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• Nontrivial spectra of two dimensional gauge theories

• Lattice: partition function and its continuum limit

• Adding external charges:

Lattice: transfer matrix and spectrum

continuum limit

Feynman kernel

reduced system, hamiltonian and wave functions

theta states

screening and effective fractional charge

• Fractional charges on a lattice and the continuum limit

• Nonabelian case
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I. Nontrivial spectra of trivial gauge theories

• Two dimensional gauge theories are trivial - no transverse degrees of

freedom.

• True only if we neglect boundary conditions.

Quantum Maxwell Dynamics in 1+1 dimensions (QMD2) on a circle

EΦ
n =

e2

2
Ln2, n = 0,±1,±2, ... [Manton,′ 84]

An effective 1DOF hamiltonian

H = − e
2

2L

d2

dA2
, 0 ≤ A < LA =

2π

L
(1)

The spectrum

ψn(A) = einAL = eipnA, pn = n
2π

LA
= nL, En =

e2

2
Ln2 (2)

What is A ?

Ax(x, t) = A(x, t),
∂xA(x,t)=0−→ A(x, t) = A(t) 6= 0
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In a periodic (in x) world one cannot set a constant A to 0 by a gauge transformation
– 1 DOF left

Why periodicity in A ?

If space is periodic, gauge transformations also have to be periodic

g(x) = eiΛ(x) = g(x + L), −→ Λ(x + L) = Λ(x) + 2πn

Take Λ(x) = 2π x
L, then

A −→ A + ∂xΛ(x) = A +
2π

L
, are gauge equivalent =⇒ A ∈ (0,

2π

L
]

Interpretation

• a string with n units of electric flux winding around a circle

• Gauss’s law satisfied thanks to the nontrivial topology - topological

strings

• electric charge even without electrons/sources !
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A generalization: Θ parameter

a)

H = − e
2

2L

 d

dA
+ iΘL

2

,

En =
e2

2
L(n + Θ)2, ψn(A) = einAL

b)

H̃ = − e
2

2L

d2

dA2
,

En =
e2

2
L(n + Θ)2, ψ̃n(A) = ei(n+Θ)AL,

ψ̃n(A) = eiΘALψn(A)

Interpretation: e2Θ – classic, constant electric field
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II. QMD2 on a lattice

Partition function on a 2x2 lattice

Z =
∫ 2π

0
B(θ12 + ϑ22 − θ11 − ϑ12)B(θ22 + ϑ12 − θ21 − v22)

B(θ11 + ϑ21 − θ12 − ϑ11)B(θ21 + ϑ11 − θ22 − ϑ21)

d(links)

B(φP ) = eβ cos(φP ), d(links) = Πl
dαl
2π

Change variables from links to plaquettes φP

• # links > # plaquettes

• One constraint between plaquette angles (PBC)
∑
P
φP = 0

Z =
∫ 2π

0
dφ1dφ2dφ3B(φ1)B(φ2)B(φ3)B(φ1 + φ2 + φ3).

A character expansion (Fourier analysis on a group)

B(φ) = Σ∞n=−∞In(β) exp (inφ),
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The partition function ”almost” factorizes

Z = ΣnIn(β)4

For NxxNt lattice

Z =
∫
dNV−1φP

(
Π
NV−1
P B(φP )

)
B

(
Σ
NV−1
P φP

)
= ΣnIn(β)NV , NV = Nt ∗Nx. (3)

•• free boundary conditions (boundary links belong to one plaquette

only)

Z = I0(β)NV
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A transfer matrix

2x4 lattice

• temporal gauge: set all, but one, time like links in each column to 1 .

=⇒ 10 angles: two - ϑ1 and ϑ2 - on the last vertical links (on the top), and eight horizontal

ones, (αi, βi), i = 1, 2, 3, 4

• partition function

Z =
∫
d4 d3 d2 d1 < 4|T |3 >< 3|T |2 >< 2|T |1 >< 1|Π|4 >= Tr

(
T 3Π

)
, (4)

where di = dαidβi and the states |i >= |αi, βi >.

• elements of transfer matrix are

< α′, β′|T |α, β >= B(α′ − α)B(β′ − β), (5)

while the transition between the last and the first row is described by Π.

< α′, β′|Π|α, β >=
∫
dϑ1dϑ2B(α + ϑ2 − α′ − ϑ1)B(β + ϑ1 − β′ − ϑ2) (6)
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Diagonalizing the transfer matrix

(5) is simply diagonalized by Fourier components
∫ 2π

0
dθ′eβ cos(θ−θ′)einθ

′
= In(β)einθ

or

T |n >= In(β)|n >, < θ|n >= einθ,

• This is the basis of electric fluxes, or Ex, in Manton’s language.

Two column system, the eigenstates |m,n >= |m > |n > – tensor products for each

x-position .

(5) =⇒ T in the fluxes representation

< m,n|T |m′, n′ >= δmm′δnn′In(β)Im(β),

• The transfer matrix is diagonal in fluxes representation, and moreover

• T factorizes between individual states (x positions).
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Diagonalizing the Π matrix

Three columns lattice

< θ′1, θ
′
2, θ
′
3|Π|θ1, θ2, θ3 >=

∫
dϑ1dϑ2 dϑ3B(φ1)B(φ2)B(φ3)

= Σm,n,rImInIr
∫
ϑ′s
eim(θ1+ϑ2−θ′1−ϑ1)ein(θ2+ϑ3−θ′2−ϑ2)eir(θ3+ϑ1−θ′3−ϑ3)

= ΣnI
3
ne

in(θ1+θ2+θ3−θ′1−θ′2−θ′3)

In the flux basis

< m1,m2,m3|Π|n1, n2, n3 >= δM,NΣnδn,n1δn,n2δn,n3I
3
n

• Π is diagonal as well and, in addition, it requires all fluxes along a row to be equal.

• It enforces Gauss law along a row.

• Upon taking a trace of T 3Π reproduces (3)
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The continuum limit

Z = # Σn

In(β)

I0(β)


Nx∗Nt

,

aNt = T, aNx = L β =
1

e2a2
, a→ 0.

Asymptotic expansion of modified Bessel function

In(β)→ eβ√
2πβ

1− 4n2 − 1

8β
+ ...



gives

ZLQMD2 → # Σn

1− e2

2
n2a2


NxNt

= Σne
−EnT , En =

1

2
e2n2L,

−→Manton fluxes result in the continuum limit of lattice QMD2
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Continuum limit of the transfer matrix

Transfer matrix evolves states in time.

Matrix element of Π ≡ kernel (propagator) of this evolution

< θ′1, θ
′
2, θ
′
3|Π|θ1, θ2, θ3 >= ΣnIn(β)3ein(θ′1+θ′2+θ′3−θ1−θ2−θ3)

Gauss’s low at each vertex singles out only the sum of all angles (θS = θ1 + θ2 + θ3) as

a relevant variable.

In the large β limit

exp

− β

2 ∗ 3
(θ′S − θS)2

 (7)

For Nx rows this becomes

exp

− β

2 ∗Nx
(θ′S − θS)2

 = exp

−1

2

L

e2

(A′ − A)2

ε

 = K(A′, A, ε) (8)

where we have identified:

L = Nx ∗ a, θS = L ∗ A, θi = aA, a = ε.

This is nothing but the heat kernel for propagation of a free particle with mass m = L/e2

by a time ε. Its Hamiltonian reads

H = −1

2

e2

L

d2

dA2

which is Manton’s Hamiltonian.
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Three comments:

• It is important to realize that although the sum of all θ’s can vary over the interval

0 < θS = L ∗ A < Nx2π,

the relevant interval is (0, 2π) only, since the lattice kernel, as well as the eigenfunctions

einθS , are periodic, in LA, over (0, 2π).

Therefore our free particle indeed lives on a circle (0, 2π/L).

•This emergence of a compact interval is essentially different from what happens in the

continuum limit of standard (x dependent) theory/fields.

There a local potential associated with each link

0 < Ai < 2π/a −→ 0 < A(x) <∞,

while here the global variable A remains still bounded even in the continuum limit.

• (7,8) contains only the contributions from the first winding sector. Complete result is

given by the Jacobi theta function:

K(A′, A, ε) = θ3

L
2

(A′ − A), e
e2L
2 ε


• Volume reduction
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Another derivation - Coulomb gauge on a lattice

A single row of Nx = 3 horizontal links θ1, θ2, θ3

A local gauge transformation specified by α1, α2, α3

θ1 → gθ1 = θ1 + α1 − α2

θ2 → gθ2 = θ2 + α2 − α3

θ3 → gθ3 = θ3 + α3 − α1

or

gθi = θi + βi, Σ3
i=1βi = 0

If we choose

β1 =
1

3
(θ1 + θ2 + θ3)− θ1

β2 =
1

3
(θ1 + θ2 + θ3)− θ2

β3 =
1

3
(θ1 + θ2 + θ3)− θ3
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then all new link angles are equal

gθ1 =g θ2 =g θ3 =
1

3
(θ1 + θ2 + θ3) ≡ θrow.

=⇒Only one degree of freedom remains

Now the transfer matrix reads

< θ|Π|θ′ >= ΣnIn(β)NxeinNx(θ−θ′)

Continuum limit Nxθ → LA

β =
1

e2a2
, aNx = L, θ = aA

repeating earlier steps gives

< θ|Π|θ′ >−→ Σne
−EnaeinL(A−A′) = K(A,A′, ε = a)

which is nothing but a spectral representation of the Feynman kernel propagating the system
(1-2) through a time lapse ε = a.
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III. Adding external charges

Wilson loops - a tailing trick

W [Γ] = Πl∈Γe
iθl = Πp∈in(Γ)e

iφp

Z〈W 〉 =
∫
dNV−1φp

(
Πp∈in(Γ)e

iφpB(φp)
) (

Πp∈out(Γ)B(φp)
)
B

(
ΣNV−1
p φp

)

= ΣnIn(β)
(
Πin(Γ)

∫
φp
ei(n+1)φpB(φp)

) Πout(Γ)

∫
φp′
einφp′B(φp′)



= ΣnIn(β)Nx∗Nt−nx∗ntIn+1(β)nx∗nt. (9)

•• show that tailing outside of the loop gives the same result.
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Wilson loops - directly from link variables

Z〈W 〉 =
∫ 2π

0
d(links)

(
Πl∈Γe

iθl
) (

ΠNV
p B(φp)

)

= Σm1,m2,...,mNV
Im1...ImNV

∫
links

(
Πl∈Γe

iθl
) (

ΠNV
p eimpφp

)

= Σm1,m2,...,mNV
Im1...ImNV

Π
2NV
l ∆(mPL(l),mPR(l)),

∆(mPL(l),mPR(l)) =

 δmL(l),mR(l) l ∈/ Γ

δmL(l),mR(l)+1 l ∈ Γ

=⇒ (9) .
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Space like Polyakov loops

Z < P (nt)
†P (0) >= Σn

(
INx
n

)Nt−nt (
INx
n+1

)nt
, (10)

From the transfer matrix (2x4 lattice again)

Z < P †(3)P (2) >= Tr
(
ΠP †ΠPΠ2

)
. (11)

Polyakov loop operator is diagonal in the angular basis,

< θ1, θ2|P |θ′1, θ′2 >= δθ1,θ′1δθ2,θ′2e
iθ1eiθ2

hence it just a creates a unit of flux at each link.

< n,m|P |n′,m′ >= δn,n′+1δm,m′+1

with a unit overlap.

Calculating the trace (11) in the flux basis one obtains

Z < P (3)P (2) >= ΣnI
6
nI

2
n+1,

which goes into (10) for general sizes.

•• Notice that (10) is symmetric with respect to the time reflection nt → Nt − nt. Why ?
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Time like Polyakov loops

As before

Z < P †(1)P (nx + 1) >= ΣnIn(β)Nt∗(Nx−nx)In+1(β)Nt∗nx, (12)

Transfer matrix approach

Polyakov lines are just additional projection operators.

The numerator of the < PP > as in (4) (still for (3x4) lattice)

Z < P (1)†P (3) >= Tr
(
(ΠPP )4

)
(13)

where ΠPP is the projection operator similar to (6)

< α, β, γ|ΠPP |α′, β′, γ′ >=
∫
dϑ1dϑ2dϑ3

e−iϑ1B(α′ + ϑ2 − α− ϑ1)B(β′ + ϑ3 − β − ϑ2)eiϑ3B(γ′ + ϑ1 − γ − ϑ3) (14)

but with additional U(1) elements from Polyakov lines at ix = 1 and ix = 3.

In the flux basis this transition operator reads M = (m1,m2,m3), N = (n1, n2, n3).

< m1,m2,m3|ΠPP |n1, n2, n3 >= δMNΣnδn1,n+1δn2n+1δn3,nIn1(β)In2(β)In3(β), (15)

so the fluxes between two Polyakov lines are the same, likewise fluxes outside, however the

common two values differ by one unit.
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The general case of Nx sites and loops separated by nx units.

< M |ΠPP |N >= δMNΣnIn(β)Nx−nxIn+1(β)nxΠnx
interiorδmi,n+1ΠNx−nx

exteriorδmj ,n (16)

Now taking the trace of Nt − th power reproduces readily (12).

Continuum limit

As earlier, introduce the dimensionful lattice constant, use the asymptotic form of Bessel

functions and express (12) in terms of physical distances (in particular the distance between

sources, anx = R) to obtain

Z < P (0)†P (R) >= Σne
−EPP

n T , (17)

with

EPP
n =

e2

2

(
n2(L−R) + (n + 1)2R

)
, n = 0,±1,±2, .... (18)
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An exercise

• space Polyalov lines

Z < Ps(0)†Ps(t) >= Σne
−e

2
2 n

2L(T−t)e−
e2
2 (n+1)2Lt, (19)

• time Polyalov lines

Z < Pt(0)†Pt(R) >= Σne
−e

2
2 (n2(L−R)+(n+1)2R)T , (20)

• Wilson loops

Z < WR,t >= Σne
−e

2
2 (n2(LT−Rt)+(n+1)2Rt), (21)

show that (21) admits the interpretation, in terms of time evolution, analo-
gous to (19) and (20)

21



A straightforward interpretation:

EPP
n =

e2

2

(
n2(L−R) + (n + 1)2R

)
, n = 0,±1,±2, .... (22)

• Time like Polyakov lines modify Gauss’s low at spatial points 0 and R - they introduce

external unit charges at these positions.

• Such charges cause additional unit of flux extending over distance R.

• Hence the two contributions to the eigenenergies: an ”old” flux over the distance L−R
and the new one, bigger by one unit (fluxes are additive !) , over R.

• Interesting special cases:

→ at large T comes the lowest, n = 0 and n = −1, states dominate. Then we just

have standard (unit flux) strings of length R and L-R ,

→ R = 0 – old topological flux with charge n.

→ R = L – when external charges meet at the ”end point” of a circle, they annihilate

(e+δP (0)+e−δP (L) = 0 )and leave behind a topological string with length L and charge

bigger by one unit.

• Varying R interpolates between integer valued topological fluxes.
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Equivalent form

EPP
n =

e2

2
L(n + ρ)2 + const.(L,R), ρ =

R

L
, const. =

e2

2
Lρ(1− ρ) (23)

• Indeed eRL is the electric field, generated by two sources, averaged over the whole

volume.

• The system does not see any distances, Ax(x) = const., hence averaging over the

volume.

• Changing R allows to mimic arbitrary real charge q = e(n + ρ).

• Only [ρ] is relevant.
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Hamiltonian and wave functions

Transfer matrix: transform (16) to the angular representation, in Coulomb gauge

< θ|ΠPP |θ′ > = ΣnIn(β)Nx−nxIn+1(β)nxein(Nx−nx)(θ−θ′)ei(n+1)nx(θ−θ′) (24)

≡ KPP
L (θ, θ′) = ΣnIn(β)Nx−nxIn+1(β)nxeinNx(θ−θ′)einx(θ−θ′) (25)

In the continuum limit , Nxθ = LA, nxθ = RA, we get

KPP
L (θ, θ′) −→ KPP (A,A′, ε) = Σne

−e2L
2 ((n+ρ)2+ρ(1−ρ))εei(n+ρ)L(A−A′). (26)

which is the momentum expansion of the Feynman kernel describing 1DOF QM with above

spectrum. Now we can identify eigenfunctions and the hamiltonian

H = −e
2L

2

d2

dχ2
+
e2L

2
ρ(1− ρ), ψn(χ) = ei(n+ρ)χ. (27)
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Or, in another basis

K̄PP (A,A′, ε) ≡ e−iρ(A−A′)LKPP (A,A′, ρ).

H̄ = −e
2L

2

 d
dχ

+ iρ

2

+
e2L

2
ρ(1− ρ), χ = LA, ψ̄n(χ) = einχ,

with the spectrum (23) and corresponding, periodic eigenfunctions.

• Θ parameter acquires now a straightforward interpretation

ΘManton = ρ =
R

L
,

• A new constant term.
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Θ-vacua

• The transformation A −→ A+ 2π
L is a large gauge transformation, Λ(x) = 2πx

L , Λ(x+

L) = Λ(x) + 2π

• Full analogy 4D YM and/or the crystal : many classical configurations around which

we can quantize

• Θ vacua: |Θ〉 = Σne
iΘn|n〉

• The wave function of a Θ-state ψΘ(x) = 〈x|Θ〉 satisfies ψΘ(x− d) = eiΘψΘ(x)

• The solution ( Bloch theorem) : ψΘ(x) = eiΘx/duΘ(x), with periodic uΘ(x)

• Our case: ψn(A) = ei(n+ρ)AL = eiρALeinAL is exactly of Bloch type upon identification

x→ A, d→ 2π/L , Θ→ 2πρ

• Introducing external charges fixes the Θ-vacuum in QMD2.

• D=4 : in a Θ-vacuum some field configurations acquire electric charge [Witten ’76].
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More, different charges

R2 - distance between doubly charged sources
R1 - distance between singly charged ones

Z < P (i)†P (j)2†P 2(j + n2)P (i + n1) >=

ΣnIn(β)Nt(Nx−n1)In+1(β)Nt(n1−n2)In+3(β)Ntn2,

• eigenenergies in the continuum limit

EPPPP
n =

e2

2

(
n2(L−R1) + (n + 1)2(R1 −R2) + (n + 3)2R2

)

=
e2

2
L

(
(n + ρ1 + 2ρ2)2 + ρ1(1− ρ1) + 4ρ2(2− ρ1 − ρ2)

)

etc. 1 DOF quantum mechanical systems can be also readily constructed.

• This time Θ = (R1 + 2R2)/L, i.e. it is again equal to the external field
averaged over the whole volume.
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IV. Arbitrary charges on a lattice

Why? To learn about screening

Massive Schwinger model

σq = m e
1− cos

2π
q

e

 m/e << 1, [Coleman et al., ′75]

⇒ generalizations for large N QCD2.

⇒ How to put arbitrary (noncongruent with e) charges on a lattice?

• One way: as above q = e(n + R/L)

• Another way: new observables

28



Wilson loops with arbitrary charge

Z〈WQ〉 =
∫

(W [Γ])Q e−S, Q = q/e

Contras:
gauge invariance – not if you carefully/consistently deal
with multivaluedness
dependence on the boundaries in angular variables – not if you do
loops

Pros:
Results are consistent (MC ↔ TH)
New structure appears QMD2

Why not !
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Q-loops theoretically

Z〈WQ〉 =
∫ 2π
0 d(links)

(
Πl∈Γe

iQθl
) (

ΠNV
p B(φp)

)

= Σm1,m2,...,mNV
Im1...ImNV

∫
links

(
Πl∈Γe

iQθl
) (

ΠNV
p eimpφp

)

= Σm1,m2,...,mNV
Im1...ImNV

(
Πl∈/ ΓδmL(l),mR(l)

) (
Πl∈ΓS̄(Q−mL(l) + mR(l))

)

= Σm,nI
NxNt−nxnt
n Inxntm S(Q−m + n)nx+nt,

S̄(x) =
sin πx

πx
, S(x) =

sin πx

πx


2
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and ”experimentally” [P. Korcyl, M. Koren]

Figure 1:

• Q-loops can be defined on a lattice - MC agrees with TH

• They do not create states with arbitrary charge
– they excite the only existing quantum states with integer charges
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Continuum limit

Z〈WQ〉 = Σm,nI
NxNt−nxnt
n Inxntm S(Q− (n−m))nt+nx =

Σm,n exp

−e
2

2
n2L(T − t)

 exp

−e
2

2

(
n2(L−R) + m2R

)
t



S(Q− (n−m))(t+R)/a

does not exist at fixed, not integer Q.

=⇒ However the classical limit:
Q→∞, with q = Qe−fixed, on a fixed lattice (a,N ′s, const.)

does exist!
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Then β ≡ b2 = 1/e2a2 →∞, but not because a→∞,
but because e→ 0.
The spectrum of fluxes becomes continuous: n→ u = n/b,m→ v = n/b

Therefore (Q = q/e =
√
β/κ = b/g, g = 1/qa)

ZKΠQQ = β
∫
dudv exp

−1

2
(u2(Nx − nx) + v2nx)


S

(
b(g−1 − (u− v))

)2
eibu(ΘL−R−Θ′L−R)eibv(ΘR−Θ′R)

using

S(b∆) b→∞−→ 1

b
δ(∆)

gives

ZKΠQQ =
√
β

∫
du exp

−1

2
(u2(Nx − nx) + (u− g−1)2nx)



eibu(ΘL−R−Θ′L−R)eib(u−g
−1)(ΘR−Θ′R)
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Now, do the gaussian integral, take the continuum limit to obtain

ZKΠQQ =
√
β

√√√√√√2πa

L
exp

−L
2

(A− A′)2

a

 exp

−q
2

2
ρ(1− ρ)La


=⇒ a free particle propagating over a time a, but in a constant background
potential

V =
q2

2
ρ(1− ρ)L

with arbitrary, real value of a classical charge q.

• The classical energy with a continuous charge q results from the contri-
bution of many microscopic states with discrete charges.

• the structure (zeroes of the string tension)
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V. Nonabelian case: YM2 on a circle

• Continuum: problem reduces to N constant in space, but constrained,
angles θi, Σiθi = 0.

Hamiltnian is again quadratic and the spectrum is known explicitly [Het-
rick and Hosotani ’89]

E{n} =
g2L

4

Σin
2
i −

1

N
(Σini)

2
 , i = 1, ..., N − 1

• Continuum: different spectrum was obtained by Rajeev: ER = g2L
2 C2(R)

• Discrepancy comes from the Casimir energy due to the curvature of the
group manifold [Hetrick ’93, Witten ’91,’92]
• Lattice: continuum spectrum ⇐= the large β behaviour of the character
expansion of Boltzman factor.

It is given by the Casimir plus, the N dependent, constant curvature cor-
rection/Casimir energy, and agrees with Hetrick and Hosotani .
• External charges in YM2 – studied by many [Semenoff et al. ’97] but
above connection with Θ-vacuum not.
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