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Phase structure of QCD
QCD expected to have a rich phase structure
                                                               at finite T ’s and µ’s. 

Relevant to the early evolution of the Universe, 
origin of the matter, structure of neutron stars 
and supernovae, etc.

We want to know quantitatively
n properties of the matter in each phase
n location of transition lines / critical 

points / ...

They are now in reach of experiments at RHIC/LHC/...
<=  theoretical inputs directly from the 1st principles of QCD
      indispensable.
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Phase structure of QCD
On the lattice, we are free to vary fundamental parameters.

Sensitive dependence on quark masses.
       “standard” scenario at µ=0 :                                             alternative scenario :

Phys.
point?

What happens at µ≠0?

µ
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LQCD at µ≠0

=>  
=>  MC based on importance sampling with detM not justified

Sign problem (complex phase problem)
phase-quenched simulation by det M –> |det M|,  and handling the phase in the measurement 

=>  Exponentially high statistic required when θ fluctuates a lot (<= large µ).

Lattice QCD at µ ≠ 0

“reweighting”
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Lattice QCD at µ ≠ 0
Techniques for small µ/T
✦ Taylor expansion around µ = 0
✦ multi-parameter reweighting
✦ imaginary µ (analytic continuation to real µ)
✦ canonical ensemble
✦ complex Langevin
✦ Lefschetz thimble                  etc. etc.
✦                        combination of them  &  other techniques
                               to extend the range of applicability
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Histogram method: 
   spectral density

             with a judicious choice of operator(s)

+ reweighting
+ cumulant expansion

µ part 2part 3

part 1
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Histogram method

part 1
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Histogram of observables
(“spectral density” ∝ probability distribution)

     For simplicity, let us consider NF-flavor QCD with the gauge action Sg.
     We also assume that detM is indep. of ß (see discussions later).

Histogram method

Choosing O  which is sensitive to the phase 
    (e.g. order parameter,  energy density, ...),
we can detect the phase transition 
                            through the shape of  w. 

Iwasaki et al., PR D46(’92)4657
Plaquette in SU(3) YM at T>0.
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Histogram method

To identify 1st order transition from Veff, 
we need precise Veff in a wide range of O covering both phases.

<= It is expensive to achieve by a single simulation:  Very high 
statistics required due to small probability to flip.

Effective potential 

peak of w   ~   min. of Veff

double peak of w   ~   double well of Veff
Crossover First order

Curvature < 0
O O

V(O) V(O)µ

Critical boundary of 
1st order region
can be detected by Veff.
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To remedy it, we take
                                                   :(generalized) plaquette  

Histogram method

Assumed: detM is indep. of ß. 
When cSW has dependency on ß, its effect should be taken into account.  Alternatively, we may 
take a scheme in which cSW is kept fixed.  Final physics should be scheme-independent.

With P fixed, reweighting in ß is simple:

Each ß has different support of O’s.

We can combine data at different ß’s 
to cover a wide range of O’s.

H. Saito et al., PRD 84, 054502 (’11)
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Histogram method

constant, known shift

numerical 
integration

P
We obtain Veff covering 
a wide range of P.

quenched QCD:  H. Saito et al., PRD84, 054502 (’11)

numerical 
differentiation
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Histogram method
We also reweight in m and µ to further extend the ranges etc.

P-constrained average:  indep. of ß0 !

– lnR

Reweighting formula for Veff
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Heavy quark 
QCD

part 2
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Heavy quark QCD
To test the method, we first study the case of heavy quark QCD.

                                           H. Saito et al., PRD 84, 054502 (’11);  paper in preparation.

Plaquette gauge action + Wilson quark action
Simulation at m0 = ∞ (κ0 = 0):   quenched QCD

243×4, ß=5.68-5.70  (5 points around ßc)

1st order deconfining transition
Reweight from m0 = ∞

The 1st order trans. expected to turn into crossover at some m. 

<=  hopping parameter expansion     κ ~ 1/mq a
Polyakov loop histogram at m0 = ∞

: Polyakov loop

detM(0,0) = 1

complex phase at µ≠0

We study the fate of the 1st order transition in the lowest order at Nt=4.

Iwasaki et al., PR D46(’92)4657

14



Heavy quark QCD at µ = 0

κ0 = 0
With decreasing mq from ∞, the 1st order deconf. transition weakens and turns into crossover.
Critical point can be identified by the disappearance of the double-well shape of Veff.  

κcp = 0.0658(03)(+04–10) 
Tc /mπcp ≈ 0.023

κcp from 
double-well heightfor NF = 2

etc.i.e., mπcp ~ 7–9 GeV using Tc ~ 160–200 MeV

H. Saito et al., PRD 84, 054502 (’11)
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Heavy quark QCD at µ = 0
Polyakov loop   (by multi-point reweighting using 5 ß’s and adjusted to ßc(κ) from χΩ)

≈ crit.pt. 
from Veff(P)
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Heavy quark QCD at µ = 0
Polyakov loop

=> 1st order transition line cf. κcp = 0.0658(03)(+04–10),  κcp4 ≈ 1.9x10–5  from Veff(P)

≈ crit.pt. 
from Veff(P)
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Heavy quark QCD at µ = 0
For NF = 2+1

mud

ms

∞

∞

We just replace                                              ,  besides the shift of ß to ß*. 

Phys.
point?
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Heavy quark QCD at µ ≠ 0

Choose ΩR as an O :

complex phase at µ≠0

The phase quenched part is just Veff at µ=0 with shifting κ → κ [cosh(µ/T)]1/Nt

H. Saito et al., PoS Lattice2011;  WHOT-QCD, in preparation. 

=>  Critical line in the phase-quenched QCD is just given by

Phase-quenched QCD
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Heavy quark QCD at µ ≠ 0

Remarks:
n Odd terms are the origin of the complex phase.
n Odd terms vanish due to the symmetry under µ ⟷ – µ.
=>
n W/o odd terms,         is positive definite!
n Sign problem resolved  if  the expansion converges.

The sign problem is transformed into a convergence problem of the 
cumulant expansion.

may cause the sign problem when θ fluctuates largely  <=  large µ 

Cumulant expansion S. Ejiri, PRD 77, 014508 (’08);  WHOT, PRD 82, 014508 (’10)  
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Heavy quark QCD at µ ≠ 0

Convergence of the cumulant expansion
When a cumulant expansion converges?

The most convergent case:                                               i.e., Gaussian distribution

We note that                        =>   distribution of θ ≈ Gaussian for V >> v (correlated range).

Therefore, if the correlation length is finite as in the case of massive QCD
we do expect Gaussian distribution of θ on large lattices.

A delicate point is the V-dependence, because θ is O(V), θn may diverge as O(Vn).

However, because                                                 , we find 

i.e., convergence is independent of V !  
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Heavy quark QCD at µ ≠ 0

Dominance of the Gaussian term around  
(important in the discussions below) 
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Heavy quark QCD at µ ≠ 0

Solid line:      phase-quenched
Dashed line:  with maximal µ
                  [sinh(µ/T)=cosh(µ/T)]

=>  The effects of the phase is quite 
small in the range of ΩR relevant to 
the transition.

=>  The critical point well close to the 
phase-quenched critical point.

≈ crit.pt.

We can now reliably evaluate            by the cumulant expansion
                                                                                         around  
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Heavy quark QCD at µ ≠ 0
µFor NF = 2+1,  using

the critical surface is given by 
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Heavy: summary & notes
n Histogram method 

= spectral density + reweighting technique + cumulant expansion

n useful to determine the phase diagram

n leading order of the hopping parameter expansion
•effects of the next leading order small around κcp.          WHOT-QCD in preparation

★ κ6 loops  ≈>  renormalization of ß
★ κNt+2 eared Polyakov loops  =>  competitive to the leading order only at κ >≈ 0.18 on Nt=4 lattices

                                                        shifts κcp only ≈ 3%.

• κcp(µ) --> 0 towards large µ:  safe to use the κ expansion at all µ to study κcp.

25



Light quark 
QCD

part 3
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Light quark QCD
With dynamical light quarks  

• Ω no more plays an decisive role in the reweighting.
We have to handle  detM  itself instead.
Because detM corresponds to the quark energy, this should be sensitive to the phase too.

• θ = arg[detM]Nf has an ambiguity mod. 2π
Note that                                                             in heavy quark QCD is not restricted in (-π,π). 

We show that a good choice of θ (as an integral of local 
operator) leads to Gaussian distributions.

π��π� π��π�θ� θ�

W(θ)� W(θ)�

C

2θ
No information�
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Light quark QCD

n Our strategy:                                    Y. Nakagawa et al., PoS Lattice 2012, 092

• Phase-quenched simulation with |detM|Nf e–Sg

• Reweight to incorporate the effects of the phase eiθ

• To cover a wide range of Veff by another reweighting, we 
choose

P = – Sg/6ßNsite                      : generalized plaquette
                                                  ≈  glue energy
F = Nf ln |detM(µ)/detM(0)|    : abs. value of detM 
                                                  ≈  quark energy

as O’s for Veff

Z(�, µ) =

Z
DU ei✓(µ) |detM(µ)|Nf e6�NsiteP
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Light quark QCD
Z(�, µ)

Z(�, 0)
=

Z
dPdF w0(P, F ;�, µ)

⌦
ei✓

↵
=

Z
dPdF e�V (P,F ;�,µ),

: phase-quenched histogram of (P,F )
   normalized at µ=0

w0(P, F ;�, µ) =
1

Z(�, 0)

Z
DU�(P � P̂ )�(F � F̂ (µ)) |detM(µ)|Nf e6�NsiteP

where

⌦
ei✓

↵
(P, F ;µ) =

R
DUei✓(µ)�(P � P̂ )�(F � F̂ (µ)) |detM(µ)|Nf e6�NsiteP

R
DU�(P � P̂ )�(F � F̂ (µ)) |detM(µ)|Nf e6�NsiteP

=

DD
ei✓(µ)�(P � P̂ )�(F � F̂ (µ))

EE

(�,µ)DD
�(P � P̂ )�(F � F̂ (µ))

EE

(�,µ)

: phase factor at fixed P and F
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Light quark QCD
n Reweighting factors

w0(P, F ;�, µ) = R(P, F ;�,�0, µ, µ0) w0(P, F ;�0, µ0)

R(P, F,�,�0, µ, µ0) = e6(���0)NsiteP

⌧⌧
�(P � P̂ )�(F � F̂ )

��� detM(µ)
detM(µ0)

���
Nf
��

(�0,µ0)DD
�(P � P̂ )�(F � F̂ )

EE

(�0,µ0)

⌦
ei✓

↵
(P, F ;µ) =

⌧⌧
ei✓

��� detM(µ)
detM(µ0)

���
Nf

�(P � P̂ )�(F � F̂ )

��

(�0,µ0)⌧⌧��� detM(µ)
detM(µ0)

���
Nf

�(P � P̂ )�(F � F̂ )

��

(�0,µ0)

With P fixed, the ratios in r.h.s. are actually indep of ß.
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Light quark QCD
n Our definition of θ

✓(µ) = Nf

Z µ/T

0
Im


@(ln detM(µ))

@(µ/T )

�

µ̄

d
⇣ µ̄

T

⌘

i.e., ∫ d4x of a local op.

=>  uniquely defined in (–∞, +∞).
      Conventional θ in (–π, +π) recovered by taking the modulus.

=>  Gaussian distribution when the volume >> correlation range,
                                                      as in the case of QCD at mq > 0.
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Light quark QCD
F and the reweighting factor can be evaluated similarly 
using the same measurement

F (µ) = Nf ln

����
detM(µ)

detM(0)

���� = Nf

Z µ/T

0
Re


@(ln detM(µ))

@(µ/T )

�

µ̄

d
⇣ µ̄

T

⌘
,

C(µ) = Nf ln

����
detM(µ)

detM(µ0)

���� = Nf

Z µ/T

µ0/T
Re


@(ln detM(µ))

@(µ/T )

�

µ̄

d
⇣ µ̄

T

⌘

n Curvatures of V
to the lowest order of the cumulant expansion (Gaussian approx.)
@2V

@P 2
(P, F ;�, µ) =

@2(� lnw0)

@P 2
(P, F ;�0, µ0)�

@2 lnR

@P 2
(P, F ;�,�0, µ, µ0) +

1

2

@2
⌦
✓2
↵
c

@P 2
(P, F ;µ)

@2V

@F 2
(P, F ;�, µ) =

@2(� lnw0)

@F 2
(P, F ;�0, µ0)�

@2 lnR

@F 2
(P, F ;�,�0, µ, µ0) +

1

2

@2
⌦
✓2
↵
c

@F 2
(P, F ;µ)

Crossover First order

Curvature < 0
O O

V(O) V(O)

Negative curvature signals 1st order transitions.
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Light quark QCD
n Simulation of 2-flavor QCD on clusters 
• RG-improved Iwasaki gauge 
• 2-flavor non-perturbatively O(a)-improved clover quarks
• 83x4 lattice at mπ/mρ≈0.8 (κ=0.141139)
• phase-quenched simulations at ß0=1.2–2.0, µ0/T=2.0–4.0

• random-noise method to compute derivatives of  
ln detM  using 50 noises every 10 traj’s.

• ≥ 29,000 trajectories each, after thermalization

• peak of the phase-quenched distribution

ON-G
OIN

G
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Light quark QCD
What we expect for 2-flavor QCD with mq > 0 :

T

µ

QGP

hadron CSC

crossover at µ=0

+ = 

1st order at large µ

effect of the phase factor 

critical point

We try to find the crit. pt. through negative curvature in Veff. 
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Light quark QCD
@2V

@P 2
(P, F ;�, µ) =

@2(� lnw0)

@P 2
(P, F ;�0, µ0)�

@2 lnR

@P 2
(P, F ;�,�0, µ, µ0) +

1

2

@2
⌦
✓2
↵
c

@P 2
(P, F ;µ)

@2V

@F 2
(P, F ;�, µ) =

@2(� lnw0)

@F 2
(P, F ;�0, µ0)�

@2 lnR

@F 2
(P, F ;�,�0, µ, µ0) +

1

2

@2
⌦
✓2
↵
c

@F 2
(P, F ;µ)

See Y. Nakagawa et al., PoS Lattice 2012, 092 for details of the calculation.
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Light quark QCD

n Curvature in the F-direction:  PRELIMINARY

cr
iti
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l p
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?
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Summary
Histogram method to detect 1st order transitions

Sign problem avoided by the cumulant expansion up 
to µ ~ µc

Validity of the method confirmed in heavy quark QCD

Light quark QCD studied by phase-quenched 
simulations + reweighting

Critical point terminating the 1st order deconfining 
transition line suggested numerically

Simulations/analyses on-going 
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thank you
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n Backup slides from recent talks

n New results are not included.
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PROSPECTED PHASE STRUCTURE  AT µ = 0

tricrit.
point

Physical
point? ??

Lattice studies with staggered-type quarks 

=>  Physical point locates 
     in the crossover region

GL effective models + lattice results

Z(3) Potts

Z(3) Potts + ext. field

effective ϕ6 theory
mud ∝ (mstri – ms)5/2

SU(2)×SU(2)×U(1) σ model

SU(3)×SU(3)×U(1) σ model

In fixing details of the plot, 

critical scaling based on 
universality argument 
plays an essential role.
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QCD transition around the chiral limit

Effective 3d σ model with the same flavor-chiral symmetry of massless QCD (continuum)
                                                                          Pisarski-Wilczek, PRD(’84); Wilczek, IJMP(‘92); Rajagopal-Wilczek NPB(‘93)

NF ≥ 3:  1st order

NF = 2:   depends on the magnitude of the anomaly

 when anomaly strong:  the σ model  ≈ O(4) Heisenberg model

=>  2nd order  with established critical properties 

 when anomaly negligible around Tc   
=>  fluctuation-induced (weakly)1st order

<= chiral violating coupling (external mag. field)
<= chiral symmetric coupling (reduced temperature)
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In case anomaly negligible around Tc,
NF = 2:  1st order chiral trans.
            with Ising crit. end point
NF = 3:  smaller 1st order region

<=  anomaly was a source of the M3 term

O(4) scaling is a powerful guide here.

To discriminate the pictures, 
non-perturbative test on the 
lattice needed.
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Flavor-chiral sym. on the lattice
No-go theorem (Nielesen-Ninomiya):  one flavor lattice fermion cannot be local and chiral simultaneously.

Chiral symmetry cannot be simply realized on the lattice.
=> several options for the quark action with different flavor-chiral properties:

Wilson-type / staggered-type / domain-wall / overlap / ...

Wilson-type quarks:   violate the chiral symmetry at a > 0.

Pros: ✓ Describes a single flavor.   =>  Flavor symmetry exact.

✓ Continuum limit exists.     <=  The chiral sym. is restored in the cont. limit.

Cons: ❖ Explicit violation of the chiral sym. at a > 0.

❖ Light quarks expensive. 

Many studies are being made.

Lattice chiral quarks:  domain-wall / overlap

Still quite expensive to simulate.
Real applications to T > 0 have just started!   =>  HotQCD, JLQCD
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So far, most large-scale simulations at finite T and µ have been made with

Staggered-type quarks
Pros: ✓ Relatively cheap to simulate.

✓ A modified chiral sym. preserved:  U(1) [=O(2)] taste-chiral sym.

Cons: ❖ 4 copies of identical fermions (“tastes”) in the cont. lim. for each flavor. 

=>  “4th root trick” to remove unwanted 3 :  detM  =>  [detM]1/4
      ⇓

❖ Non-local  =>  Universality arguments fragile.
? continuum limit?
　　<=   Empirically OK  if the continuum limit is taken first.

? chiral scaling on finite lattices?    ???

❖ Taste violation problem at a>0 => errors in flavor identifications.

(e.g.) many π’s in the taste space,  one is light due to 
the taste-chiral sym.

Lightest π (pNG π) usually treated as “physical”.
Other π’s do contribute in dynamical effects.

                               =>   lattice artifacts.

mq is effectively much heavier.
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Improved staggered quarks
Various actions proposed to milden lattice artifacts including the taste violation:

asqtad / p4 / HYP / stout / HISQ / ...
The extent of improvement differs depending on the action.

Recently, it was noted that a good control of the taste-violation is essential to 
obtain physical results with staggered-type quarks.

Orginos et al, 
hep-lat/9909087

mπ/mρ=0.55

H
IS
Q

Bazavov-Petreczky 
(HotQCD)
arXiv:1012.1257

 The magnitude of the taste violation
HISQ  <  stout  <  asqtad  <  p4

heavy “π” masses  (at T~170MeV with mπpNG ~135 MeV) 
Nt~8    ~ 400-600               asqtad  <  p4
            ~ 300-500               stout
            ~ 200-400               HISQ
Nt~12  ~ 200-350               stout

asqtadunimproved
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O(4) scaling tests on the lattice
Wilson-type quarks (NF=2)

Iwasaki et al. (QCDPAX)
PRL78(’97)
‣ Iwasaki gauge + Wilson
‣ Nt=4, mπ ~ 600-900 MeV

AliKhan et al. (CP-PACS) 
PRD63(’01)
‣ Iwasaki gauge + Clover
‣ Nt=4,  mπ ~ 600-1000 MeV

Bornyakov et al. (QCDSF)
PRD82(’10)
‣ plaquette gauge + Clover
‣ Nt = 8,10,12,  mπ ≈ 420-1300 MeV 

Proper renormalization needed to recover the chiral symmetry in the continuum limit.

       M ~                                                 via axial W.I  Bochicchio et al.(’85)

QCD data vs. O(4) scaling function and exponents

➡ Consistent with the O(4) scaling,  though quarks are heavy.

No indication of 1st order chiral transition.
QCD data well described by the O(4) scaling function with O(4) exponents.

O(4) scaling fit for Tc
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Nógrádi (Budapest-Wuppertal) @ Lat11
‣ Symanzik/tree + 6-level-stout-clover     NF=2+1
‣ fixed scale approach at 6 ß values  

Comparison with staggered (stout, Nt=8-12) at mπ≈545 MeV, mK≈612 MeV
          susceptibilities, renormalized Polyakov loop  => well consistent with each other.

Continuum thermodynamics feasible with improved Wilson.

No O(4) scaling tests yet. 

Burger (tmfT) @ Lat11,  1102.4530
‣ Symanzik/tree + maximally twisted Wilson    NF=2
‣ Nt=8–12   mπ≈320-480 MeV

O(4) fit for mπ≈320-480 MeV works well
                             => Tc = 160–270 MeV.

Difficult to discriminate between O(4) and 1st order yet. 
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O(4) scaling tests on the lattice
Staggered-type quarks

★ O(4) vs. O(2)
The symmetry of 4-taste staggered quark action is the O(2) taste-chiral symmetry.

This is so also with the 4th root trick  detM  ⇒  [detM]1/4,  therefore,

              Sym. of the system in the chiral limit = O(2) for any NF.

=>  When the chiral transition is 2nd order on the lattice,  we expect O(2) scaling not O(4).
  O(4) may be realized when (1) continuum extrapolation,
                             and then (2) chiral extrapolation.

      In practice, O(2) ≈ O(4) numerically.

Caveat:  Universality may be inapplicable on finite lattices 
            due to the non-locality.

Ejiri et al. (BNL-Bielefeld)
PRD80(’09)
‣ p4,  NF=2+1
‣ Nt = 4,  mud/ms ≈ 1/80-1/20

48



Improved staggered quarks (NF=2+1)
Ejiri et al. (BNL-Bi) PRD80(’09) (Nt = 4);  Lat10 (Nt = 8)

‣ p4,  Nt=4,  ms≈physical,  ml/ms= 1/80 – 1/20  (mπpNG ≈ 75 – 150 MeV)

➡ Consistent with O(2)

O(2)

It turned out from intensive studies of T>0 QCD with staggered-type quarks around ’09-’11,

a good control of taste violation essential to extract physical 
conclusions with staggered-type quarks. 

HotQCD @ QM11, Lat11

‣ HISQ
‣ ms ≈ physical,  ml/ms = 1/27 – 1/20
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Improved staggered quarks (NF=2+1)

➡ The phys. point dominated by the O(N) scaling 
➡ 2nd order chiral transition for NF=2
➡ Tricritical point locates lower than ms

phys

With staggered-type quarks, we should have taken the cont. limit 
prior to the chiral scaling studies.

If these properties remain also after taking the cont. limit, ...  

Consistent with small mc for NF=3:

mπc ≤ 45 MeV  HISQ Nt=6 Ding et al. @ Lat11

mc/mudphys ≤ 0.12  stout Nt=6 Endrodi et al. @ Lat07

Consistent with broken U(1)A at T≈Tc and above:
HISQ, DW   NF=2+1 HotQCD @ Lat11
Overlap       NF=2     Cossu (JLQCD) @ Lat11

50



Fate of U(1)A at T≈Tc 
U(1)A explicitly broken at all T, but will restore at T=∞.
Is U(1)A  “effectively” restored at Tc ??

<=  e.g.  by formation of instanton-antiinstanton molecules

If so, the 1st order scenario becomes preferable, 
                though 2nd order transition not excluded.

NF=2:

U(1)A
SU(2)L xSU(2)R

       ^
disconnected diagrams required

If U(1)A “restored”  =>  π-δ,  σ-η degeneracy
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Fate of U(1)A at T>Tc 
(note:  =>’s are not <=>)

If U(1)A “restored”  =>  π-δ degeneracy
       => 
              where

Banks-Casher:

      SU(NF)A restoration <=> ρ(0)=0 in the massless limit.

Bazavov et al., arXiv:1205.3535at T > Tc
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Fate of U(1)A at T>Tc 
Ohno (HotQCD)  NF=2+1 HISQ  Nt=8, V=323-483

Q=0

V-indep. tails remain => rho(0)≠ 0

But they are Q≠0 contributions.
=> large statistics needed to 
conclude at large V.

i.e.  not clear

log-scale
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Fate of U(1)A at T>Tc 
Ohno (HotQCD)  NF=2+1 HISQ  Nt=8, V=323-483
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Fate of U(1)A at T>Tc 

Cossu (JLQCD)  NF=2  overlap + fixed-topology Iwasaki gauge 

Lin (HotQCD)  NF=2+1 DW + Iwasaki

Krieg (Budapest-Wuppertal)
NF = 2+1  overlap + fixed-topology Symanzik 
mπ=350MeV,  123x6, 163x8
 => good agreement with stag.
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Fate of U(1)A at T>Tc 
Cossu (JLQCD)  NF=2  overlap + fixed-topology Iwasaki gauge
Nt=8, V=163, mπ≈290MeV

at these T’s.  / How about at Tc ?? / V-dep. should be checked.
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Fate of U(1)A at T>Tc 
Lin (HotQCD)   NF=2+1  DW + Iwasaki gauge
also arXiv:1205.3535
Nt=8, V=163-323,  mπ=200MeV DSDR (or Ls=96) to reduce mres

DSDR allows topological tunnelings
Lowest 100 eigenvalues:

V=643  in progress

T =177 MeV

Intercept ~ 0
Linear slope visible.

Consistent with their 
correlation functions.
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Fate of U(1)A at T>Tc 
S. Aoki  
NF=2 Chiral WT of Gisparg-Wilson fermions

at all T’s above Tc.

More generally,  for 

δ0 : singlet rotation

V-dep. important to check in the lattice results. 
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Light quark QCD

Real part                 Imaginary part�

4.0=µ T

4.2=µ T

Random noise method
to compute

( )T
M

µ∂

∂ detln

detM via µ-integration
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π-condensed phase

pion condensed 
phase �

mπ/2� µ�

Τ�

0=θie

color super-
conductor phase? �

µ�

Τ�

phase-quenched QCD QCD

( ) ( )µβ×=µβ θ ,,,,,,,, 0,
mFPWemFPW

FP

i

0=θie  is suggested in the pion condensed phase by phenomenological studies. 
[Han-Stephanov ’08, Sakai et al. ‘10]

Near the phase boundary, large fluctuations in θ: expected.

( ).ln     0
,,

−∞→→ θθ

FP

i

FP

i ee
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