
List of exercises #5 - 7600037

1. Schrödinger and Heisenberg pictures. Consider a quantum 1D Harmonic Oscillator of mass m and natural
frequency ω which is initially prepared (t = 0) in the state

|ψS(0)〉 = exp
(
− i
~
PSx0

)
|0〉 ,

where |0〉 is the ground state, PS is the momentum operator, and x0 is a scalar.

(a) In the Heisenberg picture, compute 〈XH(t)〉 for t > 0 and relate it with the classical trajectory.
(b) Relate this result with initial conditions of the classical Harmonic Oscillator?

Hint: The Baker-Haussdorff identity is eABe−A = B + [A,B] + 1
2! [A, [A,B]] + . . . .

2. Harmonic Oscillator. Consider a one-dimensional linear harmonic oscillator of massM and natural frequency
ω given by the unperturbed Hamiltonian

H0 = 1
2M p2 + 1

2Mω2x2.

(a) Write the Hamiltonian in terms of raising and lowering operators a† and a:

a =
√
Mω

2~ x+ i√
2M~ω

p and a† =
√
Mω

2~ x− i√
2M~ω

p.

(b) Compute the matrix element
〈
m
∣∣a†∣∣n〉, where |n〉 and |m〉 are Eigenstates of H0.

(c) Consider the perturbation

V (t) = gxe−(t/τ)2
,

with g being a constant (and consider that τ →∞). Give a physical interpretation of V (t).
(d) Consider that at time t0 � −τ the system is prepared in state |n〉. In which order of time-dependent

perturbation theory the probability of finding the system in state |n+m〉 (with m > 0) is finite?
(e) In lowest nonvanishing order of perturbation theory, compute the probability amplitude of finding the

system in state |n+m〉 at instants t� τ .
(f) Now, consider a perturbation of type

V (t) = γx2e−(t/τ)2
,

with γ being a constant. Give a physical interpretation for V (t).
(g) In which orders of perturbation theory, the transition to state |n+m〉 is finite?

3. Fermi’s golden rule and adiabaticity. Given the importance of Fermi’s golden rule, it is interesting to derive
it in a different fashion. Consider that the transitions between eigenstates of H0 are due to small perturbations.
Thus, first-order perturbation theory should suffice. Assume a perturbation that is adiabatically switched on as
V eηt from −∞ < t < 0, where V is a time-independent operator and 0 < η � 1 is a scalar.

(a) Compute the transition rate Γm←n = dPm←n(t)
dt

∣∣∣
t→0−

, where Pm←n(t) is the transition probability from
the initial state |n〉 at t0 → −∞ to state |m〉 at t.

(b) Using your expression for Γm←n, show the adiabaticity criterion: the transition rate disappear when
~η � |Em − En|.

(c) Why do the disappearance of transition rates mentioned in 3b guarantees an adiabatic evolution of the
system?

(d) In the limit η → 0, show that the Fermi’s golden rule for discrete levels is recovered.
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4. Hydrogen atom in an electric field. Consider a hydrogen atom in its ground state subject to an electric
field E = E0 cosωt (which, for simplicity, is to be considered as a classical vector).

(a) What is the minimum frequency of the field in order to have ionization?
(b) What is the transition rate (probability per unit of time) to an ionized state (assuming the electron can be

represented by plane waves)?
(c) What is the angular distribution of the ejected electron in this process?
(d) Now consider that the atom is in a certain Eigenstate |n, l,m〉 and that ω is lower than the corresponding

ionization frequency. What can be said about the final Eigenstate |n′, `′,m′〉, i.e., what are the selection
rules?

5. Interacting spin-1/2 particles. Consider two spin-1/2 particles interacting as

V (t) = E (t)
~2 S1 · S2,

where E(t) vanishes when t→ ±∞ and approaches to a nonzero value of order Ē on the time interval of length
τ . (You may think on a gaussian, for instance.)

(a) At t → −∞, the system is in the state |+−〉. Compute exactly the state of the system at time t. With
this, show that the probability of finding the system in the state |−+〉 for t → +∞ depends only on the
integral I =

´∞
−∞E(t)dt.

(b) Compute the same probability in first-order of time-dependent perturbation theory. By comparing your
results with those of item 5a, discuss the validity of this calculation.

(c) Make some estimations about the contribution to this probability in second-order of perturbation theory
in the limits of τ → 0 and τ →∞ and discuss your results with the validity of the approximation conclude
in item 5b.

(d) Now consider that both spins are subjected to a static magnetic field B = B0ẑ. The corresponding Zeeman
Hamiltonian is

H0 = −µB
~
B0 (g1S

z
1 + g2S

z
2 ) ,

where g1,2 are the gyromagnetic ratios (assume them distinct from each other) and µB is the Bohr magneton.
Consider also that E(t) = Ē exp

(
− (t/τ)2

)
. Compute the same probability of the previous itens in first-

order of perturbation theory, and discuss its dependence on B0 and on τ .

(e) Like in item 5c, compute the second-order contribution to the transition amplitude c(2)
f←i (∞) in the limits

τ → 0 and τ →∞. Hint: In the limits τ → 0 and τ →∞, one can use the approximations E(t) = Ēτδ (t)
and E(t) = Ēθ (τ/2− |t|), respectively.

6. Transition probability per unit time under the effect of a random perturbation. Simple relaxation
model. (Cohen-Tannoudji - complement E-XIII, problem 9.) A physical system, subjected to a perturbation
W (t), is at time t = 0 in the Eigenstate |ϕi〉 of its Hamiltonian H0. Let Pf←i(t) be the probability of finding the
system at time t in another Eigenstate of H0, |ϕj〉. The transition probability per unit time wf←i(t) is defined
by wf←i(t) = d

dtPf←i(t).

(a) Show that, to first order in perturbation theory, we have

wf←i(t) = 1
~2

ˆ t

0
dτWfi(τ)W ∗fi(t− τ)eiωfiτ + c.c. (1)

with ~ωfi = Ef − Ei.
(b) Consider N � 1 identical and independent copies of the system (labeled by k). Each of them has a different

microscopic environment and, consequently, “sees” a different perturbation W (k)(t). It is also impossible
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to know each of the individual perturbation W (k), and only statistical averages can be specified such as:

Wfi(t) = lim
N→∞

1
N

N∑
k=1

W
(k)
fi (t),

Wfi(t)W ∗fi(t− τ) = lim
N→∞

1
N

N∑
k=1

W
(k)
fi (t)W (k)∗

fi (t− τ).

This perturbation is said to be “random”.
This random perturbation is said to be stationary if the preceding averages are time independent. In this
case, we can redifine H0 in order to make Wfi = 0 and set:

gfi(τ) = Wfi(t)W ∗fi(t− τ),

which is called the “correlation function” of the perturbation. Usually, gfi(τ) goes to zero for |τ | � τc, a
characteristic time scale, called correlation time of the perturbation, i.e., the perturbation has a “memory”
which extend into the past (or future) only to an interval of order of τc.
i. At t = 0, the N systems are prepared in the state |ϕi〉 and are subject to a random stationary
perturbation. Its correlation function is gfi(τ) with correlation time τc. Calculate the fraction πfi(t)
of systems which transition to state |ϕj〉 per unit time. Show that for t � t1, to be specified, πfi(t)
no longer depends on t.

ii. For fixed τc, how does πfi vary with ωfi? Consider the case in which gfi(τ) = |vfi|2 e−|τ |/τc , with vfi
constant.

iii. The preceding theory is valid only for t� t2 [since Eq. (1) results from perturbation theory]. What is
the order of magnitude of t2? Taking t2 � t1, find the condition for introducing a transition probability
per unit time which is independent of t [use the form of gfi(τ) given in the preceding question]. Would
it be possible to extend the preceding theory beyond t2?

(c) Application to a system. The N systems under consideration are spin-1/2 particles, with gyromagnetic
ratio γ, placed in a static magnetic field B0 (set ω0 = γB0). These particles are enclosed in a spherical
shell of radius R. Each of them bounces constantly back and forth between the walls. The mean time
between the collisions of the same particle with the wall is called “time of flight” τv. During this time, the
particle sees only the magnetic field B0. In a collision with the wall, each particle remains adsorbed on the
surface during a mean time τa (τa � τv), during which it seems, in addition to B0, a constant microscopic
field b due to paramagnetic impurities contained in the wall. The direction of b varies randomly from one
collision to another; the mean amplitude of b is b0.
i. What is the correlation time of the perturbation seen by the spins? Give the physical justification
for the following form, to be chosen for the correlation function of the components of the microscopic
magnetic field b:

bx(t)bx(t− τ) = 1
3b

2
0

(
τa
τb

)
e−|τ |/τa ,

and analogous expressions for the y- and z-components, and all the cross terms bx(t)by(t− τ) =
bx(t)bz(t− τ) = · · · = 0.

ii. Let Mz be the z-component of the total magnetization. (Consider B = B0ẑ.) Show that, under the
effect of the collisions with the walls, Mz “relaxes”, with a time constant T1:

dMz

dt = −Mz

T1

(T1 is called the longitudinal relaxation time). Calculate T1 in terms of γ, B0, τv, τa, b0.
iii. Show that studying the variation of T1 with B0 permites the experimental determination of the mean

adsorption time τa.
iv. We have at our disposition several cells, of different radii R, constructed of the same material. By

measuring T1, how can we determine experimentally the mean amplitude b0 of the microscopic field in
the wall.
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7. Emission and absorption.

(a) Consider a structureless free quantum particle in the infinity space. Show that this particle cannot spon-
taneously emit a single photon. Physically, why this is the case? Hint: Use that the initial and final states
of the free particle have well define momenta and that the dispersion relation for the particle is quadratic
while for the photon it is linear.

(b) Consider the spontaneous decay of the Hydrogen atom (fixed in space) in state |2, 1, 1〉. Compute the
amplitude of the decay using plane waves for photons, and explain the angular dependence of the amplitude
for each helicity ±1 of the final-state photon in terms of the angular momentum conservation. Show that
the rate is the same as the decay rate of the |2, 1, 0〉 state.

(c) (Optional) Compare the previous decay rate with the case of a free Hydrogen atom, i.e., for the case of a
finite-mass proton. Without doing any calculation, in which case do you expect the transition rate to be
larger? Justify.

(d) (Optional) How can the 2s state decay to the 1s state? There is no need in computing it, but discuss
in detail. Discuss about the electric and magnetic dipolar transitions. Discuss about the decay route 2s
→2p→1s. (Recall that due to Lamb shift splitting, 2s and 2p are not degenerate.) Compute this amplitude
transition (see Advanced Quantum Mechanics, J. J. Sakurai, problem 2.6).

8. Single-mode resonant cavity. Consider the Jaynes-Cummings Hamiltonian given by

H = ~ωa†a+ 1
2~ω0σ

z + 1
4~Ω

[
a† (σx − iσy) + a (σx + iσy)

]
.

The creation and anihillation operators a† and a act on the radiation field while the Pauli matrices σx,y,z act
on the matter. ω, ω0 and Ω are constants (frequencies).

(a) Give a detailed physical interpretation of each term in the Hamiltonian.
(b) Compute all the Eigenenergies and Eigenvectors of H. (They are called dressed states of the matter.)
(c) Consider now that the system is prepared in the state |ψ0〉 =

∑
n Cn |n-photons〉radiation ⊗ |ground〉matter ,

with C1 = C2 and all others Ci = 0. Compute the probability of finding the two-level system in the excited
state as a function of time.

9. Scattering. We are interested in the scattering process in which the initial and final states are

|I〉 = |i〉 ⊗ |nk,λ, 0k′,λ′〉 , and |F 〉 = |f〉 ⊗
∣∣∣(n− 1)k,λ , 1k′,λ′

〉
,

i.e., in the beginning, there are n photons of momentum ~k and polarization λ while, in the end, there is one
less photon in such state which was scattered into a photon of momentum ~k′ and polarization λ′. Such process
involves two photons and have contribution in second order of perturbation theory from the term e

m

∑
i pi ·A(ri)

(where pi are the momentum of the i-th electron in the system), and contribution in first order in perturbation
theory from the diamagnetic term V = e2

2m
∑
i A(ri) ·A(ri). Here, consider only the effects of this latter term.

(a) Rewrite V in terms of the density operator ρ(r).
(b) Compute the matrix element 〈F |V | I〉.
(c) Compute the differential cross section and show that

dσI→F
dΩ = r2

0
ωk′

ωk

∣∣êk,λ · ê∗k′,λ′
∣∣2 |〈f |ρ̃(k− k′)| i〉|2 ,

where r0 = e2

4πε0mc2 is the classical radius of the electron, and ρ̃(k) is the Fourier transform of ρ (r).
(d) Consider the simplest case of the scattering by a single free electron in which |i〉 = |~qi〉 and |f〉 = |~qf 〉

and compute the corresponding differential cross section (dubbed the Thomson cross section). Explain
why this process is allowed.


