FCI 319 – Física Estatística

Segunda Prova (07/12/16)

1. Obtenha a relação entre a pressão, o volume e a energia interna de um gás ideal quântico de férmions ou de bósons (considere os dois casos) não-relativísticos. Como esta expressão se compara com a expressão análoga para o gás ideal clássico?

2. Calcule a energia de Fermi ϵ_F em função da densidade de partículas e da temperatura para o gás de elétrons nas aproximações a) não-relativística e b) ultra-relativística (i.e. $\epsilon \sim pc$).

3. Para um gás ideal de partículas bosônicas, escreva a expressão para o número total de partículas N incluindo em um termo separado o número de partículas no condensado de Bose-Einstein N_0 . Demonstre que abaixo da temperatura de condensação T_0 (i.e. para $\mu=0$) vale a relação

$$N_0 = N \left[1 - \left(\frac{T}{T_0} \right)^{\alpha} \right]. \tag{1}$$

Qual o valor de α ?

4. Considere o modelo de Ising

$$\mathcal{H} = -J \sum_{\langle ij \rangle} s_i \, s_j \, - \, B \sum_i s_i \,,$$

onde J > 0 é a interação ferromagnética, B é o campo magnético, os spins s_i tomam os valores +1, -1 e a soma em i, j é sobre pares de sítios primeiros vizinhos na rede cúbica em 3 dimensões. Calcule a **energia** e a **magnetização** (i.e. $\langle s \rangle$, a média termodinâmica de s_i) do sistema na aproximação de campo médio, em que os spins vizinhos a cada sítio são substituídos pelo valor médio $\langle s \rangle$ na expressão da hamiltoniana do modelo acima.

- (a) Qual a temperatura crítica? explique
- (b) Quais os expoentes críticos β (magnetização) e γ (suscetibilidade magnética)?