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Determination of Vus - K`2 Decays

K−

s

ū

l−

ν̄

W

All QCD effects are contained in a single constant, fK , the kaon’s (leptonic) decay
constant.

〈0| s̄γ
µ

γ
5u |K(p)〉= ifK pµ . (fπ ' 132MeV)

Γ(K→ µν̄(γ))

Γ(π → µν̄(γ))
=
|Vus|2
|Vud|2

f 2
K

f 2
π

mK

(
1− m2

µ

m2
K

)

mπ

(
1− m2

µ

m2
π

) ×0.9930(35)

From the experimental ratio of the widths we get:

|Vus|2
|Vud|2

f 2
K

f 2
π

= 0.07602(23)exp(27)RC , PDG2006

so that a precise determination of fK/fπ will yield Vus/Vud .
Every collaboration calculates fK and fπ .
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Determination of Vus - K`3 Decays

K π

leptons

s u

⇒ Vus

〈π(pπ ) |s̄γµ u |K(pK)〉= f0(q2)
M2

K −M2
π

q2 qµ + f+(q2)

[
(pπ +pK)µ −

M2
K −M2

π

q2 qµ

]

where q≡ pK −pπ .

ΓK→π`ν = C2
K

G2
Fm5

K
192π3 I SEW[1+2∆SU(2)+∆EM ] |Vus|2 |f+(0)|2

From the experimental measurement of the width we get:

|Vus| f+(0) = 0.2169(9) , PDG2006

so that a precise determination of f+(0) will yield Vus.
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Results in the Standard Model

FLAG

We have the two precise results:
∣∣∣∣
Vus fK
Vud fπ

∣∣∣∣= 0.27599(59) and |Vus f+(0)|= 0.21661(47)

Flavianet – arXiv:0801.1817

We can view these as two equation for the four unknowns fK/fπ , f+(0), Vus and
Vud .
Within the Standard Model we also have the unitarity constraint:

|Vud|2 + |Vus|2 + |Vub|2 = 1

Thus we now have 3 equations for four unknowns.
There has been considerable work recently in updating the determination of Vud
based on 20 different superallowed transitions. Hardy and Towner, arXiV:0812.1202

|Vud|= 0.97425(22) .

If we accept this value then we are able to determine the remaining 3 unknowns:

|Vus|= 0.22544(95), f+(0) = 0.9608(46),
fK
fπ

= 1.1927(59) .

Chris Sachrajda Natal, 26th March 2013 6



Vus from Lattice Simulations
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unitarity

nuclear β decay

Flavianet Lattice Averaging Group

Lattice calculations of fK/fπ
combined with the experimental
widths⇒ Vus/Vud.

Following the suggestion of
Becirevic et al., precise lattice
calculations of the K`3 form factor
f+(0) are possible⇒ Vus.

hep-ph/0403217

Results are in remarkable
agreement with SM.

Currently the main uncertainty on f+(0) is
due to the chiral extrapolation.

RBC-UKQCD, arXiv:1004:0886
100 132

f0 MeV
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Chiral Behaviour of f0(0)

P.Boyle et al. arXiv:1004:0886
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Unitarity and the First Row of the CKM Matrix

FLAG

Lattice results are remarkably consistent with the unitarity of the CKM Matrix

For Nf = 2+1 simulations FLAG quotes the following current values:

fK
fπ

= 1.193(6) and f+(0) = 0.9599(34)
(
+31
−47

)
(14) .

Taking the experimental results for K`2 and K`3 decays and dividing by the
Nf = 2+1 lattice values of fK/fπ and f+(0) gives:

V2
ud +V2

us = 1.002(16) .

If we combine the experimental results with the value of Vud and the lattice values
of f+(0) or fK/fπ we find:

V2
ud +V2

us = 1.0000(7) or V2
ud +V2

us = 0.9999(7) .

Very significant test of universality of coupling of "W"-like bosons to quarks and
leptons.
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K0 – K̄0 Mixing

d s

s d

u, c, t u, c, t

d s

s d

u, c, t

u, c, t

The CP-eigenstates (K1 and K2) are linear combinations of the two
strong-interaction eigenstates:

|K1〉=
1√
2
(|K0〉+ |K̄0〉) CP|K1〉 = |K1〉 and

|K2〉=
1√
2
(|K0〉− |K̄0〉) CP|K2〉 = −|K2〉 .

I use the phase convention so that CP|K0〉= |K̄0〉.
Because of the complex phase in the CKM-matrix, the physical states (the mass
eigenstates) differ from |K1〉 and |K2〉 by a small admixture of the other state:

|KS〉=
|K1〉+ ε̄ |K2〉
(1+ |ε̄|2) 1

2

and |KL〉=
|K2〉+ ε̄ |K1〉
(1+ |ε̄|2) 1

2

,

The parameter ε̄ depends on the phase convention chosen for |K0〉 and |K̄0〉.
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εK

For K→ ππ and K→ πππ decays, the two pion states are CP-even and the
three-pion states are CP-odd⇒ the dominant decays are:

KS→ ππ and KL→ 3π .

This is the reason why KL is much longer lived than KS.

KL and KS are not CP-eigenstates, however⇒ KL→ 2π and KS→ 3π decays may
occur.

CP-violating decays which occur due to the fact that the mass eigenstates are not
CP-eigenstates are called indirect CP-violating decays.

A measure of the strength of indirect CP-violation is given by the physical
parameter εK defined by the ratio:

εK ≡
A(KL→ (ππ)I=0)

A(KS→ (ππ)I=0)
=

(
ImM12

2ReM12
+

ImA0

ReA0

)
eiφε sinφε ,

where φε ' 43.51±0.05◦ and |εK |= (2.228±0.011)×10−3 .

A0 is the amplitude for K→ (ππ)I=0 decays.
M12 is the off diagonal term in the neutral kaon mass matrix.
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ε ′/ε

Directly CP-violating decays are those in which a CP-even (-odd) state decays
into a CP-odd (-even) one: KL ∝ K2 + ǭK1 .

ππ

Direct (ǫ′) ππ

Indirect (ǫK)

Consider the following contributions to K→ ππ decays:

s

d̄

d

d̄

I = 0, Complex

(a)

s

d̄

u

ū

I = 0, Real

(b)

s

d̄

u

ū

d

I = 0 or 2, Real

(c)

d̄

Direct CP-violation in kaon decays manifests itself as a non-zero relative phase
between the I = 0 and I = 2 amplitudes.
We also have strong phases, δ0 and δ2 which are independent of the form of the
weak Hamiltonian.

Chris Sachrajda Natal, 26th March 2013 13



BK

d s

s d

u, c, t u, c, t

d s

s d

u, c, t

u, c, t

The effective Hamiltonian for ∆S = 2 processes is of the form:

H ∆S=2
eff =

G2
FM2

W
16π2 F 0 Q∆S=2 + h.c.

(In the Standard Model) Q∆S=2 is the dimension 6 operator:

Q∆S=2 = [s̄γµ (1− γ5)d] [s̄γ
µ (1− γ5)d]

Important practical simplifications are provided by the Fierz Identity for γ-matrices:

[ q̄1γµ (1− γ5)q2 ] [ q̄3γµ (1− γ5)q4 ] = [ q̄1γµ (1− γ5)q4 ] [ q̄3γµ (1− γ5)q2 ]

The function F 0 is given by the Inami-Lin functions:

F 0 = λ
2
c S0(xc)+λ

2
t S0(xt)+2λcλtS0(xc,xt) , where

xc,t = m2
c,t/M2

W and λq = V∗qsVqd. We have used λu +λc +λt = 0 and set xu = 0.
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BK (cont.)

Including QCD effects:

〈K̄0|H ∆S=2
eff |K0〉 = G2

FM2
W

16π2

[
λ

2
c S0(xc)η1 + λ

2
t S0(xt)η2 + 2λcλtS0(xc,xt)η3

]

×
(

g(µ)2

4π

)−γ0/(2β0)
{

1+
g(µ)2

(4π)2

[
β1γ0−β0γ1

2β 2
0

]}
〈K̄0|Q∆S=2(µ)|K0〉 + h.c. .

In this equation Q∆S=2(µ) is the renormalised operator in some scheme at the
renormalization scale µ. This dependence on scheme and scale is cancelled
(partially) by the explicit running on the second line above.
ηi are calculated in perturbation theory.
It is conventional to define the parameter BK :

BK(µ) =

〈
K̄0
∣∣Q∆S=2(µ)

∣∣K0〉

8
3 f 2

K m2
K

.

BK(µ) contains the non-perturbative effects in neutral kaon mixing and εK .
When presenting results for BK , the scheme and µ must be specified.
Popular choices are MS−NDR and NLO renormalisation group independent
(B̂K).
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Lattice Evaluation of BK

J†
K J†

K
Q∆S=2

s̄ d̄

d s

i
i

j
jK0 K̄0

J†
K J†

K
Q∆S=2

s̄ d̄

d s

i
j

i
jK0 K̄0

Each of the two black dots represents one of the currents in Q∆S = 2.
They are split for convenience.

Recalling the Fierz Identity, we see that there are two contributions to the
correlation function

〈0 |J†
K(tf )Q∆S=2(tQ)J†

K(tf ) |0〉 ,
corresponding to the two diagrams above.

i, j are colour labels.

It is natural to place the sources for the propagator at tQ.

We try to pick sources to get as much volume-averaging as possible.

In this way we get the matrix element 〈K̄0 |Q∆S=2
Latt (a) |K0〉 .

Finally we have to perform the normalization to obtain the matrix element in some
continuum scheme or to obtain B̂K .
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B̂K Results from the FLAG Review
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2
N

f=
2

+
1

For Nf = 2+1 FLAG quote arXiv:1011.4408v2 (1 June 2011)

B̂K = 0.738±0.020 .

Note the small error!!!
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Neutral Kaon Mixing BSM

Beyond the standard model there are in general 5 independent operators which
contribute neutral Kaon mixing:

H ∆S=2 =
5

∑
i=1

Ci(µ)Q∆S=2
i (µ) .

The five operators are:

Q∆S=2
1 = [ s̄i

γµ (1− γ5)di ] [ s̄j
γµ (1− γ5)dj ]

Q∆S=2
2 = [ s̄i(1− γ5)di ] [ s̄j(1− γ5)dj ]

Q∆S=2
3 = [ s̄i(1− γ5)dj ] [ s̄j(1− γ5)di ]

Q∆S=2
4 = [ s̄i(1− γ5)di ] [ s̄j(1+ γ5)dj ]

Q∆S=2
5 = [ s̄i(1− γ5)dj ] [ s̄j(1+ γ5)di ]

i, j are colour indices.
The matrix elements can be calculated in a similar way to BK . For a recent study
and references to the original literature see Boyle, Garron and Hudspith.

arXiv:1206.5737

Q∆S=2
1 transforms as (27,1) under SU(3)L×SU(3)R, Q∆S=2

2 and Q∆S=2
3 as (6, 6̄) and

Q∆S=2
4 and Q∆S=2

5 as (8,8)⇒ Renormalization matrix is block diagonal.
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εK and the Unitarity Triangle

A precise determination of εK would fix the vertex A to lie on a hyperbola.

A (ρ̄, η̄)

B (1, 0)C (0, 0)

. ...................................... ....................................
..................................

.................................
...............................

.............................
...........................
..........................
........................
......................
....................
...................
..................
..................
..................
..................
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PDG2012 Unitarity Triangle
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Direct Evaluation of K→ ππ Decays

K→ ππ decays are a very important class of processes for standard model
phenomenology.

Bose Symmetry⇒ the two-pion state has isospin 0 or 2.

Among the interesting issues are the origin of the ∆I = 1/2 rule
(ReA0/ReA2 ' 22.5) and an understanding of the experimental value of ε ′/ε, the
parameter which was the first experimental evidence of direct CP-violation.

The evaluation of K→ ππ matrix elements requires an extension of the standard
computations of 〈0 |O(0) |h〉 and 〈h2 |O(0) |h1〉 matrix elements with a single
hadron in the initial and/or final state.
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Effective Hamiltonian for K→ ππ Decays

H ∆S=1
eff =

GF√
2

VudV∗us

10

∑
i=1

[zi(µ)+ τ yi(µ)]Qi , where τ =− V∗tsVtd

V∗usVud
and

Current−Current Operators
Q1 = (s̄d)L(ūu)L Q2 = (s̄idj)L(ūjui)L

QCD Penguin Operators
Q3 = (s̄d)L ∑q=u,d,s(q̄q)L Q4 = (s̄idj)L ∑q=u,d,s(q̄jqi)L
Q5 = (s̄d)L ∑q=u,d,s(q̄q)R Q6 = (s̄idj)L ∑q=u,d,s(q̄jqi)R

Electroweak Penguin Operators
Q7 =

3
2 (s̄d)L ∑q=u,d,s eq(q̄q)L Q8 =

3
2 (s̄

idj)L ∑q=u,d,s eq(q̄jqi)L
Q9 =

3
2 (s̄d)L ∑q=u,d,s eq(q̄q)R Q10 =

3
2 (s̄

idj)L ∑q=u,d,s eq(q̄jqi)R

This 10 operator basis is very natural but over-complete:

Q10−Q9 = Q4−Q3

Q4−Q3 = Q2−Q1

2Q9 = 3Q1−Q3 .
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K→ (ππ)I=2 decay amplitudes

The original material on this topic is taken from two RBC-UKQCD papers:

1 “The K→ (ππ)I=2 Decay Amplitude from Lattice QCD,"
T.Blum, P.A.Boyle, N.H.Christ, N.Garron, E.Goode, T.Izubuchi, C.Jung, C.Kelly, C.Lehner,
M.Lightman, Q.Liu, A.T.Lytle, R.D.Mawhinney, C.T.Sachrajda, A.Soni and C.Sturm,

Phys. Rev. Lett. 108 (2012) 141601, (arXiv:1111.1699 [hep-lat]).

2 “Lattice Determination of the K→ (ππ)I=2 Decay Amplitude A2,"
T.Blum, P.A.Boyle, N.H.Christ, N.Garron, E.Goode, T.Izubuchi, C.Jung, C.Kelly, C.Lehner,
M.Lightman, Q.Liu, A.T.Lytle, R.D.Mawhinney, C.T.Sachrajda, A.Soni and C.Sturm,

Phys.Rev. D86 (2012) 074513, (arXiv:1206.5142 [hep-lat]).
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K→ (ππ)I=2 decay amplitudes

K π

π

O

s

We need to evaluate correlation functions as in the diagram above.

In order to divide by 〈0 |Jπ Jπ |ππ〉, we also need to evaluate the two-pion
correlation functions.

0 t
V

1

2

4

3

0 0t t 0 t
D C R

2

1 4

3 2

1 4

3 2

1 4

3

For I=2 ππ states the correlation function is proportional to D-C.
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K→ (ππ)I=2 decay amplitudes (Cont.)

K π

π

O

s

In the physical decay, in the centre-of-mass frame, Eππ = mK .

In lattice calculations, in order to eliminate excited states we do not integrate over
time, and so, in general, energy is not conserved.

In the centre-of-mass frame the ground-state is the two-pion state with Eππ ' 2mπ .

Therefore the correlation function is dominated by the unphysical transition of a
kaon at rest into two pions at rest. Maiani-Testa Problem

The Lellouch-Lüscher solution is to tune the volume so that one of the excited
states corresponds to Eππ = mK . (Loss of precision.) hep-lat/0003023
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K→ (ππ)I=2 Decays - The Wigner-Eckart Theorem

The operators whose matrix elements have to be calculated are:

O3/2
(27,1) = (s̄idi)L

{
(ūjuj)L− (d̄jdj)L

}
+(s̄iui)L (ūjdj)L

O3/2
7 = (s̄idi)L

{
(ūjuj)R− (d̄jdj)R

}
+(s̄iui)L (ūjdj)R

O3/2
8 = (s̄idj)L

{
(ūjui)R− (d̄jdi)R

}
+(s̄iuj)L (ūjdi)R

It is convenient to use the Wigner-Eckart Theorem: (Notation - O∆I
∆Iz

)

I=2〈π+(p1)π
0(p2) |O3/2

1/2|K
+〉=

√
3

2
〈π+(p1)π

+(p2) |O3/2
3/2|K

+〉 ,

where
– O3/2

3/2 has the flavour structure (s̄d)(ūd).

– O3/2
1/2 has the flavour structure (s̄d)((ūu)− (d̄d))+(s̄u)(ūd).

We can then use antiperiodic boundary conditions for the u-quark say, so that the
ππ ground-state is 〈π+(π/L)π+(−π/L) | . C-h Kim, Ph.D. Thesis

– • Do not have to isolate an excited state. •
– Size (L) needed for physical K→ ππ decay halved.
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Finite-Volume Effects

The main theoretical ingredients of the infrared problem with two-pions in the
s-wave are understood.
Two-pion quantization condition in a finite-volume

δ (q∗)+φ
P(q∗) = nπ ,

where E2 = 4(m2
π +q∗2), δ is the s-wave ππ phase shift and φ P is a kinematic

function. M.Lüscher, 1986, 1991, · · · .

The relation between the physical K→ ππ amplitude A and the finite-volume
matrix element M

|A|2 = 8πV2 mKE2

q∗2

{
δ
′(q∗)+φ

P ′(q∗)
}
|M|2 ,

where ′ denotes differentiation w.r.t. q∗ .
L.Lellouch and M.Lüscher, hep-lat/0003023; C.h.Kim, CTS and S.Sharpe, hep-lat/0507006;

N.H.Christ, C.h.Kim and T.Yamazaki hep-lat/0507009

Computation of K→ (ππ)I=2 matrix elements does not require the subtraction of
power divergences or the evaluation of disconnected diagrams.
In 2011-2012, we evaluate the ∆I = 3/2 K→ ππ matrix elements for the first time
and at physical kinematics.
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K→ (ππ)I=2 decay amplitudes (Cont.)

The calculations were performed on a 323×64×32 (L = 4.58 fm, a−1 = 0.14 fm
lattice using Domain Wall Fermions and the IDSDR gauge action.

Systematic Error Budget ReA2 ImA2
lattice artefacts 15% 15%

finite-volume corrections 6.0% 6.5%
partial quenching 3.5% 1.7%
renormalization 1.8% 5.6%

unphysical kinematics 0.4% 0.8%
derivative of the phase shift 0.97% 0.97%

Wilson coefficients 6.6% 6.6%
Total 18% 19%

The dominant error is due to lattice artefacts and the fact that out lattice is coarse.
This will be eliminated when the calculation is repeated at a second lattice
spacing.
The 15% estimate, intended to be conservative, is obtained by

1 Studying the dependence on a of quantities which have been calculated at
several lattice spacings.

2 In particular by determining the a dependence of BK , which is also given by
the matrix element of a (27,1) operator.
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Results

Our results for the amplitude A2 are:

ReA2 = (1.381±0.046stat±0.258syst)10−8 GeV

ImA2 = −(6.54±0.46stat±1.20syst)10−13 GeV.

The result for Re A2 agrees well with the experimental value of
1.479(4)×10−8 GeV obtained from K+ decays and 1.573(57)×10−8 GeV obtained
from KS decays .
Im A2 is unknown so that our result provides its first direct determination.
For the phase of A2 we find Im A2/ReA2 =−4.42(31)stat(89)syst 10−5.
Combining our result for Im A2 with the experimental results for Re A2,
Re A0 = 3.3201(18) ·10−7 GeV and ε ′/ε we obtain:

ImA0

ReA0
=−1.61(19)stat(20)syst×10−4 .

(Of course, we wish to confirm this directly.)

ImA0

ReA0
=

ImA2

ReA2
−

√
2 |ε|
ω

ε ′

ε

−1.61(19)stat(20)syst×10−4 = −4.42(31)stat(89)syst×10−5 − 1.16(18)×10−4 .
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For this work we received the 2012 Ken Wilson Lattice award at Lattice 2012.

Criteria: The paper must be important research beyond the existing state of the
art. · · ·
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K→ (ππ)I=0 decay amplitudes

The material on this topic is taken from the thesis of Qi Liu and the two RBC-UKQCD
papers:

1 “K to ππ Decay Amplitudes from Lattice QCD,"
T.Blum, P.A.Boyle, N.H.Christ, N.Garron, E.Goode, T.Izubuchi, C.Lehner, Q.Liu,
R.D.Mawhinney, C.T.Sachrajda, A.Soni, C.Sturm, H.Yin and R. Zhou,

Phys.Rev. D84 (2011) 114503, (arXiv:1106.2714 [hep-lat]).

2 “Emerging understanding of the ∆I = 1/2 rule from Lattice QCD,"
P.A.Boyle, N.H.Christ, N.Garron, E.J.Goode, T.Janowski, C.Lehner, Q.Liu, A.T.Lytle,
C.T.Sachrajda, A.Soni and D.Zhang

Phys.Rev.Lett. (to appear), (arXiv:1212.1474 [hep-lat]).
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K→ (ππ)I=0 Decays

The I = 0 final state has vacuum quantum numbers.

Vacuum contribution must be subtracted; disconnected diagrams require
statistical cancelations to obtain the e−2mπ t behaviour.

Consider first the two-pion correlation functions, which are an important
ingredient in the evaluation of K→ ππ amplitudes.
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For I=2 ππ states the correlation function is proportional to D-C.

For I=0 ππ states the correlation function is proportional to 2D+C-6R+3V.

The major practical difficulty is to subtract the vacuum contribution with sufficient
precision.

In the paper we report on high-statistics experiments on a 163×32 lattice,
a−1 = 1.73 GeV, mπ = 420 MeV, with the propagators evaluated from each
time-slice.
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Diagrams contributing to two-pion correlation functions
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For I=2 ππ states the correlation function is proportional to D-C.
For I=0 ππ states the correlation function is proportional to 2D+C-6R+3V.
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RBC/UKQCD, Qi Liu – Lattice 2010
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Two-pion Correlation Functions

RBC/UKQCD, arXiv:1106.2714
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K→ (ππ)I=0 Decays
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There are 48 different contractions and we classify the contributions into the 6
different types illustrated above.

Mix3 and Mix4 are needed to subtract the power divergences which are
proportional to matrix elements of s̄γ5d .
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Results from exploratory simulation at unphysical kinematics

These results are for the K→ ππ (almost) on-shell amplitudes with 420 MeV
pions at rest: RBC/UKQCD arXiv:1106.2714

Re A0 (3.80±0.82)10−7 GeV Im A0 −(2.5±2.2)10−11 GeV
Re A2 (4.911±0.031)10−8 GeV Im A2 −(5.502±0.0040)10−13 GeV

This was an exploratory exercise in which we are learning how to do the
calculation.
We, along with the rest of the world, continue to develop techniques with the aim
of enhancing the signal for disconnected diagrams.
The exploratory results for K→ (ππ)I=0 decays are very encouraging.
For (ππ)I = 0 states the Wigner-Eckart theorem and the use of antiperiodic
boundary conditions for the d-quark does not help.

C.Sachrajda and G.Villadoro hep-lat/0411033

We are currently developing and testing the use of G-parity boundary conditions.
C.-h Kim, hep-lat/0311003

⇒ a quantitative understanding of the ∆I = 1/2 rule and the value of ε ′/ε.

The evaluation of disconnected diagram has allowed us to study the η and η ′

mesons and their mixing. RBC-UKQCD – arXiV:1002.2999
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Emerging understanding of the ∆I = 1/2 Rule

arXiv:1212.1474

In his thesis Qi Liu extended the above study to the 243×64 ensembles.

Larger T ⇒ suppression of around-the-world effects.
Two-pion sources separated in time⇒ better plateaus.
Faster algorithm for the inversions.

1 163×32 ensembles; 877 MeV kaon decaying into two 422 MeV pions at rest:

ReA0

ReA2
= 9.1±2.1 .

2 243×64 ensembles; 662 MeV kaon decaying into two 329 MeV pions at rest:

ReA0

ReA2
= 12.0±1.7 .

Whilst both these results are obtained at unphysical kinematics and are different
from the physical value of 22.5, it is nevertheless interesting to understand the
origin of these enhancements.

99% of the contribution to the real part of A0 and A2 come from the matrix
elements of the current-current operators.
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Contributions from Individual Matrix Elements

i Qlat
i [GeV] QMS-NDR

i [GeV]
1 8.1(4.6) 10−8 6.6(3.1) 10−8

2 2.5(0.6) 10−7 2.6(0.5) 10−7

3 -0.6(1.0) 10−8 5.4(6.7) 10−10

4 – 2.3(2.1) 10−9

5 -1.2(0.5) 10−9 4.0(2.6) 10−10

6 4.7(1.7) 10−9 -7.0(2.4) 10−9

7 1.5(0.1) 10−10 6.3(0.5) 10−11

8 -4.7(0.2) 10−10 -3.9(0.1) 10−10

9 – 2.0(0.6) 10−14

10 – 1.6(0.5) 10−11

ReA0 3.2(0.5) 10−7 3.2(0.5) 10−7

Contributions from each operator to ReA0 for mK = 662 MeV and mπ = 329 MeV.
The second column contains the contributions from the 7 linearly independent
lattice operators with 1/a = 1.73(3)GeV and the third column those in the
10-operator basis in the MS-NDR scheme at µ = 2.15 GeV. Numbers in
parentheses represent the statistical errors.
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Emerging understanding of the ∆I = 1/2 Rule (Cont.)
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Re A2 is proportional to C1 +C2.
The contribution to Re A0 from Q2 is proportional to 2C1−C2 and that from Q1 is
proportional to C1−2C2 with the same sign.
Colour counting might suggest that C2 ' 1

3 C1.
Much continuum phenomenology has been done in the vacuum insertion
hypothesis.

We find instead that C2 ≈−C1 so that A2 is significantly suppressed!
A2 has a larger kinematic dependence than A0.
We believe that the strong suppression of Re A2 and the (less-strong)
enhancement of Re A0 is a major factor in the ∆I = 1/2 rule.

Of course before claiming a quantitative understanding of the ∆I = 1/2 rule
we need to compute Re A0 at physical kinematics and reproduce the
experimental value of 22.5.
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Evidence for the Suppression of Re A2
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Notation i©≡ Ci, i = 1,2.
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Current Studies of RBC-UKQCD

Evaluation of long-distance effects in ∆MK and εK .

Development and testing of G-parity boundary conditions with the primary aim of
computing the K→ (ππ)I=0 decay amplitude A0.

Beginning to perform the exploratory work to study the rare kaon decays
K→ π`+`− and K→ πνν̄ .
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