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Is it theory or experiment?

Wikipedia: Simulation is the imitation of some real thing, state of
affairs, or process. The act of simulating something generally entails
representing certain key characteristics or behaviours of a selected
physical or abstract system.

Numerical Simulation

• instead of the real experiments we cannot/do not want to perform
(airplanes, nuclear war, evolution)
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• e.g. cellular automaton: local evolution rules ⇒ parallel
processing. Note: dynamics may also be introduced (not physical)
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Is it theory or experiment?

Wikipedia: Simulation is the imitation of some real thing, state of
affairs, or process. The act of simulating something generally entails
representing certain key characteristics or behaviours of a selected
physical or abstract system.

Numerical Simulation

• instead of the real experiments we cannot/do not want to perform
(airplanes, nuclear war, evolution)

• problems with no analytic solution; complex systems, non-linearity,
critical phenomena (independence of details: universality)

• e.g. cellular automaton: local evolution rules ⇒ parallel
processing. Note: dynamics may also be introduced (not physical)

• theoretical treatment, with experimental aspects (data, errors,
measurements in time)
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Monte Carlo Method

Stochastic systems may be simulated on a computer using

pseudo-random numbers provided by some random-number

generator, which employs an algebraic prescription to produce a

(deterministic) sequence of numbers with the desired

distribution, starting from a given seed.

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

John Von Neumann (1951)

Reference: A Guide to Monte Carlo Simulations

in Statistical Physics, Landau & Binder (Cam-

bridge, 2000)
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Monte Carlo Method: Crash Course

In Statistical Mechanics, the probability of a configuration ψ for a
physical system in equilibrium at temperature T is given (in the
canonical ensemble) in terms of the system’s Hamiltonian H(ψ) by the
Boltzmann distribution

P (ψ) =
e−βH(ψ)

Z
; Z =

∫

dψ e−βH(ψ); β = 1/KT

Thermodynamic averages, e.g. E = < H(ψ) >, given by

< A >=

∫

dψ A(ψ)P (ψ)

(analogous to expectation values in Euclidean field theory)

This is a very complicated (high-dimensional) integral to compute!
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Monte Carlo Method: Crash Course

Think of an integral as a sum of (equally distributed) random variables

I =

∫ 1

0

f(x) dx →
∑

i f(xi)

N

with xi uniformly distributed in [0,1]. Actually, for finite N
I ≡

∑

i f(xi)/N is also a random variable, converging to its mean
value I with an error proportional to 1/

√
N (central limit theorem)

σ2
I

=
σ2
f

N
=

<f2> − <f >2

N

Exercise: derive the above expression
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Exercise: derive the above expression

Typical deterministic methods for integrals have errors O(N−2)

(trapezoidal rule) or ∼ O(N−4) (Simpson’s rule) for the 1d case
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Think of an integral as a sum of (equally distributed) random variables

I =

∫ 1

0

f(x) dx →
∑

i f(xi)

N

with xi uniformly distributed in [0,1]. Actually, for finite N
I ≡

∑

i f(xi)/N is also a random variable, converging to its mean
value I with an error proportional to 1/

√
N (central limit theorem)

σ2
I

=
σ2
f

N
=

<f2> − <f >2

N

Exercise: derive the above expression

Typical deterministic methods for integrals have errors O(N−2)

(trapezoidal rule) or ∼ O(N−4) (Simpson’s rule) for the 1d case

=⇒ Monte Carlo method O(N−1/2) is not so great... (!?)
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Monte Carlo Method: Crash Course
For d-dimensional integral: error N−2/d (trapezoidal rule) or N−4/d

(Simpson) ⇒ Monte Carlo attractive for d ≥ 8...

Typically d ∼ 103 (simple statistical mechanical models, e.g. 3d Ising
model with 10 sites per direction)
⇒ time to sum up 21000 terms on a 1 Tflops machine:

t = 10288s = 10270 × age of the universe
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Monte Carlo Method: Crash Course
For d-dimensional integral: error N−2/d (trapezoidal rule) or N−4/d

(Simpson) ⇒ Monte Carlo attractive for d ≥ 8...

Typically d ∼ 103 (simple statistical mechanical models, e.g. 3d Ising
model with 10 sites per direction)
⇒ time to sum up 21000 terms on a 1 Tflops machine:

t = 10288s = 10270 × age of the universe

⇒ Monte Carlo is not the best choice, it is the only one!

Note: computing

I =

∫ 1

0

f(x)w(x) dx =

∑

i f(xi)w(xi)

N

[where
∫ 1

0
w(x)dx = 1] with xi uniformly distributed in [0,1] is very

inefficient if w(x) is concentrated. Take
∑

i f(xi)/N with xi distributed
according to w(xi) ⇒ importance sampling
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Monte Carlo Method: Crash Course

There are good methods for sampling a random variable with a given
distribution, starting from a uniform distribution in [0,1]. However, there
is no hope of direct (i.e. independent) sampling of a joint distribution of
many d.o.f. such as the Boltzmann distribution

< A >=

∫

A(x)w(x) dx , w(x) =
e−βH(x)

Z
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There are good methods for sampling a random variable with a given
distribution, starting from a uniform distribution in [0,1]. However, there
is no hope of direct (i.e. independent) sampling of a joint distribution of
many d.o.f. such as the Boltzmann distribution

< A >=

∫

A(x)w(x) dx , w(x) =
e−βH(x)

Z

Solution: dynamic Monte Carlo. Invent a time evolution such that the
generated configurations will be distributed according to w(x). This
can be done for a Markov chain, i.e. a stochastic process X0, X1, . . .,
Xt such that P (Xt+1|x0 . . . xt) = P (Xt+1|xt) ⇒ chain’s history
determined by P (X0) and the transition matrix pxy;

∑

y pxy = 1, all x
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Xt such that P (Xt+1|x0 . . . xt) = P (Xt+1|xt) ⇒ chain’s history
determined by P (X0) and the transition matrix pxy;

∑

y pxy = 1, all x

Note: if there is w(x) s.t.
∑

x w(x) pxy = w(y) for all y, then the process
converges to the stationary distribution w(x) independently of P (X0)
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Monte Carlo Method: Crash Course

There are good methods for sampling a random variable with a given
distribution, starting from a uniform distribution in [0,1]. However, there
is no hope of direct (i.e. independent) sampling of a joint distribution of
many d.o.f. such as the Boltzmann distribution

< A >=

∫

A(x)w(x) dx , w(x) =
e−βH(x)

Z

Solution: dynamic Monte Carlo. Invent a time evolution such that the
generated configurations will be distributed according to w(x). This
can be done for a Markov chain, i.e. a stochastic process X0, X1, . . .,
Xt such that P (Xt+1|x0 . . . xt) = P (Xt+1|xt) ⇒ chain’s history
determined by P (X0) and the transition matrix pxy;

∑

y pxy = 1, all x

Note: if there is w(x) s.t.
∑

x w(x) pxy = w(y) for all y, then the process
converges to the stationary distribution w(x) independently of P (X0)

Our (inverse) problem: find pxy having w(x) as its stationary distribution
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Monte Carlo Method: Crash Course

Conditions on the dynamics pxy for the Markov chain to converge to
the distribution w(x) at large times

(A) Irreducibility (ergodicity): for all x, y there is n s.t. p(n)
xy 6= 0

(B) w(x) is stationary:
∑

x w(x) pxy = w(y)

Note: may also impose the sufficient condition

(B’) Detailed balance: w(x) pxy = w(y) pyx

Exercise: show that (B’) → (B)
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xy 6= 0

(B) w(x) is stationary:
∑

x w(x) pxy = w(y)

Note: may also impose the sufficient condition

(B’) Detailed balance: w(x) pxy = w(y) pyx

Exercise: show that (B’) → (B)

Generally the evolution of configurations (e.g. x or ψ) for the system is
done by freezing the field variables at all points but one, which is then
sampled by a local method. An iteration of the algorithm, i.e. one step
of the Markov chain, is obtained by sweeping in this way over all sites
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Monte Carlo Method: Crash Course

Conditions on the dynamics pxy for the Markov chain to converge to
the distribution w(x) at large times

(A) Irreducibility (ergodicity): for all x, y there is n s.t. p(n)
xy 6= 0

(B) w(x) is stationary:
∑

x w(x) pxy = w(y)

Note: may also impose the sufficient condition

(B’) Detailed balance: w(x) pxy = w(y) pyx

Exercise: show that (B’) → (B)

Generally the evolution of configurations (e.g. x or ψ) for the system is
done by freezing the field variables at all points but one, which is then
sampled by a local method. An iteration of the algorithm, i.e. one step
of the Markov chain, is obtained by sweeping in this way over all sites

The heat-bath algorithm: exact sampling of the local (conditional)
distribution; clearly a valid way to sample the joint distribution
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Monte Carlo Method: Crash Course

The Metropolis algorithm: based on proposing and accepting/rejecting
a step x→ y

accept if w(y)/w(x) ≥ 1

otherwise accept with probability w(y)/w(x)

the probability of acceptance is Axy = min {1, w(y)/w(x}. Then
consider the transition matrix pxy = Txy Axy (with general Txy = Tyx)

Exercise: show that the above choice satisfies detailed balance

For the Boltzmann distribution this means

w(x) =
e−βE(x)

Z
⇒ w(y)

w(x)
= e−β∆E ; ∆E ≡ E(y) − E(x)

⇒ accept if ∆E ≤ 0; otherwise accept with probability e−β∆E

Note: if proposed step is rejected, keep old value and move to a new
site; when possible, choose Txy such that acceptance is 50%
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Monte Carlo Method: Crash Course

Program: follow the dynamics X(t) = xi and compute time averages

< A > =

∫

A(x)w(x) dx =

∑

iA(xi)

N

which are expectation values in the desired distribution, i.e. the
Boltzmann distribution. Note that the initial transient must be
discarded. The resulting averages + errors are the output of our Monte
Carlo simulation

Exercise: application to the Ising Model
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Monte Carlo Method: Crash Course

Program: follow the dynamics X(t) = xi and compute time averages

< A > =

∫

A(x)w(x) dx =

∑

iA(xi)

N

which are expectation values in the desired distribution, i.e. the
Boltzmann distribution. Note that the initial transient must be
discarded. The resulting averages + errors are the output of our Monte
Carlo simulation

Exercise: application to the Ising Model

But... we have a problem: samples are not independent.
The program above is subject to systematic effects.

The time correlation between different steps of the Markov chain is

C(k) =
< Ai Ai+k > − < Ai >2

< A2
i > − < Ai >2

⇒ independent samples only after C(k) ≈ 0; k = decorrelation time
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Monte Carlo Method: Crash Course

(Monte Carlo) average of A: A =
1

N

N
∑

i=1

Ai

Variance: σ2
A

=
σ2
A

N

[

1 + 2

N−1
∑

k=1

C(k)

]

=
σ2
A

N
(2 τ)

where the temporal correlation C(k) was given above and τ is the
auto-correlation time for observable A.

Consider C(k) = e−k/τ , τ large (but τ << N )

1 + 2

N−1
∑

k=1

C(k) ≈ 2

∞
∑

k=0

e−k/τ − 1

≈ 2 τ

∫ ∞

0

e−udu − 1 ≈ 2τ

We therefore define τ ≡ 1
2 +

∑N−1
k=1 C(k)
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Monte Carlo Method: Summary

Integral becomes sum of random variables
∫

f(x) dµ , dµ =
e−βH(x)

Z
dx ⇒ 1

N

N
∑

i=1

f(xi)

where xi have statistical distribution µ

• Static Monte Carlo: independent sampling (error ∼ 1/
√
N )

• Dynamic Monte Carlo: Simulation of a Markov chain with
equilibrium distribution µ (error ∼

√

τ/N ). Autocorrelation time τ
related to critical slowing-down. Note: similar to experimental
methods, but temporal dynamics was artificially introduced

Errors: either consider only effectively independent samples (via
temporal correlation analysis) and error is given by standard deviation,
jack-knife, bootstrap or consider all samples and error is estimated
taking correlations into account: binning method, self-consistent
windowing method
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The Continuum Limit: how do I get there!?

Physics is obtained after 3 limits:

1) The Thermodynamic Limit (V = Nd → ∞): need N → ∞ to keep
physical lengths L = aN fixed. Need N > ξlatt, while ξlatt(a) diverges!

2) The Continuum Limit (a→ 0): correlation length ↔ mass−1

from renormalization group:
log(ξlatt) = log(1/ma) ∼ 1/g2

0 ∼ β

thus continuum limit given by g0 → 0,
β → ∞ and ξlatt ∼ eβ (asymptotic
scaling), i.e. ξ = 1/m ∼ a eβ ⇒ elimi-
nate eβ computing mass ratios (scaling
law) or fix a using an experimental in-
put (renormalization)

strong
coupling

asymptotic
scaling

a m

1
g

0
2

10

1

0.1

1.0

continuum

3) The Chiral Limit (small mq): fit results to chiral perturbation theory
predictions and extrapolate to physical masses
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Critical point

Lattices have to be huge because ξ → ∞ at the critical point...

at the same time, there is scale invariance, universality, ...
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Application to the Ising Model (I)

S Si j

-J +J

S Si j two-state “spins”, that prefer to be aligned

H(S) = −J
∑

<i,j>

Si Sj − H
∑

i

Si

Observables of interest

• Energy: E = < H(S) >

• Specific Heat: CV = ∂E/∂T

• Magnetization: M = <
P

i Si >

• Suscetibility: χ = ∂M/∂H

Exercise: write simple programs to simulate the 2d Ising model using
the Metropolis and heat-bath methods. Compare the efficiency of both
methods, plot the dependence on the magnetic field and temperature.
Note: partly ready programs, more details and examples are available
at http://lattice.if.sc.usp.br/CADSC03/curso_MC.html
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Application to the Ising Model (II)

Metropolis method for the Ising model: sweep over the lattice, at each
site propose to flip the spin, i.e. Si → −Si. Acceptance probability

e−β E(y)

e−β E(x)
=

e+βJ Si

P

j n.n. i
Sj

e−βJ Si

P

j n.n. i
Sj

= e2 βJ Si hi

an iteration consists of a complete “sweep” over the lattice. At the end
of the iteration compute A(S) for the generated configuration, and
restart the process of generating configurations

Heat-bath method for the Ising model: exact sampling of the
conditional probability at site i. Sweep over the lattice, at each site pick
a new value for Si independently of the old one, keeping all other spins
fixed. Unnormalized probability P (Si) = eβJSi

P

j n.n. i
Sj × const.

Thus
P (Si = +1) = eβJhi/(eβJhi + e−βJhi ) ≡ p

P (Si = −1) = 1 − p

XV EVJASPC Campos do Jordão, January 2009


	
	Is it theory or experiment?
	Monte Carlo Method
	Monte Carlo Method: {ed Crash Course}
	Monte Carlo Method: {ed Crash Course}
	Monte Carlo Method: {ed Crash Course}
	Monte Carlo Method: {ed Crash Course}
	Monte Carlo Method: {ed Crash Course}
	Monte Carlo Method: {ed Crash Course}
	Monte Carlo Method: {ed Crash Course}
	Monte Carlo Method: {ed Crash Course}
	Monte Carlo Method: {ed Crash Course}
	Monte Carlo Method: {ed Summary}
	
ormalsize The {ed Continuum} Limit: how do I get there!?
	Critical point
	Application to the Ising Model (I)
	Application to the Ising Model (II)

