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Does conformal symmetry play a role well above the EWSB scale?

Unification?

big desert?
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Figure 2: The scale Λ at which the two-loop RGEs drive the quartic SM Higgs coupling
non-perturbative, and the scale Λ at which the RGEs create an instability in the electroweak
vacuum (λ < 0). The width of the bands indicates the errors induced by the uncertainties
in mt and αS (added quadratically). The perturbativity upper bound (sometimes referred to
as ‘triviality’ bound) is given for λ = π (lower bold line [blue]) and λ = 2π (upper bold line
[blue]). Their difference indicates the size of the theoretical uncertainty in this bound. The
absolute vacuum stability bound is displayed by the light shaded [green] band, while the less
restrictive finite-temperature and zero-temperature metastability bounds are medium [blue]
and dark shaded [red], respectively. The theoretical uncertainties in these bounds have been
ignored in the plot, but are shown in Fig. 3 (right panel). The grey hatched areas indicate
the LEP [ 1] and Tevatron [ 2] exclusion domains.

mation were not included. On the other hand, the Tevatron data, although able to narrow

down the region of the ‘survival’ scenario, have no significant impact on the relative likeli-

hoods of the ‘collapse’, ‘metastable’ and ‘survival’ scenarios, neither of which can be excluded

at the present time.

We also consider the prospects for gathering more information about the fate of the SM

in the near future. The Tevatron search for the SM Higgs boson will extend its sensitivity

to both higher and lower MH , and then the LHC will enter the game. It is anticipated that

the LHC has the sensitivity to extend the Tevatron exclusion down to 127 GeV or less with

1 fb−1 of well-understood data at 14 TeV centre-of-mass energy [ 9]. This would decrease

the relative likelihood of the ‘survival’ scenario, but not sufficiently to exclude it with any

significance. On the other hand, discovery of a Higgs boson weighing 120 GeV or less would
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⇒ triviality and radiative corrections    Cortese Petronzio EP ’92

⇒ vacuum stability      Isidori Ridolfi Strumia ’01

The SM may be a valid EFT up to the Planck scale
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What symmetries determine the phase boundary?
What is the relative role of confinement and chiral symmetry? 

Is there a preconformal dynamics?
What are its signatures?
What is the mechanism (phase transition) that opens the conformal window?
Are there UVFP at strong coupling in addition to IRFP ?

Are there UVFP at strong coupling?



QCD: fundamental fermions

T

Nf

    Chiral Phase Boundary

Physics of:
✓quark gluon plasma (QGP): high T - low Nf
✓preconformal regime (T=0, low T - high Nf)
✓conformal regime (T=0)
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2008     Nf=8 “is” in the QCD phase (massive case)

2009     Nf=12 “is” in the conformal window    
                  (there is a conformal window)

Deuzeman, Lombardo EP 2008 2009

Many studies in recent years for different fermion 
representations and for varying Nf and Nc



Just below the conformal window
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[Miura, Lombardo, EP ‘11]
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Figure 8: The ratio Tc/ΛL, for Nf = 0, 4, 6 and 8 and lattice bare mass
am = 0.02.
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Figure 9: The Nf dependence of R(Nf )/R(0) for several finite fixed β refL . Here,
R(Nf ) ≡ (Tc/Λref )(Nf ). The limit β refL → 0 reproduces the results shown in
Fig. 8 up to a renormalization factor and and up to a corrections O

(

1/β cL
)

.

The ratio Tc/Λref is a decreasing function of Nf . This be-
haviour is consistent with the result obtained in the functional
renormalization group analysis [19], where a common UV ref-
erence scale was used to study the chiral phase boundary in the
T − Nf phase diagram.
Next steps of the current project involve a scale setting at zero

temperature by measuring a common UV observable. It would
also be desirable to have the relation between ΛL and ΛM̄S for
our action.
This, together with a more extended set of flavour numbers,

will allow a quantitative analysis of the critical behaviour. We
expect the resultant Tc − Nf phase diagram to play an essential
role in the study of the conformal window.
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ity, defined in Eq. (6) as a function of βL.
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c
L from

Table 1 as input for extracting ΛL a(β cL ) in the two-loop expression Eq. (14).
The dashed line is a linear fit with zero intercept to the data with Nt > 4.

uated at the infra-red fixed point should provide a UV scale
well-separated from the IR dynamics. If we assume the lower
bound of the conformal window to be Nc

f ! 12, the two-loop
beta-function leads to β∗ = −2Ncb1/b0 ! 0.63. Indeed Fig. 9
shows that the decreasing nature of (Tc/Λref)(Nf ) is still weak at
β refL = 1.0. In the limit β refL → 0, Tc/Λref reproduces Fig. 8, and
the resultant increasing feature should be attributed to the van-
ishing ofΛL due to infra-red dynamics. We also notice that β refL
must always be smaller than β at the UV cutoff, βUV = β cL (Nf ).
As shown in Table 1, the lowest value of the (pseudo) critical
coupling is given by β cL (Nf = 8,Nt = 6) = 4.1125 ± 0.0125,
hence we constrain our analyses to β refL ≤ 4.0. In summary,
Figs. 8 and 9 together show the effects of shifting the reference
scales from the IR to the UV.
With the use of a UV reference scale, we should observe the

predicted critical behavior [19]

Tc(Nf ) = K|Nf − Nc
f |
−1/θ . (20)

By choosing the critical exponent θ in the range predicted by
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Yamawaki phase diagram. The dashed (brown) line is a linear fit to the Nt = 6
results.

FRG: 1.1 < 1/|θ| < 2.5, our data are consistent with the values
Nc
f = 9(1) for β

ref
L = 4.0 and Nc

f = 11(2) for β
ref
L = 2. We plan

to extend and refine this analysis in the future, and here we only
notice a reasonable qualitative behaviour.

Table 2: Tc/ΛL for several Nf . Results are obtained by using the same lattice
action. For Nf = 6, we have used the Nt = 8 result as a representative value.
The values for Nf = 8 are extracted from Ref. [5].

Nf Tc/ΛL
0 600 ± 34
4 620 ± 28
6 1000 ± 92
8 2098 ± 191

SUMMARY We have investigated the chiral phase transi-
tion and its asymptotic scaling for Nf = 6 colour SU(3) QCD
by using lattice QCD Monte Carlo simulations with improved
staggered fermions. This study provides an important ingredi-
ent to a broader project that studies the emergence of a confor-
mal window in the T − Nf phase diagram. We have determined
the (pseudo) critical lattice coupling β cL for several lattice tem-
poral extensions Nt. We have extracted the dimensionless ra-
tio Tc/ΛL (ΛL =Lattice Lambda-parameter) for the theory with
Nf = 6 using two-loop asymptotic scaling. The analogous re-
sult for Nf = 8 has been extracted from Ref. [5]. Tc/ΛL for
Nf = 0 and Nf = 4 has been measured at fixed Nt = 6, barring
asymptotic scaling violations. Then we have discussed the Nf
dependence of the ratios Tc/ΛL and Tc/Λref , whereΛref is a UV
reference energy scale, related to ΛL as in Eq. (18).
We have observed that Tc/ΛL shows an increase in the region

Nf = 6−8, while it is approximately constant in the regionNf ≤
4. We have discussed this qualitative change for Nf ≥ 6 and a
possible relation with a preconformal phase. We repeat that all
results have been obtained by working at one value of the quark
mass and this is a potential weakness of our calculations.
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Figure 7: (Pseudo) critical values of the lattice coupling gc =
√

2Nc/β cL for
theories with Nf = 0, 4, 6, 8 and for several values of Nt in the Miransky-
Yamawaki phase diagram. The dashed (brown) line is a linear fit to the Nt = 6
results.

FRG: 1.1 < 1/|θ| < 2.5, our data are consistent with the values
Nc
f = 9(1) for β

ref
L = 4.0 and Nc

f = 11(2) for β
ref
L = 2. We plan

to extend and refine this analysis in the future, and here we only
notice a reasonable qualitative behaviour.

Table 2: Tc/ΛL for several Nf . Results are obtained by using the same lattice
action. For Nf = 6, we have used the Nt = 8 result as a representative value.
The values for Nf = 8 are extracted from Ref. [5].

Nf Tc/ΛL
0 600 ± 34
4 620 ± 28
6 1000 ± 92
8 2098 ± 191

SUMMARY We have investigated the chiral phase transi-
tion and its asymptotic scaling for Nf = 6 colour SU(3) QCD
by using lattice QCD Monte Carlo simulations with improved
staggered fermions. This study provides an important ingredi-
ent to a broader project that studies the emergence of a confor-
mal window in the T − Nf phase diagram. We have determined
the (pseudo) critical lattice coupling β cL for several lattice tem-
poral extensions Nt. We have extracted the dimensionless ra-
tio Tc/ΛL (ΛL =Lattice Lambda-parameter) for the theory with
Nf = 6 using two-loop asymptotic scaling. The analogous re-
sult for Nf = 8 has been extracted from Ref. [5]. Tc/ΛL for
Nf = 0 and Nf = 4 has been measured at fixed Nt = 6, barring
asymptotic scaling violations. Then we have discussed the Nf
dependence of the ratios Tc/ΛL and Tc/Λref , whereΛref is a UV
reference energy scale, related to ΛL as in Eq. (18).
We have observed that Tc/ΛL shows an increase in the region

Nf = 6−8, while it is approximately constant in the regionNf ≤
4. We have discussed this qualitative change for Nf ≥ 6 and a
possible relation with a preconformal phase. We repeat that all
results have been obtained by working at one value of the quark
mass and this is a potential weakness of our calculations.
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uated at the infra-red fixed point should provide a UV scale
well-separated from the IR dynamics. If we assume the lower
bound of the conformal window to be Nc

f ! 12, the two-loop
beta-function leads to β∗ = −2Ncb1/b0 ! 0.63. Indeed Fig. 9
shows that the decreasing nature of (Tc/Λref)(Nf ) is still weak at
β refL = 1.0. In the limit β refL → 0, Tc/Λref reproduces Fig. 8, and
the resultant increasing feature should be attributed to the van-
ishing ofΛL due to infra-red dynamics. We also notice that β refL
must always be smaller than β at the UV cutoff, βUV = β cL (Nf ).
As shown in Table 1, the lowest value of the (pseudo) critical
coupling is given by β cL (Nf = 8,Nt = 6) = 4.1125 ± 0.0125,
hence we constrain our analyses to β refL ≤ 4.0. In summary,
Figs. 8 and 9 together show the effects of shifting the reference
scales from the IR to the UV.
With the use of a UV reference scale, we should observe the

predicted critical behavior [19]
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staggered fermions. This study provides an important ingredi-
ent to a broader project that studies the emergence of a confor-
mal window in the T − Nf phase diagram. We have determined
the (pseudo) critical lattice coupling β cL for several lattice tem-
poral extensions Nt. We have extracted the dimensionless ra-
tio Tc/ΛL (ΛL =Lattice Lambda-parameter) for the theory with
Nf = 6 using two-loop asymptotic scaling. The analogous re-
sult for Nf = 8 has been extracted from Ref. [5]. Tc/ΛL for
Nf = 0 and Nf = 4 has been measured at fixed Nt = 6, barring
asymptotic scaling violations. Then we have discussed the Nf
dependence of the ratios Tc/ΛL and Tc/Λref , whereΛref is a UV
reference energy scale, related to ΛL as in Eq. (18).
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Nf = 6−8, while it is approximately constant in the regionNf ≤
4. We have discussed this qualitative change for Nf ≥ 6 and a
possible relation with a preconformal phase. We repeat that all
results have been obtained by working at one value of the quark
mass and this is a potential weakness of our calculations.

6

From a IR scale to a UV scale 

Table 1: Summary of the (pseudo) critical lattice couplings β cL for the theories with Nf = 0, 4, 6, 8, am = 0.02 and varying Nt = 4, 6, 8, 12. All results are
obtained using the same lattice action.

Nf \Nt 4 6 8 12
0 - 7.88 ± 0.05 - -
4 - 5.89 ± 0.03 -
6 4.65 ± 0.05 5.05 ± 0.05 5.2 ± 0.05 5.45 ± 0.15
8 - 4.1125 ± 0.0125 - 4.34 ± 0.04
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Figure 3: Zoom-in of the chiral condensate a3〈ψ̄ψ〉 and the Polyakov loop L
shown in Figs. 1 and 2 in the critical region at Nt = 8, with spatial volume 243.

indeed observed using a boosted coupling for Nt ≥ 6 for 0 ≤
Nf ≤ 4.
Ideally, we would like to convert our results to Tc/ΛM̄S. Un-

fortunately, to our knowledge, the conversion from ΛL to ΛM̄S
for a generic number of flavours is only available for Wilson
fermions [37].
Here we consider a simplified procedure, aiming at capturing

at least the basic features induced by setting a UV scale. For this
purpose, we introduce a reference coupling β refL and an associ-
ated reference energy scale Λref . Then Eq. (14) is generalized
as

Λref(β refL ) a(βL)

=

(

b1
b20

βL + 2Ncb1/b0
β refL + 2Ncb1/b0

)b1/(2b20)

exp
[

−
βL − β refL
4Ncb0

]

. (17)

At leading order of perturbation theory b1 → 0, ΛL andΛref are
related via

Λref

ΛL
= exp

[

β refL
4Ncb0

]

. (18)

This equation would be analogous of the ratio ΛL/ΛMS derived
in [37] for Wilson fermions up to a further linear dependence
on Nf in the numerator of the exponent. In a nutshell, the differ-
ence originates from the fact that we are fixing a bare reference
coupling β refL , which will be specified later. Notice that by con-
struction Λref reproduces the lattice Lambda-parameter ΛL in
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Figure 4: Distribution of the chiral condensate a3〈ψ̄ψ〉 for Nf = 6, am = 0.02
and spatial volume 243, in the vicinity of the chiral phase transition at Nt = 8.

the limit

Λref (β refL → 0) = ΛL
(

1 + O
(

1/β cL
)

)

. (19)

In summary, when trading ΛL for Λref , we are moving towards
a more UV scale.
Let us consider first Tc/ΛL. The values of Tc/ΛL are sum-

marized in Table 2, and plotted in Fig. 8. The ratio does not
show a significant Nf dependence in the region 0 ≤ Nf ≤ 4, it
starts increasing at Nf = 6, and undergoes a rapid rise around
Nf = 8. The chiral phase transition would happen when T be-
comes comparable to a typical energy scale Mχ = CΛL. The
nearly constant nature of Tc/ΛL in the region Nf ≤ 4 indicates
that the role of such energy scale is not significantly changed
by the variation of Nf (see [38] for a detailed discussion of this
point.) In turn, the increase of Tc/ΛL in the regionNf ≥ 6might
well imply that the chiral dynamics becomes different from the
one for Nf ≤ 4. Indeed, a recent lattice study [15] indicates that
Nf = 6 is close to the threshold for preconformal dynamics.
We now consider Tc/Λref . The Nf dependence of the ratio

R(Nf ) ≡ (Tc/Λref)(Nf ) is shown for several β refL in Fig. 9, where
the vertical axis is normalized by R(0) = (Tc/Λref)(Nf = 0) for
each β refL . Tc/Λref is now a decreasing function of Nf for a
larger β refL , i.e. for a more UV reference scale Λref . This result
is consistent with the FRG study [19], where the decreasing
Tc(Nf ) has been obtained by using the τ-lepton mass mτ as a
common UV reference scale with a common coupling αs(mτ).
The Λref scale associated with a β refL ( β∗ where β∗ is eval-
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 UV →
  IR →

SG = β0 Re(1−U(1× 1))+ β1 Re(1−U(2× 1)) β0 =
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Very rough extrapolation



Physics questions

Universal scaling law for the critical Temperature precursor of a conformal phase 
transition (BKT phase transition)  ⇒ preconformal IR dynamics

How large is the anomalous dimension γ at the would-be IR fixed point? 

What is the ratio of  the Higgs and rho masses?

Or, is a different mechanism in place?   



Inside the Conformal Window



[Deuzeman,Lombardo,Nunes EP ’12]

?



[Deuzeman,Lombardo,Nunes EP ’12]

?

Strong coupling
 dynamics

Preconformal dynamics

IRFP dynamics



The Spectrum



QCD and non-QCD

                        mπ  ~ √m                           mπ  ~ const
                        mρ                                                          mρ     

For fixed lattice spacing:

              (amπ)2  ~ const                        (amπ)2 ~(am)2δ →2  ~ (am)2δ-1     0.5<δ<1
                am                                         am         am

~

Corrections to power laws are present for an interacting theory not at FP 
(and finite volume)



The Edinburgh Plot of Nf=12 and Nf=16

Bare quark masses span a range 0.01 to 0.07 at various β for Nf=12
Bare quark masses span a range 0.025 to 0.15 at various β for Nf=16

Damgaard, Heller, Krasnitz, Olesen 1997
Fodor, Holland, Kuti, Nogradi, Schroeder 2011
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Masses and Power Laws

The ratio is approximately constant in a chirally symmetric phase.
It goes to zero in the chiral (massless) limit of QCD.
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QCD

This is compatible with a negative β function

↑ Ratio increases



and non-QCD

For a fixed mπ/mρ the inverted behavior with βL is compatible with a 
positive β function
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The axial-vector mass splitting

Degeneracy in the chiral (massless) limit signals that chiral symmetry is restored. 



Pseudo Goldstone mass and chiral condensate

broken chiral symmetry

exact chiral symmetry

Kocic Kogut Lombardo 1993

<ψψ>2¯

Mπ
2 anomalous dimensions ≠0

curvature opposite to 
FV corrections



Nf=12: lattice data

Exact chiral symmetry with non zero anomalous dimensions



Strong coupling dynamics and 
bulk transitions



Conformal PT
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Strong coupling
 dynamics

[Deuzeman,Lombardo,Nunes EP ’12]



The bulk transition(s)





Symanzik improvement @ strong coupling

Gauge action:

Fermion action:

Action Gauge Improvement Fermion Improvement
A No No
B Yes No
C No Yes
D Yes Yes

Table 1: Actions used in this work: gauge improvement refers to tree-level Symanzik
improvement in the gauge action, while fermion improvement refers to tree-level Symanzik
improvement of the staggered fermion action, i.e. the addition of the Naik term [18, 19].

is the trace of the ordered product of link variables along the single plaquette
P divided by the number of colors.
Tree-level Symanzik improvement of the gauge action leads to Action B,

S = −Nf

4
Tr lnM(am,U) +

�

i=0,1

βi(g
2)

�

C∈Si

Re(1− U(C)) (2)

where U(C) are the traces of the ordered product of link variables along the
closed paths C divided by the number of colors. The S0 contains all the
1 × 1 plaquettes (nearest neighbors), while S1 contains all the 1 × 2 and
2 × 1 rectangles (next-to-nearest neighbors). The couplings are defined as
β0 = (5/3)β and β1 = −(1/12)β, where β = 6/g2 is the SU(3) lattice coupling
of the unimproved gauge action.
Improvement of the staggered fermion action is realized according to the
Naik prescription [18, 19]

SF = a
4
�

x;µ

ηµ(x)χ̄(x)
1

2a

�
c1

�
Uµ(x)χ(x+ µ)− U

†(x− µ)χ(x− µ)
�

+c2 [Uµ(x)Uµ(x+ µ)Uµ(x+ 2µ)χ(x+ 3µ)

−U
†
µ(x− µ)U †

µ(x− 2µ)U †
µ(x− 3µ)χ(x− 3µ)

��

+a
4
m

�

x

χ̄(x)χ(x) (3)

where the phase factor ηµ(x) = (−1)(x0+x1...+xµ−1) and the action is written in
terms of the one component staggered fermion fields χ(x). The coefficients
c1 = 1 and c2 = 0 reproduce the naive staggered fermion action, while the
Naik choice c1 = 9/8 and c2 = −1/24 provides O(a2) accuracy at tree level.
Notice that the additional Naik term involves up to third-nearest neighbor
interactions.
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SG = β0 Re(1−U(1× 1))+ β1 Re(1−U(2× 1)) β0 =
5

3
β, β1 = − 1

12
β β =
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} Naik term
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We know that:

Hermiticity of the Transfer matrix is lost (complex energy eigenvalues)
When and how does it manifest?

A solvable model: (1d) Ising chain with n-n-n interactions (ANNNI models)

Luscher, Weisz ’84

Arisue, Fujiwara ’84



This case: 

Naik term modifies the free fermion propagator

This is perhaps not unexpected. It is well known that models with com-
peting interactions may give rise to non-homogeneous structures and novel
phase transitions. One prototypical example is the axial next-to-nearest
neighbor Ising model, known as the ANNNI model [21]. These effects have
not been observed at weak coupling, where non-nearest neighbor terms con-
cur to a faster approach to the continuum limit, but might well appear at
strong coupling when those terms become relevant. It is quite possible that
quantitative predictions for the appearance and properties of the additional
phase could be obtained in the framework of a strong coupling expansion
that takes the improvement term into account explicitly – we do not pursue
this here.
Here, we provide a plausible argument that accounts for the appearance of
such an intermediate phase and its peculiar properties: i) the emergence of
an oscillating component of the staggered two-point correlation function in
the pseudoscalar channel, and ii) the asymmetry of all two-point correlation
functions under t → T − t.

The authors of [22] have considered the exactly solvable Ising chain (1D)
of length L with next-to-nearest neighbor interactions. This example is ex-
tremely instructive. There are two regions of parameters. In one region the
eigenvalues of the transfer matrix are real and positive. In the other region,
pairs of complex conjugate eigenvalues appear. Intuitively, the first region
(region I) is where the nearest neighbor interaction is dominant, while the
second region (region II) is where the next-to-nearest neighbor term becomes
dominant.
As observed in [22], the two regions will also emerge in a Symanzik improved
gauge action where the couplings β0 and β1 are fixed as a function of the
inverse gauge coupling β. In other words, it is the competition of near-
est neighbor and next-to-nearest neighbor interactions at increasingly coarse
lattice spacing that causes the system to enter the second region.

The same argument can be repeated for the Naik improved staggered
fermion action, with up to third-nearest neighbors. In this case, the emer-
gence of complex eigenvalues of the transfer matrix can be understood by
looking at the free lattice fermion propagator for a single flavor, given by

SF (p)
−1 =

�

µ

iγµ

�
9

8
sin pµ −

1

24
sin 3pµ

�
(7)

with −π/2 ≤ p ≤ π/2. The interacting theory at strong coupling can in
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modified by strong coupling interactions

→ ghosts

Baryon number density  

principle significantly modify the coefficient of each sine contribution. In par-

ticular, the change of sign of the second term will induce a pair of imaginary

poles (zero tri-momentum) in the massless dressed propagator, i.e. ghosts

will appear
2
. This signals the emergence of region II, likely the intermediate

phase we have observed.

It would certainly be interesting to understand more quantitatively the con-

nection between the poles in the quark propagator – as emerging from the

non-Hermiticity of the transfer matrix with Symanzik improvement [23] –

and the detailed structure of the two-point correlation functions in the inter-

mediate phase. We postpone this analysis hopefully to future work. Here,

we offer a qualitative explanation as to why a chirally symmetric phase with

the observed exotic features can appear in a gauge theory with fermion im-

provement.

In general, the occurrence of an oscillatory secondary state in the pseu-

doscalar (Goldstone) correlator with staggered fermions is forbidden by the

baryon current conservation. With improvement of the action, the total

fermionic current will include additional terms which in turn define a modi-

fied form of the baryon number operator at zero chemical potential. For the

Naik improved free fermion action this construction has been explicitly given

by Gavai [24]. In the interacting case, a simple construction that should suf-

fice for our purpose starts with implementing the Kogut-Hasenfratz-Karsch

prescription [25, 26] U(x) → exp(µ)U(x), U †
(x) → exp(−µ)U †

(x) along the

temporal direction. The total baryon number density is then

n(µ) = d/dµlogZ(µ) = n1(µ) + n3(µ) (8)

where n1(µ) comes from local interactions and n3(µ) comes from the third-

nearest neighbor term. At vanishing chemical potential the total density

n(µ = 0) must vanish due to baryon number conservation. This can be real-

ized in two ways, either n1(µ = 0) = n3(µ = 0) = 0, or n1(µ = 0) = −n3(µ =

0) �= 0. When the vanishing baryon number is realized in the second way, a

non-zero oscillating component is allowed to appear in the (Goldstone) pseu-

doscalar channel, as its coefficient is roughly speaking, proportional to n1.

At the same time, n1 is also a measure of the forward-backward asymmetry.

2It is known that the dispersion relation for Naik improved staggered fermions always
contains complex roots at non-zero tri-momentum. All ghosts generated by the improve-
ment decouple in asymptotically free theories when approaching the continuum limit.
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=0 in two ways:    {

SG = β0 Re(1−U(1× 1))+ β1 Re(1−U(2× 1)) β0 =
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oscillatory component allowed in Goldstone channel
forward-backward asymmetry allowed

*Plausibly related to S4 (T=S4
2) investigated by Cheng, Hasenfratz, Schaich ’12



Signatures



Propagators Susceptibilities
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Degeneracy and chiral symmetry
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all correlators with the exception of the equal mass Goldstone pseudoscalar
correlator. For equal quark and antiquark masses, the parity partner operator
for the Goldstone pion is proportional to a charge density operator and thus
its vacuum expectation value is zero.

We give an overview of our results in Fig. 7. The most salient feature in
Fig. 7 is an oscillatory component that arises for the pseudoscalar correlator
in the intermediate region (β0 = 10/g2 = 3.025). This effect was also ob-
served by the authors of [5]. In this region chiral symmetry is exact and the
scalar and pseudoscalar correlators should become increasingly degenerate
by moving towards the chiral limit.
What we see in Fig. 7, moving from weak to strong coupling (right to left),
is as follows. In the chirally symmetric region, the pseudoscalar and scalar
correlators are close to each other. As expected, the staggered scalar cor-
relator has an oscillating component while the pseudoscalar has not. The
non-horizontal shape of the ratios indicates a significant contribution from
excited states.

In the intermediate region, a new oscillating component arises in the
pseudoscalar correlator, and seems to also arise in the scalar correlator for
β0 = 3.025. This is consistent with the abrupt change of slope in the mass de-
pendence of the chiral condensate, given that the chiral susceptibility �ψ̄ψ�/m
equals the volume integral of the pseudoscalar correlator.

At strong coupling (β0 = 2.6) chiral symmetry is broken and the pseu-
doscalar lightest state is the Goldstone boson of the broken symmetry, thus
very light and largely non degenerate with the scalar state. We observe that
the oscillating component in the pseudoscalar correlator visibly decouples.
A second observed effect is the presence of an asymmetry under t → T − t
of all studied correlators in the intermediate region, i.e. β0 = 3.025. To
highlight this asymmetry we have plotted the difference C(t)−C(T − t) for
the pseudoscalar correlator in Fig. 8. We see that

C(t) �= C(T − t) for t odd

C(t) ∼ C(T − t) for t even (5)

In other words there is a violation of staggered-time reversal symmetry. The
asymmetry is well fitted, see Fig. 8, by the functional form

C
�
1− (−1)t

� �
e−mt − e−m(T−t)

�
(6)

with C � 1027 and m � 0.62 consistent with the fit of the pseudoscalar
correlator on t � T .
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SG = β0 Re(1−U(1× 1))+ β1 Re(1−U(2× 1)) β0 =
5

3
β, β1 = − 1

12
β β =

6

g2

n1 = n3 = 0 (1)

n1 = −n3 �= 0 (2)

Cπ(t) (3)

χπ =
�ψ̄ψ�
m

=

�
Cπ(t) (4)

A ∼ C
�
1− (−1)t

� �
e−mt − e−m(T−t)

�

2

The asymmetry



Remarks

Hermiticity loss of the transfer matrix (complex eigenvalues) is a general property of 
(Symanzik) improved gauge theories

We have found an example where the Naik improvement of the staggered fermion 
action generates a new phase of the system signalled by a discontinuity of the 
chiral susceptibility (change of mass slope of the chiral condensate)

The same theoretical analysis is potentially useful for the lattice formulation of 
strongly coupled systems such as graphene. 
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SQCD and QCD β-functions

Seiberg ‘95A conformal window for SQCD exists in the region 3/2 Nc < Nf < 3Nc

A further insight comes from supersymmetric gauge field theories. The renormalization group of N = 1
supersymmetric QCD (SQCD) has been extensively studied, and the perturbative β function for the
gauge coupling is given by the well known NSVZ formula [19]

βg = − g3

16π2

3Nc − Nf (1 − γ0)
1 − g2Nc

8π2

, (1.1)

where γ0 is the anomalous dimension of the Nf (massless) fundamental superfields Qr and Q̃u. The
formula (1.1) is unchanged, with a common anomalous dimension for all fundamental fields, as long as
the superpotential preserves a ZNf flavor symmetry. It also applies in the massive flavor case in the far
ultraviolet, whereas it is drastically modified below the mass scale of the Nf flavors. The anomalous
dimension γ0 is a non-trivial function of Nf , Nc, the gauge coupling and all other couplings appearing in
the superpotential. All the information about the dynamics of the strongly or weakly interacting theory
is thus contained in γ0. Its form depends on the precise choice of the superpotential and determines the
presence of fixed points in the parameter space of the theory. Any rigorous prediction for the existence
and width of a conformal window would thus require to derive the β functions and anomalous dimensions
of the theory in a non-perturbative way. Holographic techniques may allow to study the renormalization
group flow beyond perturbation theory. In particular, for the supersymmetric pure Yang-Mills theory
(SYM), i.e. SQCD with Nf = 0, the gravity dual was constructed in [1] and reproduced some interesting
features of N = 1 SYM, including the correct structure of the NSVZ β function (1.1) at Nf = 0 for the
gauge coupling [20, 21]. The holographic β function contains, in addition, non-perturbative contributions,
and the gauge coupling goes to infinity in the IR – a realization of ordinary confinement.

The holographic approach has some well known limitations that we will not attempt to resolve in this
paper. One limitation is that holographic models typically include an infinite tower of Kaluza-Klein
states which have no counterpart in the field theory that one would like to describe, e.g. super QCD
or super YM, and should therefore be decoupled. It was argued in [5, 6] that integrating out Kaluza-
Klein excitations leads to effective couplings – e.g. quartic couplings – in the superpotential, so that
the final effective field theory will be an N = 1 supersymmetric QCD with the addition of an effective
superpotential containing higher dimensional couplings. Such couplings can lead to the disappearance of
the conformal window. An example is the role of four-fermion operators in non-supersymmetric gauge
theories. The presence of such operators has to be traced back to chiral dynamics and the breaking of
chiral symmetry, with consequent disappearance of conformality.1

Despite these limitations of the holographic approach, it remains important to investigate the holographic
predictions for the gauge coupling β-function, since they provide detailed hints on the possible structure
of the effective field theory in the strong coupling regime. Such hints may be helpful when studying the
theory on the lattice or by means of other techniques. In particular, for Nf = 2Nc, a prediction arising
from our study is the existence of a non-trivial UV fixed point at some strong coupling g∗. Consistency
with the RG evolution at weak coupling requires the existence of an IR fixed point at g′∗ < g∗, as we shall
discuss. Notice that the presence of a UV fixed point at strong coupling in addition to an IR fixed point
has been conjectured already in the pioneering work by Banks-Zaks [23], and might lead to a mechanism

1In particular, the Schwinger-Dyson gap equation in the ladder approximation says that the onset of chiral symmetry
breaking occurs for a critical gauge coupling where the anomalous dimension of the fermion mass operator γm = 1 and thus
the four-fermion operator becomes relevant in the RG sense. In [22] has been also suggested that, while the value of the
critical coupling will be affected by higher order effects in the perturbative (ladder) expansion, the scaling of the fermion
propagator with γm = 1 is the non-perturbative signal of chiral symmetry breaking.

3

SQCD:

QCD?: Large N limit

Strongly and slightly flavored gauge theories Elisabetta Pallante

the number of flavors would be welcome; it is in principle feasible, provided the lattice fermion
action can be extrapolated to the correct continuum limit for any value of the flavor number.

2.4 Theory and conjectures: recent developments

A closer comparison with supersymmetric gauge theories, the application of the AdS/CFT
correspondence, and attempts to better account for the confining dynamics are all at the base of
most recent developments in the theoretical description of conformality in non abelian non super-
symmetric gauge theories. The phase diagram in Fig. 3(b), with the prediction of a conformal
window, resembles what happens in supersymmetric theories; there, electromagnetic duality al-
lows to establish the existence of a conformal window over the interval 3/2Nc < Nf < 3Nc for
supersymmetric QCD [22], while the presence of supersymmetry provides an exact beta function
also in the presence of matter multiplets [23]. Crucial ingredients, consequences of supersymme-
try, are the cancellation of non zero modes and non renormalization theorems, which guarantee for
the anomalous dimensions γgluino = γgluon = β (g)/α(g). Without supersymmetry, one has to rely
on truncations of the perturbative expansion, on particular symplifying limits such as the large-N
limit, or conjectures. In all examples, it is instructive to look for an analogy with the supersymmet-
ric case.

The exact beta function of Yang Mills theories in the large-N limit recently derived in [24], is a
potentially important result. The absence of supersymmetry – and the presence of non zero modes
– is responsible for the appearance of an anomalous dimension term in the running of the canonical
coupling gc =

√
Ng and a renormalization scheme dependence, contrary to supersymmetric Yang-

Mills. It would be interesting to extend the result of [24] to include matter fields, for example in
the Veneziano limit in which Nf → ! and Nc → ! with Nf /Nc finite3. On the other hand, the
supersymmetry inspired exact beta function for SU(N) gauge theories conjectured in [25] and used
to estimate a bound for the lower end of the conformal window, does not account for the presence
of an anomalous dimension term arising from the lack of supersymmetry. The presence of such
a term would possibly modify the constraint on the lower end of the conformal window predicted
in [25] and would force an analysis order by order in the gauge coupling.

The upper part of Fig. 5 summarizes the bounds on the conformal window obtained for fun-
damental fermions by using i) the ladder solution to the gap equation [9], ii) deformation theory
(DT) [26], and iii) a supersymmetry inspired conjecture for the beta function [25] to which the
unitary bound on the dimension of ψ̄ψ , Dψ̄ψ = 3− γ ≥ 1, is imposed. The latter and deformation
theory predict a lower bound around Nf ∼ 8, similar to the two-loop beta function. The solution to
the gap equation is more restrictive and provides a lower bound Nf ∼ 12 that captures the bulk of
chiral dynamics. No surprise that the unitarity bound is loosely constraining, since it corresponds
to an anomalous dimension γ = 2 of the fermion mass operator, while the ladder solution of the

3Assuming the presence of matter fields only in the numerator (as suggested by the supersymmetric case), a possible
generalization that reproduces the two-loop beta function in the Veneziano limit can be

β (gc) =
−β!

0 g
3
c + β j

4 g
3
c

�
∂ logZ
∂ log" + cF

g2c
16π2

�
+ cF

g3c
16π2 (1+ γ(g2c)/2)

1−β jg2c
, (2.4)

where cF = 4T (R)Nf /(3N), while β j and ∂ logZ/∂ log" are derived in [24].
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NSVZ  ’83 ’86

YM: Bochicchio ’08
(EP ’09)

Reproduces 2-loop beta in the (perturbative) Veneziano limit

Caveat: ∃ IRFP also for Nf=0 - g* is RG scheme dependent 

≠ SYM

see also Brodsky, 
Schrock ’08



“IR/UV correspondence”

UV brane/branch IR brane/branch

AdS5 gravity theory

CFT* CFT

z=0                    z

warp factor ~1/z

(increasing compositeness)

z → 0  IR gravity
z → 0  UV field theory

AdS/CFT



An example of FP merging in “modified” SQCD

Large Nf, Nc:   Nf/Nc fixed - SUGRA backgrounds Maldacena, Nunez ‘04
Casero Nunez Paredes ‘08
Conte Gaillard Ramallo ‘11         

 SQCD + quartic operators

                 UV limit:  
                 IR limit:  ordinary confinement 

                 UVFP at strong coupling
                 
                 Seiberg dual (Nc →Nf-Nc, Nf-2Nc flips sign)
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Barranco EP Russo ‘11

⇓



Conformal symmetry might play a role in particle physics at or well above 
the EWSB scale.

Large-Nf QCD is an instructive theory playground

✓ The conformal window opens at around Nf ~12
✓ The spectrum and the physics of phase transitions provide distinctive   
    signatures of (pre)conformality
✓ A preliminary study shows a change of trend of Tc for Nf > 6
 

Symanzik Improvement in strongly coupled systems can generate new 
phases.  The same considerations apply to non-abelian gauge theories in the 
conformal window as well as systems such as graphene.

AdS/CFT is in its infancy, but useful and insightful tool, when trying to make 
connection with SQCD or QCD.  

Summary


