Energies, Thermodynamic Identities, Maxwell Relations, and the Magic Square

Professor A. J. Mallinckrodt, Physics Department, Cal Poly Pomona, November 2001

Thermodynamic identity for energy

$$
d U=T d S-P d V(+\mu d N+\ldots)
$$

Additional energies

$$
\begin{array}{ll}
H=U+P V & \text { (Enthalpy) } \\
A=U-T S & \text { (Helmholtz free energy) } \\
G=U+P V-T S & \text { (Gibbs free energy) }
\end{array}
$$

Additional thermodynamic identities
$d H=T d S+V d P(+\mu d N+\ldots)$
$d A=-S d T-P d V(+\mu d N+.).$.
$d G=-S d T+V d P(+\mu d N+\ldots)$.
Natural variables
$U \Rightarrow S \& V(\& N \& \ldots)$
$H \Rightarrow S \& P(\& N \& \ldots)$
$A \Rightarrow T \& V(\& N \& \ldots)$
$G \Rightarrow T \& P(\& N \& \ldots)$

Conjugate variables

$S \& T, P \& V,(\mu \& N, \ldots)$

Partial derivative relations

$$
\begin{aligned}
& \left(\frac{\partial U}{\partial S}\right)_{V, N, \ldots}=T,\left(\frac{\partial U}{\partial V}\right)_{S, N, \ldots}=-P, \ldots \\
& \left(\frac{\partial H}{\partial S}\right)_{P, N, \ldots}=T,\left(\frac{\partial H}{\partial P}\right)_{S, N, \ldots}=V, \ldots \\
& \left(\frac{\partial A}{\partial T}\right)_{V, N, \ldots}=-S,\left(\frac{\partial A}{\partial V}\right)_{T, N, \ldots}=-P, \ldots \\
& \left(\frac{\partial G}{\partial T}\right)_{P, N, \ldots}=-S,\left(\frac{\partial G}{\partial P}\right)_{T, N, \ldots}=V, \ldots
\end{aligned}
$$

Maxwell relations

(obtained by equating reordered second derivatives of each energy with respect to its natural variables)

$$
\begin{aligned}
& \left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V} \\
& \left(\frac{\partial V}{\partial S}\right)_{P}=\left(\frac{\partial T}{\partial P}\right)_{S} \\
& \left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P} \\
& \left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}
\end{aligned}
$$

Magic Square VAT, UG, SHP ("Vat Ugh Ship")
Notice that 1) each side has an energy, 2) each energy is flanked by its two most important natural variables, 3) conjugate variables occupy opposite ends of each
 diagonal, 4) crossed arrows point upward toward V and T and away from S and P.

Partial derivatives from the Magic Square

Starting at any energy, read toward one of the natural variables "Partial of - wrt -" and away from the other "at constant -" and look across for the result and its sign (as indicated by the arrow head) "is -." For instance:

1) "Partial of H wrt P at constant S is $+V$ "
2) "Partial of G wrt T at constant P is $-S$ ",

Thermodynamic identities from the Magic Square

Intimately related to the partial derivative relations. For any energy read toward both of its natural variables and across for the conjugate variables and signs. For instance,

1) " $d H$ is $+V$ times $d P$ plus $+T$ times $d S$ "
2) " $d G$ is $-S$ times $d T$ plus $+V$ times $d P$ "

Maxwell Relations from the Magic Square

Using only corners, start at any corner and read clockwise or counterclockwise "Partial of - wrt - at constant -". Proceed in the same direction to the next corner and then reverse direction to obtain the other side of the equation. Insert a minus sign if the arrows do not point toward or away from both starting points. For example:

"Partial of T wrt V at constant S and partial of P wrt S at constant V are opposites." (Since T has an arrowhead and P doesn't.)

