Reduction and Evaluation of Thermodynamics Partial Derivatives

Reduction Process: Will produce a relationship for a thermodynamic derivative that only depends on $T, P, v, \kappa_{T}, \beta, c_{P},\left(\frac{\partial c_{P}}{\partial T}\right)_{P},\left(\frac{\partial \beta}{\partial P}\right)_{T},\left(\frac{\partial \beta}{\partial T}\right)_{P}$, and $\left(\frac{\partial \kappa_{T}}{\partial P}\right)_{T}$. Note that the reduction is completely general and does not depend on the substance.

Evaluation Process: Uses the reduced form for the thermodynamic partial derivative with the equations of state for the substance of interest to produce a relationship with only T, P and constants present.

Basic Definitions

Specific heat at constant pressure: $c_{P}=T\left(\frac{\partial s}{\partial T}\right)_{P}$

Thermal expansion coefficient: $\quad \beta=\frac{1}{\mathrm{v}}\left(\frac{\partial \mathrm{v}}{\partial \mathrm{T}}\right)_{\mathrm{P}}$

Isothermal compressibility: $\quad \kappa_{\mathrm{T}}=-\frac{1}{\mathrm{~V}}\left(\frac{\partial \mathrm{v}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$

Defining Differential Equations

Internal energy: $\quad \mathrm{du}=\mathrm{Tds}-\mathrm{Pdv}$
Enthalpy: $\quad \mathrm{dh}=\mathrm{Tds}+\mathrm{vdP}$
Gibbs free energy: $\quad \mathrm{dg}=-\mathrm{sdT}+\mathrm{vdP}$
Helmholtz potential: $\mathrm{df}=-\mathrm{sdT}-\mathrm{Pdv}$

Base First Order Derivatives

$$
\begin{array}{ll}
\left(\frac{\partial s}{\partial T}\right)_{P}=\frac{c_{P}}{T} & \left(\frac{\partial s}{\partial P}\right)_{T}=-v \beta \\
\left(\frac{\partial v}{\partial T}\right)_{P}=v \beta & \left(\frac{\partial v}{\partial P}\right)_{T}=-v \kappa_{T}
\end{array}
$$

Base Second Order Derivatives

$$
\begin{array}{ll}
\left(\frac{\partial c_{P}}{\partial T}\right)_{P} & \left(\frac{\partial \beta}{\partial P}\right)_{T} \\
\left(\frac{\partial \beta}{\partial T}\right)_{P} & \left(\frac{\partial \kappa_{T}}{\partial P}\right)_{T}
\end{array}
$$

Rules for Jacobian Manipulation

Notation: $\quad \frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}\left(\frac{\partial u}{\partial x}\right)_{y} & \left(\frac{\partial u}{\partial y}\right)_{x} \\ \left(\frac{\partial v}{\partial x}\right)_{y} & \left(\frac{\partial v}{\partial y}\right)_{x}\end{array}\right|$

$$
\text { If } v=y \text {, then } \frac{\partial(u, y)}{\partial(x, y)}=\left(\frac{\partial u}{\partial x}\right)_{y}
$$

Element interchange: $\frac{\partial(\mathrm{u}, \mathrm{v})}{\partial(\mathrm{x}, \mathrm{y})}=-\frac{\partial(\mathrm{v}, \mathrm{u})}{\partial(\mathrm{x}, \mathrm{y})}$
Chain rule: $\quad \frac{\partial(\mathrm{u}, \mathrm{v})}{\partial(\mathrm{x}, \mathrm{y})}=\frac{\partial(\mathrm{u}, \mathrm{v})}{\partial(\mathrm{r}, \mathrm{s})} \cdot \frac{\partial(\mathrm{r}, \mathrm{s})}{\partial(\mathrm{x}, \mathrm{y})}$
Reciprocity: $\quad \frac{\partial(\mathrm{u}, \mathrm{v})}{\partial(\mathrm{x}, \mathrm{y})}=\left[\frac{\partial(\mathrm{x}, \mathrm{y})}{\partial(\mathrm{u}, \mathrm{v})}\right]^{-1}$

Steps for Reduction of First Order Thermodynamic Partial Derivative

Step 1: If the derivative consists of a thermodynamic potential or the internal energy, bring it to the numerator using Jacobian manipulations and eliminate it by use of the appropriate defining differential equation.

EXAMPLE: Given $\left(\frac{\partial \mathrm{g}}{\partial \mathrm{P}}\right)_{\mathrm{v}}$, we use $\mathrm{dg}=-\mathrm{sdT}+\mathrm{vdP}$ to find that
$\left(\frac{\partial g}{\partial P}\right)_{v}=-s\left(\frac{\partial T}{\partial P}\right)_{v}+v\left(\frac{\partial P}{\partial P}\right)_{v}=-s\left(\frac{\partial T}{\partial P}\right)_{v}+v$.
Step 2: Write the derivative in Jacobian notation.
EXAMPLE: $\left(\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right)_{\mathrm{v}}=\frac{\partial(\mathrm{T}, \mathrm{v})}{\partial(\mathrm{P}, \mathrm{v})}$
Step 3: Introduce P and T as the independent variables.
EXAMPLE: $\frac{\partial(\mathrm{T}, \mathrm{v})}{\partial(\mathrm{P}, \mathrm{v})}=\frac{\partial(\mathrm{T}, \mathrm{v})}{\partial(\mathrm{P}, \mathrm{T})} \div \frac{\partial(\mathrm{P}, \mathrm{v})}{\partial(\mathrm{P}, \mathrm{T})}$
Step 4: Transform the Jacobians back to partial derivatives using either element interchange or calculating the determinant.

EXAMPLE: $\frac{\partial(\mathrm{P}, \mathrm{v})}{\partial(\mathrm{P}, \mathrm{T})}=\frac{\partial(\mathrm{v}, \mathrm{P})}{\partial(\mathrm{T}, \mathrm{P})}=\left(\frac{\partial \mathrm{v}}{\partial \mathrm{T}}\right)_{\mathrm{P}}$
Step 5: Using the definition of the base first order derivatives relate the partial to measurable quantities.

EXAMPLE: $\left(\frac{\partial \mathrm{v}}{\partial \mathrm{T}}\right)_{\mathrm{P}}=\mathrm{v} \beta$

References for further study

1. A.N. Shaw, "The derivation of thermodynamical relations for a simple system", Philosophical Transactions of the Royal Society of London, Ser. A., vol. 234, pp. 299-328.
2. C.W. Somerton and Ö.A. Arnas, "On the use of Jacobians to reduce thermodynamic derivatives", International Journal of Mechanical Engineering Education, vol. 13, pp. 9-18.
