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Reduction and Evaluation of Thermodynamics Partial Derivatives

Reduction Process: Will   produce a relationship for a thermodynamic derivative that

only depends on T, P, v, κT, β, cP, 
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.  Note that

the reduction is completely general and does not depend on the substance.

Evaluation Process: Uses the reduced form for the thermodynamic partial derivative
with the equations of state for the substance of interest to produce a relationship with
only T, P and constants present.

Basic Definitions

Specific heat at constant pressure: c  =  T
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Isothermal compressibilit y: κ ∂
∂T

T
 =  -

1

v

 v

 P






Defining Differential Equations

Internal energy: du = Tds - Pdv

Enthalpy: dh = Tds + vdP

Gibbs free energy: dg = -sdT + vdP

Helmholtz potential: df = -sdT - Pdv



ME 802 Advanced Classical Thermodynamics

2

Base First Order Derivatives
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Base Second Order Derivatives
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Rules for Jacobian Manipulation

Notation:
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Element interchange:
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Steps for Reduction of First Order Thermodynamic Partial Derivative

Step 1: If  the derivative consists of a thermodynamic potential or the internal energy,
bring it to the numerator using Jacobian manipulations and eliminate it by use
of the appropriate defining differential equation.

EXAMPLE: Given 
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Step 2: Write the derivative in Jacobian notation.

EXAMPLE: 
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Step 3: Introduce P and T as the independent variables.

EXAMPLE: 
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Step 4: Transform the Jacobians back to partial derivatives using either element
interchange or calculating the determinant.
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Step 5: Using the definition of the base first order derivatives relate the partial to
measurable quantities.

EXAMPLE:  
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