

Universidade de São Paulo Instituto de Física de São Carlos - IFSC

Chapter 7 Unary heterogeneous systems

(Thermodynamics in Materials Science, DeHoff)

Prof. Dr. José Pedro Donoso

Capítulo 7

7.1 - Structure of unary phase diagrams in (P,T) space Chemical Potentials and Gibbs free energy. Calculation of Chemical Potential surfaces

7.2 - The Clausius - Clapeyron equation

dP	$\Delta S^{\alpha \to \beta}$	dP	$\Delta H^{\alpha \to \beta}$
\overline{dT}	$\overline{\Delta V^{\alpha \to \beta}}$	$\frac{dT}{dT}$	$\overline{T\Delta V^{\alpha\to\beta}}$

7.3 - Integration of the Clausius - Clapeyron equation

Vaporization and sublimation curves. Phase boundaries between condensed phases

7.4 - Triple points. Example 7.1: Phase diagram for silicon

7.6 - Alternative representation of unary phase diagrams

Diagrama de fases da água

Ehlers: The intepretation of geological phase diagrams

A figura mostra a região de coexistência de agua, gelo e vapor

A: ponto triple (as tres fases coexistem)
AB, AC e AD: phase boundaries
AC : curva de sublimação do gelo
AB : curva de pressão de vapor da água
(o ponto de ebulição depende de P)
B : ponto crítico
(abaixo de B podemos distinguir liquido
de vapor. Acima dele, a substância não
pode ser considerada nem L nem V)

T = 374° C e P = 218 atm : temperatura e pressão do ponto critico. Acima destas, a substância é considerada um fluido supercrítico

Diagrama de fases da água

Estrutura dos diagramas de fases (P,T) Sistemas de uma componente (unários)

1- O dominio de estabilidade de cada fase é representada por uma *área*

2- O dominio de estabilidade para duas fases co-existindo em equilíbrio é uma *linha*

3- O dominio de estabilidade para três fases simultaneamente em equilíbrio e o *ponto triple*

4- Não há regiões onde mais de três fases podem existir em equilíbrio

Diagramas de fases: água e CO₂

Na água, o ponto de congelamento decresce com o aumento de *P*. No dióxio de carbono ele sobe quando a pressão é aplicada.

Diagrama de fases do carbono

As linhas definem os limites das regiões (P, T) nas quais a fase é mais estavel

Diagramas de fases do SiO₂

Fases sólidas: quartzo α ; quartzo β ; tridymite β_2 e cristolalite β

Fase Líquida e fase vapor

Alotropia (allotropy) diferentes fases sólidas presentes no mesmo composto

Diagrama de fases do cobre

Neste material há 3 pontos triplos. O enxofre têm duas fases sólidas, uma de estrutura monoclínica e outra de estrutura ortorômbica. A linha pontilhada indica a fase metastável, região na qual a forma rômbica o a liquida podem existir apenas metastavelmente

7.1.1 - Chemical Potential and Gibbs free energy

Num sistema unário, o número de moles de uma componente pode variar durante o processo. A mudança de estado para o sistema (simbolo '):

$$dU' = TdS' - PdV' + \mu dn$$
 onde $\mu = \left(\frac{\partial U'}{\partial n}\right)_{S,V}$

Energia livre de Gibbs: G' = U' + PV' - TS'

$$dG' = dU' + PdV' + V'dP - TdS' - S'dT$$

Substituindo *dU*: $dG' = -S'dT + V'dP + \mu dn$

G' é a energia livre do sistema. G é a energia livre por mol do sistema, G' = nG

$$\mu = \left(\frac{\partial G'}{\partial n}\right)_{T,P} = \left[\frac{\partial (nG)}{\partial n}\right]_{T,P} = G\left(\frac{\partial n}{\partial n}\right) = G$$

Em sistemas unarios, o potencial químico da componente em qualquer estado é identica a energia livre molar de Gibbs para esse estado

Chemical Potential Surfaces Potencial químico fase \alpha: $d\mu^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dP^{\alpha}$

Fase α (sólida) e L (líquida):

$$\mu^{\alpha} = \mu^{\alpha}(T^{\alpha}, P^{\alpha})$$

$$\mu^L = \mu^L(T^L, P^L)$$

 $\mu^{\alpha e} \mu^{L}$ podem ser comparados numa dada combinação de T e P somente se o estado de referência usado no cálculo for o mesmo

Na curva AB:

$$T^{S} = T^{L} \qquad P^{S} = P^{L} \qquad \mu^{S} = \mu^{L}$$

as duas fases co-existem em equilíbrio

C-O-D : representa o equilíbrio das fases (s + G)

C'-O'-D' : curva de sublimação no espaço (*P*,*T*)

E -O -F : descreve o equilíbrio (L + G)

E'-O'-F' : curva de vaporização no espaço (*P*,*T*)

O : ponto de interseção das três superfíciesde potencial químico. Neste ponto as três fases co-existem em equilíbrio.

O': ponto triple das fases (s+L=G) no espaço (P,T)

Calculation of Chemical Potential Surfaces

A curva α da figura mostra o resultado do calculo da integral:

$$d\mu^{\alpha} = dG^{\alpha} = -S^{\alpha}(T)dT = -\left[S^{\alpha}_{298} + \int_{298}^{T} \frac{C_{P}(T)}{T}dT\right]dT$$

7.2 - The Clausius - Clapeyron equation

Consideremos as fases $\alpha \in \beta$ num sistema:

$$d\mu^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dP^{\alpha} \qquad \qquad d\mu^{\beta} = -S^{\beta}dT^{\beta} + V^{\beta}dP^{\beta}$$

Se durante este processo infinitesimal $\alpha \in \beta$ são mantidas em equilíbrio, as variações em *P*, *T* e μ de cada fase estarão condicionadas as condições:

$$T^{\alpha} = T^{\beta} \Longrightarrow dT^{\alpha} = dT^{\beta} = dT$$

$$P^{\alpha} = P^{\beta} \Longrightarrow dP^{\alpha} = dP^{\beta} = dP$$

$$\mu^{\alpha} = \mu^{\beta} \Longrightarrow d\mu^{\alpha} = d\mu^{\beta} = d\mu$$

Se α e β são mantidas em equilíbrio durante o processo, a relação $T^{\alpha} = T^{\beta}$ requer que ambas as duas fases experimentem as mesmas variações de *T*. O mesmo argumento se aplica para pressões e potencial químico. Estas condições de equilíbrio levam a:

$$d\mu^{\alpha} = d\mu^{\beta} \Longrightarrow -S^{\alpha}dT + V^{\alpha}dP = -S^{\beta}dT + V^{\beta}dP$$

 $\Delta S \equiv S^{\beta} - S^{\alpha}$, entropia por mol da fase β menos a entropia por mol da fase α , ou seja a mudança em entropia que acompanha a transformação de um mol da forma α para a β na temperatura e pressão considerada.

Eq. de Clausius - Clapeyron:

$$\frac{dP}{dT} = \frac{\Delta S^{\alpha \to \beta}}{\Delta V^{\alpha \to \beta}}$$

Energia livre de Gibbs:

$$G^{\alpha} = H^{\alpha} - TS^{\alpha}$$

$$G^{\beta} = H^{\beta} - TS^{\beta}$$

Se α e β estão em equilíbrio:

$$\mu^{\alpha} = \mu^{\beta} \Longrightarrow G^{\alpha} = G^{\beta}$$

$$\Delta S^{\alpha \to \beta} = \frac{\Delta H^{\alpha \to \beta}}{T} \qquad \Longrightarrow \qquad \left| \frac{\Delta H^{\alpha \to \beta}}{\alpha} \right|^2$$

$$\frac{dP}{dT} = \frac{\Delta H^{\alpha \to \beta}}{T \Delta V^{\alpha \to \beta}}$$

Vaporisation and Sublimation curves

Clausius - Clapeyron para gás ideal:

$$\frac{dP}{dT} = \frac{\Delta H}{T\Delta V} = \frac{\Delta H}{T} \left(\frac{P}{RT}\right) \qquad \Rightarrow \qquad \frac{dP}{P} = \frac{\Delta H}{RT^2} dT \qquad \qquad \ln\left(\frac{P}{P_o}\right) = \frac{-\Delta H}{R} \left(\frac{1}{T} - \frac{1}{T_o}\right)$$

Г

7.4 - Triple points

O ponto triple (P_1 , T_1) é a interseção das curvas de equilibrio de fases. Ele satisfaz a eq. de Clausius - Clapeyron para as três fases. Neste ponto, as propriedades das mudanças de fase Δ S, Δ H e Δ V estão correlacionadas. Por exemplo:

$$\Delta V^{\alpha \to G} = V^G - V^\alpha = \left(V^G - V^L \right) + \left(V^L - V^\alpha \right) = \Delta V^{L \to G} + \Delta V^{\alpha \to L}$$

Consideremos três fases em equilíbrio (α , L, G). Para a curva de sublimação no equilíbrio sólido - vapor:

$$\ln\left(\frac{P}{P_o}\right) = \frac{-\Delta H}{R} \left(\frac{1}{T} - \frac{1}{T_o}\right) \qquad \Rightarrow \qquad P^s = A^s e^{-(\Delta H / RT)}$$

Para a curva de vaporização no equilíbrio liquido - vapor:

$$P^{v} = A^{v} e^{-(\Delta H_{v}/RT)}$$

O ponto triple (P_1 , T_1) está nas duas curvas, então :

$$P_t = A^s e^{-(\Delta H / RT_t)} \qquad e \qquad P_t = A^v e^{-(\Delta H_v / RT_t)}$$

As coordenadas (P_t, T_t) do ponto triple são então:

$$T_{t} = \frac{\Delta H^{s} - \Delta H^{v}}{R \ln \left(\frac{A^{s}}{A^{v}} \right)} \qquad P_{t} = A^{v} \exp \left(\frac{\Delta H^{s}}{\Delta H^{v} - \Delta H^{s}} \right)$$

Se as constantes das curvas de sublimação e de vaporização são conhecidas, esta expressão permite calcular o ponto triple sólido - líquido - gás.

Construção de diagramas de fase

Para a pressão se usa a linha P = 1 atm

Melting point: $S \leftrightarrow L$

$$\frac{dP}{dT} = \frac{\Delta H}{T\Delta V}$$

Se $\Delta V=0$, então:

$$\frac{dP}{dT} = 0$$

define a linha vertical em T_m

Boiling point: $L \leftrightarrow G$: $P^V = A^V e^{-(\Delta H_v/RT)} \implies \log P^V = \log A^V - \frac{\Delta H^V}{RT} \log e$

$$\frac{d\log P^{V}}{d\left(\frac{1}{T}\right)} = -\frac{\Delta H^{V}}{2.3R}$$

Exemplo 7.1: Phase diagram of silicon

Dados (Apéndices D + E): Melting: T_m = 1683 K, ΔS_m =30.1 J/mol K Boiling: T_V = 2750 K, ΔS_V = 109 J/mol K

Entalpia de vaporização:

$$\Delta H^{V} = T\Delta S^{V} = (2750)(109) = 297 \frac{kJ}{mol}$$

Consideremos a curva de vaporização:

$$P^{V} = A^{V} e^{-(\Delta H_{v}/RT)}$$

Substituindo P = 1 atm, T_v = 2750 K e ΔH_v , calculamos A_v :

$$A^{V} = P^{V} e^{(\Delta H_{v}/RT)} = (1) \exp\left(\frac{297000}{(8.314)(2750)}\right) = 4.38 \times 10^{5} atm$$

Curva de pressão de vapor:

$$P^{V} = A^{V} e^{-(\Delta H_{v}/RT)} = (4.38 \times 10^{5}) \exp\left(\frac{-297000}{8.314 \times T}\right)$$

 P_t no ponto triple (1683 K):

$$P_{t} = (4.38 \times 10^{5}) \exp\left(\frac{-297000}{8.314 \times 1683}\right) = 2.65 \times 10^{-4} atm$$

Construção: ponto triple (P_t, T_t): ponto O e linhas OM e OB

Entalpia de sublimação:

$$\Delta H^{S} = \Delta H^{m} + \Delta H^{V} = 46.4 + 297 = 343$$

onde:

$$\Delta H^m = T_m \Delta S_m = 1683 \times 30.1 = 50.6$$

Curva de sublimação:

$$P^{s} = A^{s} e^{-(\Delta H_{s}/RT)}$$

Como o ponto triplo também está na curva de sublimação, substituimos $P_t \in T_t \in \Delta H^s$ para calcular A^s:

$$A^{s} = P^{s} \exp\left(\frac{343400}{8.314 \times 1683}\right) = 1.21 \times 10^{7} atm$$

Curva de sublimação:

$$P^{s} = 1.21 \times 10^{7} \exp\left(\frac{-343400}{8.314 \times T}\right)$$

Em *T* = 600 K:

$$P^{s} = 1.53 \times 10^{-23} atm$$

Construção: ponto P e linha OP

A linha OP é a curva de sublimação

As coordenadas calculadas do ponto triple são: $(2.65 \times 10^{-4} \text{ atm}, 1683 \text{ K})$

7.6 - Alternate representations of unary phase diagrams

Diagrama *P* **-***T* **:** as variáveis *P* e *T* definem as condições de equilíbrio Areas são domínios de fase, linhas são fronteiras entre duas fases, etc

Diagrama *P* - *V*: as condições de equilíbrio exigem que as pressões e volumes molares sejam a mesma nas duas fases. Mais em geral, $V^{\alpha} \neq V^{\beta}$. A coleção de estados que representam todas as possíveis condições de equilíbrio entre as fases α e β consistem de duas linhas, uma descrevendo a variação de V^{α} com *P* e a outra a variação de V^{β} com *P*. O espaço entre as linhas é preenchido com linhas horizontais ligando pares de estados em equilíbrio.

Diagrama P - V: o ponto triple (ponto O no espaço P-T) vira uma linha horizontal no diagrama P-V no qual se intersectam duas areas de fase. O volume molar da fase gasosa diminui com o aumento de $P \in T$, enquanto que a do líquido aumenta. No ponto crítico (C), os volumes molares coincidem. Este comportamento é claramente representado no diagrama P-V.

Diagrama S - V: numa situação de equilíbrio, S e V serão diferentes nas duas fases. As linhas que preenchem o espaço ligando os pares de estados de equilíbrio, não são horizontais. No ponto triple os valores de S e V podem ser diferentes para as três fases, e será representado por um triángulo definido pelos valores de (P,V) em cada uma das três fases

Diagrama do carbono

Considere a transição grafite \rightarrow diamante

Qual a direção espontânea da transformação a 25º C?

Qual a pressão necessária para a conversão

grafite \rightarrow diamante a 25° C?

Como são sintetizados os diamantes industriais?

Entropia do Hg (g) a 630 K, 1 atm

Calculo de S_E :

$$S_{E} = \Delta S_{ED} + \Delta S_{DC} + \Delta S_{CB} + \Delta S_{BA}$$
$$= (S_{E} - S_{D}) + (S_{D} - S_{C}) + (S_{C} - S_{B}) + (S_{B} - S_{A})$$

A : Hg sólido a 0 K
B : Hg sólido a
$$T_f = 234.2$$
 K
C : Hg líquido a T_f
D : Hg líquido a $T_b = 630$ K
E : Hg gasoso a T_b
Dados:
 $\Delta S_{AB} = S_B - S_A = 59.9$ J/mol-K
 $\Delta S_{CD} = S_D - S_C = 26.2$ J/mol-K
 $\Delta H_f = 2330$ J/mol
 T_b aumenta 0.73 K quando a
pressão aumenta 10 mmHg
A partir de P^{o.}

Ref: Chahine + Devaux: Thermodynamique Statistique

Calculamos:

$$S_C - S_B = \frac{\Delta H(T_f)}{T_f} = \frac{2330}{234.2} = 9.9 J/mol - K$$

Clausius - Clapeyron, supondo $V_E >> V_D$:

$$\frac{\Delta P}{\Delta T} = \frac{\left(S_E - S_D\right)}{V_E - V_D} \approx \frac{\left(S_E - S_D\right)}{V_E}$$

usando V_E =RT/P:

$$(S_E - S_D) = \frac{\Delta P}{\Delta T} \left(\frac{RT}{P}\right) = \frac{10}{0.73} \left(\frac{8.31 \times 600}{760}\right) = 94.3 \frac{J}{mol - K}$$

a entropia
$$S_E \acute{e}$$
:
 $S_E = (S_E - S_D) + (S_D - S_C) + (S_C - S_B) + (S_B - S_A)$
 $= 94.3 + 26.2 + 9.9 + 59.9 = 190.3 J/mol-K$

Calculo da entropia S_E pela termodinâmica estatística:

$$S = R \left[\ln P - \beta \left(\frac{\partial \ln P}{\partial \beta} \right)_{V} + 1 \right] \qquad \text{onde:} \qquad \beta \equiv \frac{1}{kT}$$

Função partição P: P:

$$\mathbf{P} = V \left[\frac{(2\pi m kT)^{3/2}}{h^3} \right] = \frac{V}{h^3} \left(\frac{2\pi m}{\beta} \right)^{3/2}$$

calculamos:

$$\left(\frac{\partial \ln P}{\partial T}\right) = -\frac{3}{2\beta}$$

Usando *PV* = R*T* e as propriedades da função logaritmo:

$$\log MN = \log M + \log N \qquad \qquad \log M^{\alpha} = \alpha \log M$$

substituindo:
$$S = R\left\{\ln\left(\frac{V}{Nh^3}\left(2\pi mkT^{3/2}\right)\right) + \beta\left(\frac{3}{2\beta}\right) + 1\right\} = R\left\{\frac{5}{2}\ln T - \ln P + i + \frac{5}{2}\right\}$$

onde *P* é a pressão e : $i = i_o + \frac{3}{2} \ln M$ $M(\text{Hg}) = 200.6 \times 10^{-3} \text{ kg/mol}$

e
$$i_o = \frac{3}{2} \ln 2\pi - \frac{3}{2} \ln N + \frac{5}{2} \ln k - \ln h^3 = \frac{3}{2} \ln 2\pi + \frac{5}{2} \ln R - 4 \ln N - \ln h^3$$

$$i_o = \frac{3}{2}\ln(6.28) + \frac{5}{2}\ln(8.32) - 4\ln(6 \times 10^{23}) - \ln(6.62 \times 10^{-34})^3 = 18.28$$

finalmente:
$$S = (8.32) \left\{ \frac{5}{2} \ln(630) - \ln(10^5) + \left[18.28 + \frac{3}{2} \ln(200.6 \times 10^{-3}) \right] + \frac{5}{2} \right\} = 190.4$$

O resultado, **190.4 J/mol-K**, é consistente com o valor determinado anteriormente pela termodinâmica convencional.

Problemas propostos pelo autor

- 7.2 Sistema com 3 fases (S, L, G): condições de equilíbrio
- **7.3** μ(P,T) para u gas monoatómico
- 7.7 Entropia de fusão do gelo
- 7.8 Melting point da fase ϵ do Titânio a 1 atm
- 7.9 Calor de vaporização do germanio

7.10 - Pressões nos pontos triple (α , γ , G), (γ , δ , G) e (δ , L, G) do ferro

- 7.11 Diagrama de fases do Thallium
- 7.13 Diagrama de fases do bismuto no espaço (P,V)