Emergent Conformality in Gauge Theory

Elisabetta Pallante University of Groningen

FOM

NCE Sara

IBM

Based on work with: A. Deuzeman, M.P. Lombardo, K. Miura, T. Nunes da Silva (lattice) A. Barranco, J. Russo (AdS/CFT)

rijksuniversiteit facubat atiaunde autuurweitenschap

Outline

The role of conformal symmetry

The Phase Diagram of non Abelian gauge theories

Preconformal and Conformal dynamics

Disappearance of conformality with AdS/CFT

Does conformal symmetry play a role well above the EWSB scale?

 $\Rightarrow triviality and radiative corrections Cortese Petronzio EP '92$ $\Rightarrow vacuum stability Isidori Ridolfi Strumia '01$

The SM may be a valid EFT up to the Planck scale

The Phase Diagram

Features and open questions

Features and open questions

What symmetries determine the phase boundary? What is the relative role of confinement and chiral symmetry?

2

Is there a preconformal dynamics? What are its signatures? What is the mechanism (phase transition) that opens the conformal window? Are there UVFP at strong coupling in addition to IRFP ?

Are there UVFP at strong coupling?

QCD: fundamental fermions

 \checkmark preconformal regime (T=0, low T - high Nf)

√conformal regime (T=0)

QCD: fundamental fermions

Beta functions

2008 Nf=8 "is" in the QCD phase (massive case)

2009 Nf=12 "is" in the conformal window (there is a conformal window)

Deuzeman, Lombardo EP 2008 2009

Many studies in recent years for different fermion representations and for varying Nf and Nc

Just below the conformal window

Braun, Gies '06 Braun, Fischer, Gies '10

$$\begin{split} k_{\rm SB} \propto k_0 \,\theta(N_f^{\rm cr} - N_f) \frac{|N_f^{\rm cr} - N_f|^{-1/\Theta}}{|N_f^{\rm cr} - N_f|^{-1/\Theta}} \exp \begin{pmatrix} -\frac{\pi}{2\epsilon \sqrt{\alpha |N_f^{\rm cr} - N_f|}} \end{pmatrix} \\ \int & \text{power-law} \\ \text{(due to running coupling)} \\ \bar{\psi}\psi,\mathsf{T}_{\mathsf{C}} \\ \phi(g^2) = -\Theta(g^2 - g_\star^2) + \dots \quad \Theta < 0 \end{split}$$

From a IR scale to a UV scale

Very rough extrapolation

$$N_{f}^{c} = 11(2) \text{ for } \beta_{L}^{\text{ ref}} = 2 \qquad 1.1 < 1/|\theta| < 2.5$$
$$N_{f}^{c} = 9(1) \text{ for } \beta_{L}^{\text{ ref}} = 4.0$$

Physics questions

Universal scaling law for the critical Temperature precursor of a conformal phase transition (BKT phase transition) \Rightarrow preconformal IR dynamics

How large is the anomalous dimension γ at the would-be IR fixed point?

What is the ratio of the Higgs and rho masses?

Or, is a different mechanism in place?

Inside the Conformal Window

The Spectrum

QCD and non-QCD

Corrections to power laws are present for an interacting theory not at FP (and finite volume)

The Edinburgh Plot of Nf=12 and Nf=16

Bare quark masses span a range 0.01 to 0.07 at various β for Nf=12 Bare quark masses span a range 0.025 to 0.15 at various β for Nf=16

Damgaard, Heller, Krasnitz, Olesen 1997 Fodor, Holland, Kuti, Nogradi, Schroeder 2011

Masses and Power Laws

The ratio is approximately constant in a chirally symmetric phase. It goes to zero in the chiral (massless) limit of QCD.

This is compatible with a negative β function

† Ratio increases

and non-QCD

For a fixed m_π/m_ρ the inverted behavior with β_L is compatible with a positive β function

The axial-vector mass splitting

Degeneracy in the chiral (massless) limit signals that chiral symmetry is restored.

Pseudo Goldstone mass and chiral condensate

Kocic Kogut Lombardo 1993

Nf=12: lattice data

Exact chiral symmetry with non zero anomalous dimensions

Strong coupling dynamics and bulk transitions

[Deuzeman,Lombardo,Nunes EP '12]

The bulk transition(s)

Symanzik improvement @ strong coupling

Gauge action:

$$S_{G} = \beta_{0} \operatorname{Re}(1 - U(1 \times 1)) + \beta_{1} \operatorname{Re}(1 - U(2 \times 1)) \qquad \beta_{0} = \frac{5}{3}\beta, \ \beta_{1} = -\frac{1}{12}\beta \qquad \beta = \frac{6}{g^{2}}$$

nearest neighbor next-to-nearest neighbor

Fermion action:

$$S_{F} = a^{4} \sum_{x;\mu} \eta_{\mu}(x) \bar{\chi}(x) \frac{1}{2a} \left\{ c_{1} \left[U_{\mu}(x) \chi(x+\mu) - U^{\dagger}(x-\mu) \chi(x-\mu) \right] + c_{2} \left[U_{\mu}(x) U_{\mu}(x+\mu) U_{\mu}(x+2\mu) \chi(x+3\mu) - U_{\mu}^{\dagger}(x-\mu) U_{\mu}^{\dagger}(x-2\mu) U_{\mu}^{\dagger}(x-3\mu) \chi(x-3\mu) \right] \right\}$$
 Naik term
$$-U_{\mu}^{\dagger}(x-\mu) U_{\mu}^{\dagger}(x-2\mu) U_{\mu}^{\dagger}(x-3\mu) \chi(x-3\mu) \left\}$$
 Naik term
$$+a^{4}m \sum_{x} \bar{\chi}(x) \chi(x)$$

We know that:

Hermiticity of the Transfer matrix is lost (complex energy eigenvalues) When and how does it manifest?

Luscher, Weisz '84

A solvable model: (1d) Ising chain with n-n-n interactions (ANNNI models)

Arisue, Fujiwara '84

This case:

Naik term modifies the free fermion propagator

oscillatory component allowed in Goldstone channel forward-backward asymmetry allowed

*Plausibly related to S_4 (T= S_4^2) investigated by Cheng, Hasenfratz, Schaich '12

Signatures

Propagators

Susceptibilities

β = 3.025 1.5 PS(t)/PS(t-1) 1.25 SC(t)/SC(t-1) **Correlator** 1 0.5 0.25 0 10 12 2 8 6 4 0 t

Degeneracy and chiral symmetry

The asymmetry

$$A \sim C \left(1 - (-1)^t \right) \left(e^{-mt} - e^{-m(T-t)} \right)$$

Remarks

Hermiticity loss of the transfer matrix (complex eigenvalues) is a general property of (Symanzik) improved gauge theories

We have found an example where the Naik improvement of the staggered fermion action generates a **new phase of the system** signalled by a discontinuity of the chiral susceptibility (change of mass slope of the chiral condensate)

The same theoretical analysis is potentially useful for the lattice formulation of **strongly coupled systems such as graphene.**

AdS/CFT and the disappearance of the CW

Which scenario is realized ?

SQCD: duality suggests that the (electric) theory is infinitely strongly coupled below the CW g* flows to infinity FP pair annihilation see Kaplan et al '09

SQCD and QCD β -functions

A conformal window for SQCD exists in the region $3/2 N_c < N_f < 3N_c$ Seiberg '95

SQCD:
$$\beta_g = -\frac{g^3}{16\pi^2} \frac{3N_c - N_f(1 - \gamma_0)}{1 - \frac{g^2 N_c}{8\pi^2}}$$
 NSVZ '83 '86

QCD?: Large N limit

$$\beta(g_c) = \frac{-\beta_0^{\infty} g_c^3 + \frac{\beta_j}{4} g_c^3 \left(\frac{\partial \log Z}{\partial \log \Lambda} + c_F \frac{g_c^2}{16\pi^2}\right) + c_F \frac{g_c^3}{16\pi^2} (1 + \gamma(g_c^2)/2)}{1 - \beta_j g_c^2}$$

Reproduces 2-loop beta in the (perturbative) Veneziano limit

Caveat: \exists IRFP also for Nf=0 - g^{*} is RG scheme dependent

YM: Bochicchio '08 (EP '09) see also Brodsky, Schrock '08

AdS/CFT

"IR/UV correspondence" $z \rightarrow 0$ IR gravity $z \rightarrow 0$ UV field theory

An example of FP merging in "modified" SQCD

Large N_f, N_c: N_f/N_c fixed - SUGRA backgrounds

Maldacena, Nunez '04 Casero Nunez Paredes '08 Conte Gaillard Ramallo '11

SQCD + quartic operators

Barranco EP Russo 'I I

$$N_f < 2N_c$$
 UV limit: $\beta \rightarrow \beta_{\text{NSVZ}}(\gamma_0 = -1/2)$
IR limit: ordinary confinement
 $N_f = 2N_c$ UVFP at strong coupling
 $N_f > 2N_c$ Seiberg dual (N_c \rightarrow N_f-N_c, N_f-2N_c flips sign)

Summary

Conformal symmetry might play a role in particle physics at or well above the EWSB scale.

Large-Nf QCD is an instructive theory playground

- ✓ The conformal window opens at around $N_f \sim 12$
- ✓ The spectrum and the physics of phase transitions provide distinctive signatures of (pre)conformality
- \checkmark A preliminary study shows a change of trend of Tc for N_f > 6

Symanzik Improvement in strongly coupled systems can generate new phases. The same considerations apply to non-abelian gauge theories in the conformal window as well as systems such as graphene.

AdS/CFT is in its infancy, but useful and insightful tool, when trying to make connection with SQCD or QCD.