Lattice calculations of the leading hadronic contribution to $(g-2)_{\mu} \label{eq:g-2}$

Institute for Nuclear Physics and Helmholtz Institute Mainz, University of Mainz

New Horizons in Lattice Field Theory, Natal, Brazil

In collaboration with A. Jüttner, M. Della Morte and H. Wittig based on arXiv:1211.1159

Motivation

Motivation

The anomalous magnetic moment of the muon

- $a_{\mu} = (g_{\mu} 2)/2$ shows a discrepancy of $\sim 3\sigma$ between experiment and theory
- $\bullet\,$ Strong interaction dominates the theoretical uncertainty of $a_{\mu}:$
 - QCD (α_s^2) : 4.1 · 10⁻¹⁰
 - QCD (α³_s,LbL): 2.6 · 10⁻¹⁰
 - Weak (up to $O(\alpha_W^2)$): $0.2 \cdot 10^{-10}$
 - QED (up to $O(\alpha^5)$): $0.02 \cdot 10^{-10}$ [PDG, 2010]

Methods of determine a_{μ}^{had}

- Optical Theorem using $e^+ e^-
 ightarrow$ hadrons data (Rogerio Rosenfeld's talk)
- Lattice QCD allows an ab initio calculation
- ChPT, ...

In the continuum

• Vacuum polarization tensor defined as current-current correlator

$$\sim \mu$$

$$\Pi_{\mu\nu}(q)=i\!\int\!d^4x\,e^{i\,q\,x}\left\langle J_{\mu}(x)J_{\nu}(0)\right\rangle=\left(q_{\mu}q_{\nu}-q^2g_{\mu\nu}\right)\Pi(q^2)$$

- Currently only connected diagram considered
 - Two flavour $\chi PT \Rightarrow Disconnected \ diagram \approx -10\%$ [Jüttner, Della Morte, 2010]
 - Lattice study \Rightarrow Disconnected diagram compatible with 0 (large error bars) [ETMC, 2011]

On the lattice

• $\Pi_{\mu\nu}$ can be expressed in terms of gauge links $U_{\mu}(n)$ and propagators D_{lat}^{-1}

$$\Pi_{\mu\nu}(q) = \mathfrak{a}^4 \sum_{n \in \Lambda} e^{\mathfrak{i}q(n+\mathfrak{a}\hat{\mu}/2)} \left\langle J^{\mathsf{c}}_{\mu}(n) J^{\mathsf{l}}_{\nu}(0) \right\rangle = \left(q_{\mu}q_{\nu} - q^2 \delta_{\mu\nu}\right) \Pi(q^2)$$

- Use local current J^I at the source and conserved point-split current J^c at sink: \rightarrow Only 1 inversion needed, but $\Pi_{\mu\nu}$ needs to renormalized. [Boyle, et al, 2011]
- Twisted boundary conditions applied to valence quarks

$$\psi(\mathbf{x} + \mathbf{L}) = \exp\left(i\frac{\Theta_{i}}{\mathbf{L}}\mathbf{x}_{i}\right)\psi(\mathbf{x})$$

 $\Rightarrow \text{Momentum becomes tunable by } \Theta_i: \ q_i = \frac{2\pi n_i}{L} - \frac{\Theta_i}{L} \qquad \qquad [\text{Sachrajda, Villadoro, 2005}]$

• Determine
$$\alpha_{\mu}^{had}$$
 by convolution integral: $4\alpha^{2}\int\limits_{0}^{\infty}F\left(\frac{q^{2}}{m_{\mu}^{2}}\right)\left(\Pi(0)-\Pi(q^{2})\right)dq^{2}$

Simulation details

- O(a) improved Wilson fermions (Wilson clover)
- $\bullet~N_{\rm f}=2$ and $N_{\rm f}=2+$ quenched strange

• CLS ensembles:

β	a [fm]	lattice	L [fm]	\mathfrak{m}_{π} [MeV]	$m_{\pi}L$	Labels
5.20	0.079	$64 imes 32^3$	2.5	473, 363, 312	6.0, 4.7, 4.0	A3, A4, A5
5.30	0.063	$64 imes 32^3$	2.0	606, 451	6.2 , 4.7	E4, E5
5.30	0.063	$96 imes 48^3$	3.0	324, 277	5.0, 4.2	F6, F7
5.30	0.063	$128 imes 64^3$	4.0	190	4.0	G8
5.50	0.050	$96 imes 48^3$	2.4	536, 430, <mark>330</mark>	6.5, 5.2, <mark>4.1</mark>	N4, N5, <mark>N6</mark>
5.50	0.050	128×64^3	3.2	260	4.4	07

 $\bullet\,$ 2-loop perturbation theory matched to lattice data at $q_0^2\approx 2.6\,GeV^2$

• Data from twisted boundary conditions improve stability of the fit

• Determine a_{μ}^{had} by convolution integral: $a_{\mu}^{had} = 4\alpha^2 \int_{0}^{\infty} F\left(\frac{q^2}{m_{\mu}^2}\right) \left(\Pi(0) - \Pi(q^2)\right) dq^2$

• Twisted boundary conditions improve the crucial low momentum behaviour

Hadronic Contribution to a_{μ} for $N_f = 2$

• Chiral behavior unknown: χPT inspired fit : $A + Bm_{\pi}^2 + Cm_{\pi}^2 \ln (m_{\pi}^2)$

Hadronic Contribution to a_{μ} for $N_f = 2$

• Chiral behaviour unknown: Try linear extrapolation on most chiral points

Hadronic Contribution to a_{μ} for $N_f = 2 + 1_Q$

Hadronic Contribution to a_{μ} for $N_f = 2 + 1_Q$

Outlook and Conclusion

Conclusion

- \bullet Lattice QCD can calculate α_{μ}^{had} from first principles
- Twisted boundary conditions improve momentum dependence of $\Pi(q^2)$ and help to control the systematic uncertainties of a_μ
- New currents (local and conserved) reduce numerical cost by factor 5
- Chiral extrapolation improved by additional ensembles ($m_\pi^2 < 200 \text{ MeV}$)

Outlook

- Further improvements necessary to compete with phenomenological approach
 - Improve statistics (e.g. by multiple sources)
 - Study finite size and volume effects
 - Dynamical strange quark (and charm quark)
 - Disconnected diagrams (e.g. by hopping parameter expansion)
 - Simulations at the physical pion mass
 - Isospin breaking

Thank you for your attention!

Kernel

 \bullet Subtracted vacuum polarisation $\widehat{\Pi}(q^2)$ is unchanged $\to \alpha_{\mu}^{had}$ remains unchanged