Spin relaxation dynamics

Spin-orbit Coupling

- ✓ Bulk inversion asymmetry
 - ✓ Binary semiconductors: GaAs
 - \checkmark Electrons move in the crystal lattice
 - \checkmark "Feel" the crystal potential

Effective magnetic field felt by the electron $B_{BIA}(k)$

$$H_{BIA}(k) = \hbar \Omega_{BIA}(k) \cdot \frac{\sigma}{2} = g_e \,\mu_B \,B_{BIA}(k) \qquad mv = \hbar \,k$$

k momentum dependence

• Fast average spin relaxation \rightarrow T_1 ~ 100 - 300 ps

(110) quantum wells*

✓ Structural simmetry enhances the spin lifetimes → $T_1 \sim 1-2ns$ Acoustic transport

✓ SAW confinement potential screens electron spins → $T_1 \sim 22$ ns

* Ohno et. al., Phys. Rev. Lett. 83, 4196 (1999)

.

Carrier injection in coupled nanostructures

Single photon sources

What is a single photon source (SPS)

 \rightarrow low probability of emitting two or more photons at the same time

SPS → source able to emit *single photons* pulses *on demand*...

- \checkmark regular stream of photons delivered one at a time
- ✓ high emitting probability (ideally, with certainty)

SPS applications

Why do we need SPSs?

* B. Lounis and M. Orrit, "Single-photon sources", Rep. Prog. Phys. 68, 1129 (2005)

- fundamental tests of quantum mechanics
- quantum information processing
 - ✓ quantum computation
 - ✓ quantum cryptography
 - \rightarrow secure quantum key distribution
 - by single photon pulses

Eisanan et. al. Rev. Sci. Inst. 82 071101

How to make a SPS

 \rightarrow elimination of multiple photon events: *single photon source*

* <u>early and macroscopic</u>

* <u>microscopic</u>

(e.g. atoms, organic molecules, defect centers, semiconductor nanocrystals & heterostructures)

SPS emission frequency \rightarrow f_{pump}

SAW + SPS

 \rightarrow alternative way to generate semiconductor-based SPSs

SAW \rightarrow surface elastic vibrations (acoustic phonons)

✓ SAW frequency: f_{SAW} →100's of MHz to a few GHz → high-repetition rate SPS

Modulation mechanisms

 \rightarrow spatial separation of electrons and holes

✓ *controllable transport* of carriers (unipolar or ambipolar)

Como obter o sistema de 2 níveis 🦰

Etching process

Our approach

SPS on GaAs (311)A

- acoustic transport on (311)A GaAs QWs
 - ✓ formation of short quantum wires (SQWRs) containing shallow dots
 - ✓ SQWRs embedded in the QW: carrier transport QW \rightarrow SQWR

SQWR fabrication

- side-wall (311)A GaAs quantum wires
 - \checkmark MBE overgrowth on substrates patterned with shallow mesa
 - ✓ **SQWR:** material accumulation at [01-1] mesa edges

✓ SAW frequency: f_{SAW} =750 MHz

Short Quantum Wires (SQWRs)

Carrier injection

 $\lambda_{SAW} = 4 \ \mu m$ $f_{SAW} = 750 \ MHz$

✓ coupling of different electronic systems:
carrier transport QW → SQWR

✓ recombination dynamics
→ selection of a single QD within a SQWR

Carrier transport and injection

- Optical excitation in the QW
- $\sim 20 \; \mu m \,$ from the SQWRs
- PL detection

PL from a single SQWR

.

low acoustic powers

✓ large density of trapped electrons

• high acoustic powers

- ✓ low density of trapped electrons
 - \rightarrow fewer recombination events

sharp lines for high P_{SAW}

localized states (QDs) within the SQWRs
✓ SAW amplitude → selection of single line

Photon correlation

Anti-buching

Reduced amplitude at $\tau=0$

→lower probability for simultaneous emission of two photons

Anti-buching

Emission energy

✓ Recombination depends on SAW power → selection of emission centre by controlling P_{rf}

• SAW based SPS

- Carrier injection from a QW into individual states of SQWRs
 - ~10 times faster (750 MHz) than optically pumped SPSs
- Adjustable emission energy

Outlook

Surface Acoustic Waves (SAWs)

- ✓ Powerful tool coupled to optical spectroscopy
- $\checkmark\,$ Modulation due to strain and piezoelectric fields
- Manipulation and transport of excitations in nanostructures
 - ✓ Carrier transport/injection
 - ✓ Spin transport
 - \checkmark Single photon generation
 - Basic research
 - Applications

Acknowlegments

Optical modulation of semiconductor nanostructures

✓ email: odilon@ifi.unicamp.br http://sites.ifi.unicamp.br/odilon

Grupo de Propriedades Óticas (GPO)

José A. Brum Maria J. S. P. Brasil Fernando Iikawa Odilon D. D. Couto Jr.

http://www.ifi.unicamp.br/~iikawa

Obrigado pela atenção

LINICAME

Other solid state systems

Control of elementary excitations Carriers

✓ Rocke et. al Phys. Rev. Lett., 78, 4099 ✓ M. M.de Lima et. al. Appl. Phys. Lett. 84, 2569

Spins

- ✓T. Sogawa et. al. Phys. Rev. Lett. 87, 276601
- ✓ J. A. Stotz *et. al. Nature Mat.* **4**, 585
- ✓O. D. D. Couto Jr. et. al. Phys. Rev. Lett. 98, 036603

Excitons

- ✓ J. Rudolph *et. al. Phys. Rev. Lett.* **99**, 047602
- **Bose-Einstein Condensates**
- ✓ M. M. de Lima et. al. *Phys. Rev. Lett.* **97**, 045501

✓ E. Cerda-Méndez et. al. *Phys. Rev. Lett.* **105** 116402

Photons

Mach-Zehnder interferometer

✓ M. M. de Lima et. al. Appl. Phys. Lett. 89, 121104

Single photon sources

✓O. D. D. Couto Jr. et. al. Nature Photon. 3, 645

✓ A. Hernandez-Minguez et. al. Nanolett. **12**, 252

Photonic crystal nanocavities modulation

✓ D. A. Fuhrmann et. al. *Nature Photon.* **5**, 605

Biological systems (new trends) DNA dynamics

M. Hennig et. al. Langmuir 27, 14721 J. Neumann et. al. Nano Lett. 10,2903

Time-resolved PL

For a single SQWR

- Oscillations with SAW periodicity
- $\rightarrow T_{SAW} = 1/f_{SAW} = 1.33 \text{ ns}$
- **Compatible** with $h \rightarrow \underline{e}$ recombination
- ✓ Carriers transported in packets

• Amplitude and decay time limited by experimental time resolution

 $\rightarrow \delta t = 0.40 \ ns$

✓ short and well-defined recombination times

