FFI 201 – Física Computacional I

Primeiro Projeto (prazo até 17/08/12)

Instruções

- Crie um diretório "PROJ1_#usp" em /home/public/FISCOMP12/PROJ1
- Proteja seu diretório para nao ser lido por "g" e "o"
- Deixe no diretório apenas 6 arquivos, de nomes "exer1.f",..., "exer6.f"
- Os códigos devem seguir rigorosamente os padrões especificados abaixo para entrada/saida
- Note: se deixar de fazer algum exercício não inclua o arquivo correspondente

Exercícios

- 1. Leia a partir do terminal os dados para altura, largura e profundidade (um dado por linha) de um paralelepípedo e escreva no terminal os resultados para a área total e o volume do paralelepípedo, cada um em uma linha. Note: nos dois casos, seu resultado numérico deve ser a última palavra da linha.
- 2. Leia a partir do terminal dois vetores $\vec{v_1}$, $\vec{v_2}$ (com coordenadas x_1 , y_1 , z_1 e x_2 , y_2 , z_2). Os dois vetores devem ser lidos separadamente, com as três coordenadas de cada um em uma linha, e.g.

$$x_1 \qquad y_1 \qquad z_1$$

(separados por espacos brancos). Escreva no terminal o produto escalar e o módulo do produto vetorial dos dois vetores, um em cada linha. Seu resultado numérico deve vir por último na linha.

3. Leia três vetores como no exercício anterior, mas a partir de um arquivo de entrada de nome "vet_in.dat". Realize as seguintes operações

3a)
$$\vec{v_1} \cdot \vec{v_2} - \vec{v_2}^2$$

3b)
$$\vec{v_1} \times (\vec{v_2} - \vec{v_3})$$

3c)
$$\vec{v_2} - (\vec{v_1} \cdot \vec{v_2}) \vec{v_3}$$

Escreva os resultados das operações 3a, 3b, 3c um por linha em um arquivo de nome "vet_out.dat".

- 4. Escreva um programa para ordenar números. Leia os números **inteiros** N e M $(M \le N)$ um por linha a partir do terminal. Leia N números **reais** (um por linha) a partir do arquivo "ord_in.dat" e imprima, em ordem crescente, os M maiores números (um por linha) no arquivo "ord_out.dat".
- 5. Escreva um programa para calcular todos os números primos entre M e N (inclusos). Leia M, N (um por linha) a partir do terminal e escreva os resultados (um por linha) no arquivo "primos_out.dat". Opcional: tente otimizar seu programa para torná-lo mais rápido (você pode verificar a velocidade de processamento do programa utilizando o comando time do linux).
- 6. Leia a partir do terminal **um número binário** (inteiro, positivo) M de 8 algarismos. Calcule a representação de M na base 10 e escreva seu resultado no terminal, como última palavra da linha.