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•  Quigg: Gauge Theories of Strong, Weak, and Electromagnetic Interactions 
•  Halzen and Martin: Quarks and Leptons 
•  Peskin and Schroeder: An Introduction to Quantum Field Theory 
•  Donoghue, Golowich and Holstein: Dynamics of the Standard Model 
•  Barger and Phillips: Collider Physics 

•  Rosenfeld: http://www.sbfisica.org.br/~evjaspc/xvi/ 
•  Hollik: arXiv:1012.3883 
•  Buchmuller and Ludeling: arXiv:hep-ph/0609174 
•  Rosner’s Resource Letter: arXiv:hep-ph/0206176 
•  Quigg: arXiv:0905.3187 
•  Altarelli: arXiv:1303.2842 
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•  1906: Electron (J. J. Thomson, 1897) 

•  33: QED (Dirac) 

•  36: Positron (Anderson, 1932) 

•  57: Parity violation (Lee and Yang, 56) 
•  65: QED (Feynman, Schwinger and Tomonaga) 
•  69: Eightfold way (Gell-Mann, 63) 
•  74: Charm (Richter and Ting, 74) 
•  79: SM (Glashow, Weinberg and Salam, 67-68) 
•  80: CP violation (Cronin and Fitch, 64) 
•  84: W&Z (Rubbia and Van der Meer, 83) 
•  88: b quark (Lederman, Schwartz and Steinberger, 77) 
•  90: Quarks (Friedman, Kendall and Taylor, 67-73) 
•  95: Neutrinos (Reines, 56);  Tau (Perl, 77) 
•  99: Renormalization (Veltman and ‘t Hooft, 71) 
•  02: Neutrinos from the sky (Davis and Koshiba) 
•  04: Asymptotic freedom (Gross, Politzer and Wilczek) 
•  08: CP violation (KM) and SSB (Nambu)  
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The Nobel Prize in Physics 2008 

Y. Nambu M. Kobayashi T. Maskawa 
"for the discovery of the mechanism of spontaneous broken 
symmetry in subatomic physics" 

"for the discovery of the origin of the broken symmetry 
which predicts the existence of at least three families of 
quarks in nature" 
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Habemus Higgs? July 2012 
“Higgs-like” boson 
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Natural units: 



New Horizons in Lattice QCD 
9 

Local field theory is defined by a lagrangian density  
(functional of fields and derivatives): 

Field equations (Euler-Lagrange equations) are  
obtained by extremizing the action                    : 
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Example: free real scalar field φ(x,t) with mass m 

Exercise: derive the field equation for a free real  
scalar field(Klein-Gordon equation): 
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Particular solution of KG equation 

General solution of KG equation is a superposition 
(Fourier expansion) 
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The Lagrangian encodes the particle content of the theory via  
fields and their interactions. Local, Lorentz-invariant, hermitian  
Lagrangian lead to an unitary S-matrix. 

The interactions are usually determined by symmetry or invariance  
principles, such as gauge symmetry.  

The standard model Lagrangian contain three types of fields: 

•  Fermion fields describing “matter” 
•  Vector fields describing the interactions 
•  Scalar fields describing the electroweak breaking sector 
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Promote fields to operators and impose canonical equal  
time commutation relations: 

Canonical conjugate to field 

This procedure promotes the Fourier coefficients to operators 

Field: infinite set of harmonic oscillators labelled by k. 
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Exercise: show that the classical hamiltonian 

is promoted to a hamiltonian operator 

vacuum energy (harmless?) 
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Particle interpretation: 

counts number of particles with momentum k  
and energy k0  

Vacuum state:  

1-particle state:  

•   
•   
•   

Also:  
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Comment:  

particles can be created and destroyed in QFT –  
particle number is not well defined. 

Intuitively this happens due to uncertainty principle when:  
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Procedure can be carried out for other fields:  

Complex scalar fields 

Fermion fields (Dirac equation) 

Independent coefficients 
 (2 degrees of freedom, particle-antiparticle) 

(4 degrees of freedom) 
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Vector fields 

Orthonormal basis: 

Lorentz condition (follows from eq. of motion for massive 
vector field): 

Three polarization vectors for a massive field. 
Two polarization vectors for a massless field (no longitudinal 
degree of freedom). 
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Interactions and the S-matrix 

There is more to life than free fields: 

Evolution of a state: 
Evolution operator in the interaction picture  

S(cattering) matrix (unitary): 
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S-matrix is computed perturbatively from interactions: 

T: time ordered product 

Transition matrix 

Scattering amplitude is defined as: 

scattering amplitude 
Conservation of energy and momentum 

New Horizons in Lattice QCD 
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Example: 4 different real scalar fields with interaction 
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Lowest order: 

Exercise: show that 

energy-momentum conservation 
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Finally, the scattering amplitude is defined as: 

scattering amplitude 

Scattering amplitudes are used to compute cross 
sections and decay rates of particles which are 
observed in experiments.  

conservation of energy and momentum 

Lowest order: 
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Higher contribution (3rd order in g): 

Usual Field Theory methods to compute: 
•  Wick’s theorem (time ordered and normal ordered products) 
•  Sum over all possible “contractions” of 2 field operators 

Old-fashioned way! 
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Quantum Field Theory for the “masses”: Feynman rules 

In order to compute scattering amplitudes one should: 

tree-level 2-loop level (why not 1-loop?) 
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Loop diagrams are usually infinite. The theory diverges 
at higher orders. A theory is said renormalizable when 
all the divergences can be absorbed in the definition of 
the parameters (masses, coupling constants) of the 
theory. 

As a consequence of the renormalization procedure, 
masses and coupling are not constants but depend on 
an energy scale. They are called running parameters. 
New energy scales are introduced in the theory via 
running! 
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Steps to construct and test a model: 

•  Postulate a set of elementary particles 
•  Construct a Lagrangian with interactions (symmetries) 
•  Derive Feynman rules 
•  Calculate processes as precisely as possible 
•  Measure parameters of model 
•  Make predictions for new processes 
•  Compare with experiments 
•  If agreement is found, you have a good model 
•  If not, back to 1st step... 

Only works in weak coupling regimes! 
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Can not use perturbation theory to study strongly 
coupled models: new methods are necessary 

•  Lattice computations 

•  Schwinger-Dyson equations 

•  Chiral perturbation theory  
(low energy effective lagrangians) 

•  QCD sum rules 

•  1/N expansions 
 .... 
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Complication in strongly coupled theories:  

observed particles do not corresponds to fields in the 
original lagrangian!  

What is a particle? 

In these lectures we will deal only with weak 
coupling (easy part?): 
Electroweak theory, high energy QCD 
Collider physics 
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Basic question: what are the particles and  
interactions of Nature? 

It took more than 50 years to find out that the  
symmetries that ultimately determine the interactions  
fall in the class of local gauge symmetries. 

Quantum electrodynamics (QED) is a paradigm for  
local gauge symmetries and we will study it next.  
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Dirac lagrangian for a free fermion of mass m: 

Lagrangian is invariant under a global phase (gauge)  
transformation: 
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Promote global to local phase transformation: 

One must modify the free lagrangian in order to restore 
local phase (or gauge) symmetry by introducing a vector 
field through a so-called covariant derivative that will  
substitute the normal derivative:  

gauge vector field 

coupling constant 
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Local gauge invariant lagrangian: 

Both vector and fermion fields change under a local gauge transformation: 

free lagrangian interaction 

Exercise: check that 
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In order to complete the lagrangian one must introduce 
a kinetic term for the gauge field: 

kinetic term for gauge field (equations of motion = Maxwel’s equations) 

A mass term for the photon violates gauge symmetry:  
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One can derive electrodynamics requiring local gauge  
symmetry! It implies in a massless photon and a 
conserved electric charge (Noether’s theorem). 

In this simple case the symmetry form a so-called U(1) group,  
whose elements are unimodular complex numbers (phases) 
that commute with each other (abelian group). 

Symmetry → Dynamics 

Million dollar question: 
What symmetries determine the dynamics of the strong  
and weak interactions?  
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Non-abelian symmetries 

Yang and Mills (1954) tried to describe the dynamics of 
strong interactions between protons and neutrons  
grouping them into a single entity called a nucleon: 

“Isospin” doublet 

Motivation: protons and neutrons have same properties  
under strong interactions  
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Free lagrangian  

is invariant under global rotations in this  
inner isospin space: 

nucleon mass 

Pauli matrices 

Rotations are determined by three numbers  
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Dynamics is determined by promoting global symmetry  
to a local symmetry. Let us study the general case of 
an n-component fermion multiplet: 

with a transformation 
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The nxn complex matrices U must be unitary (for global invariance) 
and we will also require them to have determinant 1. This fixes the 
symmetry group to be SU(N) which has n2 -1 elements. 

The n2 -1  nxn complex hermitian and traceless matrices T are  
called the generators of the group and obey the commutation  
relations 

Normalization: 

structure constants of the group 

Example for isospin (SU(2)): 
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Introduce an nxn complex matrix valued vector field 

Non-abelian gauge fields 

and the corresponding field strength tensor  
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Again one can obtain invariance under a local gauge  
transformation by introducing a covariant derivative 

The lagrangian 

is invariant under the local gauge transformations (ex.: show it) 

This lagrangian is the basis for the construction of the SM 
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Comments: 

•  Non-abelian part of field strength tensor introduces  
self-couplings among gauge fields which are responsible 
for the remarkable property of asymptotic freedom  

•  Gauge symmetry forbids mass terms for the gauge  
fields – one must find a mechanism to generate mass for 
short range interactions such as the weak force.  
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Strong interactions are described by a local SU(3)  
gauge symmetry.  

Each quark comes in three different colors transforming  
as the fundamental representation of SU(3): 

Fermions called quarks interact strongly through the  
exchange of a massless vector gauge field called gluon. 
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There are six different types (or flavors) of quarks: 
                              u, d, s, c, b, t  

QCD lagrangian is given by 

8 3x3 matrices: 
Gell-Mann matrices 

QCD coupling constant 8 gluons 
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Comments: 

•  Electric charges of quarks are fractionary: +2/3 for u,c and t 
                                                                       -1/3 for d,s and b 

•  One must introduce a gauge fixing term for proper quantization.  
This may introduce unphysical fields (ghosts) which must be taken  
into account in virtual processes.   

•  In analogy to QED, one defines 

•  Coupling constant depends on energy scale, being large at low 
energies and small at large energies (asymptotic freedom). 

•  The interaction is so strong at low energies that quarks and gluons  
are always confined in hadrons. Perturbation techniques are not  
applicable! 



Lattice QCD School 47 

QCD Feynman rules 

+ ghosts 

Feynman gauge 

(Complicated expressions) 


