

Numerical Simulations

XV EVJASPC

Campos do Jordão, January 2009

Wikipedia: Simulation is the imitation of some real thing, state of affairs, or process. The act of simulating something generally entails representing certain key characteristics or behaviours of a selected physical or abstract system.

Numerical Simulation

 instead of the real experiments we cannot/do not want to perform (airplanes, nuclear war, evolution)

Wikipedia: Simulation is the imitation of some real thing, state of affairs, or process. The act of simulating something generally entails representing certain key characteristics or behaviours of a selected physical or abstract system.

Numerical Simulation

- instead of the real experiments we cannot/do not want to perform (airplanes, nuclear war, evolution)
- problems with no analytic solution; complex systems, non-linearity, critical phenomena (independence of details: universality)

Wikipedia: Simulation is the imitation of some real thing, state of affairs, or process. The act of simulating something generally entails representing certain key characteristics or behaviours of a selected physical or abstract system.

Numerical Simulation

- instead of the real experiments we cannot/do not want to perform (airplanes, nuclear war, evolution)
- problems with no analytic solution; complex systems, non-linearity, critical phenomena (independence of details: universality)
- e.g. cellular automaton: local evolution rules ⇒ parallel processing. Note: dynamics may also be introduced (not *physical*)

Wikipedia: Simulation is the imitation of some real thing, state of affairs, or process. The act of simulating something generally entails representing certain key characteristics or behaviours of a selected physical or abstract system.

Numerical Simulation

- instead of the real experiments we cannot/do not want to perform (airplanes, nuclear war, evolution)
- problems with no analytic solution; complex systems, non-linearity, critical phenomena (independence of details: universality)
- e.g. cellular automaton: local evolution rules ⇒ parallel processing. Note: dynamics may also be introduced (not *physical*)
- theoretical treatment, with experimental aspects (data, errors, measurements in time)

Monte Carlo Method

Stochastic systems may be simulated on a computer using pseudo-random numbers provided by some random-number generator, which employs an algebraic prescription to produce a (deterministic) sequence of numbers with the desired distribution, starting from a given seed.

Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

John Von Neumann (1951)

Reference: A Guide to Monte Carlo Simulations in Statistical Physics, Landau & Binder (Cambridge, 2000)

In Statistical Mechanics, the probability of a configuration ψ for a physical system in equilibrium at temperature T is given (in the canonical ensemble) in terms of the system's Hamiltonian $\mathcal{H}(\psi)$ by the Boltzmann distribution

$$P(\psi) = \frac{e^{-\beta \mathcal{H}(\psi)}}{Z}; \quad Z = \int d\psi \, e^{-\beta \mathcal{H}(\psi)}; \quad \beta = 1/KT$$

Thermodynamic averages, e.g. $E = \langle \mathcal{H}(\psi) \rangle$, given by

$$< A > = \int d\psi A(\psi) P(\psi)$$

(analogous to expectation values in Euclidean field theory)

This is a very complicated (high-dimensional) integral to compute!

Think of an integral as a sum of (equally distributed) random variables

$$I = \int_0^1 f(x) \, dx \quad \to \quad \frac{\sum_i f(x_i)}{N}$$

with x_i uniformly distributed in [0,1]. Actually, for finite N $\overline{I} \equiv \sum_i f(x_i)/N$ is also a random variable, converging to its mean value I with an error proportional to $1/\sqrt{N}$ (central limit theorem)

$$\sigma_{\overline{I}}^2 = \frac{\sigma_f^2}{N} = \frac{\langle f^2 \rangle - \langle f \rangle^2}{N}$$

Exercise: derive the above expression

Think of an integral as a sum of (equally distributed) random variables

$$I = \int_0^1 f(x) \, dx \quad \to \quad \frac{\sum_i f(x_i)}{N}$$

with x_i uniformly distributed in [0,1]. Actually, for finite N $\overline{I} \equiv \sum_i f(x_i)/N$ is also a random variable, converging to its mean value I with an error proportional to $1/\sqrt{N}$ (central limit theorem)

$$\sigma_{\overline{I}}^2 = \frac{\sigma_f^2}{N} = \frac{\langle f^2 \rangle - \langle f \rangle^2}{N}$$

Exercise: derive the above expression

Typical deterministic methods for integrals have errors $O(N^{-2})$ (trapezoidal rule) or $\sim O(N^{-4})$ (Simpson's rule) for the 1d case

Think of an integral as a sum of (equally distributed) random variables

$$I = \int_0^1 f(x) \, dx \quad \to \quad \frac{\sum_i f(x_i)}{N}$$

with x_i uniformly distributed in [0,1]. Actually, for finite N $\overline{I} \equiv \sum_i f(x_i)/N$ is also a random variable, converging to its mean value I with an error proportional to $1/\sqrt{N}$ (central limit theorem)

$$\sigma_{\overline{I}}^2 = \frac{\sigma_f^2}{N} = \frac{\langle f^2 \rangle - \langle f \rangle^2}{N}$$

Exercise: derive the above expression

Typical deterministic methods for integrals have errors $O(N^{-2})$ (trapezoidal rule) or $\sim O(N^{-4})$ (Simpson's rule) for the 1d case

 \implies Monte Carlo method $\mathcal{O}(N^{-1/2})$ is not so great... (!?)

For d-dimensional integral: error $N^{-2/d}$ (trapezoidal rule) or $N^{-4/d}$ (Simpson) \Rightarrow Monte Carlo attractive for d $\ge 8...$

Typically $d \sim 10^3$ (simple statistical mechanical models, e.g. 3d Ising model with 10 sites per direction)

 \Rightarrow time to sum up 2^{1000} terms on a 1 Tflops machine:

 $t = 10^{288} s = 10^{270} \times \text{age of the universe}$

For d-dimensional integral: error $N^{-2/d}$ (trapezoidal rule) or $N^{-4/d}$ (Simpson) \Rightarrow Monte Carlo attractive for d $\ge 8...$

Typically $d \sim 10^3$ (simple statistical mechanical models, e.g. 3d Ising model with 10 sites per direction)

 \Rightarrow time to sum up 2^{1000} terms on a 1 Tflops machine:

 $t = 10^{288} s = 10^{270} \times \text{age of the universe}$

 \Rightarrow Monte Carlo is not the best choice, it is the only one!

For d-dimensional integral: error $N^{-2/d}$ (trapezoidal rule) or $N^{-4/d}$ (Simpson) \Rightarrow Monte Carlo attractive for d $\ge 8...$

Typically $d \sim 10^3$ (simple statistical mechanical models, e.g. 3d Ising model with 10 sites per direction)

 \Rightarrow time to sum up 2^{1000} terms on a 1 Tflops machine:

 $t = 10^{288} s = 10^{270} \times \text{age of the universe}$

 \Rightarrow Monte Carlo is not the best choice, it is the only one!

Note: computing

$$I = \int_0^1 f(x) \, \boldsymbol{w}(x) \, dx = \frac{\sum_i f(x_i) \, \boldsymbol{w}(x_i)}{N}$$

[where $\int_0^1 w(x) dx = 1$] with x_i uniformly distributed in [0,1] is very inefficient if w(x) is concentrated. Take $\sum_i f(x_i)/N$ with x_i distributed according to $w(x_i) \Rightarrow$ importance sampling

There are good methods for sampling a random variable with a given distribution, starting from a uniform distribution in [0,1]. However, there is no hope of direct (i.e. independent) sampling of a joint distribution of many d.o.f. such as the Boltzmann distribution

$$\langle A \rangle = \int A(x) w(x) dx, \qquad w(x) = \frac{e^{-\beta \mathcal{H}(x)}}{Z}$$

There are good methods for sampling a random variable with a given distribution, starting from a uniform distribution in [0,1]. However, there is no hope of direct (i.e. independent) sampling of a joint distribution of many d.o.f. such as the Boltzmann distribution

$$\langle A \rangle = \int A(x) w(x) dx, \qquad w(x) = \frac{e^{-\beta \mathcal{H}(x)}}{Z}$$

Solution: dynamic Monte Carlo. Invent a time evolution such that the generated configurations will be distributed according to w(x). This can be done for a Markov chain, i.e. a stochastic process X_0, X_1, \ldots, X_t such that $P(X_{t+1}|x_0 \ldots x_t) = P(X_{t+1}|x_t) \Rightarrow$ chain's history determined by $P(X_0)$ and the transition matrix p_{xy} ; $\sum_u p_{xy} = 1$, all x

There are good methods for sampling a random variable with a given distribution, starting from a uniform distribution in [0,1]. However, there is no hope of direct (i.e. independent) sampling of a joint distribution of many d.o.f. such as the Boltzmann distribution

$$\langle A \rangle = \int A(x) w(x) dx, \qquad w(x) = \frac{e^{-\beta \mathcal{H}(x)}}{Z}$$

Solution: dynamic Monte Carlo. Invent a time evolution such that the generated configurations will be distributed according to w(x). This can be done for a Markov chain, i.e. a stochastic process X_0, X_1, \ldots, X_t such that $P(X_{t+1}|x_0\ldots x_t) = P(X_{t+1}|x_t) \Rightarrow$ chain's history determined by $P(X_0)$ and the transition matrix p_{xy} ; $\sum_y p_{xy} = 1$, all x Note: if there is w(x) s.t. $\sum_x w(x) p_{xy} = w(y)$ for all y, then the process

converges to the stationary distribution w(x) independently of $P(X_0)$

There are good methods for sampling a random variable with a given distribution, starting from a uniform distribution in [0,1]. However, there is no hope of direct (i.e. independent) sampling of a joint distribution of many d.o.f. such as the Boltzmann distribution

$$\langle A \rangle = \int A(x) w(x) dx, \qquad w(x) = \frac{e^{-\beta \mathcal{H}(x)}}{Z}$$

Solution: dynamic Monte Carlo. Invent a time evolution such that the generated configurations will be distributed according to w(x). This can be done for a Markov chain, i.e. a stochastic process X_0, X_1, \ldots, X_t such that $P(X_{t+1}|x_0 \ldots x_t) = P(X_{t+1}|x_t) \Rightarrow$ chain's history determined by $P(X_0)$ and the transition matrix p_{xy} ; $\sum_y p_{xy} = 1$, all x

Note: if there is w(x) s.t. $\sum_{x} w(x) p_{xy} = w(y)$ for all y, then the process converges to the stationary distribution w(x) independently of $P(X_0)$

Our (inverse) problem: find p_{xy} having w(x) as its stationary distribution

Conditions on the dynamics p_{xy} for the Markov chain to converge to the distribution w(x) at large times

- (A) Irreducibility (ergodicity): for all x, y there is n s.t. $p_{xy}^{(n)} \neq 0$
- (B) w(x) is stationary: $\sum_{x} w(x) p_{xy} = w(y)$

Note: may also impose the sufficient condition

(B') Detailed balance: $w(x) p_{xy} = w(y) p_{yx}$

Exercise: show that $(B') \rightarrow (B)$

Conditions on the dynamics p_{xy} for the Markov chain to converge to the distribution w(x) at large times

- (A) Irreducibility (ergodicity): for all x, y there is n s.t. $p_{xy}^{(n)} \neq 0$
- (B) w(x) is stationary: $\sum_{x} w(x) p_{xy} = w(y)$

Note: may also impose the sufficient condition

(B') Detailed balance: $w(x) p_{xy} = w(y) p_{yx}$

Exercise: show that $(B') \rightarrow (B)$

Generally the evolution of configurations (e.g. x or ψ) for the system is done by freezing the field variables at all points but one, which is then sampled by a local method. An iteration of the algorithm, i.e. one step of the Markov chain, is obtained by sweeping in this way over all sites

Conditions on the dynamics p_{xy} for the Markov chain to converge to the distribution w(x) at large times

- (A) Irreducibility (ergodicity): for all x, y there is n s.t. $p_{xy}^{(n)} \neq 0$
- (B) w(x) is stationary: $\sum_{x} w(x) p_{xy} = w(y)$

Note: may also impose the sufficient condition

(B') Detailed balance: $w(x) p_{xy} = w(y) p_{yx}$

Exercise: show that $(B') \rightarrow (B)$

Generally the evolution of configurations (e.g. x or ψ) for the system is done by freezing the field variables at all points but one, which is then sampled by a local method. An iteration of the algorithm, i.e. one step of the Markov chain, is obtained by sweeping in this way over all sites

The heat-bath algorithm: exact sampling of the local (conditional) distribution; clearly a valid way to sample the joint distribution

The Metropolis algorithm: based on proposing and accepting/rejecting a step $x \to y$

accept if $w(y)/w(x) \ge 1$

• otherwise accept with probability w(y)/w(x)

the probability of acceptance is $A_{xy} = \min \{1, w(y)/w(x)\}$. Then consider the transition matrix $p_{xy} = T_{xy} A_{xy}$ (with general $T_{xy} = T_{yx}$) Exercise: show that the above choice satisfies detailed balance

For the Boltzmann distribution this means

$$w(x) = \frac{e^{-\beta E(x)}}{Z} \Rightarrow \frac{w(y)}{w(x)} = e^{-\beta \Delta E}; \quad \Delta E \equiv E(y) - E(x)$$

 \Rightarrow accept if $\Delta E \leq 0$; otherwise accept with probability $e^{-\beta \Delta E}$

Note: if proposed step is rejected, keep old value and move to a new site; when possible, choose T_{xy} such that acceptance is 50%

Program: follow the dynamics $X(t) = x_i$ and compute time averages

$$\langle A \rangle = \int A(x) w(x) dx = \frac{\sum_{i} A(x_i)}{N}$$

which are expectation values in the desired distribution, i.e. the Boltzmann distribution. Note that the initial transient must be discarded. The resulting averages + errors are the output of our Monte Carlo simulation

Exercise: application to the Ising Model

Program: follow the dynamics $X(t) = x_i$ and compute time averages

$$\langle A \rangle = \int A(x) w(x) dx = \frac{\sum_{i} A(x_i)}{N}$$

which are expectation values in the desired distribution, i.e. the Boltzmann distribution. Note that the initial transient must be discarded. The resulting averages + errors are the output of our Monte Carlo simulation

Exercise: application to the Ising Model

But... we have a problem: samples are not independent. The program above is subject to systematic effects.

The time correlation between different steps of the Markov chain is

$$C(k) = \frac{\langle A_i A_{i+k} \rangle - \langle A_i \rangle^2}{\langle A_i^2 \rangle - \langle A_i \rangle^2}$$

 \Rightarrow independent samples only after $C(k) \approx 0$; k = decorrelation time

(Monte Carlo) average of A:
$$\overline{A} = \frac{1}{N} \sum_{i=1}^{N} A_i$$

Variance:
$$\sigma_{\overline{A}}^2 = \frac{\sigma_{\overline{A}}^2}{N} \left[1 + 2 \sum_{k=1}^{N-1} C(k) \right] = \frac{\sigma_{\overline{A}}^2}{N} (2\tau)$$

where the temporal correlation C(k) was given above and τ is the auto-correlation time for observable A.

Consider $C(k) = e^{-k/\tau}$, τ large (but $\tau \ll N$)

$$1 + 2\sum_{k=1}^{N-1} C(k) \approx 2\sum_{k=0}^{\infty} e^{-k/\tau} - 1$$

$$\approx 2\tau \int_0^\infty e^{-u} du - 1 \approx 2\tau$$

We therefore define $\tau \equiv \frac{1}{2} + \sum_{k=1}^{N-1} C(k)$

Monte Carlo Method: Summary

Integral becomes sum of random variables

$$\int f(x) d\mu , \quad d\mu = \frac{e^{-\beta \mathcal{H}(x)}}{Z} dx \quad \Rightarrow \quad \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

where x_i have statistical distribution μ

- Static Monte Carlo: independent sampling (error $\sim 1/\sqrt{N}$)
- Dynamic Monte Carlo: Simulation of a Markov chain with equilibrium distribution μ (error $\sim \sqrt{\tau/N}$). Autocorrelation time τ related to critical slowing-down. Note: similar to experimental methods, but temporal dynamics was artificially introduced

Errors: either consider only effectively independent samples (via temporal correlation analysis) and error is given by standard deviation, jack-knife, bootstrap or consider all samples and error is estimated taking correlations into account: binning method, self-consistent windowing method

The Continuum Limit: how do I get there!?

Physics is obtained after 3 limits:

1) The Thermodynamic Limit ($V = N^d \to \infty$): need $N \to \infty$ to keep physical lengths L = aN fixed. Need $N > \xi_{latt}$, while $\xi_{latt}(a)$ diverges!

2) The Continuum Limit $(a \rightarrow 0)$: correlation length \leftrightarrow mass⁻¹ from renormalization group: $\log(\xi_{latt}) = \log(1/ma) \sim 1/g_0^2 \sim \beta$ thus continuum limit given by $g_0 \rightarrow 0$, $\beta \rightarrow \infty$ and $\xi_{latt} \sim e^{\beta}$ (asymptotic scaling), i.e. $\xi = 1/m \sim a e^{\beta} \Rightarrow$ eliminate e^{β} computing mass ratios (scaling law) or fix *a* using an experimental input (renormalization)

3) The Chiral Limit (small m_q): fit results to chiral perturbation theory predictions and extrapolate to physical masses

asymptoti

scaling

Lattices have to be huge because $\xi \to \infty$ at the critical point... at the same time, there is scale invariance, universality, ...

Campos do Jordão, January 2009

Application to the Ising Model (I)

two-state "spins", that prefer to be aligned

$$\mathcal{H}(S) \;=\; -J \, \sum_{\langle i,j \rangle} S_i \, S_j \;-\; H \, \sum_i S_i$$

Observables of interest

- Energy: $E = \langle \mathcal{H}(S) \rangle$
- Specific Heat: $C_V = \partial E / \partial T$
- Magnetization: $M = \langle \sum_i S_i \rangle$
- Suscetibility: $\chi = \partial M / \partial H$

Exercise: write simple programs to simulate the 2d Ising model using the Metropolis and heat-bath methods. Compare the efficiency of both methods, plot the dependence on the magnetic field and temperature. Note: partly ready programs, more details and examples are available at http://lattice.if.sc.usp.br/CADSC03/curso_MC.html

Application to the Ising Model (II)

Metropolis method for the Ising model: sweep over the lattice, at each site propose to flip the spin, i.e. $S_i \rightarrow -S_i$. Acceptance probability

$$\frac{e^{-\beta E(y)}}{e^{-\beta E(x)}} = \frac{e^{+\beta J S_i \sum_{j n.n. i} S_j}}{e^{-\beta J S_i \sum_{j n.n. i} S_j}} = e^{2\beta J S_i h_i}$$

an iteration consists of a complete "sweep" over the lattice. At the end of the iteration compute A(S) for the generated configuration, and restart the process of generating configurations

Heat-bath method for the Ising model: exact sampling of the conditional probability at site *i*. Sweep over the lattice, at each site pick a new value for S_i independently of the old one, keeping all other spins fixed. Unnormalized probability $P(S_i) = e^{\beta J S_i \sum_{j n.n.i} S_j} \times const$. Thus

$$P(S_i = +1) = e^{\beta J h_i} / (e^{\beta J h_i} + e^{-\beta J h_i}) \equiv p$$

 $P(S_i = -1) = 1 - p$