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Standard Model of Particle Physics

“Ordinary Matter"
composed of elements
from the first column.

Plus the Higgs Boson.
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The rôle of flavour physics

(Precision) Flavour physics, weak interaction processes in which the flavour
(u, d, s, c, b, t) quantum number changes, is a key tool in exploring the limits of the
Standard Model of Particle Physics and in searches for new physics.
It is complementary to high-energy experiments (most notably the LHC).

If, as expected/hoped the LHC experiments discover new elementary
particles BSM, then precision flavour physics will be necessary to
understand the underlying framework.
The discovery potential of precision flavour physics should also not be
underestimated. (In principle, the reach is about two-orders of magnitude
deeper than the LHC!)
Precision flavour physics requires control of hadronic effects for which lattice
QCD simulations are essential.

K π

π

Oj

s

means

K π

π

Oj

s

In fact, it is a major surprise to many of us that no unambiguous inconsistencies
have arisen up to now.
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The Interactions of Quarks and Gauge Bosons

In the Standard Model, the interaction of quarks with the gauge-bosons can be
illustrated by the following vertices:

i j i i i i i i

W± Z0 γ G

i, j represent the quark flavour {i, j = u,d,c,s, t,b}.
Colour is the charge of the strong interactions.

In these lectures we will be particularly interested in the weak interactions.
Feynman rule for W-vertex above is

i
g2

2
√

2
Vijγµ (1− γ5) ,

where g2 is the coupling constant of the SU(2)L gauge group and V is the
(unitary) Cabibbo-Kobayashi-Maskawa (CKM) matrix (see below).
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Generalized β -Decays

At the level of quarks we understand nuclear β decay in terms of the fundamental
process:

d
u

W
e−

ν̄

With the 3 generations of quarks and leptons in the standard model this is
generalized to other charged current processes, e.g.:

d
u

W
e−

ν̄

s
u

W
e−

ν̄

b
u

W
e−

ν̄
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Chirality

Experiment⇒ only the left-handed components of the fermions participate in
charged current weak interactions, i.e. the W ’s only couple to the left-handed
components.

ψL = PLψ =
1
2
(1− γ

5)ψ ψR = PRψ =
1
2
(1+ γ

5)ψ

Under parity transformations ψL(x0,~x)→ γ0ψR(x0,−~x) and
ψR(x0,~x)→ γ0ψL(x0,−~x)
PL and PR are projection operators

P2
L = PL and P2

R = PR (PL PR = PR PL = 0, PL +PR = I)

ψ̄ γ
µ

ψ = ψ̄Lγ
µ

ψL + ψ̄Rγ
µ

ψR and ψ̄ ψ = ψ̄L ψR + ψ̄R ψL .

(Thus for QCD with N massless fermions we have a U(N)×U(N) (global) chiral
symmetry⇒ SU(N)L×SU(N)R.) See Steve Sharpe’s Lectures

In order to accommodate the observed nature of the parity violation the left and
right-handed fermions are assigned to different representations of SU(2)×U(1),
with the right-handed fields being singlets of SU(2).
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Fermions in the SU(2)×U(1) Gauge Theory

For a general representation of fermions the covariant derivative takes the form:

Dµ = ∂µ − igWa
µ Ta− ig′YBµ ,

where the Ta are the corresponding generators of SU(2) and the Y ′s are the
weak-hypercharges. The covariant derivative can be rewritten in terms of the
mass-eigenstates as:

Dµ = ∂µ −
ig√

2
(W+

µ T++W−µ T−)− i
g2T3−g′2Y√

g2 +g′2
Zµ − i

gg′√
g2 +g′2

(T3 +Y)Aµ .

Thus the electic charge operator is

Q = T3 +Y and e =
gg′√

g2 +g′2
. (Q =−1 for the electron).

The left-handed quarks and leptons are assigned to doublets of SU(2) and the
right-handed fermions are singlets.
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Assignment of Fermions

Q = T3 +Y

The left handed leptons are assigned to the doublet.

EL =

(
νe
e

)
L
.

In order to have the correct charge assignments Yνe = YeL =−1/2 .

For the right-handed lepton fields T3 = 0 and hence YeR =−1. In the standard
model we do not have a right-handed neutrino!

For the left-handed quark fields we have the left-handed doublet:

QL =

(
u
d

)
L
.

with YQL = 1/6 .

The right-handed quark fields therefore have YuR = 2/3 and YdR =−1/3 .

Similar assignments are made for the other two generations.
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Fermion Lagrangian

The terms in the Lagrangian involving the first-generation fermions then take the form:

L = ĒL(i 6∂ )EL + ēR(i 6∂ )eR + Q̄L(i 6∂ )QL + ūR(i 6∂ )uR + d̄R(i 6∂ )dR

+g
(

W+
µ Jµ +

W +W−µ Jµ−
W +Z0

µ Jµ

Z

)
+ eAµ Jµ

EM ,

where

Jµ +
W =

1√
2
(ν̄Lγ

µ eL + ūLγ
µ dL);

Jµ−
W =

1√
2
(ēLγ

µ
νL + d̄Lγ

µ uL);

Jµ

Z =
1

cosθW

{
1
2

ν̄Lγ
µ

νL +

(
sin2

θW −
1
2

)
ēLγ

µ eL + sin2
θW ērγ

µ eR

+

(
1
2
− 2

3
sin2

θW

)
ūLγ

µ uL−
2
3

sin2
θW ūRγ

µ uR

+

(
1
3

sin2
θW −

1
2

)
d̄Lγ

µ dL +
1
3

sin2
θW d̄Rγ

µ dR

}
;

Jµ

EM = −ēγ
µ e+

2
3

ūγ
µ u− 1

3
d̄γ

µ d .
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The Weak Mixing Angle

The weak mixing angle θW is defined by:(
Z0

A

)
=

(
cosθW −sinθW
sinθW cosθW

) (
W3

B

)
so that

cosθW =
g√

g2 +g′2
, and sinθW =

g′√
g2 +g′2

.

At tree level
mW = mZ cosθW .
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Quark Mixing

Two Experimental Numbers:

B(K−→ π
0e−νe)' 5% (Ke3 Decay) and B(K−→ π

−e+e−)< 3×10−7 .

K− π0, π−

leptons

s u, d

ū

Measurements like this show that s→ u (charged-current) transitions are not very
rare, but that Flavour Changing Neutral Current (FCNC) transitions, such as s→ d
are.

In the picture that we have developed so far, there are no transitions between
fermions of different generations. This has to be modified.

The picture which has emerged is the Cabibbo-Kobayashi-Maskawa (CKM)
theory of quark mixing which we now consider.
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CKM Theory

In the CKM theory the (quark) mass eigenstates are not the same as the
weak-interaction eigenstates which we have been considering up to now.
Let

U′ =

u′

c′

t′

= Uu

u
c
t

= Uu U and D′ =

d′

s′

b′

= Ud

d
s
b

= UdD

where the ′s denote the weak interaction eigenstates and Uu and Ud are unitary
matrices.

For neutral currents:

Ū′ · · ·U′ = Ū · · ·U and D̄′ · · ·D′ = D̄ · · ·D

and no FCNC are induced. The · · · represent Dirac Matrices, but the identity in
flavour.

For charged currents:

Jµ +
W =

1√
2

Ū′Lγ
µ D′L =

1√
2

ŪLU†
uγ

µ UdDL =
1√
2

ŪLγ
µ (U†

uUd)DL ≡
1√
2

ŪLγ
µ VCKMDL
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The CKM Matrix

The charged-current interactions are of the form

J+µ = (ū, c̄, t̄ )Lγµ VCKM

 d
s
b


L

,

2012 Particle Data Group summary for the magnitudes of the entries:
0.97427±0.00015 0.22534±0.00065 0.00351+0.00015

−0.00014

0.22520±0.00065 0.97344±0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046

 .

How many parameters are there?

– Let Ng be the number of generations.
– Ng×Ng unitary matrix has N2

g real parameters.
– (2Ng−1) of them can be absorbed into unphysical phases of the quark fields.
– (Ng−1)2 physical parameters to be determined.
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Parametrizations of the CKM Matrix

For Ng = 2 there is only one parameter, which is conventionally chosen to be the
Cabibbo angle:

VCKM =

(
cosθc sinθc
−sinθc cosθc

)
.

For Ng = 3, there are 4 real parameters. Three of these can be interpreted as
angles of rotation in three dimensions (e.g. the three Euler angles) and the fourth
is a phase. The general parametrization recommended by the PDG is c12c13 s12c13 s13e−iδ13

−s12c23− c12s23s13eiδ13 c12c23− s12s23s13eiδ13 s23c13
s12s23− c12c23s13eiδ13 −c12s23− s12c23s13eiδ13 c23c13


where cij and sij represent the cosines and sines respectively of the three angles
θij, ij = 12, 13 and 23. δ13 is the phase parameter.

It is conventional to use approximate parametrizations, based on the hierarchy of
values in VCKM (s12� s23� s13).

Chris Sachrajda Natal, 22nd March 2013 18



The Wolfenstein Parametrization

The Wolfenstein parametrization is

VCKM =


1− λ 2

2 λ Aλ 3(ρ− iη)

−λ 1− λ 2

2 Aλ 2

Aλ 3(1−ρ− iη) −Aλ 2 1

 .

λ = s12 is approximately the Cabibbo angle.

A,ρ and η are real numbers that a priori were intended to be of order unity.

Corrections are of O(λ 4).
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The Unitarity Triangle

Unitarity of the CKM-matrix we have a set of relations between the entries. A
particularly useful one is:

VudV∗ub +VcdV∗cb +VtdV∗tb = 0 .

In terms of the Wolfenstein parameters, the components on the left-hand side are
given by:

VudV∗ub = Aλ
3[ρ̄ + iη̄ ]+O(λ 7)

VcdV∗cb = −Aλ
3 +O(λ 7)

VtdV∗tb = Aλ
3[1− (ρ̄ + iη̄)]+O(λ 7) ,

where ρ̄ = ρ(1−λ 2/2) and η̄ = η(1−λ 2/2).
The unitarity relation can be represented schematically by the famous “unitarity
triangle" (obtained after scaling out a factor of Aλ 3).
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The Unitarity Triangle Cont.

VudV∗ub +VcdV∗cb +VtdV∗tb = 0 .

A = (ρ̄, η̄)

α

C = (0, 0)

γ

B = (1, 0)

β

ρ̄+ iη̄ 1− (ρ̄+ iη̄)

A particularly important approach to testing the Limits of the SM is to
over-determine the position of the vertex A to check for consistency.
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PDG2012 Unitarity Triangle

γ

γ

α

α

dm∆

Kε

Kε

sm∆ & dm∆

ubV

βsin 2
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e
xc

lu
d
e
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t C
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PDG2006 & 2012 Unitarity Triangle Comparison

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

sin
 
2β

sol. w/ cos
 
2β

 
<

 
0

(excl. at CL
 
>

 
0.95)

e
xclu

d
e
d
 a

t C
L  >  0

.9
5

γ

γ

α

α

∆m
d

∆m
s
 &

 
∆m

d

ε
K

ε
K

|V
ub

/V
cb

|

sin
 
2β

sol. w/ cos
 
2β

 
<

 
0

(excl. at CL
 
>

 
0.95)

e
xclu

d
e
d
 a

t C
L  >  0

.9
5

α

βγ

ρ

η

excluded area has CL
 
>

 
0.95

2006

γ

γ

α

α

dm∆

Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xc

lu
d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ

­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0
η

­1.5

­1.0

­0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

2012

Chris Sachrajda Natal, 22nd March 2013 24



Programme

1 Lecture 1: Introduction to Flavour Physics

1 Introduction
2 Fermions in the Standard Model
3 Quark Mixing – CKM Theory
4 The Unitarity Triangle
5 Flavour Changing Neutral Currents
6 Discrete Symmetries C, P and CP
7 Operator Product Expansion.

2 Lecture 2: Lattice Computations in Flavour Physics

3 Lecture 3: Light-quark physics

4 Lecture 4: Heavy-quark physics

Chris Sachrajda Natal, 22nd March 2013 25



Flavour Changing Neutral Currents (FCNC)

We have seen that in the SM, unitarity implies that there are no FCNC reactions at tree
level, i.e. there are no vertices of the type:

b s u c

.

Quantum loops, however, can generate FCNC reactions, through box diagrams or
penguin diagrams.
Example relevant for B̄0 – B0 mixing:

d b

b d

u, c, t u, c, t

d b

b d

u, c, t

u, c, t
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FCNC Cont.

Examples of penguin diagrams relevant for b→ s transitions:

u, c, t

b s

W

Z0, γ,G

u, c, t

b s
W W

Z0, γ

We will discuss several of the physical processes induced by these loop-effects.
The Glashow-Illiopoulos-Maiani (GIM) mechanism⇒ FCNC effects vanish for
degenerate quarks (mu = mc = mt). For example unitarity implies

VubV∗us +VcbV∗cs +VtbV∗ts = 0

⇒ each of the above penguin vertices vanish.
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The Discrete Symmetries P,C and CP

Parity
(~x, t)→ (−~x, t).

The vector and axial-vector fields transform as:

Vµ (~x, t)→ Vµ (−~x, t) and Aµ (~x, t)→−Aµ (−~x, t).
The vector and axial-vector currents transform similarly.

Left-handed components of fermions ψL = ( 1
2 (1− γ5)ψ) transform into

right-handed ones ψR = ( 1
2 (1+ γ5)ψ), and vice-versa.

Since CC weak interactions in the SM only involve the left-handed
components, parity is not a good symmetry of the weak force.
QCD and QED are invariant under parity transformations.
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The Discrete Symmetries P,C and CP cont.

Charge Conjugation – Charge conjugation is a transformation which relates
each complex field φ with φ †.
Under C the currents transform as follows:

ψ̄1γµ ψ2→−ψ̄2γµ ψ1 and ψ̄1γµ γ5ψ2→ ψ̄2γµ γ5ψ1,

where ψi represents a spinor field of type (flavour or lepton species) i.

CP – Under the combined CP-transformation, the currents transform as:

ψ̄1γµ ψ2→−ψ̄2γ
µ

ψ1 and ψ̄1γµ γ5ψ2→−ψ̄2γ
µ

γ5ψ1.

The fields on the left (right) hand side are evaluated at (~x, t) ( (−~x, t) ).
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CP Cont.

Consider now a charged current interaction:

(W1
µ − iW2

µ ) Ūi
γ

µ (1− γ
5)VijDj +(W1

µ + iW2
µ ) D̄j

γ
µ (1− γ

5)V∗ijU
i,

Ui and Dj are up and down type quarks of flavours i and j respectively.

Under a CP transformation, the interaction term transforms to:

(W1
µ + iW2

µ ) D̄j
γ

µ (1− γ
5)VijUi +(W1

µ − iW2
µ ) Ūi

γ
µ (1− γ

5)V∗ijD
j

CP-invariance requires V to be real
(or more strictly that any phases must be able to be absorbed into the definition of
the quark fields).

For CP-violation in the quark sector we therefore require 3 generations.
Nobel prize in 2008 to Kobayashi and Maskawa.
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Short and Long-Distance QCD Effects in Weak Decays

The property of asymptotic freedom⇒ quark and gluon interactions become
weak at short distances, i.e. distances� 1 fm.

Nobel prize in 2004 to Gross, Politzer and Wilczek.

Thus at short distances we can use perturbation theory.

Schematically weak decay amplitudes are organized as follows:

Ai→f = ∑
j

Cj(µ)〈f |Oj(0) | i〉µ

where

The Cj contain the short-distance effects and are calculable in perturbation
theory;
the long-distance non-perturbative effects are contained in the matrix
elements of composite local operators {Oi(0)} which are the quantities
which are computed in lattice QCD simulations;
the renormalization scale µ can be viewed as the scale at which we
separate the short-distances from long-distances.
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Operator Product Expansions and Effective Hamiltonians

Quarks interact strongly⇒ we have to consider QCD effects even in weak
processes.

Our inability to control (non-perturbative) QCD Effects is frequently the largest
systematic error in attempts to obtain fundamental information from experimental
studies of weak processes!

Tree-Level:

.

W O1

Since MW ' 80 GeV, at low energies the momentum in the W-boson is much
smaller than its mass⇒ the four quark interaction can be approximated by the
local Fermi β -decay vertex with coupling

GF√
2
=

g2
2

8M2
W

.
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Operator Product Expansions and Effective Hamiltonians Cont.

Asymptotic Freedom⇒ we can treat QCD effects at short distances, |x| � Λ
−1
QCD

( |x|< 0.1 fm say) or corresponding momenta |p| � ΛQCD ( |p|> 2 GeV say), using
perturbation theory.

The natural scale of strong interaction physics is of O(1 fm) however, and so in
general, and for most of the processes discussed here, non-perturbative
techniques must be used.

For illustration consider K→ ππ decays, for which the tree-level amplitude is
proportional to

GF√
2

V∗udVus 〈ππ|(d̄γ
µ (1− γ

5)u)(ūγµ (1− γ
5)s)|K〉 .

s

d̄

u

ū

W

We therefore need to
determine the matrix
element of the operator

O1 =(d̄γ
µ (1−γ

5)u)(ūγµ (1−γ
5)s) .
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Operator Product Expansions and Effective Hamiltonians Cont.

s

d̄

u

ū

W

s

d̄

u

ū

WG

Gluonic corrections generate a second operator (d̄Taγµ (1− γ5)u)(ūTaγµ (1− γ5)s),
which by using Fierz Identities can be written as a linear combination of O1 and
O2 where

O2 = (d̄γ
µ (1− γ

5)s)(ūγµ (1− γ
5)u) .

OPE⇒ the amplitude for a weak decay process can be written as

Aif =
GF√

2
VCKM ∑

i
Ci(µ)〈f |Oi(µ) |i〉 .

µ is the renormalization scale at which the operators Oi are defined.
Non-perturbative QCD effects are contained in the matrix elements of the Oi,
which are independent of the large momentum scale, in this case of MW .
The Wilson coefficient functions Ci(µ) are independent of the states i and f and
are calculated in perturbation theory.
Since physical amplitudes manifestly do not depend on µ, the µ-dependence in
the operators Oi(µ) is cancelled by that in the coefficient functions Ci(µ).
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Operator Product Expansions and Effective Hamiltonians Cont.

The effective Hamiltonian for weak decays takes the form

Heff ≡
GF√

2
VCKM ∑

i
Ci(µ)Oi(µ) .

We shall see below that for some important physical quantities (e.g. ε ′/ε), there
may be as many as ten operators, whose matrix elements have to be estimated.

Lattice simulations enable us to evaluate the matrix elements non-perturbatively.

In weak decays the large scale, MW , is of course fixed. For other processes, most
notably for deep-inelastic lepton-hadron scattering, the OPE is useful in
computing the behaviour of the amplitudes with the large scale (e.g. with the
momentum transfer).
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Towards more insight into the structure of the OPE.

s

d̄

u

ū

W

s

d̄

u

ū

WG

For large loop-momenta k the right-hand graph is ultra-violet convergent:∫
k large

1
k

1
k

1
k2

1
k2−M2

W
d4k ,

(1/k for each quark propagator and 1/k2 for the gluon propagator.)
We see that there is a term ∼ log(M2

W/p2), where p is some infra-red scale.

In the OPE we do not have the W-propagator.
s

d̄

u

ū

G
O1

Power Counting :
∫

k large

1
k

1
k

1
k2 d4k ⇒ divergence ⇒ µ−dependence.
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Towards more insight into the structure of the OPE. (Cont.)

Infra-dependence is the same as in the full field-theory.

log

(
M2

W
p2

)
= log

(
M2

W
µ2

)
+ log

(
µ2

p2

)

The ir physics is contained in the matrix elements of the operators and the uv
physics in the coefficient functions:

log

(
M2

W
µ2

)
→ Ci(µ)

log
(

µ2

p2

)
→ matrix element of Oi

In practice, the matrix elements are computed in lattice simulations with an
ultraviolet cut-off of 2 – 4 GeV. Thus we have to resum large logarithms of the
form αn

s logn(M2
W/µ2) in the coefficient functions⇒ factors of the type[

αs(MW)

αs(µ)

]γ0/2β0

.
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Towards more insight into the structure of the OPE. (Cont.)

[
αs(MW)

αs(µ)

]γ0/2β0

γ0 is the one-loop contribution to the anomalous dimension of the operator
(proportional to the coefficient of log(µ2/p2) in the evaluation of the one-loop
graph above) and β0 is the first term in the β -function,
(β ≡ ∂g/∂ ln(µ) = −β0 g3/16π2).

In general when there is more than one operator contributing to the right hand
side of the OPE, the mixing of the operators⇒ matrix equations.

The factor above represents the sum of the leading logarithms, i.e. the sum of the
terms αn

s logn(M2
W/µ2). For almost all the important processes, the first (or even

higher) corrections have also been evaluated.

These days, for most processes of interest, the perturbative calculations have
been performed to several loops (2,3,4), NnLO calculations.
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