Introduction to the Standard Model

New Horizons in Lattice Field Theory IIP Natal, March 2013

Rogerio Rosenfeld IFT-UNESP

Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/Electroweak sector/Symmetry Breaking Lecture 3: Successes/Shortcomings of the Standard Model Lecture 4: Beyond the Standard Model

Successes of Standard Model

Standard Model describes almost all the experimental data produced over many decades in many different experiments (not only particle accelerators).

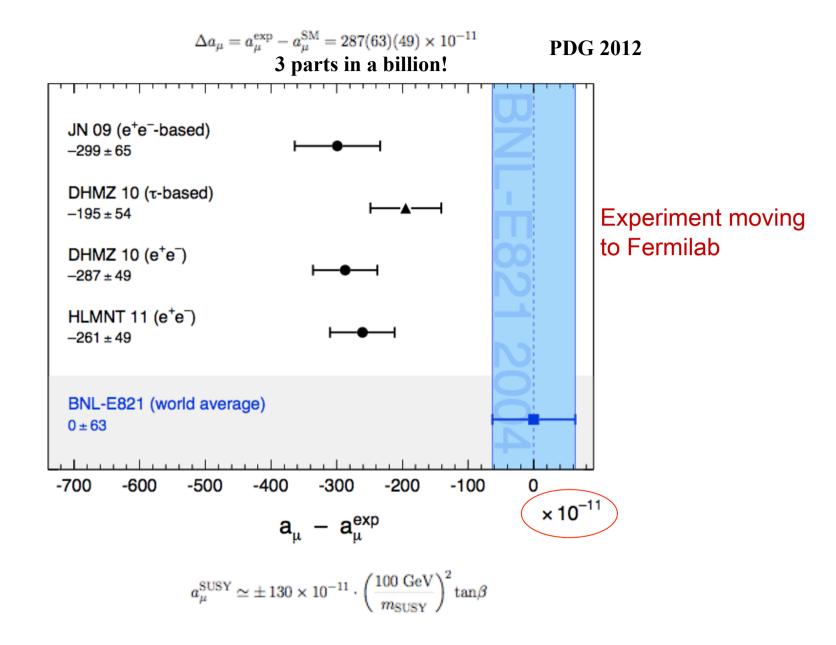
Describe a few of the tests in this lecture:

- muon magnetic moment
- electron magnetic moment
- Z line shape and the number of neutrinos
- precision measurements at LEP
- hadron collider results
- the discovery of the "Higgs"

Muon anomalous magnetic moment

de Rafael, 0809.3085

g-factor: relation between spin and magnetic moment


Perturbation theory at work – 5 loop calculation!

$$a_{\mu}^{\text{QED}} = \frac{\alpha}{2\pi} + 0.765857410(27) \left(\frac{\alpha}{\pi}\right)^2 + 24.05050964(43) \left(\frac{\alpha}{\pi}\right)^3 + 130.8055(80) \left(\frac{\alpha}{\pi}\right)^4 + 663(20) \left(\frac{\alpha}{\pi}\right)^5 + \cdots$$
(5)

Table 2 Standard Model Contributions

Contribution	Result in 10^{-11} units
QED (leptons)	$11\ 6584\ 718.09 \pm 0.14 \pm 0.04_{lpha}$
HVP(lo)	$6908\pm 39_{ m exp}\pm 19_{ m rad}\pm 7_{ m pQCD}$
HVP(ho)	$-97.9 \pm 0.9_{ m exp} \pm 0.3_{ m rad}$
HLxL	105 ± 26
EW	$152\pm2\pm1$
Total SM	$116\ 591\ 785\pm 51$

$$a_{\mu}^{\text{SM}} = 116\,591\,802(2)(42)(26) \times 10^{-11}$$

 $a_{\mu}^{\text{exp}} = 116\,592\,089(54)(33) \times 10^{-11}$

Electron anomalous magnetic moment

Following Dyson we can write a_e as $a_e = a_e(\text{QED}) + a_e(\text{hadron}) + a_e(\text{electroweak})$, where Kinoshita 2010

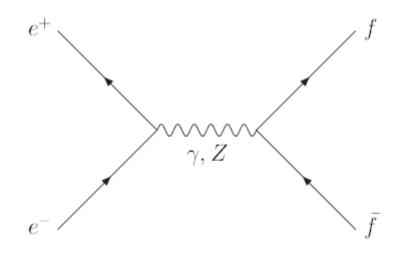
$$a_{e}(\text{QED}) = A_{1} + A_{2}(m_{e}/m_{\mu}) + A_{2}(m_{e}/m_{\tau}) + A_{3}(m_{e}/m_{\mu}, m_{e}/m_{\tau})$$
$$A_{i} = A_{i}^{(2)}\left(\frac{\alpha}{\pi}\right) + A_{i}^{(4)}\left(\frac{\alpha}{\pi}\right)^{2} + A_{i}^{(6)}\left(\frac{\alpha}{\pi}\right)^{3} + \dots, i = 1, 2, 3$$

First four A₁ terms are known analytically or by numerical integration

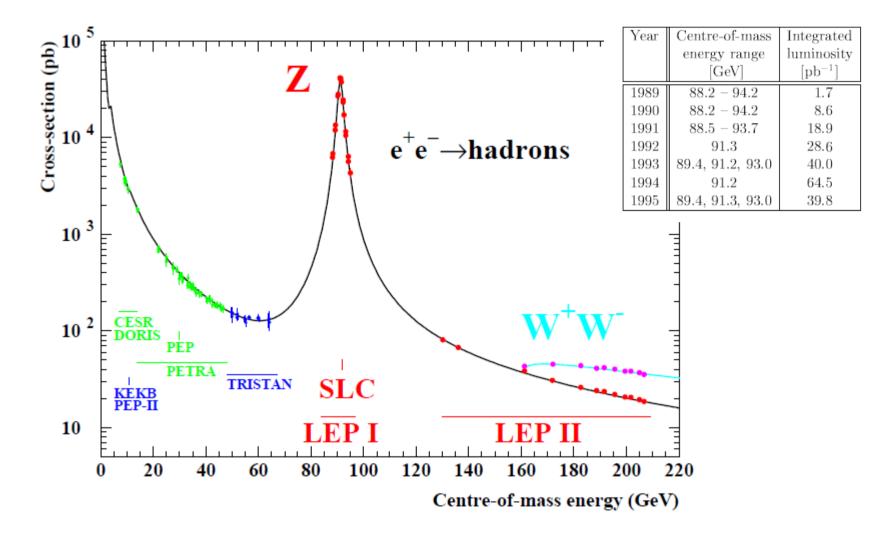
 $A_1^{(8)} = -1.914 4 (35)$ 891 Feynman diagrams (numerical)

Kinoshita,Nio, PRD 73, 013003 (2006) Aoyama,Hayakawa,Kinoshita,Nio, PRD 77, 053012 (2008)

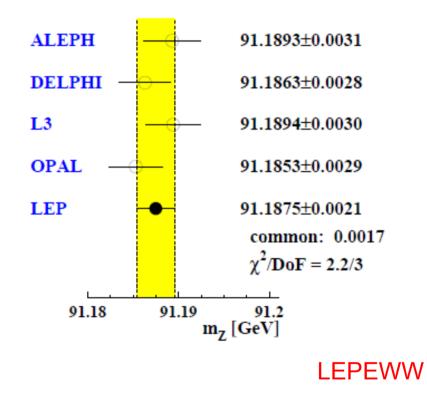
 $a_e(\exp) = 1\ 159\ 652\ 180.73\ (0.28) \times 10^{-12}$ [0.24 ppb]

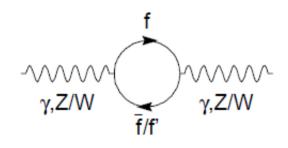

Hanneke, Fogwell, Gabrielse, PRL 100, 120801 (2008) Table top experiment

Best determination of fine structure constant $\alpha^{-1}(a_e) = 137.035\ 999\ 085\ (12)(37)(33)\ [0.37\ ppb]$


6

Z-boson and the number of neutrinos


More than 15 million Z-bosons were produced and detected at LEP through the process:


The Z-boson shows up as a resonance in e^+e^- collisions in the LEP collider:

The Z-boson mass is one of the best measured quantities in the SM:

The resonance line shape is a consequence of the Zboson propagator which must include quantum corrections due to its decay such as the diagram

which leads to a cross section proportional to the socalled Breit-Wigner factor:

$$\left|\frac{1}{s - M_Z^2 + i \prod_Z M_Z}\right|^2$$

$$Z \text{ widht}$$

Partial Z width in lowest order (tree-level):

$$\Gamma(Z \to f\bar{f}) = \frac{4G_F}{3\pi\sqrt{2}}M_Z^3(a_L^2 + a_R^2)N_C$$

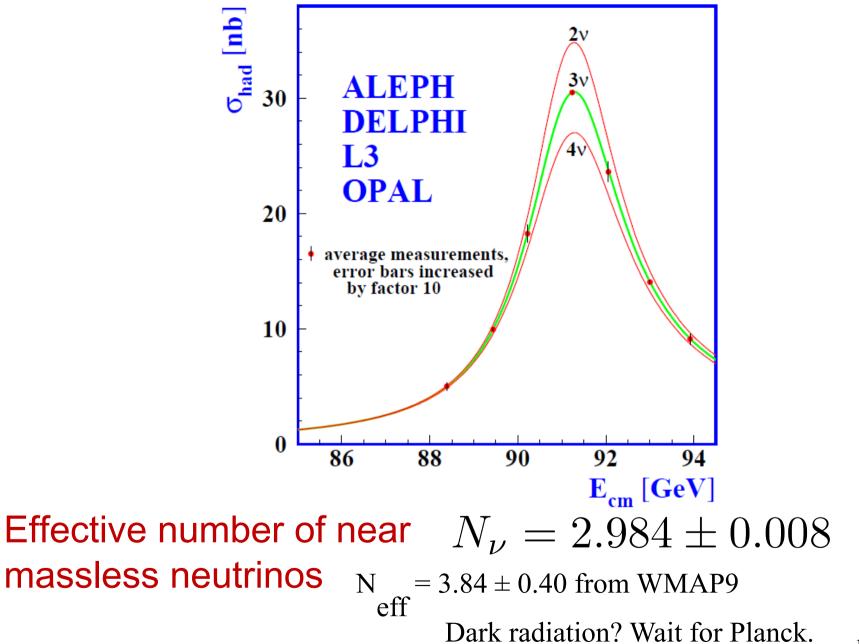
Channel	$a_{L}^{2} + a_{R}^{2}$
$\nu \bar{\nu}$	$\frac{1}{16}$
$l\bar{l}$	$\frac{1}{4}\left(\frac{1}{4}-\sin^2\theta_W+2\sin^4\theta_W\right)$
$u\bar{u}$	$\frac{1}{4}\left(\frac{1}{4}-\frac{2}{3}\sin^2\theta_W+\frac{8}{9}\sin^4\theta_W\right)$
$d\bar{d}$	$\frac{1}{4}\left(\frac{1}{4}-\frac{1}{3}\sin^2\theta_W+\frac{2}{9}\sin^4\theta_W\right)$

Total Z width given by (why?):

 $\Gamma(Z) = 2 \times \Gamma(Z \to u\bar{u}) + 3 \times \Gamma(Z \to d\bar{d}) + 3 \times \Gamma(Z \to l^+l^-) + N_\nu \times \Gamma(Z \to \nu\bar{\nu})$

Using $G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}$ $\sin^2 \theta_W = 0.231$

I get


 $\Gamma(Z \to u\bar{u}) = 0.2854 \text{ GeV}, \quad \Gamma(Z \to d\bar{d}) = 0.3679 \text{ GeV},$ $\Gamma(Z \to l^+ l^-) = 0.0834 \text{ GeV}, \quad \Gamma(Z \to \nu\bar{\nu}) = 0.1658 \text{ GeV}$

and hence $\Gamma(Z) = 2.423 \text{ GeV}$ for $N_{\nu} = 3$

to be compared with experimental result:

 $\Gamma(Z) = 2.4952 \pm 0.0023 \text{ GeV}$

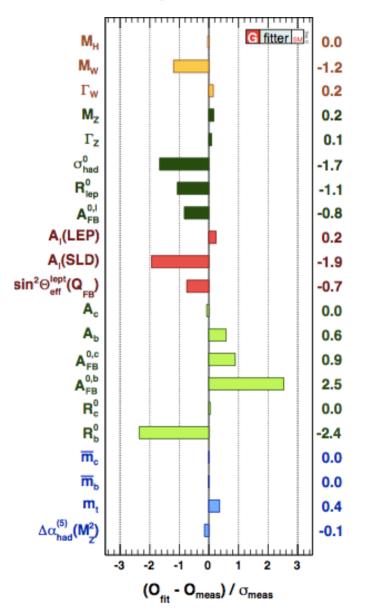
No room for an extra neutrino! Agrees with cosmology (BBN)

Precision measurements at LEP

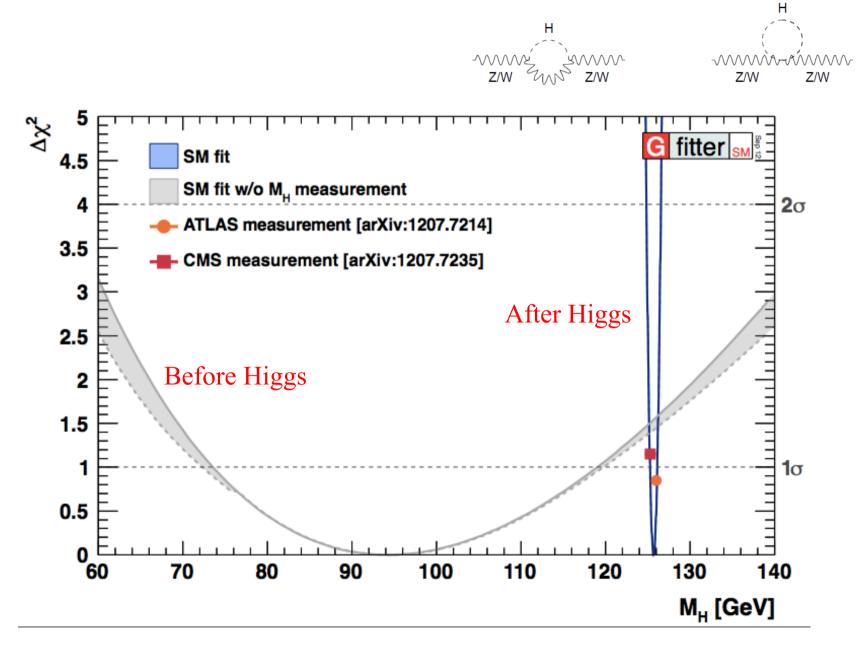
Many observables were measured that depend on the fundamental parameters of the SM.

At tree level, only g_1 , g_2 and v are necessary to calculate electroweak processes.

Other parameters appear at the loop-level and are important since the measurements are very precise.

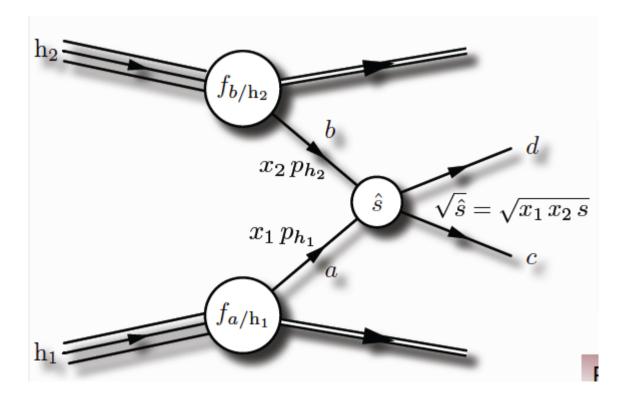

New physics could be the cause if there are poor fits between SM and measurements – but there are NOT.

Gfitter group provides a global fit of electroweak observables http://gfitter.desy.de/Standard_Model/


Parameter			Fit result incl. M_H	Fit result not incl. M_H	Fit result incl. M_H but not exp. input in row			
$M_H~[{ m GeV}]^{(\circ)}$	125.7 ± 0.4	yes	125.7 ± 0.4	94^{+25}_{-22}	94^{+25}_{-22}			
M_W [GeV]	80.385 ± 0.015	_	80.367 ± 0.007	80.380 ± 0.012	80.359 ± 0.011			
Γ_W [GeV]	2.085 ± 0.042	-	2.091 ± 0.001	2.092 ± 0.001	2.091 ± 0.001			
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1878 ± 0.0021	91.1874 ± 0.0021	91.1983 ± 0.0116			
Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4954 ± 0.0014	2.4958 ± 0.0015	2.4951 ± 0.0017			
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	-	41.479 ± 0.014	41.478 ± 0.014	41.470 ± 0.015			
R_{ℓ}^0	20.767 ± 0.025	-	20.740 ± 0.017	20.743 ± 0.018	20.716 ± 0.026			
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	-	0.01627 ± 0.0002	0.01637 ± 0.0002	0.01624 ± 0.0002			
A_{ℓ} (*)				0.1477 ± 0.0009	$0.1468 \pm 0.0005^{(\dagger)}$			
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB}) = 0.2324 \pm 0.0012$			$0.1473^{+0.0006}_{-0.0008}\\0.23148^{+0.00011}_{-0.00007}$	$0.23143^{+0.00010}_{-0.00012}$	0.23150 ± 0.00009			
A_c	0.670 ± 0.027	-	$0.6680 {}^{+0.00025}_{-0.00038}$	$0.6682 {}^{+0.00042}_{-0.00035}$	0.6680 ± 0.00031			
A_b	0.923 ± 0.020	-	$0.93464^{+0.00004}_{-0.00007}$	0.93468 ± 0.00008	0.93463 ± 0.00006			
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-	$0.0739^{+0.0003}_{-0.0005}$	0.0740 ± 0.0005	0.0738 ± 0.0004			
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	-	$0.1032^{+0.0004}_{-0.0006}$	0.1036 ± 0.0007	0.1034 ± 0.0004			
R_c^0	0.1721 ± 0.0030	-	0.17223 ± 0.00006	0.17223 ± 0.00006	0.17223 ± 0.00006			
R_b^0	-	0.21474 ± 0.00003	0.21475 ± 0.00003	0.21473 ± 0.00003				
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27^{+0.07}_{-0.11}$	-			
\overline{m}_b [GeV]	10.17		$4.20^{+0.17}_{-0.07}$	$4.20^{+0.17}_{-0.07}$	-			
m_t [GeV]	173.18 ± 0.94	yes	173.52 ± 0.88	173.14 ± 0.93	$175.8^{+2.7}_{-2.4}$			
$\Delta \alpha^{(5)}_{\rm had}(M_Z^2) \ ^{(\bigtriangleup \bigtriangledown)}$	2757 ± 10	yes	2755 ± 11	2757 ± 11	2716_{-43}^{+49}			
$lpha_{\scriptscriptstyle S}(M_Z^2)$	-	yes	0.1191 ± 0.0028	0.1192 ± 0.0028	0.1191 ± 0.0028			
$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{\rm theo}$	yes	4	4	_			
$\delta_{\rm th} \sin^2 \! \theta_{\rm eff}^{\ell} \ ^{(\bigtriangleup)}$	$[-4.7,4.7]_{\rm theo}$	yes	-1.4	4.7	-			

^(o) Average of ATLAS ($M_H = 126.0 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (sys)}$) and CMS ($M_H = 125.3 \pm 0.4 \text{ (stat)} \pm 0.5 \text{ (sys)}$) measurement assuming no correlation of the systematic uncertainties. ^(*) Average of LEP ($A_\ell = 0.1465 \pm 0.0033$) and SLD ($A_\ell = 0.1513 \pm 0.0021$) measurements, used as two measurements in the fit. ^(†) The fit w/o the LEP (SLD) measurement gives $A_\ell = 0.1474^{+0.0002}_{-0.0002}$ ($A_\ell = 0.1467^{+0.0006}_{-0.0004}$). ^(\triangle) In units of 10^{-5} . ^{(\bigtriangledown}) Rescaled due to α_S dependency.

The famous "pull" diagram - SM works beautifully



Indirect limits on the Higgs mass

Particle production at hadron colliders

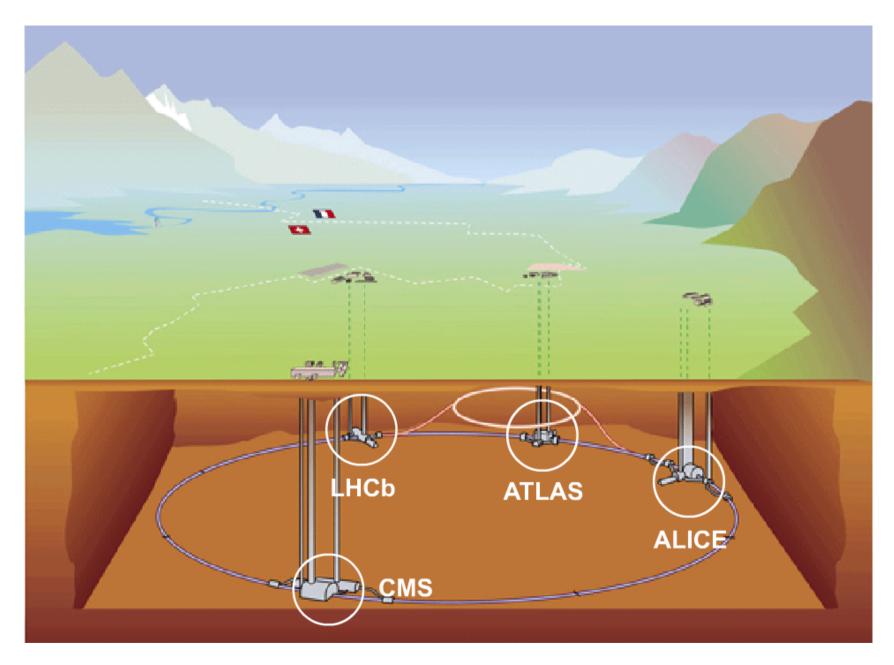
Protons are made out of quarks and gluons. What really participate in the collision are the proton constituents, called generically partons. Partonic center-of-mass energy is not fixed!

Cross sections and event rates

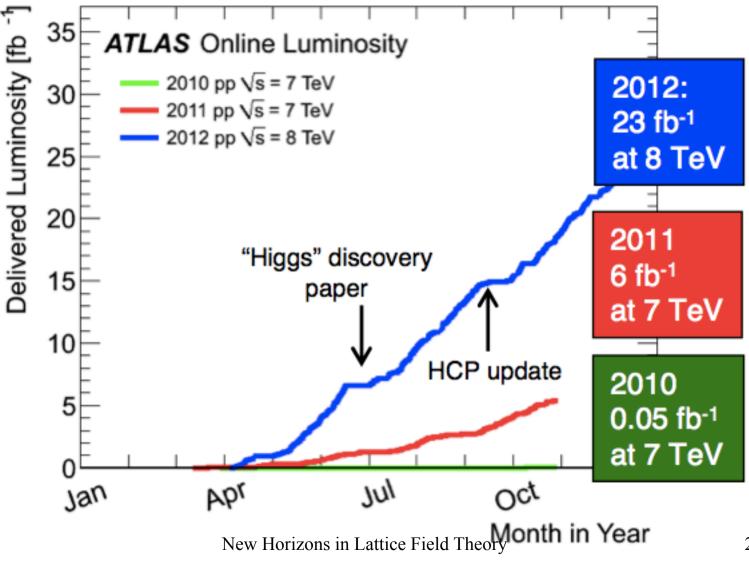
Productions of particles are characterized by cross sections σ with units of area:

barn	b	10^{-24} cm^2
millibarn	mb	10 ⁻²⁷
microbarn	μb	10 ⁻³⁰
nanobarn	nb	10 ⁻³³
picobarn	pb	10 ⁻³⁶
femtobarn	fb	10 ⁻³⁹
attobarn	ab	10^{-42}

Accelerators are characterized by their center-of-mass energy and luminosity. Luminosity has dimensions of inverse of an area (or inverse cross section).


The product of cross section with luminosity gives the number of events that would be produced.

Large Hadron Collider at CERN


27 km circumference – largest experiment ever

Dipoles 1232 Quadrupoles **400** Sextupoles 2464 **Octupoles/decapoles** 1568 **Orbit correctors** 642 376 Others ~ 6700 Total 1136 BUT

Outstanding LHC performance: 2010, 11 and 12

http://lhc-statistics.web.cern.ch/LHC-Statistics/index.php

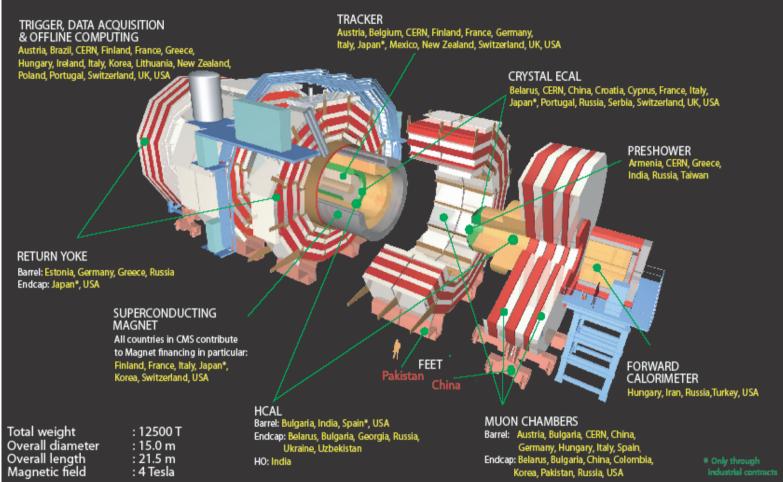
CERN	LHC Performance and Statistics	Quick search						
M	LHC Performance and Statistics	Fill number :						
Overview	Run Details Fill Summaries Supertable	Filters: 2012 💌 4TeV 💌 proton - proton 💌 Stable Beams 💌 Apply filt						

Online Integrated Luminosity

ALICE: 3.77 pb⁻¹ ATLAS: 16.64 fb⁻¹ CMS: 16.68 fb⁻¹ LHCb: 1.6 fb⁻¹

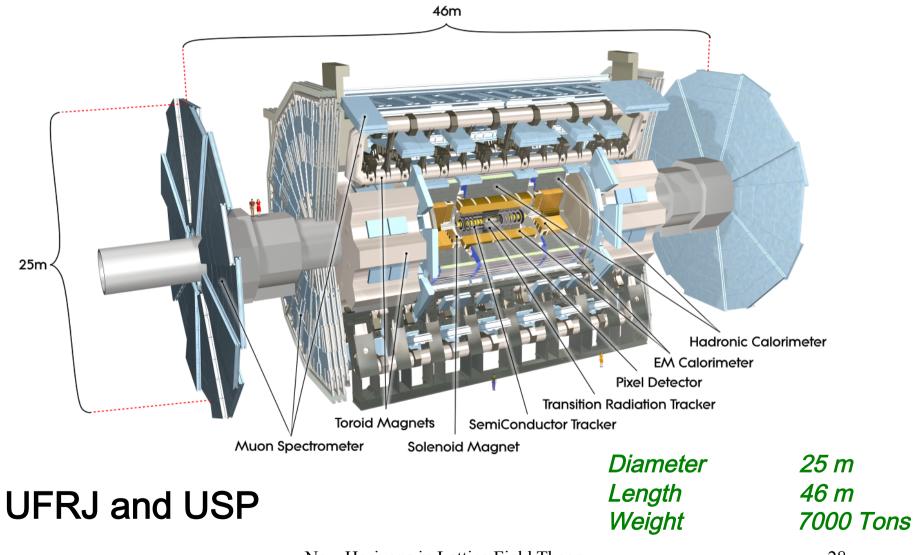
Latest 5 LHC Fills

	Fill Times		Energy	Inter	Intensity		es	Bunch Collision	Peak Luminosity [Hz/ub] = [10 ^{so} cm ^{-z} s ⁻¹]			Delivered Luminosity [nb ⁻¹] = [10 ²³ cm ⁻²]					
Fill	Fill Start	SB Start [hh:mm]	SB Duration [hh:mm]	[Gev]	B1 [10 ¹²]	B2 [10 ¹²]	Number	Norm Emitt [um]	Scheme [IPI&5/2/8]	ATLAS	ALICE	CMS	LHCb	ATLAS	ALICE	CMS	LHCb
<u>3185</u>	08:23 15/10/2012	12:43	7:45	4000	210.47	210.89	1374	2.72	1368/0/1262	6941	18.76	6914	405	121907	190.84	122362	10901
3182	18:00 14/10/2012	22:58	4:15	4000	210.18	208.38	1374	2.78	1368/0/1262	6729	15.72	6981	425	77181	107.14	78422	5915
<u>3178</u>	05:05 14/10/2012	07:49	2:21	4000	213.03	209.45	1374	2.39	1368/0/1262	6856	13.56	6915	411	47747	66.8	48779	3231
3169	<u>16:22 13/10/2012</u>	18:21	0:25	4000	11.08	11.91	78	2.76	72/0/48	334	0	341	54	479	0	473	53
<u>3138</u>	13:02 07/10/2012	17:03	9:54	4000	219	215.07	1374	2.51	1368/0/1262	7310	10.27	7244	411	149374	112.66	149403	13978

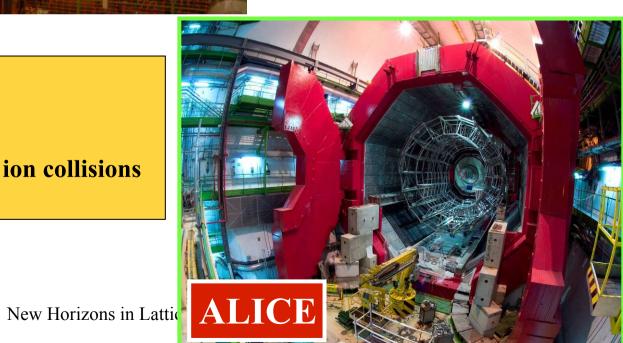

Integrated Luminosity Evolution

CMS Collaboration

38 Countries, 183 Institutes, 3000 scientists and engineers (including 400 students)

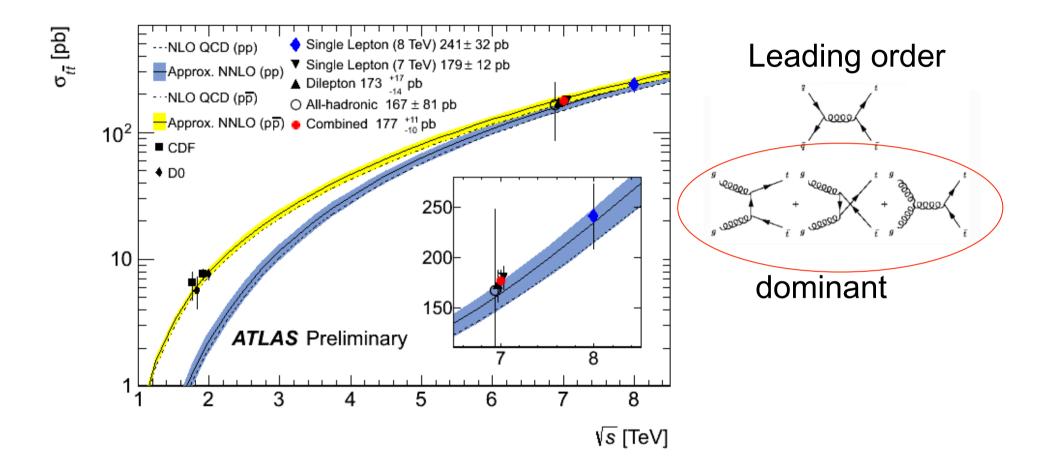


CBPF, UERJ and IFT-UNESP

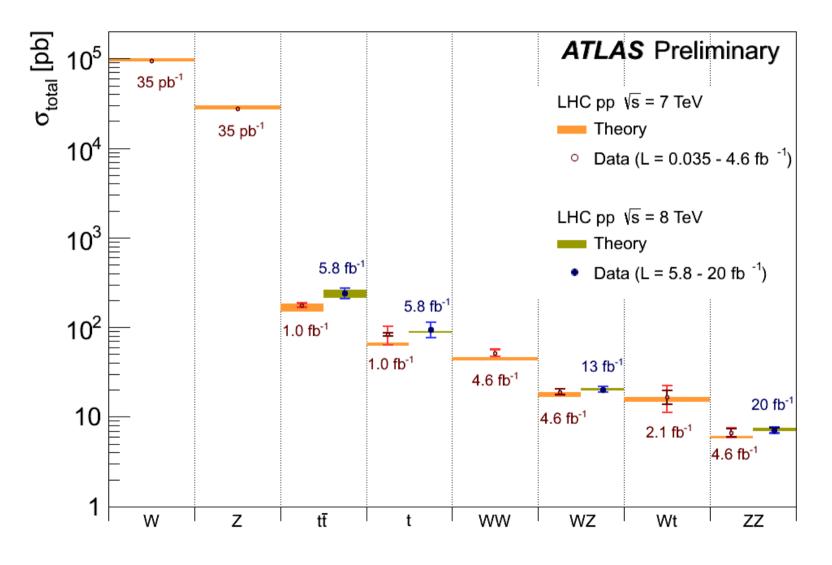

New Horizons in Lattice Field Theory

lune 200

ATLAS Collaboration



LHCb focus on b-physics (UFRJ and CBPF).

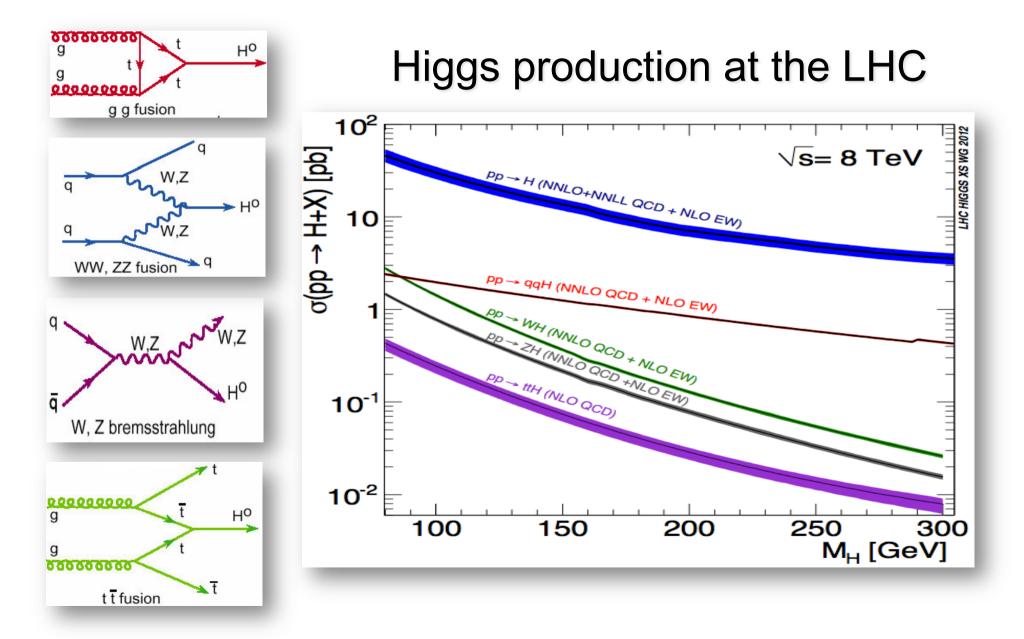

ALICE is dedicated to heavy ion collisions (USP and UNICAMP)

Example: top quark pair production

New Horizons in Lattice Field Theory

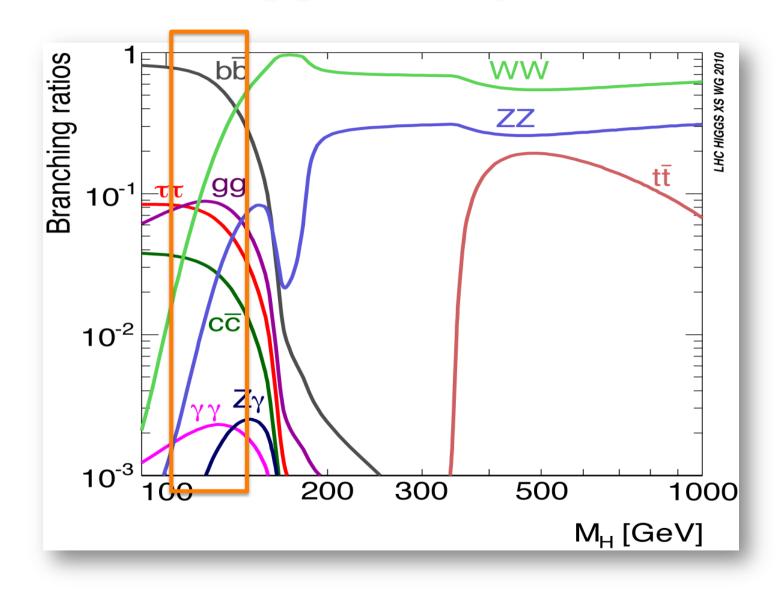
Standard Model at the LHC

2012: a Hi(gg)storical year


July 4th at CERN

"At the beginning I had no idea a discovery would be made in my lifetime,"

Finding the Higgs

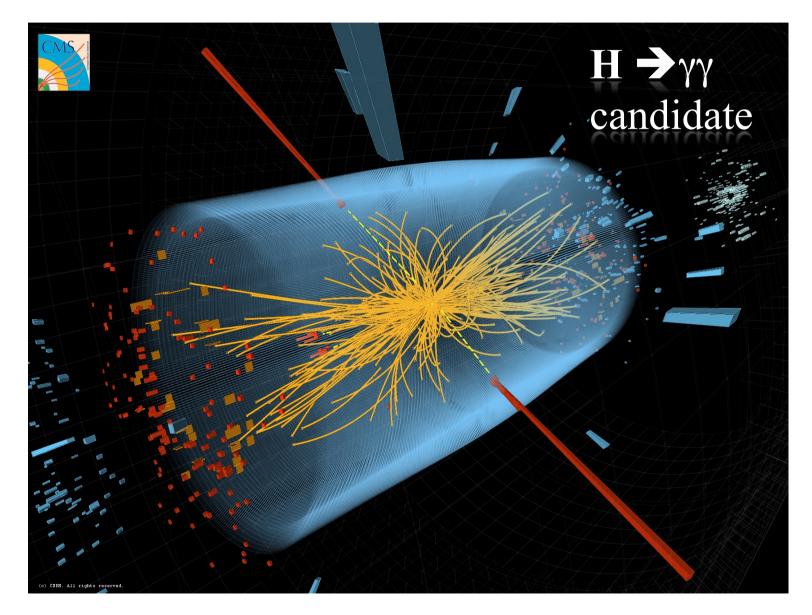


Exercises:

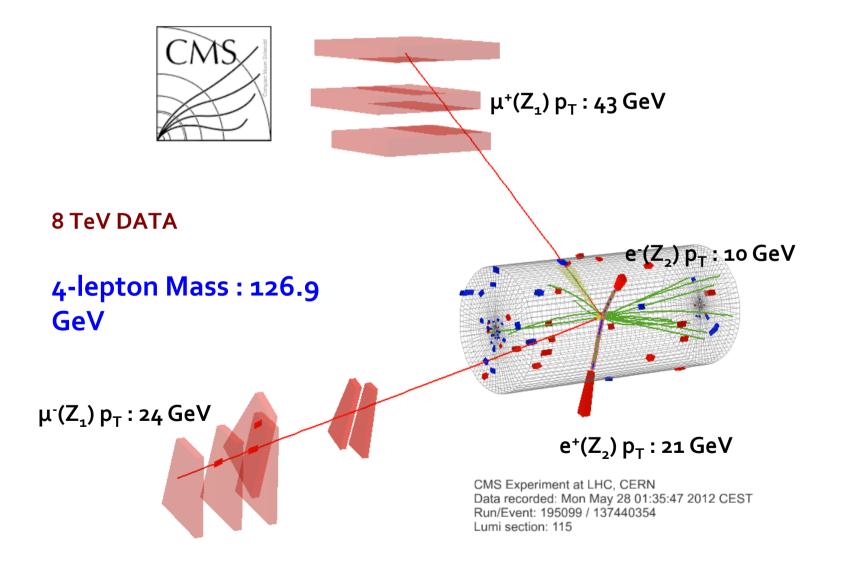
1. Given that the instantaneous luminosity at the LHC is approximately $7 \times 10^{33} \text{cm}^{-2} s^{-1}$ how many Higgs bosons are produced in one hour if its mass is 120 GeV?

2. Why ~2 Higgs bosons @ 125GeV produced at LHC out of 10¹⁰ pp collisions?

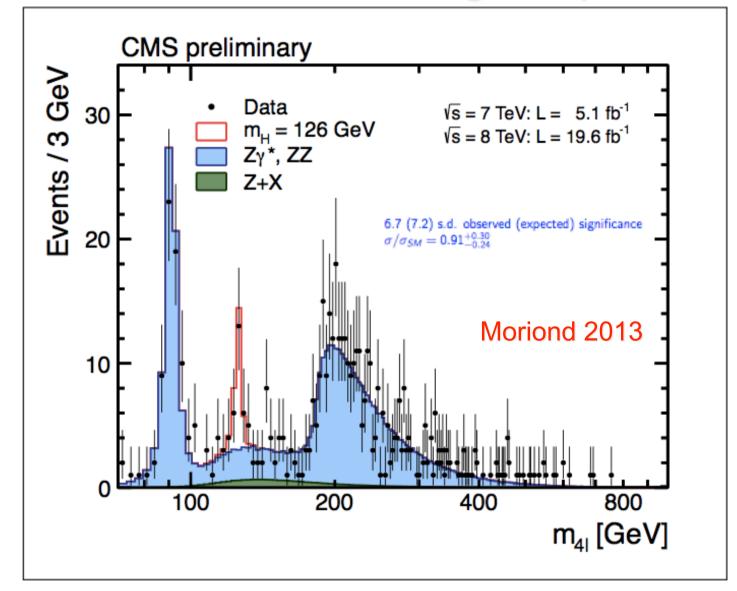
Higgs decays

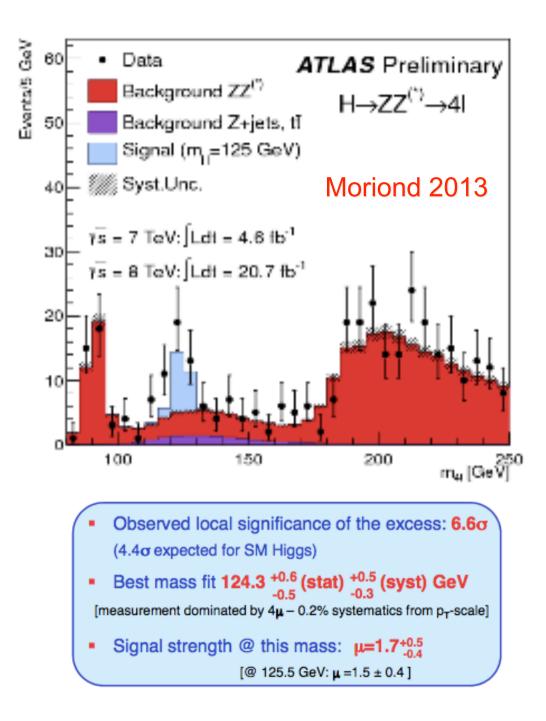


Main search channels

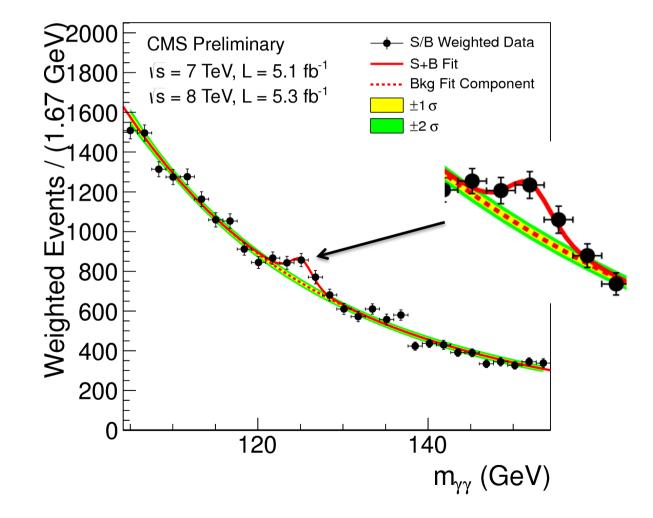

H-> γγ H-> Z Z -> 4 charged leptons

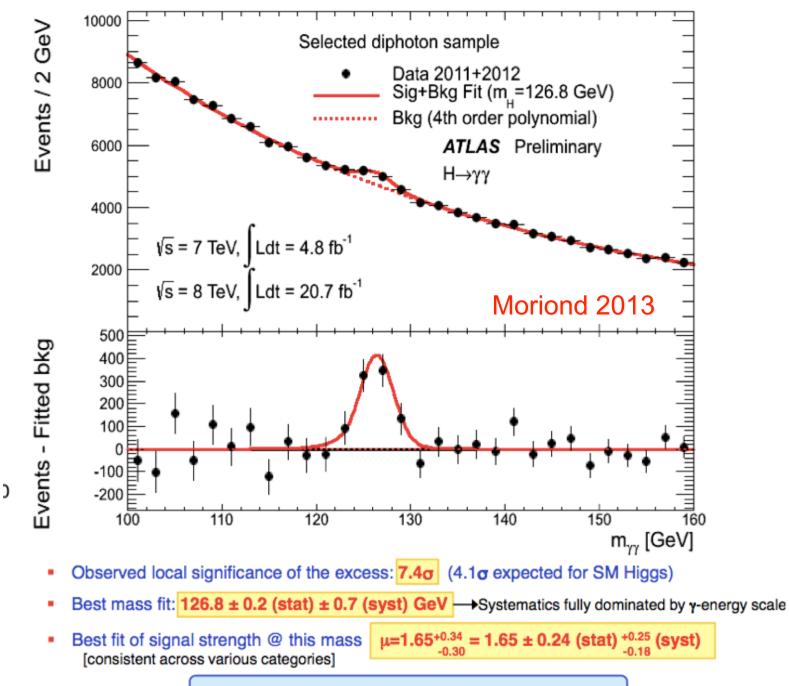
Backgrounds are manageable


H-> γγ


H-> Z Z^(*) -> 4 charged leptons

H-> Z Z^(*) -> 4 charged leptons




New Horizons in Lattice Field Theory

H-> γγ

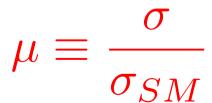
- Sum of mass distributions for each event class, weighted by S/B
 - B is integral of background model over a constant signal fraction interval

➔ 2.3σ from SM Higgs + background hypothesis

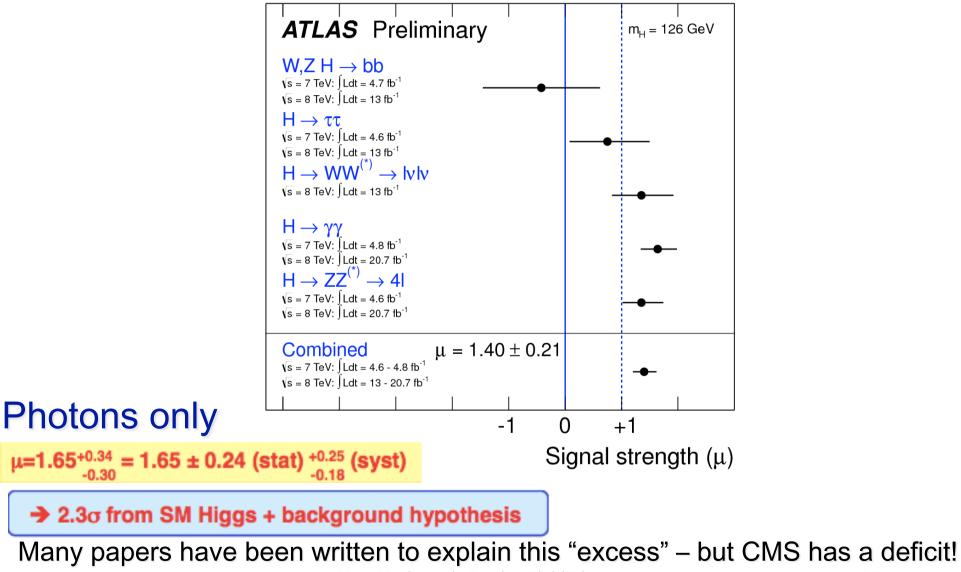
Summary of Higgs mass

$$M_{h} = 125.66 \pm 0.34 \text{ GeV} = \begin{cases} 125.4 \pm 0.5_{\text{stat}} \pm 0.6_{\text{syst}} \text{ GeV} & \text{CMS } \gamma \gamma \\ 125.8 \pm 0.5_{\text{stat}} \pm 0.2_{\text{syst}} \text{ GeV} & \text{CMS } ZZ \\ 126.8 \pm 0.2_{\text{stat}} \pm 0.7_{\text{syst}} \text{ GeV} & \text{ATLAS } \gamma \gamma \\ 124.3 \pm 0.6_{\text{stat}} \pm 0.5_{\text{syst}} \text{ GeV} & \text{ATLAS } ZZ \end{cases}$$

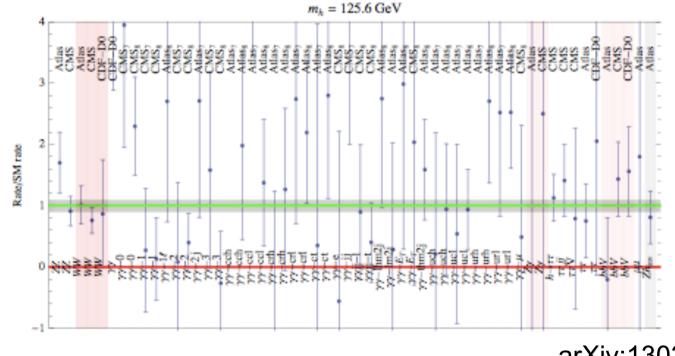
I'm not an experimentalist but I also found the Higgs at CERN...



Have we found THE Higgs?


Given the Higgs mass in the SM, all parameters are known!

Strategy: measure Higgs cross sections and compare with SM predictions.


In particular, define "signal strength":

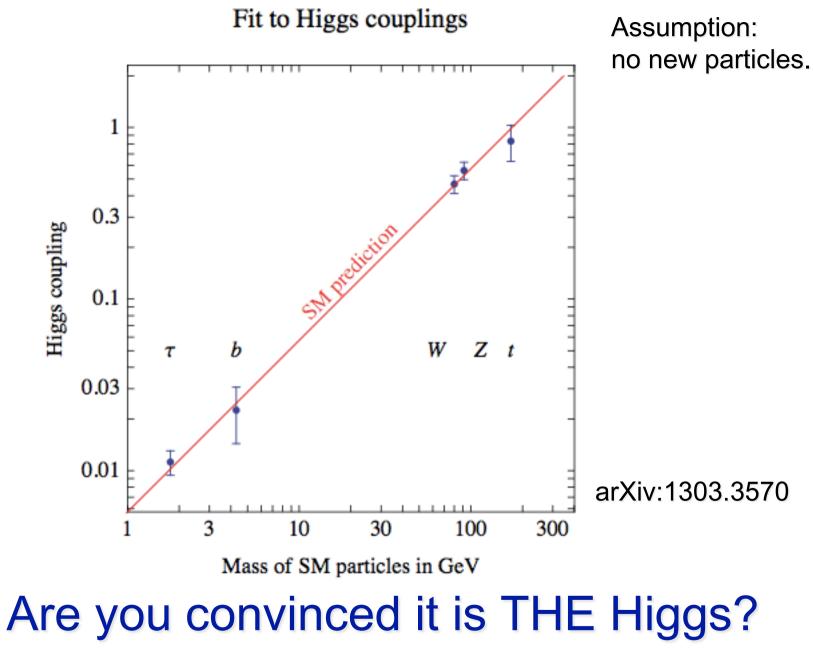
An example of signal strength

Many measurements on Higgs (but large error bars)

arXiv:1303.3570

Figure 1: Measured Higgs boson rates at ATLAS, CMS, CDF, D0 and their average (horizontal gray band at $\pm 1\sigma$). Here 0 (red line) corresponds to no Higgs boson, 1 (green line) to the SM Higgs boson (including the latest data point, which describes the invisible Higgs rate).

The universal fit


Parametrize new physics with an effective lagrangian (9 free parameters – r's - that are equal to 1 in SM):

$$\mathcal{L}_{h} = r_{t} \frac{m_{t}}{V} h \bar{t} t + r_{b} \frac{m_{b}}{V} h \bar{b} b + r_{\tau} \frac{m_{\tau}}{V} h \bar{\tau} \tau + r_{\mu} \frac{m_{\tau}}{V} h \bar{\mu} \mu + r_{Z} \frac{M_{Z}^{2}}{V} h Z_{\mu}^{2} + r_{W} \frac{2M_{W}^{2}}{V} h W_{\mu}^{+} W_{\mu}^{-} + r_{\gamma} c_{\mathrm{SM}}^{\gamma \gamma} \frac{\alpha}{\pi V} h F_{\mu \nu} F_{\mu \nu} + r_{g} c_{\mathrm{SM}}^{gg} \frac{\alpha_{s}}{12 \pi V} h G_{\mu \nu}^{a} G_{\mu \nu}^{a} + r_{Z \gamma} c_{\mathrm{SM}}^{Z \gamma} \frac{\alpha}{\pi V} h F_{\mu \nu} Z_{\mu \nu}.$$

Use all available data do minimize

$$\chi^2(r_t,r_b,r_ au,r_W,r_Z,r_g,r_\gamma,r_{Z\gamma},r_\mu,\mathrm{BR_{inv}})$$

OBS: given a model, parameters are correlated.

Another fit paper – yesterday!

Higgs At Last

Adam Falkowski^a, Francesco Riva^b, Alfredo Urbano^c

^a Laboratoire de Physique Théorique d'Orsay, UMR8627–CNRS, Université Paris–Sud, Orsay, France.

^b Institut de Théorie des Phénomènes Physiques, EPFL, 1015 Lausanne, Switzerland.
^c SISSA, via Bonomea 265, I-34136 Trieste, Italy.

Abstract

We update the experimental constraints on the parameters of the Higgs effective Lagrangian. We combine the most recent LHC Higgs data in all available search channels with electroweak precision observables from SLC, LEP-1, LEP-2, and the Tevatron. Overall, the data are perfectly consistent with the 126 GeV particle being the Standard Model Higgs boson. The Higgs coupling to W and Z bosons relative to the Standard Model one is constrained in the range [0.98, 1.09] at 95% confidence level, independently of the values of other Higgs couplings. Higher-order Higgs couplings to electroweak gauge bosons are also well constrained by a combination of LHC Higgs data and electroweak precision tests.

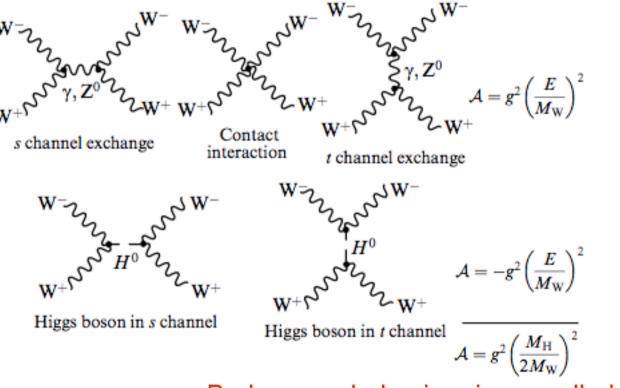
Conclusion for the successes:

All measurements performed so far at accelerators are in good agreement with predictions of the Standard Model.

Why we are not totally happy with the SM?

Shortcomings of the Standard Model

Many free parameters – mostly associated with the Higgs New non-gauge interactions: Higgs self-couplings λ

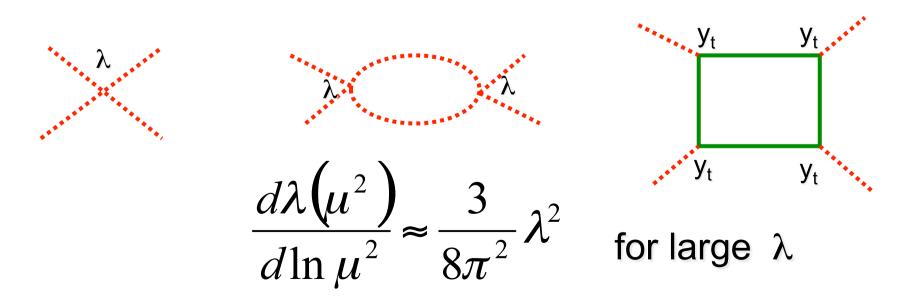

Yukawa couplings between Higgs and leptons – Flavor problem

Conceptual problems related to the scalar sector

- Perturbative unitarity
- Triviality
- Vacuum stability
- Hierarchy and naturalness

I. Perturbative unitarity

SM is "sick" without the Higgs boson – WW scattering violates perturbative unitarity



Bad energy behaviour is cancelled by the Higgs

II. Triviality: upper bound on M_H

$$V(\phi) = \lambda \left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)^2$$

"Running" λ :

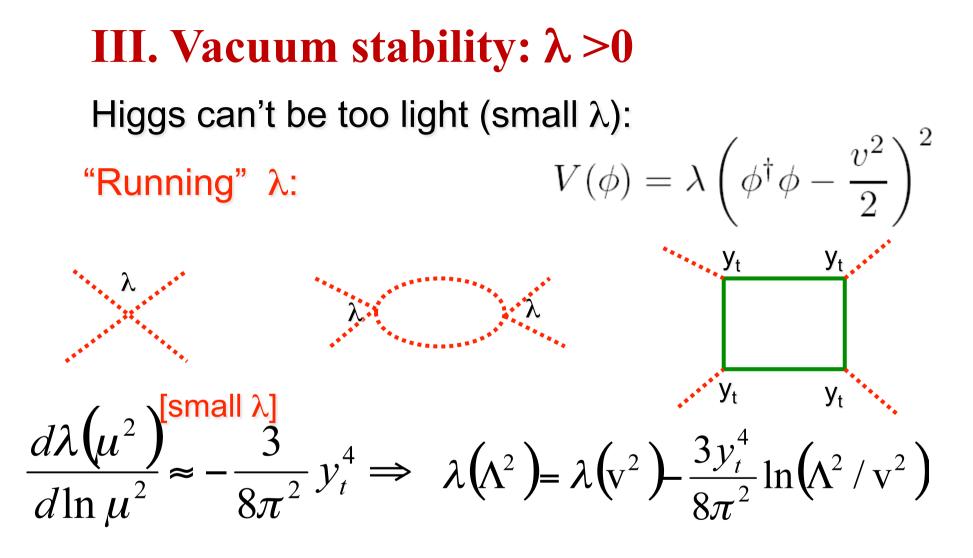
"Running" λ :

$$\lambda(\Lambda^2) = \frac{\lambda(v^2)}{1 - \frac{3\lambda(v^2)}{8\pi^2} \ln(\Lambda^2 / v^2)}$$

Landau pole: coupling constant <u>diverges</u> at an energy scale Λ :

$$\frac{3\lambda \left(v^2\right)}{8\pi^2} \ln \left(\Lambda^2 / v^2\right) = 1$$

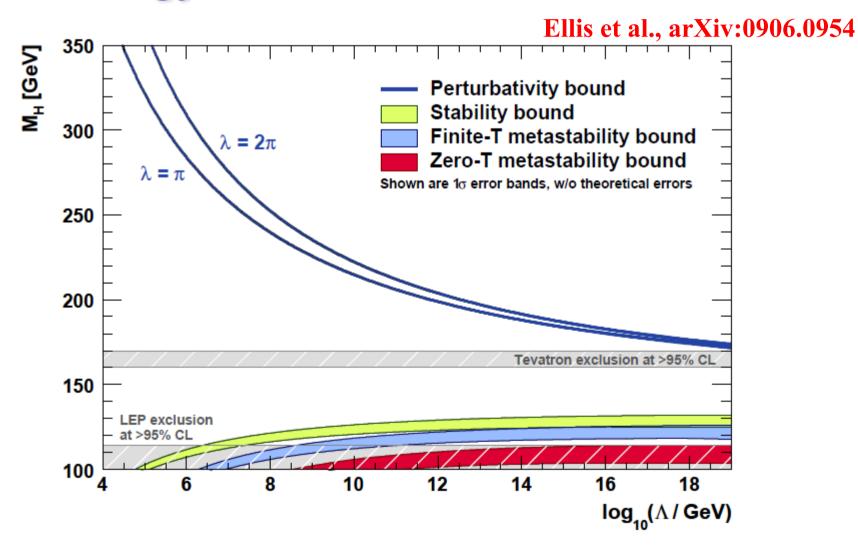
Only way to have a weel defined theory at all scales is to have a vanishing coupling: theory is trivial!


Lesson to be learned:

Higgs sector is an effective theory, valid only up to a given energy scale Λ .

Given a cutoff scale Λ there is an <u>upper limit</u> in the Higgs mass:

$$\frac{3\lambda(v^2)}{8\pi^2}\ln(\Lambda^2/v^2) < 1 \Longrightarrow$$

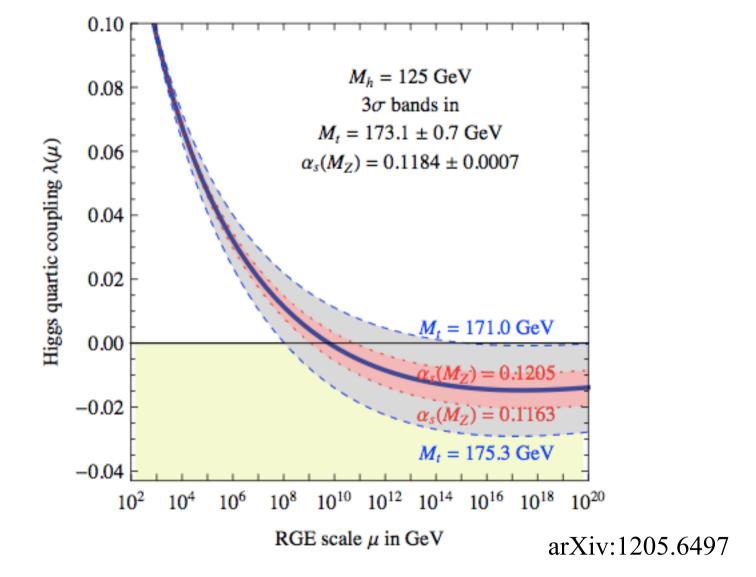

$$M_{H}^{2} = 2\lambda (v^{2}) v^{2} < \frac{16\pi^{2} v^{2}}{3\ln(\Lambda^{2} / v^{2})}$$

Vacumm stability (λ >0) implies a <u>lower bound</u>:

$$M_H^2 > \frac{3y_t^4}{4\pi^2} v^2 \ln\left(\Lambda^2 / v^2\right)$$

Higgs sector is an effective theory valid up to an energy scale Λ

Recent results on vacuum stability

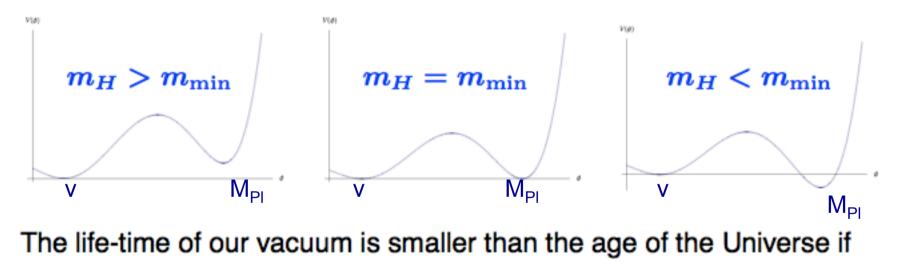

Condition for absolute stability up to the Planck scale is

Pole equation $M_h^2 = 2\lambda v^2 + \Pi_{hh}(M_h^2)$

Higgs pole mass at NNLO (independent of μ)

$$\begin{split} M_h \; [\text{GeV}] > 129.4 + 1.4 \left(\frac{M_t \; [\text{GeV}] - 173.1}{0.7} \right) &- 0.5 \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007} \right) \pm 1.0_{\text{th}} \\ M_h > 129.4 \pm 1.8 \; \text{GeV} \end{split} \quad arXiv:1205.6497 \end{split}$$

Quartic coupling becomes negative: unstable vacuum



We live in a dangerous universe

We live in a dangerous universe

If $m_H < m_{min}$, there is a deeper vacuum with the Higgs vacuum expectation value larger than the EW vev.

 $m_H < m_{
m meta}$, with $m_{
m meta} \simeq 111~
m GeV$ Espinosa, Giudice, Riotto '07

It is curious that the Higgs mass is such that the theory is stable almost up to the Planck mass!

Is this a coincidence? Is there any deep reason?

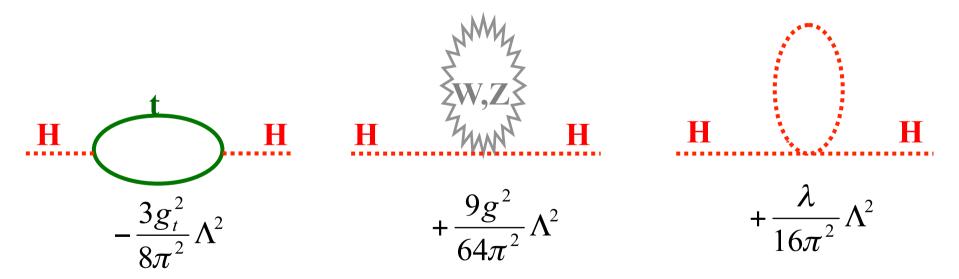
Asymptotic safety of gravity and the Higgs boson mass

Mikhail Shaposhnikov

Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Christof Wetterich

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany


12 January 2010

Abstract

There are indications that gravity is asymptotically safe. The Standard Model (SM) plus gravity could be valid up to arbitrarily high energies. Supposing that this is indeed the case and assuming that there are no intermediate energy scales between the Fermi and Planck scales we address the question of whether the mass of the Higgs boson m_H can be predicted. For a positive gravity induced anomalous dimension $A_{\lambda} > 0$ the running of the quartic scalar self interaction λ at scales beyond the Planck mass is determined by a fixed point at zero. This results in $m_H = m_{\min} = 126$ GeV, with only a few GeV uncertainty. This prediction is independent of the details of the short distance running and holds for a wide class of extensions of the SM as well. For $A_{\lambda} < 0$ one finds m_H in the interval $m_{\min} < m_H < m_{\max} \simeq 174$ GeV, now sensitive to A_{λ} and other properties of the short distance running. The case $A_{\lambda} > 0$ is favored by explicit computations existing in the literature.

IV. Hierarchy and naturalness

Higgs boson mass receives quantum corrections the takes it to be of the order of the largest scale in the theory. The origin of this behaviour is in the presence of quadratic divergences in the Higgs 2 point function:

Physical Higgs mass:

$$M_H^{2(\text{phys.})} \approx \Lambda^2 - M_H^{2(\text{bare})} = \Lambda^2 \left(1 - \frac{M_H^{2(\text{bare})}}{\Lambda^2} \right)$$

Example:

$$M_{H}^{(\text{phys.})} = 100 \text{ GeV}$$

$$\Lambda = 10^{15} \text{ GeV}$$

$$\left(1 - \frac{M_{H}^{2(\text{bare})}}{\Lambda^{2}}\right) \approx 10^{-26}!$$

Huge fine tuning of the bare Higgs mass: huge differences in energy scales are not natural.

3 possibilities for natural Higgs:

- New symmetries to protect Higgs mass from quadratic divergences:
- ✓ SUSY
- Shift symmetry (Higgs~NG boson?)
 Conformal symmetry (Higgs~dilaton?)
- SM valid only up to Λ ~1TeV Symmetry is broken by new strong interactions.

• Extra dimensions: lower Planck scale (UED) or use warped geometries (R-S).

Any substitute to the Higgs sector should:

- break SM symmetries down to EM
- generate masses for particles
- unitarize WW scattering
- explain hierarchy between electroweak and Planck scales.

Beyond the Standard Model

- explain hierarchy between electroweak and Planck scales.
- explain dark matter
- explain neutrino masses
- explain baryon asymmetry in the universe

All candidates predict new particles at the TeV scale! On to the LHC!!