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Standard model of the electroweak interactions:
a success history told in Nobel Prizes

.1906: Electron (J. J. Thomson, 1897)

.33
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.65:
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74:
79:
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.84
.88:
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.99:
.02:
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.08:

QED (Dirac)

Positron ﬁAnderson, 1932)

Parity violation (Lee and Yang, 506)

QED (Feynman, Schwinger and Tomonaga)
Eightfold way (Gell-Mann, 63)

Charm (Richter and Ting, 74

SM (Glashow, Weinberg and Salam, 67-68)

CP violation (Cronin and Fitch, 64

W&Z (Rubbia and Van der Meer, 33)

b quark (Lederman, Schwartz and Steinberger, 77)
Quarks (Friedman, Kendall and Taylor, 67-73)
Neutrinos (Reines, 56); Tau (Perl 7%
Renormalization (Veltman and ‘t Hooft, 71)
Neutrinos from the sky (Davis and Koshiba

Als:ymptot_ic freedom (Gross, Politzer and Wilczek)
CP violation (KM) and SSB (Nambu)
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R

Y. Nambu M. Kobayashi  T. Maskawa

""for the discovery of the mechanism of spontaneous broken ""for the discovery of the origin of the broken symmetry
symmetry in subatomic physics" which predicts the existence of at least three families of
quarks in nature"

20xx: Higgs 7?7
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Standard model:
SU(3).xSU(2) xU(1), gauge theory

f

Renormalizable quantum field theory
+

Theoretical basis:{ Gauge symmetries

-+

\ Spontaneous symmetry b@

I_¢

Higgs mechanism
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Elementary partlcles today

L
3 GEBATES P AATERA

iy I_l: J
Habemus Higgs? July,2012

“Higgs-like” boson




Conventions

Natural units: h =c =1

r=(z') = (2°,7), 2°=t,

k= (k") = (k° k), kozE:wk:\/EQ—l—m?

Nuy — dlag(17_17_17_1)
a-b:aﬂb“:aobo—&'-g
82

_ 2
0,0" = 55 =V
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Classical Field Theory

Local field theory is defined by a lagrangian density
(functional of fields and derivatives):

L=Lo(x,1),0.0(x,1),

Field equations (Euler-Lagrange equations) are
obtained by extremizing the action s = /d%ﬁ ;

oL 0L
06~ " [o0,9)] =
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Example: free real scalar field ¢(x,t) with mass m

m2

2
5 ?

1
L= 20.00"%

Exercise: derive the field equation for a free real
scalar field(Klein-Gordon equation):

(9,0" +m?) ¢ =0

New Horizons in Lattice QCD
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Particular solution of KG equation

¢part.(aj’t) _ 6:|:7L(k.:1:—wkt) ,

wi = k* +m?

General solution of KG equation is a superposition
(Fourier expansion)

dgk 1 1(krx—wit * —i(kr—wit
¢(£If,t) — / (27T)3 ka |:Cl,k6 ( ) —I— a’ke ( k )i|
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Quantum Field Theory

The Lagrangian encodes the particle content of the theory via
fields and their interactions. Local, Lorentz-invariant, hermitian
Lagrangian lead to an unitary S-matrix.

The interactions are usually determined by symmetry or invariance
principles, such as gauge symmetry.

The standard model Lagrangian contain three types of fields:
* Fermion fields describing “matter”

 Vector fields describing the interactions
» Scalar fields describing the electroweak breaking sector
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Quantum Field Theory

Promote fields to operators and impose canonical equal
time commutation relations:

[qg(a:,t),f[(:v’,t)} — i3 (x — 2'), [mx,t),ﬁ(x',t)} — 0, [q%(x,t),qz(x',t)] — 0

Canonical conjugate to field I =6£/6¢ = ¢

This procedure promotes the Fourier coefficients to operators

0 dgk 1 ~ t(kr—wit AT —i(kr—wit
o(x,t) = / (27)° 2un {ake ( kt) 4 ae ( k )}

[ak,a;;,} — (27)22w 8% (k — k'), i, dw] = O, {ajﬁ,a;} —0

Field: infinite set of harmonic oscillators labelled by k.
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Exercise: show that the classical hamiltonian

H = % /d% 67 + (V)2 +m?¢”|

IS promoted to a hamiltonian operator

1
H = ko |a;.a —
s [

= —l—\/k2 + m?
vacuum energy (harmless?)
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Particle interpretation:

a};ak counts number of particles with momentum k
and energy Kk,

Vacuum state: G |0) = 0

1-particle state: |k) — @IU()> Also:
ag|k') = 2k°83 (k — K7)|0)
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Comment:

particles can be created and destroyed in QF T —
particle number is not well defined.

Intuitively this happens due to uncertainty principle when:

Ap > m
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Procedure can be carried out for other fields:

Complex scalar fields

(ﬁ(x t) :/ dSk 1 {&kei(km_wkt) _I_[;Te—i(kw—wkt)
| (2m)3 2wy k

Independent coefficients
(2 degrees of freedom, particle-antiparticle)

Fermion fields (Dirac equation)

A Bk m A : A :

r) = bec (k) (k)e =8 4 d, (k) o (k) e
6= [ gy 3 [Pl e L
ul?(k) and v1?(k) are the positive and negative energy spinors, which are

solutions to the equations (v -k — m)u(p) = 0 and (v - kK 4+ m)v(p) = 0, where

v, are the usual Dirac matrices (4 degrees of freedom)
New Horizons in Lattice QCD 17



Vector fields

A d3k . ,

where sff‘) are the four polarization 4-vectors.

Orthonormal basis: u(k)? - e, (k)*)* = g?N

Lorentz condition (follows from eq. of motion for massive

vector field): ~
k-, (k)M =0

Three polarization vectors for a massive field.
Two polarization vectors for a massless field (no longitudinal

degree of freedom).
New Horizons in Lattice QCD 18



Interactions and the S-matrix

There is more to life than free fields:
L=Ly+ L

Evolution operator in the interaction picture
Evolution of a state:

t) = U(t, to)lto)

S(cattering) matrix (unitary):

S = lim U(t,t())

to— —00
t— 400

New Horizons in Lattice QCD
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S-matrix is computed perturbatively from interactions:

5 )
S = 1+’i/d4$ EI(IE)—F% /d4a¢1 /d4$2 TLr(x)Lr(z2)]+-- =T [eifd xﬁf(“”)}

T: time ordered product

Transition matrix § —1 + 7

Scattering amplitude is defined as:
T = (2m)*6* Zpi M

3

New Horizans in Lattice QCD Scattering amplitude
Conservation of energy and momentum 20



Example: 4 different real scalar fields with interaction

LT=—90A0BPcPD

Want to compute the transition amplitude of a boson A with momentum p 4
scattering on a boson B with momentum pgp producing bosons C and D with
momenta pc and pp: A+ B — C+ D.

Tap—cp = (pc,pPp|S|pa,pB)
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Lowest order:

TfSB)—>CD — /d4f'3<pc,pp\ —ig@A(f)éB(x)éc(wa(ﬂ?)|PA,Z?B>

Exercise: show that

7;83@)_)01) — —ig(27T)454(pC +pp — pa — PB)

[

energy-momentum conservation
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Finally, the scattering amplitude is defined as:

Ta—cp = (2m)**(pc +pp — pa — PB)MaB—CD

[ [

conservation of energy and momentum scattering amplitude

Lowest order:
Map_cp =19

Scattering amplitudes are used to compute cross
sections and decay rates of particles which are
observed in experiments.
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Higher contribution (3rd order in g):

T(S) /d4$1/d4$2/d4$3 pc,pD| 3,) (1)

A

T da(z1)dp(z) QbO(A )00 (21)da(22)d5(22)dc(22)dp (22)
da(x3)dp(x3)dc(23)dp () | |pa,pB)

Usual Field Theory methods to compute:
* Wick’s theorem (time ordered and normal ordered products)
« Sum over all possible “contractions” of 2 field operators

Old-fashioned way!
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Quantum Field Theory for the “masses”. Feynman rules

In order to compute scattering amplitudes one should:

e Draw all possible diagrams at a given order in perturbation theory;
e For each vertex associate a factor —ig;
. 7) .
e For each propagator, associate a factor P
e Impose 4-momentum conservation at each vertex;

4
e Integrate over each undetermined momentum [ (5sz)94

RN 0, MDA ; ,. 7
4 ‘ N , 4 I) 4 ‘ N\ N ('—)( ; ('_) ‘.7‘ ,
-~ ~ - y

:X/ \>1 \( \K/
Op’ lJ Y Oc Op’ Pp I—l”“ Y Oc
tree-level 2-loop level (why not 1-loop?)
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Loop diagrams are usually infinite. The theory diverges
at higher orders. A theory is said renormalizable when
all the divergences can be absorbed in the definition of
the parameters (masses, coupling constants) of the
theory.

As a consequence of the renormalization procedure,
masses and coupling are not constants but depend on
an energy scale. They are called running parameters.
New energy scales are introduced in the theory via
running!
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Steps to construct and test a model:

* Postulate a set of elementary particles

 Construct a Lagrangian with interactions (symmetries)
* Derive Feynman rules

 Calculate processes as precisely as possible

* Measure parameters of model

« Make predictions for new processes

« Compare with experiments

* If agreement is found, you have a good model

* |If not, back to 1st step...

Only works in weak coupling regimes!
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Can not use perturbation theory to study strongly
coupled models: new methods are necessary

» Lattice computations
» Schwinger-Dyson equations

* Chiral perturbation theory
(low energy effective lagrangians)

« QCD sum rules

* 1/N expansions

New Horizons in Lattice QCD
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Complication in strongly coupled theories:

observed particles do not corresponds to fields in the
original lagrangian!

What is a particle?

In these lectures we will deal only with weak
coupling (easy part?):

Electroweak theory, high energy QCD
Collider physics
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What Is An Elementary Particle 7

by STEVEN WEINBERG

HEN A STRANGER, hearing that I am a physi-

cist, asks me in what arca of physics 1 work, 1
generally reply that [ work on the theory of elementary
particles. Giving this answer always makes me nervous.
Suppose that the stranger should ask, “*“What is an clemen-
tary particle”’ I would have to admit that no one really
knows.

Let me declare first of all that there is no difficulty in saying
what is meant by a particle. A particle is simply a physical system
thit has no continuous degrees of freedom except for its total mo-
mentum. For instance, we can give a complete description of an
electron by specilying its momentum, as well as its spin around any
given axis, a quantity that in quantum mechanics is discrete rather
than continuous. On the other hand, a system consisting of a free
electron and a free proton 18 not a particle, because to describe it one
has to specify the momenta of both the electron and the proton—
not just their sum. But & bound state of an electron and a proton,
such as a hydrogen atom in its state of lowest energy, is & particle.
Everyone would agree that & hydrogen atom is not an elementary
particle, but it is not alwiys 5o easy to make this distinction, or
even Lo say what it means.,

Copyrighe © 19506 2y Stoven Weisherg, Rescarch supported in part by e Robart A Wekh Moundation
and NSF Geana PHY 851 1600

BEAM LINE
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Basic question: what are the particles and
interactions of Nature?

It took more than 50 years to find out that the
symmetries that ultimately determine the interactions

fall in the class of local gauge symmetries.

Quantum electrodynamics (QED) is a paradigm for
local gauge symmetries and we will study it next.
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Gauge symmetries

Dirac lagrangian for a free fermion of mass m:

Lfree — ¢(@ @ — m)w

Lagrangian is invariant under a global phase (gauge)
transformation:

p(x) = ¢'(x) = explia]y(z)

32
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Promote global to local phase transformation:

p(x) = ¢'(2) = explia(z)]i(z)

One must modify the free lagrangian in order to restore

local phase (or gauge) symmetry by introducing a vector
field through a so-called covariant derivative that will

substitute the normal derivative:

coupling constant

0, —D,=0,+1eA,

gauge vector field

Lattice QCD School 33



Local gauge invariant lagrangian:

L=P(iP—m)p= ?(i P — m)iﬁ} B e A(x)y)

free lagrangian interaction

J

Both vector and fermion fields change under a local gauge transformation:

b(z) = /() = explia(@)]()
Au(@) = A, (1) = Au(x) — - d,0()

Exercise: check that D.i — €@ D,y
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In order to complete the lagrangian one must introduce
a kinetic term for the gauge field:

L= _i wF" (i @ —m)y — e Ay

Kinetic term for gauge field (equations of motion = Maxwel’'s equations)

F,=0,A, —0,A,

A mass term for the photon violates gauge symmetry:

m~ A, A"

Lattice QCD School 35



Symmetry - Dynamics

One can derive electrodynamics requiring local gauge
symmetry! It implies in a massless photon and a
conserved electric charge (Noether’s theorem).

In this simple case the symmetry form a so-called U(1) group,
whose elements are unimodular complex numbers (phases)
that commute with each other (abelian group).

Million dollar question:
What symmetries determine the dynamics of the strong
and weak interactions?

Lattice QCD School 36



Non-abelian symmetries

Yang and Mills (1954) tried to describe the dynamics of
strong interactions between protons and neutrons
grouping them into a single entity called a nucleon:

= ()

“Isospin” doublet

Motivation: protons and neutrons have same properties
under strong interactions
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Free lagrangian

Lfree — \Tj@ ﬁ _m)\Ij

nucleon mass

IS iInvariant under global rotations in this
INnner isospin space:

U — U’ = exp(id - 0/2)¥(x)

Pauli matrices

Rotations are determined by three numbers Q

Lattice QCD School
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Dynamics is determined by promoting global symmetry
to a local symmetry. Let us study the general case of
an n-component fermion multiplet:

Y1(x)
( Va2 () \

U(x) =

\ vn@)

with a transformation

U — U = U(a;)V = exp(ia; T)¥(x)

Lattice QCD School 39



The nxn complex matrices U must be unitary (for global invariance)
and we will also require them to have determinant 1. This fixes the
symmetry group to be SU(N) which has n? -1 elements.

The n? -1 nxn complex hermitian and traceless matrices T are

called the generators of the group and obey the commutation
relations

T, Tj] =icijuTh

structure constants of the group

Normalization:
Ir [TzTJ] — 523/2

Example for isospin (SU(2)): T; =o0;, t=1,3 Cijk = €ijk
Lattice QCD School 40



Non-abelian gauge fields

Introduce an nxn complex matrix valued vector field
A,(x) = AL(m)Ti

and the corresponding field strength tensor
F, =Fr fwTi
F, =0,A, —0,A, —iglA,, A
F., =0,A, —0,A!, + gcijkA{LA’;
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Again one can obtain invariance under a local gauge
transformation by introducing a covariant derivative

0, =D, =0,—igA,(x)

The lagrangian

L=—1Tv(F,,F*) + 061D —m)¥
IS invariant under the local gauge transformations (ex.: show it)
VU(z) = V' (zx)=U(z)¥(x)
A, — AL =UA, U — é(é?MU)U_1
This lagrangian is the basis for the construction of the SM
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Comments:

* Non-abelian part of field strength tensor introduces
self-couplings among gauge fields which are responsible
for the remarkable property of asymptotic freedom

gcijk (aMAiV)A'ujAVk

2 .
g k
T CijkCimn Al AY AI'T“A",}

« Gauge symmetry forbids mass terms for the gauge
fields — one must find a mechanism to generate mass for

short range interactions such as the weak force.
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Quantum Chromo Dynamics - QCD

Strong interactions are described by a local SU(3)
gauge symmetry.

Fermions called quarks interact strongly through the
exchange of a massless vector gauge field called gluon.

Each quark comes in three different colors transforming
as the fundamental representation of SU(3):

dRr
q(r) = ( e )
dB
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There are six different types (or flavors) of quarks:
u,d,s,c,b,t

QCD lagrangian is given by
L= _%TT(F,UJVFMV) + Zq:u,d,s,c,b,t Q(Z D o mC])q

Fu =F,\i/2 D,=0,—igAu(x) Au(z)=Al(x)\/2

1

8 3x3 matrices: QCD coupling constant 8 gluons
Gell-Mann matrices
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Comments:

* Electric charges of quarks are fractionary: +2/3 for u,c and t
-1/3 ford,sand b

* One must introduce a gauge fixing term for proper quantization.
This may introduce unphysical fields (ghosts) which must be taken
Into account in virtual processes.

2
* In analogy to QED, one defines g = i—;

* Coupling constant depends on energy scale, being large at low
energies and small at large energies (asymptotic freedom).

* The interaction is so strong at low energies that quarks and gluons
are always confined in hadrons. Perturbation techniques are not

' !
d pp I ICa ble ) Lattice QCD School 46



QCD Feynman rules
k

e Quark-Gluon-Vertex: a M 19s(To) k™

[

; dg+m _ i
g2 -m2+ie — ¢—m+ie

e Quark-Propagator: —p—oe

—1Guy

e Gluon-Propagator: Q0000 = Feynman gauge

c
e Triple-Gluon-Vertex: a LQMJ%)
b (Complicated expressions)
a d
e Quartic-Gluon-Vertex: M
b c

+ ghosts

Lattice QCD School 47



