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Why the Muon?

a = (g − 2)/2 measures the departure of a fermion’s g factor from its

tree-level value 2, from Dirac’s equation. The value for the electron is

the most precise quantity in physics

ae = 0.001 159 652 181 643(764) from theory

= 0.001 159 652 180 73(28) from experiment
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Why the Muon?

a = (g − 2)/2 measures the departure of a fermion’s g factor from its

tree-level value 2, from Dirac’s equation. The value for the electron is

the most precise quantity in physics

ae = 0.001 159 652 181 643(764) from theory

= 0.001 159 652 180 73(28) from experiment

Muon gets other contributions, may couple to BSM particles and lives

long enough to yield precise measurements

aµ = 0.001 165 920 61(41)
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The Anomaly

Theoretical value (×10−11)

Muon g-2 Theory Initiative presented 200-page report last year

IF-USP May 2021

https://arxiv.org/pdf/2006.04822.pdf


The Anomaly

Theoretical value (×10−11)

Muon g-2 Theory Initiative presented 200-page report last year

Hadronic contributions dominate the error: HVP effects appear at

O(α2), HLbL at O(α3); nonperturbative calculations involve both

lattice-QCD simulations & comparison with e+e− collision data

(data-driven approach)

IF-USP May 2021

https://arxiv.org/pdf/2006.04822.pdf


The Anomaly

Theoretical value (×10−11)

Muon g-2 Theory Initiative presented 200-page report last year

Hadronic contributions dominate the error: HVP effects appear at

O(α2), HLbL at O(α3); nonperturbative calculations involve both

lattice-QCD simulations & comparison with e+e− collision data

(data-driven approach)

Tension btw theory (SM) and experiment increased from 3.7σ to 4.2σ
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Latest Lattice Results

BMW Collaboration

Computation of HVP contribution

Nature article (published April 7,

same day as Muon g-2 PRL paper)
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Latest Lattice Results

BMW Collaboration

Computation of HVP contribution

Nature article (published April 7,

same day as Muon g-2 PRL paper)

Very large-scale first principles computation
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Two-Point Functions, QED Effects
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Control over Systematic Effects

Uses staggered quarks; improvements over similar calculations:

new way to set the lattice scale

consideration of physical quark-mass differences

better inversion of fermion matrix using lower modes

better control of finite-size effects (border effects)
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Control over Systematic Effects

Uses staggered quarks; improvements over similar calculations:

new way to set the lattice scale

consideration of physical quark-mass differences

better inversion of fermion matrix using lower modes

better control of finite-size effects (border effects)

Thoughts:

If the anomaly were to disappear — some in the particle

physics community fear nothing less than “the end of particle

physics”. The Fermilab g-2 experiment is our last hope of an

experiment proving the existence of BSM physics

But also: Tension related to possible break-down of

data-driven approach would itself suggest new physics
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non-Abelian gauge theories, such as QCD
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General Aspects of Lattice QCD

Lattice gauge theories provide a nonperturbative way to investigate

non-Abelian gauge theories, such as QCD

Lattice formulation considers a discretized ver-

sion of the theory; physical quantities are ob-

tained in the limit of zero lattice spacing

Statistical mechanics tools, such as numerical (Monte

Carlo) simulation ⇒ New approach to QFT, direct access

to (representative) gauge-field configurations

First principles study of low-energy QCD properties (confinement,

chiral-symmetry breaking, dynamical mass generation)

Importance for high-energy physics: Instrumental in precision tests of

(strong-sector of) SM, in the search for new physics
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The QCD Lagrangian

L = −1

4
F aµν F

µν
a +

6
∑

f=1

ψ̄f,i
(

i γµDij
µ −mf δij

)

ψf,j

a = 1, . . . , 8; i = 1, . . . , 3; T aij = SU(3) generators

F aµν ≡ ∂µA
a
ν − ∂νA

a
µ + g0 fabcA

b
µA

c
ν

Dµ ≡ ∂µ − i g0A
a
µ Ta

Invariant under local gauge transformations Ω(x) = exp [−ig0Λa(x)Ta]

AΩ
µ (x) = Ω(x)Aµ(x)Ω

−1(x)− i

g0
[∂µΩ(x)] Ω

−1(x)

ψΩ
f (x) = Ω(x)ψf (x)
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The QCD Lagrangian

L = −1

4
F aµν F

µν
a +

6
∑

f=1

ψ̄f,i
(

i γµDij
µ −mf δij

)

ψf,j

a = 1, . . . , 8; i = 1, . . . , 3; T aij = SU(3) generators

F aµν ≡ ∂µA
a
ν − ∂νA

a
µ + g0 fabcA

b
µA

c
ν

Dµ ≡ ∂µ − i g0A
a
µ Ta

Invariant under local gauge transformations Ω(x) = exp [−ig0Λa(x)Ta]

AΩ
µ (x) = Ω(x)Aµ(x)Ω

−1(x)− i

g0
[∂µΩ(x)] Ω

−1(x)

ψΩ
f (x) = Ω(x)ψf (x)

Like QED, but gauge symmetry is SU(3) instead of U(1)

quarks (spin-1/2 fermions)

gluons (vector bosons) / color charge
⇔ electrons

photons / electric charge
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Gluons Have Color

Note: contribution F aµν ∼ g0 f
abcAbµA

c
ν means that in addition to

quadratic terms (propagators) and the usual vertex

Lψ̄ψA = g0 ψ̄ γ
µAµ ψ (quark-quark-gluon vertex)

Lagrangian contains terms with 3 and 4 gauge fields

LAAA = g0 f
abcAµa Aνb ∂µA

c
ν ⇒ three-gluon vertex
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Gluons Have Color

Note: contribution F aµν ∼ g0 f
abcAbµA

c
ν means that in addition to

quadratic terms (propagators) and the usual vertex

Lψ̄ψA = g0 ψ̄ γ
µAµ ψ (quark-quark-gluon vertex)

Lagrangian contains terms with 3 and 4 gauge fields

LAAA = g0 f
abcAµa Aνb ∂µA

c
ν ⇒ three-gluon vertex

⇒ gluons interact (have color charge), determining the peculiar

properties and the nonperturbative nature of low-energy QCD

⇒ nonlinear effects

⇒ Running coupling αs(p) instead of α ≈ 1/137
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Confinement vs. Aymptotic Freedom

At high energies: deep inelastic scattering of electrons reveals

proton made of partons: pointlike and free. In this limit αs(p) ≪ 1

(asymptotic freedom) and QCD is perturbative

αs(p) =
4π

β0 log (p2/Λ2)

[

1− 2β1
β2
0

log (log (p2/Λ2))

log (p2/Λ2)
+ . . .

]
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Confinement vs. Aymptotic Freedom

At high energies: deep inelastic scattering of electrons reveals

proton made of partons: pointlike and free. In this limit αs(p) ≪ 1

(asymptotic freedom) and QCD is perturbative

αs(p) =
4π

β0 log (p2/Λ2)

[

1− 2β1
β2
0

log (log (p2/Λ2))

log (p2/Λ2)
+ . . .

]

At low energies: interaction gets stronger, αs ≈ 1 and confinement

occurs. Color field may form flux tubes

q− −q +

linear increase of inter-quark potential → string tension

At large distances → string breaks
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How do we perform calculations?

The strength of the interaction αs increases for larger r

(smaller p ) and vice-versa (asymptotic freedom).

Perturbation theory breaks down in the limit of small

energies.
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QCD on a Lattice

Kenneth Geddes Wilson (June 8, 1936 – June 15, 2013)

Lattice used by Wilson in 1974 as a trick to prove confinement in

(strong-coupling) QCD

[Confinement of quarks, Phys. Rev. D 10, 2445 (1974)]
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QCD on a Lattice (II)

As recalled by Wilson

[...] Unfortunately, I found myself lacking the detailed

knowledge and skills required to conduct research

using renormalized non-Abelian gauge theories. What

was I to do, especially as I was eager to jump into this

research with as little delay as possible? [...] from my

previous work in statistical mechanics I knew a lot about

working with lattice theories...

[...] I decided I might find it easier to work with a lattice

version of QCD. . .

The Origins of Lattice Gauge Theory, hep-lat/0412043 (Lattice 2004)
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Context

Quark Model, from 1964, was only accepted in 1974, through so-called

November Revolution, after discovery of J/Ψ particle, which is a bound

state of a charm quark c and its antiquark (later: b, t)
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Context

Quark Model, from 1964, was only accepted in 1974, through so-called

November Revolution, after discovery of J/Ψ particle, which is a bound

state of a charm quark c and its antiquark (later: b, t)

Around the same time:

1) Proposal of Quantum Chromodynamics, a QFT with SU(3) gauge

symmetry based on color charge, according to which quarks interact

via massless vector bosons, called gluons (H. Fritzsch, M. Gell-Mann

& H. Leutwyler, 1973)

2) Discovery of asymptotic-freedom property for QCD, i.e. that

interaction weakens at high energies, or small distances (D. Gross, F.

Wilczek & D. Politzer, 1973)

3) Proposal of a method (i.e. the lattice formulation) to study the

problem of confinement in QCD (K. Wilson, 1974)
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Lattice QCD Ingredients

Three ingredients

1. Quantization by path integrals ⇒ sum over

configurations with “weights” ei S/~

2. Euclidean formulation (analytic continuation

to imaginary time) ⇒ weight becomes e−S/~

3. Discrete space-time ⇒ UV cut at momenta

p ∼< 1/a ⇒ regularization
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Lattice QCD Ingredients

Three ingredients

1. Quantization by path integrals ⇒ sum over

configurations with “weights” ei S/~

2. Euclidean formulation (analytic continuation

to imaginary time) ⇒ weight becomes e−S/~

3. Discrete space-time ⇒ UV cut at momenta

p ∼< 1/a ⇒ regularization

Also: finite-size lattices ⇒ IR cut for small momenta p ≈ 1/L

The Wilson action

is written for the gauge links Ux,µ ≡ eig0aA
b
µ(x)Tb

reduces to the usual action for a→ 0

is gauge-invariant
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The Lattice Action

The Wilson action (1974)

S = −β
3

∑

✷

ReTrU✷ , Ux,µ ≡ eig0aA
b
µ(x)Tb , β = 6/g0

2

written in terms of oriented plaquettes formed by the link variables

Ux,µ, which are group elements

under gauge transformations: Ux,µ → g(x)Ux,µ g
†(x+ µ), where

g ∈ SU(3) ⇒ closed loops are gauge-invariant quantities

integration volume is finite: no need for gauge-fixing

At small β (i.e. strong coupling) we can perform an expansion

analogous to the high-temperature expansion in statistical mechanics.

At lowest order, the only surviving terms are represented by diagrams

with “double” or “partner” links, i.e. the same link should appear in both

orientations, since
∫

dU Ux,µ = 0
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Confinement and Area Law

Considering a rectangular loop with sides R and T (the Wilson loop) as

our observable, the leading contribution to the observable’s

expectation value is obtained by “tiling” its inside with plaquettes,

yielding the area law

〈W (R, T )〉 ∼ βRT

But this observable is related to the interquark potential for a static

quark-antiquark pair

〈W (R, T )〉 = e−V (R)T

We thus have V (R) ∼ σR, demonstrating confinement at strong

coupling (small β)!

Problem: the physical limit is at large β...
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(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)
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Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)

Evaluate expectation values

〈O〉 =

∫

DU O(U)P (U) =
1

N

∑

i

O(Ui)

with the weight

P (U) =
e−Sg(U) detK(U)

Z
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(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)

Evaluate expectation values

〈O〉 =

∫

DU O(U)P (U) =
1

N

∑

i

O(Ui)

with the weight

P (U) =
e−Sg(U) detK(U)

Z

Very complicated (high-dimensional) integral to compute!

⇒ Monte Carlo simulations: sample representative gauge

configurations, then compute O and take average
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Numerical Simulations

Monte Carlo methods (Ulam, 1940’s): statistical

description of the possible configurations of a

system, which is simulated on a computer.

Useful in

designing/analyzing experiments

studying the theory of stochastic (statistical)

systems

doing calculations in quantum field theory
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Monte Carlo Simulations

Stochastic systems are simulated on the computer using a

random number generator

⇒ theoretical approach, with experi-

mental aspects:

data, errors

“measurements” in time
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Monte Carlo Method: Summary

Integral becomes sum of random variables

∫

f(x) dµ , dµ =
e−βH(x)

Z
dx ⇒ 1

N

N
∑

i=1

f(xi)

where xi have statistical distribution µ

• Static Monte Carlo: independent sampling (error ∼ 1/
√
N )

• Dynamic Monte Carlo: Simulation of a Markov chain with

equilibrium distribution µ (error ∼
√

τ/N ). Autocorrelation time τ

related to critical slowing-down. Note: similar to experimental

methods, but temporal dynamics was artificially introduced

Errors: either consider only effectively independent samples (via

temporal correlation analysis) and error is given by standard deviation,

jack-knife, bootstrap or consider all samples and error is estimated

taking correlations into account: binning method, self-consistent

windowing method
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Lattice QCD Simulations

(Classical) Statistical-Mechanics model — which may be studied by

Monte Carlo simulations — with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)

(taking detK = 1 corresponds to quenched approximation)
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Lattice QCD Simulations

(Classical) Statistical-Mechanics model — which may be studied by

Monte Carlo simulations — with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)

(taking detK = 1 corresponds to quenched approximation)

Monte Carlo methods

• pure gauge (quenched):

Metropolis / Heat Bath + Overrelaxation

• gauge + dynamic quarks (full QCD):

Hybrid Monte Carlo (HMC)

Note: m = mlatt/a ; as a→ 0 correlation length ξlatt = 1/mlatt → ∞
⇒ Continuum limit corresponds to critical point of the lattice theory
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Quark Bound States from Lattice QCD

The recipe for lattice simulations:

1) Evolve gluon fields (link variables) in the Monte Carlo dynamics

associated with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)

(the quenched approximation corresponds to detK = 1)
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The recipe for lattice simulations:

1) Evolve gluon fields (link variables) in the Monte Carlo dynamics
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appropriate Dirac matrix (e.g. Γ = γ5 for pseudoscalar mesons)
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Quark Bound States from Lattice QCD

The recipe for lattice simulations:

1) Evolve gluon fields (link variables) in the Monte Carlo dynamics

associated with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)

(the quenched approximation corresponds to detK = 1)

2) Obtain quark propagators from < ψψ >=< K−1 >

3) Use the quark fields to build (Euclidean) correlators for the desired

bound states C(t) =< O(t)O(0) >, where O(t) = ψ Γψ and Γ is the

appropriate Dirac matrix (e.g. Γ = γ5 for pseudoscalar mesons)

4) Extract masses, etc from C(t) →
∑

n |< 0|O|n > |2 e−Ent ⇒ at

large t meff(t) = log[C(t)/C(t+ 1)] approaches a plateau

IF-USP May 2021



Quark Bound States from Lattice QCD

The recipe for lattice simulations:

1) Evolve gluon fields (link variables) in the Monte Carlo dynamics

associated with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)

(the quenched approximation corresponds to detK = 1)

2) Obtain quark propagators from < ψψ >=< K−1 >

3) Use the quark fields to build (Euclidean) correlators for the desired

bound states C(t) =< O(t)O(0) >, where O(t) = ψ Γψ and Γ is the

appropriate Dirac matrix (e.g. Γ = γ5 for pseudoscalar mesons)

4) Extract masses, etc from C(t) →
∑

n |< 0|O|n > |2 e−Ent ⇒ at

large t meff(t) = log[C(t)/C(t+ 1)] approaches a plateau

5) Translate results into physical units: m = mlatt/a, take → 0.
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A Few Remarks

⇒ Gauge action may be the Wilson action or an improved action (the

same is valid for the fermion part)
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A Few Remarks

⇒ Gauge action may be the Wilson action or an improved action (the

same is valid for the fermion part)

⇒ “Valence” (considered for the inversion of K) and “sea” quarks

(considered for the Monte Carlo dynamics) may not have the same

masses ⇒ quenched/partially quenched approximations

⇒ Fermion operator K depends on the choice of lattice formulation for

the fermions. Most common choices are

Wilson fermions: break chiral symmetry at finite a

Staggered (Kogut-Susskind) fermions: good chiral properties, but

produce 4 flavors of quarks; fewer-flavor case obtained by taking

roots of detK

nowadays: chiral symmetry (at zero quark mass) and locality are

satisfied by so-called chiral fermions

IF-USP May 2021



Context

The approach had a “marvelous side effect”, as Michael

Creutz calls it

By discreetly making the system discrete, it

becomes sufficiently well defined to be placed on a

computer. This was fairly straightforward, and

came at the same time that computers were

growing rapidly in power. Indeed, numerical

simulations and computer capabilities have

continued to grow together, making these efforts

the mainstay of lattice gauge theory.

The Early days of lattice gauge theory,

AIP Conf. Proc. 690, 52 (2003)

IF-USP May 2021
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Spectroscopy via Lattice QCD

Light hadron spectrum - 20th century computation (quenched)

CP-PACS Collaboration, Phys. Rev. Lett. (2000).
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Lattice QCD Then...

Won’t you admit it’s a trifle hysterical

To disbelieve every result that’s numerical?

How, then, could you use modern aviation?

For the planes are designed by simulation.

And are experiments at accelerators all unsound,

Because they simulate the QCD background?

O why do you recoil in terror

From calculations that control their error?

Give it up! The symmetry’s surely broken,

The order parameter (its token)

Refuses, by 20 σ, to go away.

What’s that, a coincidence? No way!

No offense, but it’s silly to avert your eyes

After 1018 floating point multiplies.

Frank Wilczek; Physics Today, March 1999
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...and Now

Light hadron masses computed by S. Dürr et al. (Science, 2008) &

experimental values. Note: π, K and Ξ used as inputs

Cited by F. Wilczek in Nature 456, 449 (November 2008)
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Lattice QCD Today

Precise determination of nucleon mass proves that interaction between

quarks generates (almost all) mass of visible universe!
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light hadron spectrum, including mass difference between neutron and

proton: S. Borsanyi et al., Science 347, 1452 (2015)
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Lattice QCD Today

Precise determination of nucleon mass proves that interaction between

quarks generates (almost all) mass of visible universe!

Calculations have reached high precision for the determination of the

light hadron spectrum, including mass difference between neutron and

proton: S. Borsanyi et al., Science 347, 1452 (2015)

Large part of the effort in the field is in hadron spectroscopy; full

calculations of heavy-quark systems (especially for B-physics) are still

prohibitive, but QED effects are now included!

High-precision tests of the Standard Model are formidable technical

and conceptual challenge; spectrum calculations provide confirmation

of QCD as the theory of strong interactions ⇒ first step towards

understanding of fundamental QCD questions , e.g. confinement
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Confinement from Simulations

May observe formation of flux tubes

Linear Growth of potential between quarks, string breaking
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Confinement: the Elephant in the Room

Do we understand confinement?

⇒ we know what it looks like,

but do we know what it is?
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Confinement: the Elephant in the Room

Do we understand confinement?

⇒ we know what it looks like,

but do we know what it is?

Millenium Prize Problems (Clay Mathematics Institute, USA/UK)

Yang-Mills and Mass Gap: Experiment and computer simulations suggest

the existence of a mass gap in the solution to the quantum versions of the

Yang-Mills equations. But no proof of this property is known.
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Large Lattices via Bloch’s Theorem

Perform thermalization step on small lattice, then replicate it and use

Bloch’s theorem from condensed-matter physics to obtain gauge-fixing

step for much larger lattice (A. Cucchieri, TM, PRL 2017)

N=4, m=3

−1.0

−0.5

0.0

0.5

1.0
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Conclusions

Lattice simulations offer direct access to (representative) gauge-field

configurations, with which first principles calculations are carried out,

keeping errors (and extrapolations) under control
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Initiative, end of June)
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Conclusions

Lattice simulations offer direct access to (representative) gauge-field

configurations, with which first principles calculations are carried out,

keeping errors (and extrapolations) under control

The field has entered the precision era over the past decade

New developments expected soon (4th Workshop of Muon g-2 Theory

Initiative, end of June) but BWM’s Nature results are likely correct...
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