

SpectraSuite Spectrometer Operating Software

Installation and Operation Manual Document Number 000-20000-300-02-0607

Document Number 000-20000-300-02-0607 DRAFT 06/18/07

	Ocean Optics, Inc. World Headquarters 830 Douglas Ave., Dunedin, FL, USA 34698 Phone 727.733.2447 Fax 727.733.3962 8 a.m.– 8 p.m. (Mon-Thu), 8 a.m.– 6 p.m. (Fri) EST				
E-mail:	Info@OceanOptics.com Orders@OceanOptics.com TechSupport@OceanOptics.com	(General sales inquiries) (Questions about orders) (Technical support)			

Additional

Offices:

666 Gubei Road, Kirin Tower, Suite 601B, Changning District, Shanghai, PRC. 200336 Phone 86.21.5206.8686 Fax 86.21.5206.8686 E-Mail Sun.Ling@OceanOptics.com

Ocean Optics B.V. (Europe)

Ocean Optics Asia

 Geograaf 24, 6921 EW DUIVEN, The Netherlands

 Phone
 31-(0)26-3190500

 Fax
 31-(0)26-3190505

 E-Mail
 Info@OceanOpticsBV.com

Copyright © 1999-2007 Ocean Optics, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from Ocean Optics, Inc.

This manual is sold as part of an order and subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out or otherwise circulated without the prior consent of Ocean Optics, Inc. in any form of binding or cover other than that in which it is published. **Trademarks**

All products and services herein are the trademarks, service marks, registered trademarks or registered service marks of their respective owners. Limit of Liability

Ocean Optics has made every effort to ensure that this manual as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. Ocean Optics, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this manual.

Table of Contents

Chapter 1: Introduction	1
Product Overview	
USB Spectrometer and Device Control	
Features	
SpectraSuite in the Future	
Spectroscopic Functions	
Getting Updates	
Chapter 2: Installation	5
Overview	5
Installing SpectraSuite	
Retrieving from a CD	
Downloading from the Ocean Optics ftp Site	6
Objected 2. Controls and ladiations	•
Chapter 3: Controls and Indicators	
Overview	9
Graph Controls	9
Zoom Tools	
Spectrum Storage Tools	
Processing Tools	
Spectrum IO Tools	
Layer Tools	
Other Controls	
Acquisition Controls	
🚺 Peak Finding	
Indicators	
Status	
Update Available	
Progress Bar	
Chapter 4: File Menu Functions	21
Overview	

Table	of	Contents
Table	v	Contenta

New	21
Curie Fluorescence Measurement	Erro
Bookmark not defined.	
Spectrum Graph	
Spectrum Table	
High-Speed Acquisition	
Absorbance Measurement	
Transmission Measurement	
Reflection Measurement	
Relative Irradiance Measurement	
Gated Fluorescence Measurement	
Curie Fluorescence Measurement	
Absolute Irradiance Graph	
New Absolute Irradiance Measurement	
New Concentration Measurement	
Color Measurement	
Strip Chart	
Open	
Dark	
Reference	
Processed Spectrum	
Spectrum Collection	
Save	
Save Spectra Collection	
Save Spectrum	
Store	
Dark	
Reference	
Convert Spectra	
Screen Capture	
Exit	
Chapter 5: View Menu Functions	
chapter 5. view menu i unctions	
Overview	
Scale	
Empty	
Graph Layer Options	
Annotations	

Peaks	46
Image	
Draw	
Trendline	47
Overlay	47
Visible Spectrum	47
Spectrum Range	
Legend	
Toolbars	
Acquisition	
Acquisition Controls	50
Correction	50
Data Display	50
Memory	51
Preprocessing	51
SeaChanger	51
Testing	54
Trigger	54
Strobe-Gate Delay	54
Small Toolbar Icons	54
Customize	55

Overview	. 57
Acquisition	. 57
Pause Acquisition/Resume Acquisition	. 57
Terminate Acquisition	. 57
Spectrometer Features	. 58
MMS Raman Spectrometer	. 60
Rescan Devices	. 64
Remove Spectra	. 64
Show Devices	

Chapter 7: Processing Menu Functions65

Overview	65
Color	65
Edit Color Settings	65
Pre-processing	65
Remove Preprocessor	65

Nonunity Correction	
Add Reference Monitor	
Processing Mode	
Scope	
Scope Minus Dark	
Absorbance	
Transmission	
Reflection	70
Relative Irradiance	70
Raman Shifts	71
Absolute Irradiance	71
Scope	71
Absolute Irradiance	71
Collection Area	72
Calibration	
Combine Calibration Files	
New Energy, Power, Photons	74
New Photometry Measurement	
X-axis Units	
Set Color Temperature	
Exporting Processed Data	
Set Laser Wavelength	
Edit Result Colors	
Chapter 8: Tools Menu Functions	87
Overview	
Options	
Default Acquisition Settings	
Template Manager	
Module Manager	
Update Center	
Chapter 9: Window Menu Functions	95
Overview	
Close All Documents	
Documents	
Close Window	

Table of Contents

Output	
Chapter 10: Strip Charts	99
Overview	
Creating Strip Charts	
Saving Strip Chart Data	
Strip Chart Controls	104
Appendix A: Experiment Tutorials	
Overview	
Preparing for Experiments	
Application Tips	
Taking Reference and Dark Spectra	
Absorbance Experiments	
Concentration Experiments	
Transmission Experiments	
Reflection Experiments	
Irradiance Experiments	
Absolute Irradiance	
Relative Irradiance	
Fluorescence	
Color Experiments	
Color Measurement Screen Controls	150
Appendix B: Troubleshooting	151
Index	155

About This Manual

Document Purpose and Intended Audience

This document provides you with an installation and configuration instructions to get your system up and running. In addition, user interface for SpectraSuite is provided.

What's New in this Document

This version of the *SpectraSuite Spectrometer Operating Software Installation and Operation Manual* adds the SeaChanger module.

Document Summary

Chapter	Description
Chapter 1: Introduction	Provides an overview of the SpectraSuite operating software.
Chapter 2: <u>Installation</u>	Contains instructions for installing and configuring the SpectraSuite software.
Chapter 3: Controls and Indicators	Illustrates options for customizing your graph view. Also contains information for peak finding.
Chapter 4: File Menu Functions	Contains descriptions of the functions on the File menu.
Chapter 5: View Menu Functions	Contains a description of the functions on the View menu.
Chapter 6: <u>Spectrometer Menu Functions</u>	Contains descriptions of the functions on the Spectrometer menu.
Chapter 7: Processing Menu Functions	Contains descriptions of the functions on the Processing menu.
Chapter 8: Tools Menu Functions	Discusses the selections available in the Tools menu.
Chapter 9: Window Menu Functions	Contains information for the Window menu functions.
Chapter 10: <u>Strip Charts</u>	Provides instructions for using the Strip Charts feature.

About This Manual

Chapter	Description
Appendix A: Experiment Tutorials	Contains instructions for performing sample experiments using an Ocean Optics spectrometer and SpectraSuite software.
Appendix B: <u>Troubleshooting</u>	Provides a table of possible problems and suggested solutions.

Product-Related Documentation

External Triggering Options

Various USB spectrometer documents such as the <u>USB4000 Spectrometer Installation and Operation</u> <u>Manual</u>.

ADC1000-USB Operating Instructions

SeaChanger 4-Channel Installation and Operation Manual

SeaChanger Wash 4-Channel Color Engine Installation and Operation Manual

You can access documentation for Ocean Optics products by visiting our website at <u>http://www.oceanoptics.com</u>. Select *Technical* \rightarrow *Operating Instructions*, then choose the appropriate document from the available drop-down lists. Or, use the **Search by Model Number** field at the bottom of the web page.

You can also access operating instructions for Ocean Optics products on the *Software and Technical Resources* CD included with the system.

Engineering-level documentation is located on our website at *Technical* \rightarrow *Engineering Docs*.

Upgrades

Occasionally, you may find that you need Ocean Optics to make a change or an upgrade to your system. To facilitate these changes, you must first contact Customer Support and obtain a Return Merchandise Authorization (RMA) number. Please contact Ocean Optics for specific instructions when returning a product.

Chapter 1

Introduction

Product Overview

SpectraSuite is a completely modular, Java-based spectroscopy software platform that operates on Windows, Macintosh and Linux operating systems. The software can control any Ocean Optics USB spectrometer and device, as well as any other manufacturer's USB instrumentation using the appropriate drivers. The SpectraSuite interface looks and feels the same on all operating systems yet retains the familiar appearance of an application native to each OS. Ocean Optics is the first to offer such a flexible, feature-packed application with this level of cross-platform capability.

The SpectraSuite Java-based framework is modular and every function in it can be altered or replaced. For instance, the data acquisition functions, the scheduling functions, the data processing functions and the rendering functions are all separate modules. You can add or delete modules to create a proprietary user interface or functionality; create modules to perform calculations; automate experiment routines and more. You or an Ocean Optics application developer can easily customize SpectraSuite through Java code.

SpectraSuite is the platform for all future Ocean Optics application software development. Current software applications including OOISensors and OOILIBS will be migrated to the SpectraSuite platform in the near future.

USB Spectrometer and Device Control

SpectraSuite easily manages multiple USB spectrometers – each with different acquisition parameters – in multiple windows, and provides graphical and numeric representation of spectra from each spectrometer. Using SpectraSuite, you can combine data from multiple sources for applications that include upwelling/downwelling measurements, dual-beam referencing and process monitoring.

SpectraSuite can be used with the following Ocean Optics spectrometers when they are interfacing to a computer through their USB port:

S2000 Spectrometer (with A/D Converter)

USB650 Spectrometer

USB2000 Spectrometer

USB2000+ Spectrometer

USB2000-FLG Spectrometer

1: Introduction

USB4000 Spectrometer

HR2000 High-resolution Spectrometer

HR2000+High-resolution Spectrometer

HR4000 High-resolution Spectrometer

QE65000 Scientific-grade Spectrometer

NIR-512 Near-IR Spectrometer

NIR256-2.1 and NIR256-2.5 Near-IR Spectrometers

MMS Raman Spectrometer

In addition, SpectraSuite also supports the following USB devices:

ADC1000-USB A/D Converter

Spectral Hyper Adapter (SHA-1)

Features

Modular Framework – The SpectraSuite framework is modular and every function in it can be altered or replaced. For instance, the data acquisition functions, the scheduling functions, the data processing functions and the rendering functions are all separate modules. You can add or delete modules to create a proprietary user interface or functionality; create modules to perform calculations; automate experiment routines, and more. You or an Ocean Optics application developer can easily customize SpectraSuite through Java code.

Platform Independent – The SpectraSuite is a platform-independent application that provides Graphical and numeric representation of spectra in one window. SpectraSuite can operate on a Windows, Linux, or Macintosh operating system.

Advanced Data Capture Control – SpectraSuite provides the user with advanced control of episodic data capture attributes. For instance, a user can acquire data for a fixed number of scans or for a specific interval. Initiation of each scan can be externally triggered or event-driven. Captured data is quickly stored into a systems memory at speeds as fast as 1 scan per msec with speeds limited by hardware performance.

Independent Control of Multiple USB Devices – Multiple USB devices can be monitored on the same graph in a single window; each of these devices can be controlled independently.

SpectraSuite in the Future

SpectraSuite is constantly evolving. With the purchase of SpectraSuite, you are entitled to one year of free, web-based, automatic upgrades (see *Getting Updates*).

Planned future enhancements include the following:

21 CFR Part 11 Compliant – SpectraSuite will be 21 CFR Part 11 compliant with an encoded binary file. This binary data format tracks the complete history of all processing steps that are performed on the data. Spectra suite stores and provides data in a variety of other formats including tab-delimited ASCII (for Excel or other analysis packages), Grams SPC, and JCAMP. Additionally, Spectra Suite offers a database module where arbitrary data can be stored in any user-selectable format. Another benefit of the software's binary data tracking function is that it offers a user "process do-overs." A user can change the values of various parameters in a process and apply those changes to data without having to recreate an entire process.

Fully Internationalized – All of the software's menus, dialog boxes, prompts, messages and files will be able to reflect a native language by simply changing a single file. Modules that support Japanese, Chinese, Korean and Spanish will be available in the near future, followed by French, German and Italian.

Spectroscopic Functions

SpectraSuite allows you to perform the three basic spectroscopic experiments – absorbance, reflectance and emission – as well as signal-processing functions such as electrical dark-signal correction, stray light correction, boxcar pixel smoothing and signal averaging. Scope mode, the spectrometer operating mode in which raw data (signal) is acquired by the detector, allows you to establish these signal-conditioning parameters. The basic concept for the software is that real-time display of data allows users to evaluate the effectiveness of their experimental setups and data processing selections, make changes to these parameters, instantly see the effects and save the data. Most spectrometer-system operating software does not allow such signal-conditioning flexibility.

With SpectraSuite, you can perform time-acquisition experiments for kinetics applications. As part of the time-acquisition function (strip charts), you can monitor and report up to 6 single wavelengths and up to 2 mathematical combinations of these wavelengths. In addition, you can perform reference monitoring in a variety of ways: single wavelength (1 or 2 channels), integrated intensity (starting and ending wavelengths for 1 or 2 channels) and wavelength-by-wavelength (2 channels).

SpectraSuite gives you complete control of setting the parameters for all system functions such as acquiring data, designing the graph display, and using spectra overlays. You can also save and then retrieve all of these system parameters for future experiments. SpectraSuite has the benefit of providing various software-controlled triggering options for external events such as laser firing or light source pulsing.

Other advanced features give you several data-collection options. You can independently store and retrieve dark, reference, sample and processed spectra. All data can be saved to disk using autoincremented filenames. You can save data as ASCII files or in the native GRAMS/32 SPC or JCAMP format. One feature prints the spectra and another copies spectral data into other software such as Excel and Word.

Getting Updates

SpectraSuite software features one year of free, web-based automatic upgrades when you buy the software. This service requires that you register the first time you connect. You can purchase renewals for half the software price per year. All customers (whether they have a free upgrade plan or not) will be able to get free bug fixes.

The update icon () appears on the lower right corner of the SpectraSuite screen when updates are available for your software (see <u>Update Available</u> for more information on this icon). Click on this icon, or select **Tools** | **Update Center** from the SpectraSuite menu to go to the Update Center. Follow the steps in the Update Center wizard to update your SpectraSuite software.

Chapter 2

Installation

Overview

The following sections will guide you in installing SpectraSuite on a Windows, Macintosh or Linux operating system.

Note

Do NOT connect the spectrometer to the computer until you install the SpectraSuite software. Follow the instructions contained in this chapter to properly connect and configure your system.

Installing SpectraSuite

SpectraSuite can be downloaded from the Ocean Optics ftp site, or retrieved from the CD that you received with your purchase of the software.

This section contains instructions for installing SpectraSuite using both methods on each of the following operating systems:

Microsoft Windows - Windows 2000, XP

Apple Macintosh - OS X version 10.0 or later

Linux - Red Hat 9 or later, Fedora (any version), Debian 3.1 (Sarge), and SUSE (9.0 or later)

Retrieving from a CD

Your SpectraSuite software is shipped to you from Ocean Optics on a CD. The software is located either on the main **Software and Technical Resources** CD, or on a separate CD labeled **SpectraSuite Spectroscopy Platform Software**. You will need the password located on the jacket of the CD containing your SpectraSuite software to complete the installation.

Procedure

- 1. Insert the CD that you received containing your SpectraSuite software into your computer.
- 2. Select the SpectraSuite software for your computer's operating platform via the CD interface. Then follow the prompts in the installation wizard.

Or,

Browse to the appropriate SpectraSuite set-up file for your computer and double-click it to start the software installation. Set-up files are as follows:

- Windows: SpectraSuiteSetup_Windows
- Mac: SpectraSuiteSetup_Mac.dmg
- Linux: SpectraSuiteSetup_Linux

Downloading from the Ocean Optics ftp Site

Installing on a Windows Platform

Total download is approximately 30 MB.

► Procedure

- 1. Close all other applications running on the computer.
- 2. Type <u>ftp://spectrasuite.oceanoptics.com</u> into the browser.
- 3. Open FTP Site in Windows Explorer by clicking the Page menu and selecting **Open FTP site in Windows Explorer**.
- 4. Right-click on any white space in the browser window and select **Login As...**. The login and password dialog box appears.
- 5. Enter the following:

Username: username

Password: password

- 6. Double-click on **Installations**.
- Drag SpectraSuiteSetup_Windows.exe to the local computer and execute. The default installation directory is \Program Files\Ocean Optics\SpectraSuite. The SpectraSuite icon location is Start | Programs | Ocean Optics | SpectraSuite | SpectraSuite and the current user's desktop.

Installing on a Macintosh Platform

You must be logged on as an administrative user to install SpectraSuite on your Mac. Total download is less than 15 MB.

► Procedure

- 1. Open a terminal window (Finder | Applications | Utilities | Terminal).
- 2. Type in your user name and password.
- 3. Paste the following text into this terminal window:

ftp ftp://username:password@spectrasuite.oceanoptics.com hash 10000 lcd ~/Desktop cd Installations get SpectraSuiteSetup_Mac.dmg quit

When this command is finished, a file named **SpectraSuiteSetup_Mac.dmg** appears on the desktop.

- 4. Double-click on the SpectraSuiteSetup_Mac.dmg file to mount the disk image. A new SpectraSuite icon resembling a disk drive appears on your desktop. The new icon should open automatically (if it doesn't, double-click it).
- 5. Copy the SpectraSuite icon to your desktop.
- 6. When the installation is complete, drag the SpectraSuite drive icon to the recycle bin.

Installing on a Linux Platform

Total download is approximately 30 MB.

► Procedure

Open a terminal window.

1. Type in your user name and password.

Paste the following text into the terminal window:ftp ftp://*username:password@*spectrasuite.oceanoptics.com hash 10000 lcd ~/Desktop cd Installations get SpectraSuiteSetup_Linux.bin quit

A SpectraSuiteSetup_Linux.bin file appears on your desktop.

2. Start a terminal window and enter the following commands:

chmod 755 ~/Desktop/SpectraSuiteSetup_Linux.bin sudo ~/Desktop/SpectraSuiteSetup_Linux.bin

You are prompted for your password, which allows you to execute the setup as root. Contact your system administrator if you do not have password.

If the sudo command does not work (it may not be set up for your user account), then enter the following:

su (enter password for root) ~/Desktop/SpectraSuiteSetup Linux.bin

The Linux version of SpectraSuite requires some libraries that may not be installed by default, depending on the Linux distribution. The following are libraries are required, and are not provided as part of SpectraSuite:

- libstdc++ version 5. Some newer systems only install version 6, so a compatibility package may be required. In Fedora Core Linux, libstdc++ version 5 is provided by compat-libstdc++.
- libXp version 6 (earlier versions may work too). In Fedora Core 3 and 4, this is provided in xorg-x11-deprecated-libs.
- libusb version 0.1.10 or newer (should be provided in a libusb package or can be downloaded from http://libusb.sourceforge.net/download.html#stable).

It may be necessary to modify SELinux (Security Enhanced Linux) restrictions before SpectraSuite will run. It is possible to remove SELinux auditing by running 'setenforce Permissive' as root or by customizing your SELinux policies. The SpectraSuite installer does not modify system security settings.

Note

The default installation directory is /usr/local/OceanOptics/SpectraSuite.

A symbolic link is put in /usr/bin so that you can enter **spectrasuite** on any command line to start the program.

The SpectraSuite icon () location varies by installation, but will be under either Applications or Other under the Application Launcher menu.

Chapter 3

Controls and Indicators

Overview

SpectraSuite consists of a number of visual controls in the form of icons and buttons. This chapter describes these controls and how to use them.

Some menu selections and controls require that some action to be taken before they can be used. When unavailable, the controls are grayed-out. Many of these requirements will be lifted so that the software will ask what to do when it is not appropriate to take an action yet, but until then, the behavior is as follows:

Acquisition parameters, storing dark/reference spectra, and the Strip Chart require an unambiguous selection of an acquisition. If no acquisitions are running, try starting one. If more than one acquisition is started, try clicking on the desired trend in the graph to select the correct target. Similarly, try expanding the tree under the icon of the spectrometer and see how the controls respond to selecting each item. Right-click these items (or Control-click in MacOSX) to see additional actions for each.

Minus dark requires a dark spectrum to be stored.

A, T, R, and I (relative irradiance) require a dark and reference to be stored.

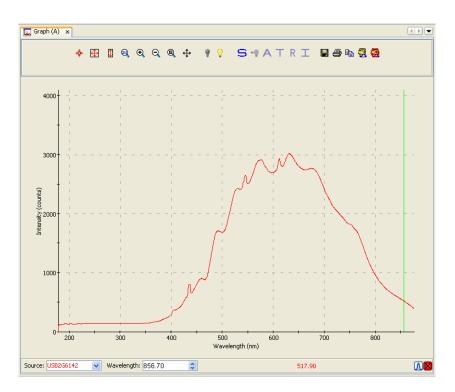
Absolute Irradiance mode (I) requires a calibration and a stored dark spectrum.

Photometry and energy/power/photons measurements require an active absolute irradiance calculation.

Graph Controls

The heart of the SpectraSuite application is the spectrum graph. SpectraSuite provides you with a wide variety of options to customize and monitor your graph views.

Controls are organized into the following toolbars that can be displayed or hidden using the Down Arrow button ().


* 🕀 🗓 🔍 Q	9 @ ₽) (S - I A	TRI		4 87 /	
Zoom	Spectrum Storag	e Proces	ssing <mark>S</mark>	pectrum IO	Layer	Down Arrow

Zoom Tools

* Zoom Out to Maximum

This control zooms out to display a full view of the spectrum graph.

E Scale Graph to Fill Window

This control adjusts the graph display so that the section of the graph relevant to the spectrum line is shown, but no more. Both the x and y axis are adjusted. In this example, the graph is zoomed in so that the Y axis (Intensity) above 3500 no longer appears since the graph line does not extend that far.

3: Controls and Indicators

Scale Graph Height to Fill Window

Use this control to zoom in on a graph so that the full height of the spectrum line is shown, but no more. Unlike the Scale Graph to Fill Window control, only the y axis is adjusted.

Manually Set Numeric Ranges

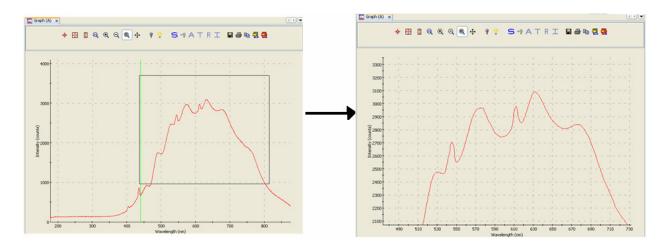
This control enables you to set the exact zoom coordinates. When you click on the control, the Set Zoom Ranges dialog box appears so that you can enter the desired coordinates.

Set Zoom	Ranges			
	X-A>	kis Range		
Minimum:	178.32	Maximum:	876.19	
Y-Axis Range				
Minimum:	0.0	Maximum:	3381.3	
	Apply	Reset	Close	

🔍 Zoom In

Use this control to zoom in on the graph. Each time you click this control, the display zooms in further.

3: Controls and Indicators


You can also use the mouse wheel to zoom in on the graph centered around the cursor (green vertical line).

🔍 Zoom Out

Use this control to reverse the zoom in process.

Zoom to Region

This control allows you to select a section of the graph to zoom in on. When you click the control, a cursor appears on the screen, enabling you to box-in a region to zoom in on.

Toggle Graph Pane

Use this control when you have more than one graph and want to switch between graph displays.

Spectrum Storage Tools

lcon	Meaning
-	Store dark spectrum
9	Store reference spectrum

These tools are also available from the **File** | **Store** menu. See <u>*Store*</u> for more information on these functions.

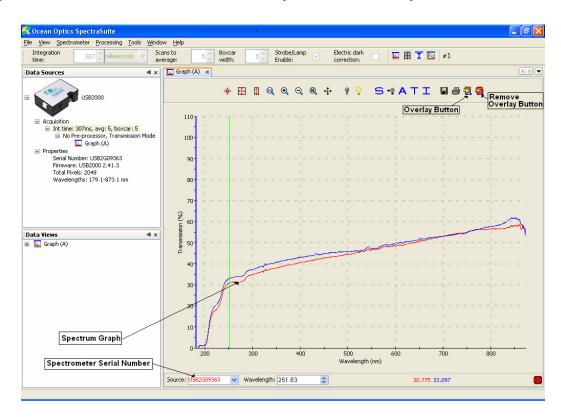
Processing Tools

lcon	Meaning
S	Scope Mode
-9	Scope Minus Dark Mode
Α	Absorbance Mode
Т	Transmission Mode
R	Reflection Mode
I	Relative Irradiance Mode

These tools can also be accessed from the **Processing** | **Processing Mode** menu. See <u>*Processing Mode*</u> for more information on these functions.

Spectrum IO Tools

lcon	Meaning
	Save Spectra. Click to save data in either a Grams SPC format, JCAMP format, binary format (which only SpectraSuite can read) or tab-delimited format (can be opened in an Excel spreadsheet).
a	Opens the SpectraSuite Printing dialog box. Select what you want to print and to where (system printer, PDF file). You can select to print various layers on your graph, zoom in to a section of the graph, and add a title, if desired. You can adjust the font size and display of grid lines. The Preview button displays a view of how your printout will look.
B	Copy spectral data to clipboard.


First in Photonics

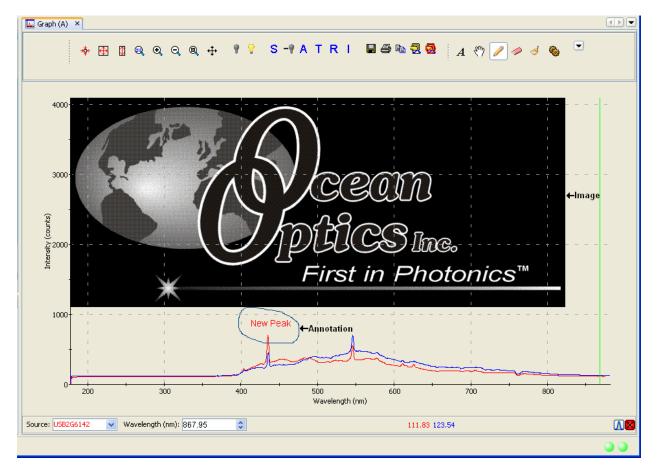
3: Controls and Indicators

lcon	Meaning
1 1 1	Overlay spectral data. Overlays a previously saved spectrum onto the current graph. See Overlay Spectral Data for more information.
3	Delete overlay spectra. Deletes any spectra that have been overlaid on the current graph.

Overlay Spectral Data

The Overlay Spectral Data control enables you to display a saved spectrum on the current spectrum. Click this control, and then browse for the file that you want to overlay on the current graph. The overlay shows the spectrometer serial number and the filename that you loaded the overlay from.

Layer Tools


The Layer tools provide you with functions to write captions and other meaningful data on your graphs. Select the tools using the Layer Toolbar.

Tool	Function
A	Add New Annotation. Displays the New Annotation dialog box to add a new annotation to the selected graph.
<u> শ</u> ণ্য	Select and Drag Annotation. Allows you to grab an annotation on the graph and drag it to another location.
1	Draw . Allows you to draw freehand (using the mouse) on the graph.
1	Erase Areas of Drawing Layer . Erases selected portions of the drawing created with the Draw tool (pencil).
4	Clear Drawing Layer. Clears the entire drawing made with the Draw tool (pencil).
0	Graph Layer Options . Displays the Graph Layer Options dialog box (see Graph Layer Options).

The following figure shows a graph with an image layer and an annotation circled with the drawing tool.

Other Controls

Acquisition Controls

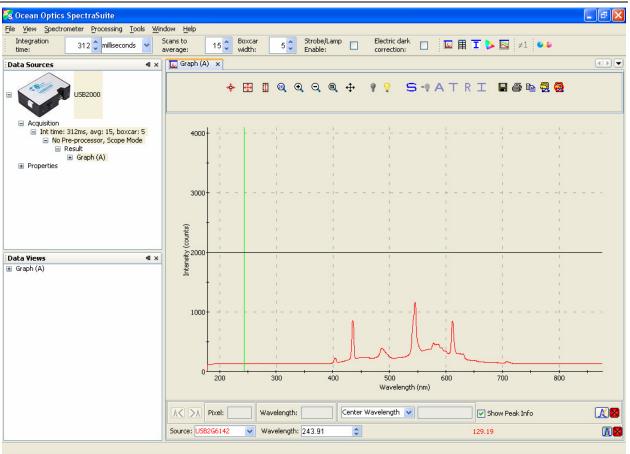
Much like controls on a VCR, the Acquisition Controls allow you to pause and resume continuous spectra acquisition, and perform a single acquisition.

Control	Action
-	Pause selected acquisition
H	Perform single acquisition
	Resume selected acquisition

Peak Finding

This control (located in the bottom, right corner of the graph) allows you to create a threshold on your spectral graph to isolate peaks.

Note


If this control does not display on your graph, click in the graph to make it appear.

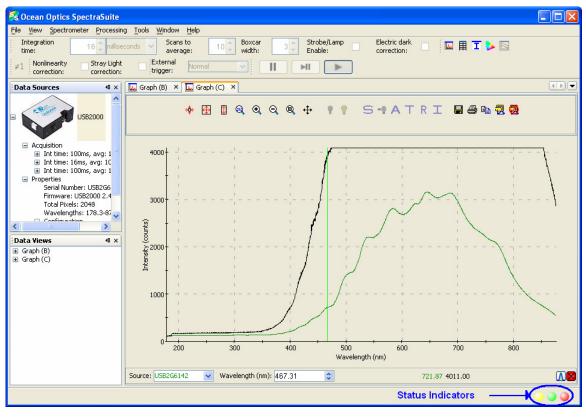
► Procedure

1. Click . A threshold line appears on the graph, along with more Peak Finding controls. The threshold is set high and in most cases, should be adjusted.

3: Controls and Indicators

2. Click *I* to display the **Peak Properties** dialog box to set the threshold.

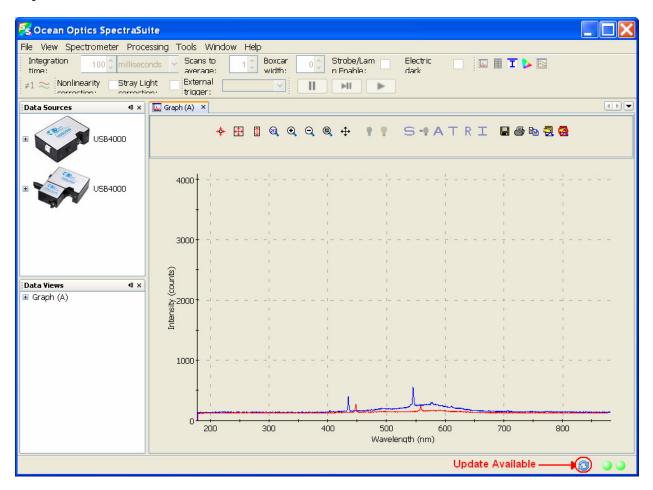
🌠 Peak Properties	×
Peak Finding	
Minimum peak width:	1 🗢
Baseline:	185 🗢
Total peaks foun	d: 38
Integration method: Re	ectangular 🔽 👻
	Close


- 3. Set the threshold at the level needed to isolate the desired peaks. The threshold line moves into the location you selected.
- 4. Use \bigwedge and \bigwedge to move the cursor to the next peak (left or right). The peak wavelength value appears in the **Wavelength** field below the graph.
- 5. Check **Show Peak Info** checkbox to display peak data in the Pixel and Wavelength boxes.

Indicators

Status

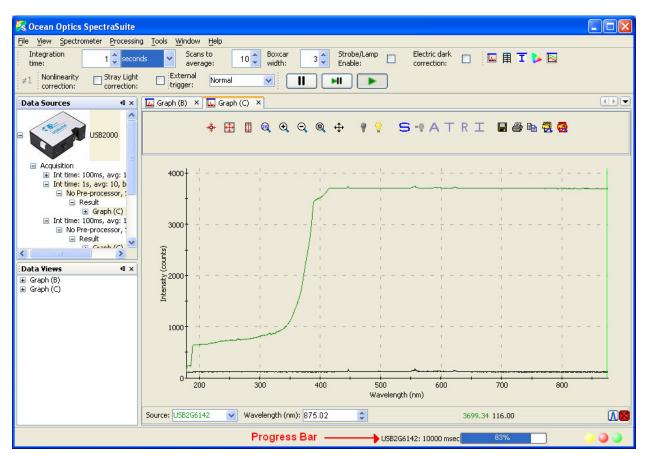
SpectraSuite provides you with feedback as to the status of the acquisitions you have graphed. The indicators refer to spectra shown on the graph currently displayed, as well as spectra on any other graphs that you have open (that appear on the graphs accessed from the tabs at the top of the screen). The feedback is in the bottom, right corner of the screen in the form of different colored circles. In the following example, two status indicators are shown for both spectral lines on Graph C, while a third indicator appears for the spectral line on Graph B.



Indicator	Meaning
0	Recent acquisition within normal ranges
	Saturated signal
	Acquisition is paused
	Idle

Each circle corresponds to a graphed spectrum. If you pass the arrow pointer over a circle, it displays the spectrometer to which it refers and the related settings (e.g., USB2G6142, Int time: 20 ms, avg: 10, boxcar: 3). Click on a circle to select its associated spectrometer.

Update Available



Indicator	Meaning
	A software update is available to be downloaded. Go to Tools Update center.

Progress Bar

If an acquisition takes longer than one second, a progress bar appears at the bottom of the screen. A progress bar can appear for each connected spectrometer that is acquiring data.

Chapter 4

File Menu Functions

Overview

This chapter details the various options and functions available from the File menu in SpectraSuite.

Where applicable, each section contains the associated toolbar icon below the section heading. Click on these icons in SpectraSuite to perform the described function.

New

The New menu selection displays the following list of functions that also are available from the Data Display toolbar:

<u>Spectrum Graph</u> <u>Spectrum Table</u> <u>High-Speed Acquisition</u> <u>Absorbance Measurement</u> <u>Transmission Measurement</u> <u>Reflection Measurement</u> <u>Relative Irradiance Measurement</u> <u>Gated Fluorescence Measurement</u> <u>Curie Fluorescence Measurement</u>

Gated Fluorescence Measurement

• The New Gated Fluorescence Measurement menu selection is activated when you are using a spectrometer with a gated detector (such as the USB2000-FLG). When you select this menu item, a wizard leads you through the steps necessary to take a gated fluorescence measurement:

- 1. Selecting your source
- 2. Setting the data acquisition parameters
- 3. Taking a reference spectrum

- 4. Taking a dark spectrum
- 5. Setting your gated delay

See *Fluorescence* for more information on taking a fluorescence measurement.

Curie Fluorescence Measurement

The New Curie Fluorescence Measurement menu selection is activated when you are using a Curie UV-VIS Emission Spectrofluorometer (serial number starts with CUR).

Note

The Curie UV-VIS Emission Spectrofluorometer is a discontinued product.

When you select this menu item, a wizard leads you through the steps necessary to take a fluorescence measurement with a Curie spectrofluorometer.

Absolute Irradiance Graph

New Absolute Irradiance Measurement

New Concentration Measurement

Color Measurement

<u>Strip Chart</u>

Spectrum Graph

مە

The Spectrum Graph menu option displays a new curve of spectral data on the open graph based on the parameters set in the Acquisition toolbar. Each new curve you create appears as a different color in the graph. Graphs appear in scope mode by default.

If you click on a curve, its corresponding parameters appear in the Acquisition toolbar. The data source (spectrometer) is listed in the Source box.

Procedure

To display a spectral graph, follow the steps below:

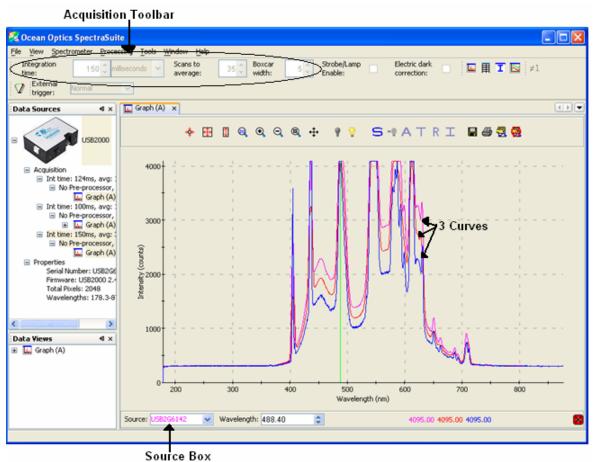
1. Select File | New | Spectrum Graph

Or

Click in the Data Display toolbar. A dialog box appears asking if you want to display the new graph in the current graph tab, or start a new graph tab.

5: View Menu Functions	5: Vie	ew Men	u Func	tions
------------------------	--------	--------	--------	-------

5			×
Please choose v	vhere new graph will be	displayed.	
🔿 Show data	in new tab		
💿 Show data	in existing tab		
Tab	X-Axis	Y-Axis	
Graph (A)	Wavelength	Intensity	
		Accept Can	cel


- 2. Choose where the new graph will be displayed and click
- 3. Set the desired parameters (integration time, scans to average, and boxcar width).

The sample below shows a graph with three spectral curves (blue, pink and orange) in the same graph tab.

Accept

5: View Menu Functions

000000

Spectrum Table

The Spectrum Table menu selection displays a spectral graph in tabular format. Select **File** |

Spectrum Table from the menu or click in the Data Display toolbar. The spectrum table appears.

5: View Menu Functions

🕺 Ocean Optics SpectraSuite				
le View Spectrometer Process	ing Tools Window Help			
Integration 150 milliseconds V Scans to average: 35 Boxcar 5 Strobe/Lamp Electric dark correction: Image: 21 External V Enable: Correction: Image: 21				
Data Sources 4 ×	Graph (A) x III Table (B) x	•		
Acquisition Int time: 124ms, an No Pre-process Graph Int time: 100ms, an Int time: 100ms	Vavelength (nm) 78.32 78.70 79.06 79.06 79.06 79.06 80.22 80.60 80.99 81.36 81.74 82.12 82.50 82.67 83.25 83.63 84.01 84.39 84.39 84.37 85.15 85.53 85.91 86.67 87.04 87.42 87.60	Intensity (counts) 0.00 284.00 284.00 289.00 282.00 291.00 292.00 292.00 292.00 294.00		
	88.18 89.56	299.00 297.00	-	
	88.94	301.00		
1	89.32	298.00		

High-Speed Acquisition

Use this menu selection if you want to capture every scan at a very fast rate (20 ms or faster). SpectraSuite performs this high-speed data acquisition by capturing raw data without slowing it down by processing it. This captured high-speed data is called a spectra collection.

A spectra collection can be viewed in either a graph or table format. You can also record the captured data in a 3-dimensional graph, and then run other measurements on this captured data.

It's best to store your reference and dark spectra using the regular graph window before performing a high-speed data acquisition. The following procedure assumes that you do so.

High-Speed Data Capturing

Procedure

- 1. Save reference spectrum to a file. See <u>*Reference*</u>.
- 2. Save a dark spectrum to a file. See *Dark*.

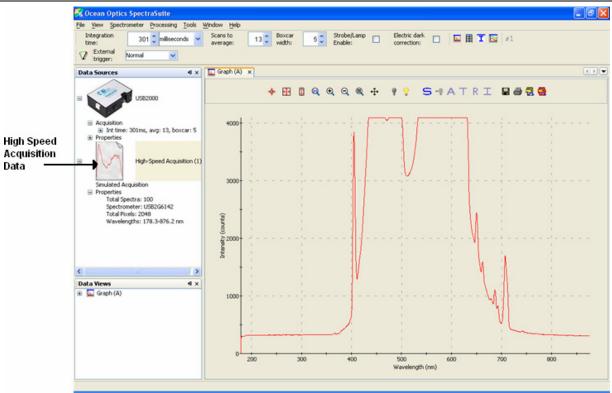
Caution

To ensure accurate data, be sure that you have selected the same parameters (integration time, scans to average, and boxcar width) for your high-speed acquisition that you used when capturing your dark and reference spectra.

3. Select File | New | High Speed Acquisition. If you have other acquisitions running, a warning message appears telling you that all other acquisitions will be stopped when you are acquiring high speed data. Either stop all your other acquisitions, or click OK on this message and SpectraSuite will temporarily stop them. The High-speed Acquisition dialog box appears.

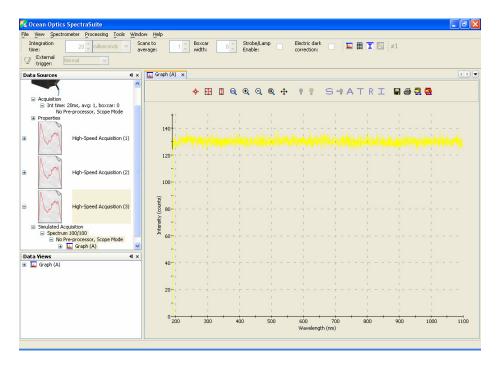
🔀 High-speed Acquisition 🛛 🛛 🔀	
Integration Time (usec): 15000	
Scans to Average: 1	\searrow
Boxcar Width: 0	Parameters
External Trigger Mode: Normal	/
Electric Dark Correction: 📃	
Strobe/Lamp Enable: 🔲 🚽	
Filename:	Enter Filename
Number of Scans: 100 Capture Period (usec): 5000000	>Select one
Show progress 🗸	
Done. 100 scans took 15.2 ms each.	
[**************************************	Acquisition
Go Close 🔗	Progress
	Click

The top third of the form lists the parameters selected in the main graph window.



4. Enter the following information:

Field	Selection
Integration Time (µsec)	Specify the integration time in µsec.
Scans to Average	Enter the number of scans to average
Boxcar Width	Enter the boxcar width
External Trigger Mode	Select the external trigger mode (Normal, Software, Synchronization, External Hardware)
Electric Dark Correction	Enable this option for electric dark correction
Strobe/Lamp Enable	Enable this option to turn on the lamp
Filename	Enter the name or browse to the file where you want to store data in a tab-delimited format.
	Choose one of these methods of data acquisition
Number of Scans	Acquire a fixed number of scans (fastest method)
Or	
Capture Period (µsec)	Specify a time period for data capture
Show progress	Enable this option to show the progress of the acquisition.


5. Click . Your high-speed acquisition data appears in the **Data Sources** pane.

- 6. Right-click on . A menu displays the following selections:
 - Spectrum Graph Displays a graph of the spectra

Wavelength (nm)	Intensity (counts)	Wavelength (nm)	Intensity (counts)
178.32	0.00	178.32	0.00
178.70	283.00	178.70	288.00
179.08	282.00	179.08	289.00
179.46	284.00	179.46	283.00
179.84	282.00	179.84	287.00
180.22	286.00	180.22	288.00
180.60	288.00	180.60	287.00
180.98	294.00	180.98	289.00
181.36	293.00	181.36	292.00
181.74	291.00	181.74	294.00
182.12	289.00	182.12	291.00
182.50	291.00	182.50	293.00
182.87	294.00	182.87	292.00
183.25	289.00	183.25	289.00
183.63	292.00	183.63	292.00
184.01	296.00	184.01	293.00
184.39	295.00	184.39	295.00
184.77	291.00	184.77	292.00
185.15	293.00	185.15	294.00
185.53	293.00	185.53	292.00
185.91	292.00	185.91	293.00
186.29	297.00	186.29	287.00
186.67	288.00	186.67	292.00
187.04	294.00	187.04	292.00
187.42	293.00	187.42	290.00
187.80	295.00	187.80	291.00
188.18	295.00	188.18	289.00
188.56	293.00	188.56	293.00
188.94	287.00	188.94	294.00

• Spectrum Table – Displays spectra data in a table format

- Save Spectra Collection Stores the high-speed spectra in a file. See <u>Creating a 3-D Chart</u> <u>of High-Speed Acquisition Spectra</u> for more information about what can be done with stored high-speed spectra data.
- **Remove Spectra Collection** Deletes the captured high-speed spectra collection data. You can also select **Spectrometer** | **Remove Spectra Collection**.

Creating a 3-D Chart of High-Speed Acquisition Spectra

You can create a 3-dimensional representation of the data over time in graph form. The navigation controls enable you to view the graph from different angles. Click on any point in the graph to display its value and wavelength.

► Procedure

To create a 3-D graph,

1. Right-click on the spectrometer in the Data Sources pane and select High Speed Acquisition

Or

Select File | New | High Speed Acquisition from the menu. The High-speed Acquisition dialog box appears.

🔀 High-speed Acquisiti	ion 🛛 🔀
Integration Time (usec):	15000
Scans to Average:	1
Boxcar Width:	0
External Trigger Mode:	Normal 💌
Electric Dark Co	rrection: 📃
Strobe/Lamp) Enable: 📃
Filename:	
 Number of Scans: 	100
🔘 Capture Period (us	ec): 5000000
	Show progress 🗸
Done, 100 scans took 15.2 m	is each.
G	io Close 🔗

2. Enter the parameters and click **W**. The 3-dimensional graph appears.

Using High-speed Acquisition Spectra

A spectra collection that you have stored using the high-speed acquisition feature has a variety of uses such as the following:

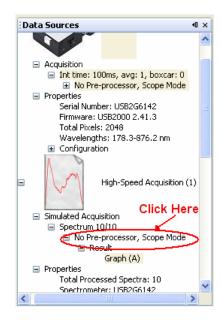
You can replay the spectra, fast forward, rewind, etc. just like any recorded data. Strip Chart data can also be replayed (see *Strip Chart* for more information on how to create a Strip Chart).

You can also conduct further experiments on the recorded data (absorbance, transmission, etc.) by clicking on the appropriate icon (A, T, R, or I).

► Procedure

To replay recorded data,

- 1. Right-click on the desired spectrum listed under **Simulated Acquisition** in the **Data Sources** pane. A menu appears.
- 2. Select Spectrum Playback Controls. The Spectrum Playback Controls dialog box appears.


	Stop re	wind	Stop	play	
	🌠 Spectru	n Playba	ck Contro	s 🔀	
Click to rewind		1<			-Click to play
Slide to rewind	,		₋₋₋₋−∳		
		Spectrum:	74		
		Step:	1	×	
	1	Delay (ms):	50		

3. Rewind the recording, then press to play the recorded spectrum graph.

► Procedure

To do further processing on recorded data,

- 1. Begin playback of recorded data. Note that the tree in the **Data Sources** pane populates with the usual acquisition data.
- 2. If needed, load preprocessing data (dark and reference spectra) by right-clicking on **No preprocessor, Scope Mode** in the **Data Sources** pane and selecting **Load Reference Spectrum** and **Load Dark Spectrum**. Browse to the desired reference and dark files.

Or, you can store reference and dark spectra at any time during playback if you have the necessary data in your collection.

 Once you have loaded the processed spectrum files, you can switch to another mode (Absorbance, Transmission, etc.) by clicking on the appropriate icon (▲, T, etc.).

Absorbance Measurement

A The Absorbance Measurement menu selection launches the Absorbance Measurement Wizard to facilitate taking an absorbance measurement using SpectraSuite. The wizard leads you through the steps necessary to take an absorbance measurement:

- 1. Selecting your source
- 2. Setting the data acquisition parameters
- 3. Taking a reference spectrum
- 4. Taking a dark spectrum

See <u>Absorbance Experiments</u> for more information on taking an absorbance measurement.

Transmission Measurement

The Transmission Measurement menu selection launches the Transmission Measurement wizard to help you through the process of taking a transmission measurement.

Reflection Measurement

R The Reflection Measurement menu selection launches the Reflection Measurement wizard to help you through the process of taking a reflection measurement.

Relative Irradiance Measurement

The Relative Irradiance menu selection launches the Relative Irradiance Measurement wizard to help you take to help you through the process of taking a relative irradiance measurement.

Gated Fluorescence Measurement

• The New Gated Fluorescence Measurement menu selection is activated when you are using a spectrometer with a gated detector (such as the USB2000-FLG). When you select this menu item, a wizard leads you through the steps necessary to take a gated fluorescence measurement:

- 1. Selecting your source
- 2. Setting the data acquisition parameters

- 3. Taking a reference spectrum
- 4. Taking a dark spectrum
- 5. Setting your gated delay

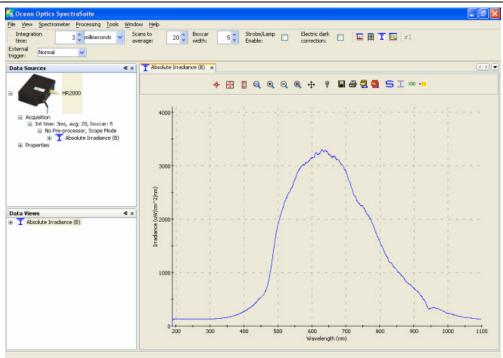
See *Fluorescence* for more information on taking a fluorescence measurement.

Curie Fluorescence Measurement

The New Curie Fluorescence Measurement menu selection is activated when you are using a Curie UV-VIS Emission Spectrofluorometer (serial number starts with CUR).

Note

The Curie UV-VIS Emission Spectrofluorometer is a discontinued product.


When you select this menu item, a wizard leads you through the steps necessary to take a fluorescence measurement with a Curie spectrofluorometer.

Absolute Irradiance Graph

The Absolute Irradiance Graph menu selection displays the Absolute Irradiance graph. With SpectraSuite, you can display multiple spectra from multiple devices with independent calibrations. You can also calculate integrated intensities (watts, joules, photons) and photometric quantities (lux, lumen, candela).

Select **File** | **Absolute Irradiance Graph** from the menu. The Absolute Irradiance Graph in Scope mode appears. See <u>Absolute Irradiance</u> in Appendix A: Experiment Tutorials for more information.

New Absolute Irradiance Measurement

The New Absolute Irradiance Measurement menu selection launches the Absolute Irradiance Wizard to facilitate taking an absolute irradiance measurement using SpectraSuite. The wizard leads you through the steps necessary to take an absolute irradiance measurement:

- 1. Selecting your source
- 2. Setting the data acquisition parameters
- 3. Taking a reference spectrum
- 4. Taking a dark spectrum
- 5. Calibrating the spectrometer

See <u>Absolute Irradiance</u> for more information on taking an absolute irradiance measurement.

New Concentration Measurement

Concentration is the amount of a specified substance in a solution. Graphs of absorbance vs. concentration are known as Beer's Law plots. These are prepared by measuring the light absorbed by a series of solutions with different *known* concentrations. The length of the sample, such as the path length of our cuvette holder, and the wavelength chosen for monitoring the amount of light absorbed are constants. A linear plot from taking scans of these standard solutions with known concentrations is then obtained. The plot is then used to determine the *unknown* concentrations of substances in solutions.

Color Measurement

With SpectraSuite, you can calculate and report the Color Rendering Index (CRI) and Correlated Color Temperature (CCT) for your samples. SpectraSuite will compute all color measurements except RGB. You can only perform color measurements on one spectrometer at a time.

Emissive color measurements – Require a spectrometer, which has been calibrated to take irradiance readings (either relative or absolute). SpectraSuite gives you the option of choosing to measure either emissive or reflective color from either absolute or relative irradiance.

Reflective color measurements – Do not require an irradiance calibration, but they do require a reference spectrum. This reference scan is taken with the same optical configuration, except a perfect reflector is placed at the same location as the samples.

Strip Chart

SpectraSuite allows you to use Strip Charts to track processes, perform kinetic analyses, and monitor spectral events all as a function of time. The Strip Chart shows you how the value that you selected appears over time. This value can be any of the following:

One pixel (a single wavelength)

The average of a range of pixels

An integral calculated by one of three methods representing the area beneath the graph's trend line You can acquire this data using any processing mode (transmission, absorbance, etc.).

► Procedure

- 1. Place SpectraSuite in Scope mode by clicking the Scope (S) icon in the Experiment mode toolbar or selecting **Processing** | **Processing Mode** | **Scope** from the menu.
- 2. Store a reference spectra and dark spectra.
- 3. Choose the measurement mode (absorbance, transmission, etc.).
- 4. Click the Strip Chart button (\square)
 - OR

Select File | New | Strip Chart from the menu. The Chart Trend Settings dialog box opens.

🍕 Chart Trend Settings	X
# Spectrometers Spectrum Type 0 HR2B1231 Processed	Wavelength Selection One wavelength: 188.80 nm Average from 188.80 nm to 188.80 nm
Display Options Trend Line Color: Select Color Scale Trend Value: Multiply by 1 then add 0 Minimum delay between updates: 0 \$ ms	O Integrate over 188.80 ♀ to 188.80 ♀ nm Method: Rectangular ✓

5. Enter the following data to create your Strip Chart:

Field	Selections
Wavelength Selection	Select the type of data for which you want to view the time trend. Select from the following:
	One wavelength – For one pixel (used in fluorescence, for example). Select the wavelength.
	Average from – For a range of pixels. Select the starting and ending wavelengths.
	Integrate over – For the area underneath the trend line. Select the starting and ending wavelengths. Then, select the method for calculating the continuous area underneath the graph curve: Rectangular, Simpson's, or Trapezoid.
Display Options	Select a color for the graph's trend line.
Scale Trend Value	If you would like to adjust your data, enter the appropriate information in this field.
Minimum delay between updates	Set the amount of time (in milliseconds) between data points on the graph. This delay is independent of the integration time. The data appears at the slower rate.
	NOTE: The longer the time between updates, the less computer memory that is used.

6. Click Accept . The Strip Chart Options dialog box appears. Strip Chart Options lists all of the Strip Charts that you have created, along with the options that you have set for each one. Use this dialog box to add, edit, remove, or clear trends.

Note

Highlight the desired trend to make the Clear, Remove Trend, and Edit Trend buttons active.

Source	Wavelength (nm)	Mode	Offset	Color
R2B1231	500.27	Value	0	Color
IR2B1231	500.27	Value	0	

- 7. Click Accept. The strip chart you created appears. Note the time scale along the x-axis. The y-axis in this example shows the percentage transmission for the selected pixel(s).
- 8. To add another trend to this graph, click Add Trend...

iew Spectrometer Processing Tools W	ndow Help	
gration 3 🗘 milliseconds 🗸	Scans to 20 🗘 Boxcar 4 🗘 Strobe/Lamp Electric dark 🔲 🛄 🗐 🔀 ≠ 1 enable: Correction: 🔲 🖬 🗊 🖾 ≠1	
Sources 4	x Graph (A) x 🔁 Strip Chart (C) x	•
R2000	💠 🔂 🚺 🍳 Q 🔍 🕂 🖬 Configure	
Acquisition		1 T 1 1
No Pre-processor, Transision Mod		· · · · ·
Properties		
	70	
Views 4	× 1 000 000 000 000 000 000 000 000 000	
Graph (A) Strip Chart (C)		$ \frac{1}{1} \frac{1}{1}$
	20	1 1 1 1 1 1 1 1 1 1
		$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$
	0 15:12:45 15:12:55 15:13:05 15:13:15 15:13:15 15:13:55 15:14:05 15:14:15 Time	15:14:25 15:14:3

Open

Selecting the **Open** menu option allows you to load previously stored dark spectra, reference spectra, processed spectra, or all stored all spectra files. Select the type of spectrum to load, then browse to where the file is stored.

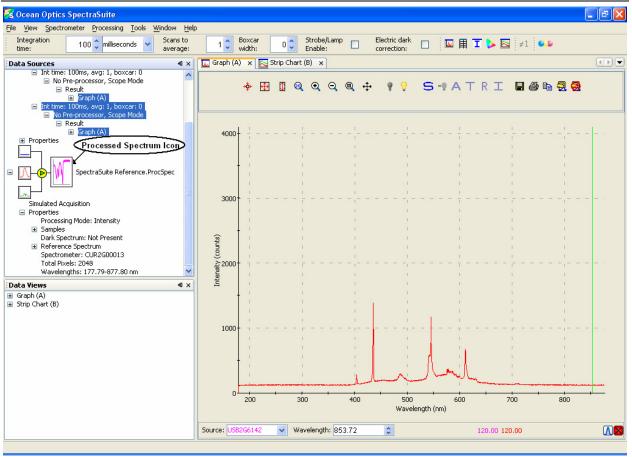
Dark

A dark spectrum is a spectrum taken with the light path blocked.

Select File | Open | Load Dark Spectrum to select and open one or more dark spectra.

Reference

A reference spectrum is a spectrum taken with the light source on and a blank in the sampling region. Select **File** | **Open** | **Load Reference Spectrum** to select and load one or more reference spectra.


Processed Spectrum

You have the ability to load a previously stored processed spectrum file.

► Procedure

- 1. Select File | Open | Load Processed Spectrum from the menu.
- 2. Type the file name or browse to the location of the desired processed spectrum file and open the file. The Processed Spectrum icon appears in the **Data Sources** pane.

3. You can save this processed spectrum back out to a file as processed, reference or dark spectrum. Right-click on the Processed Spectrum icon to display the SpectraSuite Save Spectrum dialog box.

🔀 SpectraSuite Save Spectrum	×
Spectrometers Processing CUR2G00013 No Pre-processor, Scope Mode	Spectrum View
Filename Browse Desired Spectrum Processed Spectrum 💉 File Type OOI Binary Format 💉	1000 0 200 400 600 800 Wavelength (nm)
File name is required.	Save Close

4. Enter the file name or browse to a desired file, select the desired spectrum (processed, reference or dark), and select the file type (binary or tab-delimited).

Tip

Save the file as tab-delimited if you want to display it in an Excel spreadsheet.

5. Click Save...

Spectrum Collection

A spectrum collection is created when you perform a high-speed acquisition. Select **File** | **Open** | **Load Spectrum Collection** to browse to and open a spectrum collection from a high-speed acquisition.

Save

Save Spectra Collection

This menu option allows you to save your spectra collection to a file. Select **File** | **Save** | **Save Spectra Collection** from the menu and enter a file name. Also see <u>Exporting Processed Data</u> for information on exporting data to a file.

Save Spectrum

This menu options displays the Save Spectrum dialog box. Use this box to configure how you want to

save your spectra. After you set the options and click Accept, choosing File | Save | Save Spectrum or typing CTRL + S exports the spectrum according to your settings in this dialog box.

To change these settings, select File | Save | Configure Export.

To cancel the export of the spectra, select File | Save | Stop Export.

	essor, Subtract Dark Spec essor, Scope Mode
Save Options Save every scan Save after every: 100 ♀ scans Between saved scans, wait at least: 50 ♀ msec ♥ Save the first available scan every: 50 ♀ msec ♥ Start at the beginning of the next: minute ♥ Pause until started by user Stop after this many scans: 100 ♀ Stop after this amount of time: 100 ♀ msec ♥ fter setting up a valid save configuration, clicking C tart, restart, or repeat the export as configured abor o change the configuration choose File->Save->Cro	ve. onfigure Export.

Store

cean

Use this menu selection to store reference and dark spectra before running your experiment.

Dark

A dark spectrum is a spectrum taken with the light path blocked.

Select **File** | **Store** | **Store Dark Spectrum** from the menu to save a dark spectrum to a file. You can also click **?** in the graph toolbar.

Reference

A reference spectrum is a spectrum taken with the light source on and a blank in the sampling region.

Select File | Store | Store Reference Spectrum to store a reference spectrum file. You can also click in the graph toolbar.

Convert Spectra

This function enables you to convert between file types.

Select File | Convert Spectra. The File Converter dialog box appears. Use this dialog box to select the file(s) to convert and to specify the file type desired.

🗟 File Converter			
Convert File From			
Convert File:			
Number of Files to Co	nvert:		0 🗢
Convert File To			
File Type;	OOI Binary	Format	~
Save to Directory;			
Base Filename;			Keep file name
Padding Digits:		5	
Preview:			
	Cor	nvert	

Screen Capture

This function takes a snapshot of the current SpectraSuite window, or the entire computer screen and stores it in the format and location that you specify.

Procedure

1. Select File | Screen Capture. The Screen Capture Config. dialog box appears.

🏂 Screen Capture Config. 💦 🔀
 Capture SpectraSuite window
🔿 Capture entire screen
Delay before capture: 6 🗢 seconds
Image format: PNG 💌
Accept Cancel

- 2. Select to capture either the just SpectraSuite window or the entire computer screen.
- 3. If you don't want to capture the screen immediately, set a delay time.
- 4. Select to store the captured image as a PNG or JPG file.
- 5. Click Accept
- 6. You are prompted to choose a name and location to store the captured file, then click

Exit

Caution

For Mac operating systems, do NOT attempt to exit from the SpectraSuite application by using Quit. If you do so, the application could hang. Should this occur, unplug, then replug in the spectrometer(s) before restarting SpectraSuite to make the application work again.

Select File | Exit from the menu to exit the SpectraSuite application. A shutdown confirmation dialog box appears. Click Yes to exit SpectraSuite.

Alternately, you can click the top right **x** box of the application's display window.

Note

If your system gets hung after requesting SpectraSuite to shut down, press the Escape key twice to exit the application.

Chapter 5

View Menu Functions

Overview

This section details the various options and functions available from the View menu in SpectraSuite.

Scale

Empty

This menu selection is for future use.

Graph Layer Options

Select View | Graph Layer Options, right-click on the graph and select Graph Layer Options, click

, or type CTRL+ALT+L to display the Graph Layer Options dialog box. The Graph Layers feature provides more control over the customization of your graph window.

🌠 Graph (A) Layer Options 🛛 🛛 🕅								
Dra		Trendline	Overlay Vi	isible Spectrum	Spectrum Range	Legend		
	Ann	otations	Chart	Cursor	Peaks	Image		
	Layer Properties							
			Show annotation I	ayer 🕜 Hide anno	tation layer			
	Spectr	rum Source Sele	ection					
	#	Source	Processing		Colo	or I		
	0	USB2G3387		cessor, Scope Mode				
	1	USB2G6142	No Pre-pro	cessor, Scope Mode				
	Annotation Properties Select annotation: Annotation position: Annotation position: X: O< Y: O New annotation Edit annotation Delete annotation							
		pry co an anno	ations on selected lay					
				Width	0 🌲 🗌 Load	image		
		B		Height	0 🗘 🗌 Hi	ide text		
	Layer Order							
			Bring layer to front	: Bring layer I	orward			
			Send layer to back	Send layer b	ackward			
0	ж	Cancel						

Annotations

The Annotations functionality allows you to add text or an image to a specific location on the graph. Annotations are associated with a specific source (selectable by you), and when the source is removed, the annotations associated with it are removed as well. A subset of this functionality is also available by

.

right-clicking on the graph or clicking	A	(to add an annotation).
---	---	-------------------------

Chart

Use Chart to modify the following chart settings on the graph:

Chart line pattern Chart line width Font size Chart background Number precision for x and y axes Number spacing for x and y axes Tick spacing for x and y axes Grid spacing for x and y axes Grid lines Grid line color

Cursor

Use the Cursor tab to modify the cursor color.

Peaks

Peaks functionality enables you to perform the following peak monitoring actions:

Display values on the graph relating to the peak such as peak value, center wavelength, pixel number, centroid, etc.

Set an alarm when a peak is reached. You can pause the acquisition, save the spectrum, and sound a customizable alarm.

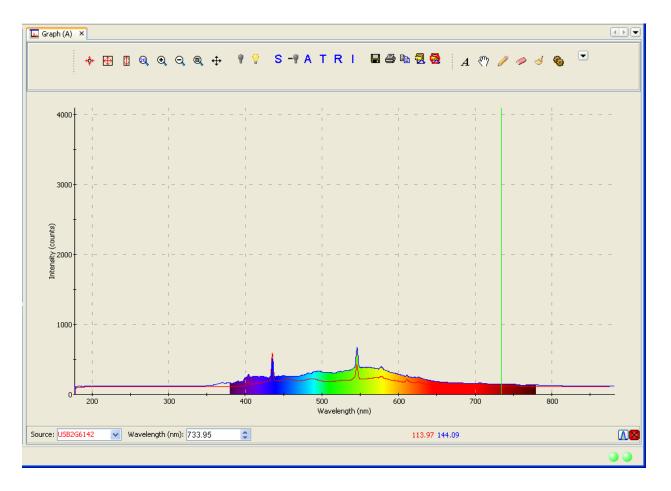
Image

This option allows you to add a background image to your graph. You can set the size and orientation of the image, as well as flipping, rotating, stretching and skewing it. You can also lock the image in place for a given unit range.

Draw

Provides tools for modifying the appearance of the line created by the drawing tool (

Trendline

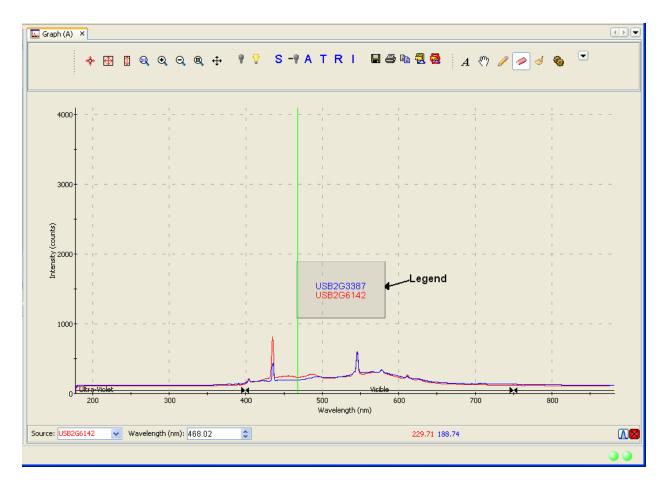

This option enables you to change the color and width of the trend line for the selected graph.

Overlay

Use this function to add an overlay to the selected graph.

Visible Spectrum

This option allows you to display the visible spectrum on your graph. You can display the spectrum the full height of the chart, as a bar on the x-axis, or beneath the selected trend line (as shown in figure below).



Spectrum Range

Spectrum Range allows you to display captions for the following spectrum ranges: Gamma, X-ray, UV, Visible, Near infrared, Mid infrared, Far infrared, Microwaves, and Radiowaves.

Legend

Use this option to add a customizable legend to your graph. The legend shows the spectrometer serial number and the name of the file that you loaded the overlay from, if applicable.

Toolbars

This menu item controls which toolbars are visible on the SpectraSuite window. Click on the following selections to toggle the toolbar on and off. When a toolbar is visible, a checkmark appears next to the menu selection.

The toolbars available from this menu item are shown on the SpectraSuite window in the figure below:

Memory	Acqui	ition	Data	Display I
🏂 Ocean Optics SpectraSuite				
File Vew Spectrometer Processi	ng <u>Tools Window Help</u>			
14.0/26.9MB Integration	100 🗘 milliseconds 🔽 Scans to		e/Lamp Electric dark 🔽 🗔 🗐 e: correction:	I 🕨 🖾
$1 \neq 1 \approx $ Nonlinearity \Box Stray correction:			Strobe/Gate	
Preprocessing Correction		Testing Acquisition Contr	rols Strobe-Gate Delay	

Acquisition

Select **View** | **Acquisition** to display/hide the tools related to the data being acquired and displayed in SpectraSuite.

ΤοοΙ	Function
Integration time: 3 milliseconds	Specifies the integration time of the spectrometer, which is analogous to the shutter speed of a camera. The higher the integration time, the longer the detector monitors the incoming photons. If your Scope mode intensity is too low, increase this value. If the intensity is too high, decrease this value.
	Adjust the integration time so that the greatest amount of light that you anticipate for your application causes a signal of about 85% of spectrometer's capability (for example, 3500 for spectrometers with a total of 4096 counts, 14000 counts for spectrometers with a total of 16384 counts, 50000 for spectrometers with a total of 65535 counts). While watching the graph trace, adjust the integration time until the signal intensity level is appropriate for the device. The integration time specified controls enabled spectrometer channels in the active spectral window.
Scans to 1	Specifies the number of discrete spectral acquisitions that the device driver accumulates before SpectraSuite receives a spectrum. The higher the value, the better the signal-to-noise ratio (S:N). The S:N will improve by the square root of the number of scans averaged.
Boxcar 0	Sets the boxcar smoothing width, a technique that averages across spectral data. This technique averages a group of adjacent detector elements. A value of 5, for example, averages each data point with 5 points to its left and 5 points to its right.
	The greater this value, the smoother the data and the higher the signal-to-noise ratio. If the value entered is too high, a loss in spectral resolution will result. The S:N will improve by the square root of the number of pixels averaged.

Tool	Function
Strobe/Lamp Enable:	Enables or disables the spectrometer strobe control function.
	This function toggles the S0 line of the spectrometer.
Electric dark correction:	Enables or disables the correction of the spectral data for electrical dark signal.
	For example, if the first 24 pixels in the spectrometer, while producing an electrical signal, do not respond to light then this option subtracts the average value of these first 24 pixels from the entire spectrum.

Acquisition Controls

Select **View** | **Toolbars** | **AcquisitionControls** to display/hide the tools for pausing and resuming continuous spectra acquisition. A control is also available for performing a single acquisition.

Control	Action
-	Pause selected acquisition
H	Perform single acquisition
	Resume selected acquisition

Correction

This toolbar has one tool: the nonlinearity correction checkbox. This tool enables/disables the detector linearity feature. The Correction toolbar only displays when you select it with **View** | **Toolbars** | **Correction**; it is absent from the screen by default.

Data Display

The Data Display toolbar contains the icons for the following graph functions:

lcon	Function
لمع	Spectrum Graph . Displays a new spectrum curve on the current graph with the parameters selected in the Acquisition toolbar. Each spectrum curve appears on the graph in a different color. The Acquisition parameters for each curve are listed in the Data Sources pane.

lcon	Function
Ħ	Spectrum Table . Displays the data acquisition in a table format. A tab for the table appears at the top pf the graph pane. See <u>Spectrum Table</u> for more information.
I	Absolute Irradiance Graph. Displays a graph of absolute irradiance data. This graph appears on its own page with a tab at the top of the graph pane. It is also listed in the Data Views section.
	Color Measurement. Launches the Color Measurement wizard. See <u>Color Measurement</u> for more information.
	Strip Chart . Allows you to track processes, perform kinetic analyses, and monitor spectral events all as a function of time. See <u>Strip Charts</u> for more information.

Memory

The Memory toolbar consists of a display of the memory being used by the SpectraSuite application

(^{7.1/22.6MB}). Click this icon to force SpectraSuite to clean unneeded data from memory. The Memory toolbar only appears when you select it with **View** | **Toolbars** | **Memory**; it is absent from the screen by default.

Preprocessing

The Preprocessing toolbar contains icons for the following functions:

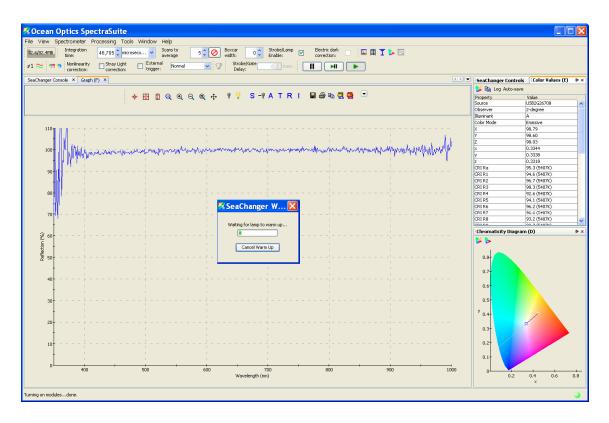
lcon	Function
≠1	Nonunity correction . Performs a calculation to compensate for a reflection standard that is not perfectly white.
~	Add Reference Monitor. Adjusts the signal to compensate for variations in spectral intensity based on light source and system drift.

SeaChanger

This control (finite) enables you to adjust the SeaChanger Color Engine(s) connected to a CDS LanBox-LCE, via Ethernet cable. You must have a Red Tide (USB650) spectrometer with an attached light source to use this SpectraSuite function.

► Procedure

1. Click the SeaChanger control () in the toolbar. The **Choose DMX Source** dialog box appears.



Schoose DMX Source	×
DMX Interface: None	~
Accept C	ancel

- 2. Select None or LanBox DMX for your source, then click
 - a. If you selected None, go on to Step 3.
 - b. If you selected LanBox DMX, the SeaChanger DMX Login dialog box appears. Enter the required information for the Ethernet connection to the LanBox-LCE.

🛿 SeaChanger DMX Login 🛛 🔀				
Enter information for LanBox DMX interface.				
IP Address:	192.168.51.23			
Port:	777			
Password:	***			
Base DMX Address:	1 🗢			
	Connect Cancel			

A graph appears with a message that the lamp is warming up.

During this time, an initialization process occurs in which SpectraSuite automatically does the following for you:

- Turns on the light source.
- Calibrates to the correct integration time.
- Stores a reference spectrum.
- Turns the lamp off to store a dark spectrum.
- Starts a transmission measurement.
- Adds a color measurement for emissive color.
- Starts the SeaChanger's LanBox DMX console and calibrates the measurements until they're stabilized.
- 3. The SeaChanger Console screen appears enabling you to change the parameters listed in the table below.

Socean Optics SpectraSuite		
Elle View Spectrometer Processing Tools Window Help		
69.6/78.6/86 Integration time: 43,397 © microseco ♥ Scans to average 5 © Ø Boxcar ≠1 ≈ mo Nonlinearity Correction: Stray Light Correction: External trigger: Normal ♥ Ø	0 ♥ StrobelLamp ♥ Electric dark ■ 🖬 🗍 ► 🖂 Enable: te = 0 © msec 🛛 🚺 🕞 🖬	
Graph (D) × SeaChanger Console ×	()	Color ¥alues (C) SeaChanger Con ▶ ×
C Measured Color from: USE25226708	Color Information x: 0.255 y: 0.252 y: 0.714 Closest get from: All ranges v Permacolor #33550: Woods Glass Color difference in W72: 0.663 Preview Transmission Graph Light Graph Measured: Reference Get: 1.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	Cyan Mageria Yelow Extreme Green 242 171 147 245 94,9% 67.1% 57.6% 96.1% Slow Fast 6.1% • 0.8 0.7 0.6 0.5 • 0.3 0.4 0.4 • •
		v

Parameter	Meaning
Measure Color from	Select the serial number of the spectrometer
Custom Color	Select a custom color
Reference Gel from	Select All ranges, Cinegel, Cinelux, Roscolux, Permacolor, or Lee

Parameter	Meaning
Stored Colors	Add, Save, Remove
Configuration	CYMG with lenses, CYMG w/o
Store Dark/Reference	Force Update
Color Information x , y, Y Closest gel from Color difference in XYZ	Select All ranges, Cinegel, Cinelux, Roscolux, Permacolor, or Lee
Preview	Allows you to preview the Transmission graph and the Light graph.

The controls in the upper right panel allow you to change the color of the SeaChanger by individually controlling its color wheels.

Testing

The Testing toolbar consists of the speed benchmark (**1**). This feature allows you to see how fast the SpectraSuite application is running (how long it takes from the time the data is acquired until all the calculations have been performed. The Testing toolbar only displays when you select it with **View** | **Toolbars** | **Testing**; it is absent from the screen by default.

Trigger

The External Trigger selection box on the Trigger toolbar enables you to set the following trigger modes of the spectrometer:

Normal – free running

Software – Integration time is controlled by frequency of triggers

External Hardware - Hardware fixed or jumpered integration time

Strobe-Gate Delay

This control enables you to set the gating delay in msec.

Small Toolbar Icons

For future use.

Customize

This menu selection allows you to customize your toolbars with functions that you choose from the Customize Toolbars dialog box.

S Customize Toolbars	×
Drag items to or from the toolbars to add or remove them	
	^
Сору	
🗲 Cut	
Find Paste	
Pasce Redo	
Undo	
Help	
E System	
[®] Next Error	
Previous Error	
🎯 Update Center	
🚔 Print	
🔚 Save	
📴 Save All	
🖃 🧰 View	
Source Web Browser	
🖃 🚞 Window	
🖃 🧰 SelectDocumentNode	-
Select in Favorites	
New Toolbar 🔽 Small Toolbar Icons	

Chapter 6

Spectrometer Menu Functions

Overview

This chapter details the various options and functions available from the **Spectrometer** menu in SpectraSuite.

Acquisition

This menu selection consists of options that control starting and stopping SpectraSuite's acquisition of spectral data. If you have more than one acquisition running, you must select the desired spectrometer in the Data Sources pane. To do this, click on the line under the spectrometer that lists the integration time, scans to average and boxcar width.

Pause Acquisition/Resume Acquisition

These menu selections toggle to pause and restart data acquisition. When you start the SpectraSuite application, it comes up acquiring spectral data in Scope mode from the attached spectrometers. If you are monitoring more than one spectrometer, select the desired spectrometer in the Data Sources pane, and choose either **Spectrometer** | **Acquisition** | **Pause Acquisition** to temporarily pause the acquisition. Select **Spectrometer** | **Acquisition** | **Resume Acquisition** to resume the acquisition.

Terminate Acquisition

To completely stop spectral acquisition on a spectrometer, select the desired spectrometer in the Data Sources pane (if you are monitoring more than one), then select **Spectrometer** | **Acquisition** | **Terminate Acquisition**.

Spectrometer Features

This option provides access to additional functionality available with the attached OOI spectrometers. You must select a spectrometer in the **Data Sources** pane to make this menu selection active. To display the Features dialog box, do one of the following:

Select Spectrometer | Spectrometer Features from the menu, or

Right-click on the device in the Data Sources pane and select Spectrometer Features.

Each attached device type has unique features, so see the documentation for your particular device to learn more about the available options and their settings. The MMS Raman Spectrometer has unique features. See <u>MMS Raman Spectrometer</u> for more information.

The following is an example of the HR4000 Spectrometer Features dialog box.

🏂 HR	4000 Features		
C		In Analog Out Irradiance er Delay I2C SPI GPIO Detector Linearity Single Strobe	
-Wave	length Calibration		
	Term	Value	
	Intercept	195.707410	
	1st Coefficient	2.6653438E-1	
	2nd Coefficient	-3.6248900E-6	
	3rd Coefficient	-1.7018300E-10	
Apply Reset Save to Spectrometer			

Many of the features listed for the HR4000 Spectrometer are also valid for other spectrometers. The table below lists all spectrometer features. Check your spectrometer to see which features apply to your model.

Feature	Meaning
Analog In	Set the input voltage and the update interval. Analog input can be accessed from the spectrometer's accessory connector.
Analog Out	Analog output can be used for multiple applications such as single pixel intensity analysis or programmable reference/dimmer to light sources. Set the analog output on this screen.

Feature	Meaning
Autonulling	Autonulling is an enhanced electrical dark correction. Set the autonulling status and value on this screen.
Board Temperature	The HR spectrometers contain a temperature sensor chip on the printed circuit board. Use this screen to set the temperature parameters.
Channel Features	For the ADC1000-USB. Enable each channel (1-7) by checking box.
Continuous Strobe	Set the continuous strobe delay. The Continuous Strobe signal is a programmable frequency pulse-train.
Detector Linearity	Use this screen to change the linearity coefficients.
External Trigger Delay	Set the counts for the external hardware trigger.
GPIO	Set the General Purpose Input/Output values on this screen.
Hardware Trigger	The spectrometer uses an external rising edge of a TTL signal to begin a single integration cycle. Set the delay (counts) on this screen.
I2C	The Inter-Integrated Circuit 2-wire serial bus is widely used in embedded systems applications. With I ² C you can add peripherals to your system without using valuable resources like I/O ports. The I2C bus communications parameters are set on this screen.
Irradiance	Use this screen to load and save irradiance calibration factors.
LS-450	This tab appears if a USB-LS-450 light source is attached to your spectrometer. Check the box for Pulsed LED mode, if desired.
LS-450 Calibration Constants	This tab appears if a USB-LS-450 light source is attached to your spectrometer.
LS-450 Current Out	This tab appears if a USB-LS-450 light source is attached to your spectrometer. Adjust the analog output current.
Multi Channel Provider	This screen appears for an ADC1000.
Single Strobe	The Single Strobe signal is a programmable TTL pulse that occurs at a user determined time during each integration period. Set the counts for the high and low transition delay.
SPI	The Serial Peripheral Interface is a 3-wire interface that can be used to communicate to multiple slave devices. Access the SPI bus communications functions on this screen.
Stray Light	Enter the stray light correction coefficient in this screen.
TEC	For QE65000 spectrometers, set the parameters for the TE cooled

6: Spectrometer Menu Functions

Feature	Meaning
	CCD array on this screen.
Thermoelectric	For NIR spectrometers.
Trigger Delay	Same as External Trigger Delay.
UV/VIS	ISS-UV-VIS Enable visible lamp, set visible lamp intensity, enable UV lamp, set UV lamp intensity
Wavelength	Allows you to enter or change the spectrometer's wavelength calibration coefficients. Wavelength coefficients are provided on the Wavelength Calibration Data Sheet that came with the spectrometer.

MMS Raman Spectrometer

The following are features for the MMS Raman Spectrometer:

🕺 MMS-Raman Features	×
Raman Exposure Image Wavelength Firmwa Intensity Auto Equalize Show Raw	re CCD Temperature CCD Shutter Save Save Raw Image
Brightness	Zoom
Reset	

Use this screen to view the raw data coming from the chip (Raman exposure image) if your spectral graph looks incorrect. The bottom of this screen displays the actual CCD image (a 2-dimensional image of the detector). Each light stripe is a spectral line. The vertical white lines correspond to peaks.

6: Spectrometer Menu Functions

Feature	Meaning
Auto Equalize	Use this adjust to get better contrast in the CCD image.
Show Raw	Displays the raw image.
Brightness/Contrast	Adjust the bright/contrast of the image.
Reset	Resets the image.
Save Raw Image/Processed Image	Save the raw/processed image to a file.
Zoom	Standard controls to zoom in/out

🔀 MMS-Raman Features	×
Raman Exposure Image Laser Wavelength Calibration Firmware CCD Temperature CCD Shutter	
Raman Exposure Image Current Laser Current Laser Current Laser: 0 Laser Wavelength Laser Wavelength: Taser Wavelength: 784.0 Save to Spectrometer Apply Reset Laser Properties Number of supported lasers: 1 Default Laser: 0	

Use this screen to enter specific information for the laser being used.

6: Spectrometer Menu Functions

S MMS-Raman Features	
Raman Exposure Image Laser Wavelength Calibratio	on Firmware CCD Temperature CCD Shutter
-Wavelength Calibration	
Term	Value
Intercept	799.740390
1st Coefficient	2.6561515E-1
2nd Coefficient	-3.0391693E-5
3rd Coefficient	-1.3518964E-8
Apply Rese	t Save to Spectrometer

🔀 MMS-Raman Features	×
Raman Exposure Image Laser Wavelength Calibration Firmware CCD Temperature CCD Shutter	
Save Calibration Save to Directory:	
Load Calibration	
Load File:	
Load	

Use this screen to save or load calibration files.

6: Spectrometer Menu Functions

🧏 MMS-Raman Features		
Raman Exposure Image Laser Wav	elength Calibration Firmware CCD Temperatur	e CCD Shutter
	DSP Firmware DSP Firmware Version: 0.3.0.14 FPGA Firmware FPGA Firmware Version: 0.0.0.1 USB Firmware USB Firmware Version: 0.0.0.1 Calibration Source Save exsisting calibration Update Firmware	

Use this screen to update the firmware. You must stop all acquisitions before updating the firmware.

🏂 MMS-Raman Features
Raman Exposure Image Laser Wavelength Calibration Firmware CCD Temperature CCD Shutter
CCD Temperature
CCD Temperature: 100.00 Celsius 💌
Update Now
Automatic Update
Enable Periodic Update:
Update Interval: 2 Seconds
CCD Temperature Regulation
Enable Temperature Regulation: 🔽
CCD Temperature Set point: 25 🗢 Celcius 💌
CCD Temp Lock: Out of Set point range (+/- 0.1 C)
Thermistor fault status: OK

Use this screen to regulate the CCD temperature.

6: Spectrometer Menu Functions

🧏 MMS-Raman Fea			
Raman Exposure Image	Laser Wavelength Calibration	Firmware CCD Temperature CCD S	hutter
	-CCD Shutter- CCD shutter is		
	Open CCD		
	Close CCD	Snutter	

This feature allows you to control the CCD shutter. Close the shutter to store a dark spectrum.

Rescan Devices

Use this menu selection if you plug in a device after starting the SpectraSuite application. SpectraSuite then displays the new device in the Data Sources pane.

Remove Spectra

This menu selection deletes the captured high-speed spectra collection data. You can also right-click on the high-speed spectra collection icon in the **Data Views** pane and select **Remove Spectra**. See <u>*High-Speed Acquisition*</u> for more information.

Show Devices

This feature allows you to redisplay the Data Sources and Data Views panes if they have been closed.

Chapter 7

Processing Menu Functions

Overview

This section provides information on the various signal processing functions available under the Processing menu selection.

Color

Edit Color Settings

This menu item allows you to make changes to the color settings for color measurements.

Pre-processing

Preprocessing functions currently include the following:

Nonunity correction

Add Reference Monitor

You can also remove the preprocessing function.

Remove Preprocessor

Select **Processing** | **Pre-processing** | **Remove Preprocessor** to remove the nonunity correction preprocessing function.

Nonunity Correction

Select **Processing** | **Pre-processing** | **Non-unity correction** for reflection experiments if you need to perform a calculation to compensate for a reflection standard that is not perfectly white. You can also

access this function with the $\neq 1$ icon in the Preprocessing toolbar.

Add Reference Monitor

Select **Processing** | **Pre-processing** | **Add Reference Monitor** to adjust the signal to compensate for variations in spectral intensity based on light source and system drift. The reference spectrum for the reference acquisition is the starting "ideal" state of the lamp. Any deviations the lamp makes from that reference spectrum will cause compensation in the sample acquisition.

For extended experiments, you will achieve optimal results if you take frequent reference spectra. If this is not possible, however, you can choose to monitor your light source and instruct SpectraSuite to correct for any drift that might occur. There are two types of drift: Spectrally uniform and spectrally nonuniform. The drift associated with a tungsten lamp is often spectrally uniform, but the drift associated with a deuterium lamp is not.

Reference Monitoring allows you to monitor a reference for variations in spectral intensity based on light source and system drift. To monitor a reference, the following conditions must be met:

You are using either multiple spectrometers (and spectra overlap in the area to be referenced), or one spectrometer with multiple acquisitions, and

You have stored both a reference and dark spectrum. Once these spectra have been stored, the Reference Monitoring function is activated (is available for use).

Procedure

To perform reference monitoring:

- 1. Start an acquisition on the spectrometer that will monitor the lamp. Adjust the acquisition parameters so that the spectrum is on scale.
- 2. Store a reference and dark spectrum for that acquisition.
- 3. Start an acquisition on the spectrometer that will measure the sample.
- 4. Store a dark spectrum for the sample acquisition.
- 5. Click on the sample acquisition graph,

Or,

In the Data Sources pane, select the processing node for the sample acquisition (**No pre-processor**, etc.). The reference monitoring action should enable.

6. Click \approx

Or,

Select **Processing** | **Preprocessing** | **Add Reference Monitor**. The **Configure Reference Monitoring** dialog box appears:

🔀 Configure Reference Monitoring		
Reference Channel # Source Processing 0 USB2G6142 No Pre-processor, Scope Mode 1 USB2G3387 No Pre-processor, Scope Mode Processors only appear in this table if they have a dark and reference spectrum stored, and if they are different from the processor for which reference monitoring is being configured.	Reference Type All wavelengths Single wavelength Integrated intensity From to Accept Cancel	

- 7. Select the desired reference channel.
- 8. Select the Reference Type as follows:

Selection	Meaning
All wavelengths	Requires a minimum of two spectrometer channels in your system, both configured for overlapping wavelength ranges. Corrects for both uniform and nonuniform drift.
Single wavelength	Use this selection for pixel-by pixel drift correction.
Integrated intensity	Use this selection if the lamp is going to drift uniformly

9. Click Accept

Processing Mode

Processing mode functions include all of the modes necessary to conduct experiments. These modes are also available from the toolbar above the graph. See *Experiment Tutorials* for more information about how to conduct experiments using the processing modes.

Scope

Select **Processing** | **Processing Mode** | **Scope** to switch the current spectral window into Scope mode. You can also click S in the graph's toolbar.

The signal graphed in Scope mode is the raw voltage coming out of the A/D converter. This spectral view mode provides complete control of signal processing functions before taking absorbance, transmission, reflection, and relative irradiance measurements. This mode reflects the intensity of the light source, the reflectivity of the grating and mirrors in the spectrometer, the transmission efficiency of the fibers, the response of the detector, and the spectral characteristics of the sample.

Use Scope mode when configuring your setup, adjusting the integration time, and taking a reference and a dark scan.

Scope Minus Dark

Select **Processing** | **Processing Mode** | **Scope Minus Dark** to switch the current spectral window into Scope mode and subtract the stored dark spectra from each spectrometer channel before SpectraSuite displays it. You can also click in the graph's toolbar.

See the description of Scope mode (Scope) for more information.

Absorbance

Select Processing | Processing Mode | Absorbance to switch the current window into Absorbance mode.

You can also click A in the graph's toolbar. You must first store reference and dark spectra in Scope mode before you can access Absorbance mode.

SpectraSuite uses an equation to determine the concentration of a species in solution (illustrated below). The software uses this equation to evaluate each pixel on the detector and produce the absorbance spectrum:

$$A_{\lambda} = -\log_{10} \left(\frac{S_{\lambda} - D_{\lambda}}{R_{\lambda} - D_{\lambda}} \right)$$

Where:

S = Sample intensity at wavelength λ

D = Dark intensity at wavelength λ

R = Reference intensity at wavelength λ

The concentration of a species in a solution directly affects the absorbance of the solution. This relationship, known as Beer's Law, is expressed as:

$$A_{\lambda} = \varepsilon_{\lambda} c \ell$$

Where:

A = Absorbance at wavelength λ ,

 ε_{λ} = Extinction coefficient of the absorbing species at wavelength λ

c = Concentration of the absorbing species and l is the optical path length of the absorption.

See *Experiment Tutorials* for information on conducting an experiment in Absorbance mode.

Transmission

Select **Processing | Processing Mode | Transmission** to switch the current window into Transmission

mode. You can also click in the graph's toolbar. This is also the spectral processing mode used for reflection spectroscopy, as the math necessary to compute reflection is identical to that required for transmission. You must first store reference and dark spectra in Scope mode before you can access Transmission mode.

SpectraSuite calculates the transmission of a solution using the following equation:

$$\%T_{\lambda} = \frac{S_{\lambda} - D_{\lambda}}{R_{\lambda} - D_{\lambda}} \times 100\%$$

Where:

 S_{λ} = Sample intensity at wavelength λ

 D_{λ} = Dark intensity at wavelength λ

 R_{λ} = Reference intensity at wavelength λ

See *Experiment Tutorials* for information on conducting an experiment in Transmission mode.

Reflection

Select Processing | Processing Mode | Reflection to switch the current window into Reflection mode.

You can also click \mathbb{R} in the graph's toolbar. Reflection mode is also the spectral processing mode used for transmission spectroscopy, as the math necessary to compute transmission is identical to that required for reflection.

You must take reference and dark spectra in Scope mode before you can access Reflection mode.

SpectraSuite calculates the reflection of a solution using the following equation:

$$\%T_{\lambda} = \frac{S_{\lambda} - D_{\lambda}}{R_{\lambda} - D_{\lambda}} \times 100\%$$

Where:

 S_{λ} = Sample intensity at wavelength λ

 D_{λ} = Dark intensity at wavelength λ

 R_{λ} = Reference intensity at wavelength λ

See *Experiment Tutorials* for information on conducting an experiment in Reflection mode.

Relative Irradiance

Select **Processing | Processing Mode | Relative Irradiance** to switch the current window into Relative Irradiance mode. You can also click in the graph's toolbar.

Before you can access Relative Irradiance mode, you must take a reference spectrum in Scope mode of a blackbody of known color temperature. Additionally, you must obtain a dark spectrum by removing the fiber from the reference lamp and preventing light from entering it.

Relative irradiance spectra are a measure of the intensity of a light source relative to a reference emission source. SpectraSuite calculates relative irradiance using the following equation:

$$I_{\lambda} = B_{\lambda} \quad \left(\frac{S_{\lambda} - D_{\lambda}}{R_{\lambda} - D_{\lambda}} \right)$$

Where:

 B_{λ} = Relative energy of the reference calculated from the color temperature

 S_{λ} = Sample intensity at wavelength λ

 D_{λ} = Dark intensity at wavelength λ

 R_{λ} = Reference intensity at wavelength λ

See *Experiment Tutorials* for information on conducting an experiment in Relative Irradiance mode.

Raman Shifts

Use this menu item when you are doing Raman spectroscopy. This is the distance from the excitation source. You must have entered the wavelength of your laser (see <u>Set Laser Wavelength</u>) to use Raman Shifts.

Absolute Irradiance

Irradiance is the amount of light present on a particular area, such as the fiber's cross-section at its tip, a cosine corrector's surface, or the integrating sphere's surface (measures the total optical output of a light source inserted into the integrating sphere).

Scope

This menu selection allows you to completely control signal processing prior to calibrating the spectral response of your system and taking measurements. Use caution when operating in Scope mode since this mode represents a combination of several factors such as the intensity of the light source, the reflectivity of the grating and mirrors in the spectrometer, the transmission quality of the fibers, the response of the detector, and the spectral characteristics of the sample.

Absolute Irradiance

Select **Processing** | **Absolute Irradiance** | **Absolute Irradiance** to create a new graph of spectral data Absolute Irradiance mode. You can also click Irradiance in the Data Display toolbar to use the wizard to create an Absolute Irradiance graph.

7: Processing Menu Functions

Absolute Irradiance Mode calculates the true irradiance of a spectrum, displayed in actual μ W/cm²/nm (or μ W/nm when using an integrating sphere) incident on the probe's collection area. You do not need to store reference spectrum first since absolute irradiance is not relative to another measurement. However, you must store a dark spectrum and have a calibration file before you can measure absolute irradiance.

If your spectrometer was calibrated by Ocean Optics, you should have received a CD containing the Radiometric Calibration Files specific to your spectrometer. If you do not have these files, then you must create your own spectrometer calibration files using calibrated light sources that have lamp files for absolute irradiance.

See *Experiment Tutorials* for information on conducting an experiment in Absolute Irradiance mode.

Collection Area

Select **Processing** | **Absolute Irradiance** | **Collection Area** to enter the specifications of the collection area.

🗏 Collection Area 🛛 🛛 🔀		
Use Integrating Sphere		
O Collection Area: cm^2		
O Fiber Diameter: micron		
Accept Cancel		

The Collection Area dialog box offers the following options:

Use Integrating Sphere – Enable this option only if you have an integrating sphere and use the LS1-CAL-INT calibrated light source. (In this case the source is inside the sphere and there is no collection area associated normally with a probe.) When this box is enabled and you are using the integrating sphere to collect light externally (source is outside the integrating sphere), SpectraSuite assumes the value in the **Fiber Diameter** field is the diameter of the opening in the integrating sphere. Be sure to enter the correct value (in microns).

Collection Area – If you know the actual collection area, enter it here. The default is 1.

Fiber Diameter – If the tip of a fiber is used as the collection probe, enter the bare fiber's diameter in microns. If an integrating sphere is used to collect light from a surface, enter the sphere's opening diameter (in microns). However, if a light source is inserted into the sphere, this value is ignored. If a cosine corrector is used, define the light collection area as follows:

If this cosine corrector is used	Enter this diameter (in um)
CC-3 or CC-3-UV	3900
CC-3-DA	7140

SpectraSuite then calculates the collection area from the fiber diameter.

Calibration

You can calibrate your spectrometer in two ways:

Ocean Optics can calibrate the spectrometer for you and send you the resulting calibration file, or

You can calibrate the spectrometer yourself using a light source (calibration lamp) with known spectral output (microwatts per square centimeter per nanometer) using this menu item.

Combine Calibration Files

This feature allows you to combine two spectrometer calibration files *that you have created*; one file using a calibrated deuterium lamp source (UV) and the other using a calibrated tungsten lamp source (VIS). This will result in a spectrometer calibration file that can be used across the entire spectral range.

8	X
Deuterium Calibration File Name: 06UV.IrradCal Browse Boundary Wavelength: 391.11 🔹 nm Tungsten Calibration File Name: 06VIS.IrradCal Browse Loaded tungsten calibration. Wavelength range:188.24-1097.37	Spectrometer Calibration Preview 1E-5 1E-6 1E-7 1E-8 1E-9 0 1E-8 1E-9 0 1E-9 0 1E-9 0 500 900 1300 Wavelength Cancel

Procedure

- 1. Select Processing | Absolute Irradiance | Combine Calibration Files.
- 2. Enter the file name of the spectrometer calibration file you created with the deuterium lamp source or browse to the desired file.
- 3. Enter the file name of the spectrometer calibration file that you created with a tungsten lamp source or browse to the desired file.
- 4. In the Boundary Wavelength field, select the wavelength at which point the two files will be joined or go on to Step 5 to just accept the value provided by SpectraSuite.
- 5. Click Save... The graph of the combined files appears in the **Spectrometer Calibration Preview**.

New Energy, Power, Photons

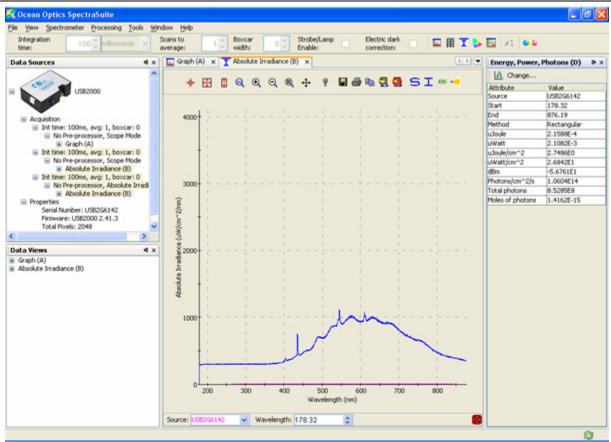
This feature enables you to measure integrated intensities. Radiometric values require that you specify the wavelength range. You must be in Absolute Irradiance mode (click \square) for this menu selection to be active.

► Procedure

- Create a new graph of spectral data in Absolute Irradiance mode. See <u>Absolute Irradiance</u> in Appendix A: <u>Experiment Tutorials</u> for detailed instructions.
- 2. Select **Processing** | **Absolute Irradiance** | **New Energy, Power, Photons** to display the Energy, Power, Photons dialog box.

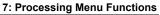
OR

Click M on an Absolute Irradiance graph.


7: Processing Menu Functions

🏂 Energy, Power, Photon	s 🔀
Source:	
# Spectrometers 0 USB2G6142	Spectrum Type Processed
	1000000
Integration Options	
Integrate from:	178.32 😂
to:	876.19 🗢 nm
Integration Method:	Rectangular 💌
	Accept Cancel

- 3. If more than one Absolute Irradiance graph is open, select the desired spectrometer by highlighting it under **Source**.
- 4. Enter the wavelength range to integrate in the Integration Options section.
- 5. Enter the Integration Method, either Rectangular, Simpson's (Rule), or Trapezoid.
- 6. Click Accept when finished. The Energy, Power, Photons table appears to the right of the graph. You can change these values by clicking the Change icon (1) in the Energy, Power, Photons table.



7: Processing Menu Functions

This table is described below:

Attribute	Meaning
Source	The absolute irradiance source you selected in Step 3.
Start	The starting wavelength you selected in Step 4.
End	The ending wavelength you selected in Step 4.
Method	The integration method you selected in Step 5.
µJoule	The calculated energy of the sample in microjoules.
µWatt	The calculated power of the sample in microwatts.
µJoule/cm ²	The calculated energy per square centimeter of the sample.
µWatt/cm ²	The calculated power per square centimeter of the sample.
dBm	The decibels referenced to one milliwatt. Used to calculate power for lasers.
Photons/cm^2/s	The number of photons per square centimeter emitted from the sample each second.

Attribute	Meaning
Total photons	The total number of photons calculated.
Moles of photons	The moles of photons calculated.

New Photometry Measurement

This menu selection enables you to take photometry measurements such as lumen, lux, and candela. Phototropic/Scotopic values are calculated over a 380 to 780 nm wavelength range. Scotopic conditions are defined when the luminance is less than some hundredths of a candela per square meter (cd/m^2) . The difference between this scotopic vision (low-level condition) compared to a photopic (high-level condition) affects the calculations for Lumen, Lux, and Candela by using the V'(λ) spectral luminous efficiency curve instead of the V(λ) curve.

You must be in Absolute Irradiance mode (click \square) for this menu selection to be active.

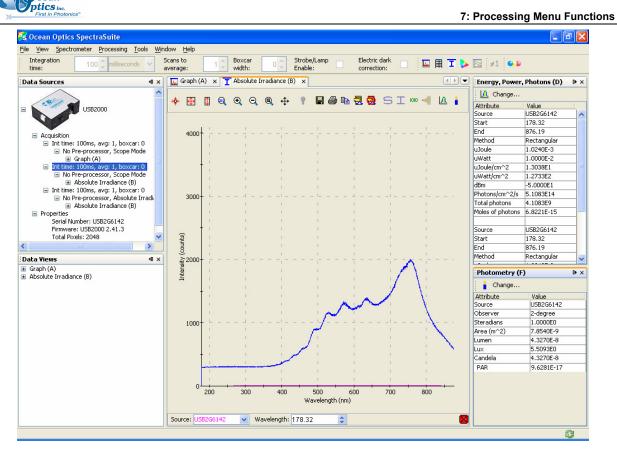
► Procedure

- 1. Create a new graph of spectral data in Absolute Irradiance mode. See <u>Absolute Irradiance</u> in Appendix A: <u>Experiment Tutorials</u> for detailed instructions.
- 2. Select **Processing** | **Absolute Irradiance** | **New Photometry Measurement** to display the **Configure Photometry** dialog box.

OR

Click in an Absolute Irradiance graph.

🏂 Configure Photometry		
Source: # Spectrometers USB2G6142 Observer: 2 Steradians:	Spectrum Type	Observer Information Details Graph Description: 2 degree (photopic, daylight) observer Reference: CIE 15.2 - 1986 Creator: Ocean Optics, Inc. Date: 17:43:38 EDT 2005 Provided by Ocean Optics, Inc. Accept Cancel


7: Processing Menu Functions

- 3. If more than one Absolute Irradiance graph is open, select the desired spectrometer by highlighting it under **Source**.
- 4. Select the **Observer** from the drop-down list.
- 5. Use the default **Steradians** (1.0) or enter your own value. (If the steradians value is 1, then candela = lumens).

The right section of the dialog box displays Observer Information in Detail or Graph form (Graph form is shown below, Detail form is shown on the previous page).

🧏 Configure Photometry		×
Source: # Spectrometers USB2G6142 Observer: 2 Steradians:	-degree	Observer Information Details Graph 1.0 9 0.5 0.0 200 400 600 Wavelength (nm) Accept Cancel

Click Accept . The Photometry table appears to the right of the graph. You can change these values by clicking the Change icon (¹) in the Photometry table.

The Photometry table is described below:

Attribute	Meaning				
Source	The absolute irradiance source you selected in Step 3.				
Observer	The type of observer you chose in Step 5.				
Steradians	A unit of measurement used to describe the solid angle of a cone from the surface of a sphere to the center of the sphere. It is a solid angular measurement used when calculating illumination. The Lumens value is divided by the Steradians value to obtain Candela.				
Area (m^2)	The light collection area per meter squared.				
Lumen	The lumen value. A lumen is a "light watt." Lumens are calculated as the absolute spectral response of the human eye.				
Lux	The lux values. The lux value is obtained by calculating the lumen per square meter. Lux is also called a meter candle.				
Candela	The luminous intensity of the sample, based on international standards.				
PAR	Photosynthetic Active Radiation. The number of moles of photons between 400 700 nm measured by absolute irradiance. To vary the 400-700 nm range, you can specify the moles of photons range using <u>New Energy, Power, Photons</u> .				

cean

X-axis Units

This menu item allows you to select the units for the x-axis on the spectrum graph. Choose from Gigahertz, Microns, Pixels, Raman Shifts, Nanometers, and Wavenumbers. The default value is Wavelength (nm).

Set Color Temperature


Setting the color temperature is useful if you have a lamp and you know what its temperature is. You can use the lamp color temperature that you set here when doing a color measurement (see *Fluorescence*).

► Procedure

1. Select **Processing** | Select Color Temperature to display the Configure Photometry dialog box.

5
Color Temperature: 1,900 🗢 Kelvin
Accept Cancel

2. Set the desired color temperature (in Kelvin) and click Accept. The color value that you set here appears in the Color Values pane of the Color Measurement window.

Exporting Processed Data

SpectraSuite provides the capability of saving and exporting processed data to a binary or tab-delimited file. When combined with external triggering, this feature can be used to automatically save full spectra timed to one or more external events.

► Procedure

1. Right-click on **Result** in the tree in the Data Sources pane and select **Export Result**.

The dialog box for exporting data appears.

8	\mathbf{X}
Save Options Save every scan Save after every: 100 scans Between saved scans, wait at least: 50 msec Save the first available scan every: 50 msec Start at the beginning of the next: minute	File Options File Type: OOI Binary For Save to Directory: Base Filename: Padding Digits: 6 Preview:
	Accept Cancel

2. Enter the following information:

Field	Selections		
Save options:	Saves:		
Save every scan	Every scan		
Save after every: x scans	After every x scans		

Field	Selections
	Scans that occur at the interval selected
Between saved scans, wait at least:	The first scan that occurs after the interval selected
Save the first available scan every	Enter:
File options:	Grams SPC, JCAMP, OOI Binary Format or Tab
File Type	Delimited
Save to directory	The desired directory or browse to the desired directory
Base Filename	The name of the files
Padding Digits	Enter the number of digits to be used when appending to a file (enter 3 to save hundreds of files, enter 4 to save thousands, etc. up to 15), for example: spectrumfile001 through spectrumfile999 if 3 is selected
Preview	For future use

2	C
	•

Click Accept to start the export

Click 🖵	to s	tart the	export.							
Color Save00										
Elle Edit Format	View Help									
Los Participa Source Obser USB2G6142 USB2G6142 USB2G6142 USB2G6142		um in ant A A A A A A A A A A A A A A A A A A A	Color Mode Emissive E	$\begin{array}{c} \times \\ -0.00 \\ -0.$	$\begin{array}{c} Y\\ -0.00\\$	$\begin{array}{c} {\sf Z} \\ -0.00 \\$	$\begin{array}{c} x\\ 0,4849\\ 0,4891\\ 0,4885\\ 0,4885\\ 0,4885\\ 0,4854\\ 0,4854\\ 0,4854\\ 0,4854\\ 0,4854\\ 0,4854\\ 0,4854\\ 0,4886\\ 0,4886\\ 0,4886\\ 0,4886\\ 0,4886\\ 0,4886\\ 0,4885\\ 0,4886\\ 0,4885\\ 0,4886\\ 0,4885\\ 0,4886\\ 0,4885\\ 0,4886\\ 0,4885\\ 0,4886\\ 0,4885\\ 0,4886\\ 0,4885\\ 0,48$	$\begin{array}{c} y\\ y\\ y\\ z\\ z\\$	$\begin{array}{c} 2\\ 0,1441\\ 0,1371\\ 0,1371\\ 0,1396\\ 0,1396\\ 0,1387\\ 0,1387\\ 0,1387\\ 0,1387\\ 0,1387\\ 0,1387\\ 0,1397\\ 0,1397\\ 0,1397\\ 0,1397\\ 0,1397\\ 0,1397\\ 0,1459\\ 0,1459\\ 0,1459\\ 0,1459\\ 0,1459\\ 0,1449\\ 0,1456\\ 0,1449\\ 0,1456\\ 0,1449\\ 0,1456\\ 0,1449\\ 0,1456\\ 0,1449\\ 0,1456\\ 0,1449\\ 0,1456\\ 0,1449\\ 0,1456\\ 0,1449\\ 0,1456\\ 0,149\\ 0,1456\\ 0,1400\\ 0,1410\\ 0,1451\\ 0,1431\\ 0,1431\\ 0,1431\\ 0,1435\\ 0,1401\\ 0,1440\\ 0,140\\ $	CRI Ra CRI 84.5 (2096K) 85.9 (2075K) 85.9 (2075K) 83.3 (2068K) 83.3 (2068K) 83.3 (2068K) 84.9 (2119K) 88.9 (2119K) 88.9 (2119K) 88.9 (2119K) 88.9 (2119K) 88.9 (2119K) 86.2 (2124K) 86.2 (2124K) 86.6 (2066K) 84.1 (2093K) 85.6 (2066K) 84.1 (2093K) 85.9 (2113K) 85.9 (2113K) 87.7 (2110K) 84.9 (2101K) 84.9 (2101K) 84.9 (2101K) 84.9 (2101K) 84.9 (2101K) 84.9 (2101K) 85.6 (2064K) 85.0 (2016K) 85.0 (2016K) 85.9 (2127K) 85.9 (2127K) 85.9 (2127K) 85.9 (2127K) 85.1 (2118K) 85.1 (2123K)
<										>

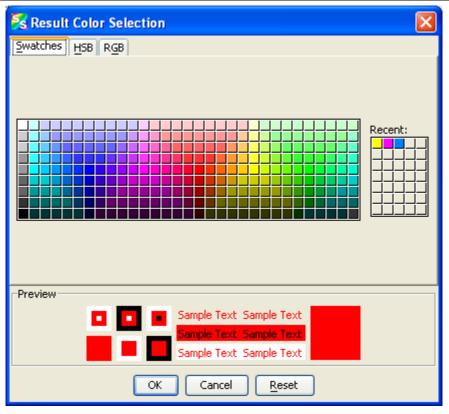
Set Laser Wavelength

Use this menu item when you are doing Raman spectroscopy. Enter the wavelength of the laser you are using. You must enter a wavelength before you can access the Raman Shifts menu item. See <u>Raman Shifts</u> for more information.

🏂 Set Laser Wavelength 🛛 🛛
Laser Wavelength: 785.0 (nm)
Accept Cancel

Edit Result Colors

This function allows you to choose the color in which your data is displayed. The color selected will apply to all graphs in which that data appears, including Absolute Irradiance and Strip Charts.


► Procedure

1. Select **Processing** | **Edit Result Colors** to display the Result Color Editor dialog box.

5	Result Color Ed	itor	×
#	Source	Processing	Color
0	USB2G6142	No Pre-processor, Scope Mode	
		Change Color	Close

2. Highlight the desired source and click **Change Color**. The Result Color Selection dialog box appears.

This dialog box provides three methods of selecting color -- by swatches, HSB (hue, saturation and brightness), or RGB (red, green, blue)..

- 3. Select the tab corresponding to the color selection method you wish to use.
- 4. Select the desired color. The **Recent** graphic lists any colors that you have recently chosen. You can select one of the recent colors instead of creating a new one. Once you have selected a color, the Preview panel displays an example of the color you have chosen.

If the color is what you want, click the **OK** button. If you wish to reselect the original color, click the **Reset** button, then click **OK**.

5. The screen returns to the Result Color Editor dialog box. Click **Close**. The graph now displays in the selected color.

Chapter 8

Tools Menu Functions

Overview

The tools menu provides the functionality to access the update center, select NetBeans settings for SpectraSuite modules, and to control the SpectraSuite parameters.

Options

Options is a powerful tool that enables you to specify the defaults for SpectraSuite parameters all in one location.

					×
Options			- Properties		
Coptions		^	Name	Tools	
IDE Configuration					
😑 🚞 Look and Feel					
E 🚞 Actions					
🛞 🚞 Edit					
🗃 🧰 Help					
🕀 🧰 System					
🛅 Tools					
🖹 🧰 View					
🗉 🧰 Window					
🗉 🚞 Menu					
🛞 🧰 SFie					
🗉 🧰 8//iew					
🕀 🚞 &Spectrometer					
🛞 🚞 &Processing					
🖬 🚞 &Tools					
E &Options					
(separator)					
Update Center					
Tools					
(separator)			&Tools Provides access to the menu configuration.		1
(separator)					-
🔊 Setup & Wizard					
🛞 🚞 &Window					
🛞 🦳 &Help		٧			

8: Tools Menu Functions

Default Acquisition Settings

You can set acquisition settings for your spectrometer(s) to persist through shutdown and restart using **Tools | Options | SpectraSuite Settings | Default Acquisition Parameters**.

St Options			
Options		Properties	
🕀 🗀 Server and External Tool Settings	^	Boxcar Width	0
🖃 🧰 System		Electric Dark Correction	
🖃 觉 Modules		External Trigger Mode	Normal (free-running) 🛛 🛛 💌
🗉 🍰 Infrastructure		Integration Time (usec)	100000
🗉 👼 Ocean Optics		Non-linearity Correction	
🗉 🛱 Libraries		Save Last Acquisition Parameters	
🖃 📝 Object Types		Scans to Average	1
Links [fixed]		Stray Light Correction Strobe Enable	
Action Instances [fixed]		Strobe Enable	
-			
Folders [fixed]			
Configuration Files [fixed]			
Action Instances [fixed]			
 Unrecognized Objects [fixed] 			
🎁 System Settings			
🖃 🎯 Autoupdate Types			
SpectraSuite Beta Update Center			
SpectraSuite Update Center			
🌍 Update Center		Default Acquisition Parameters	۲
🗉 🥥 Print Settings			
🖃 🌠 SpectraSuite Settings			
L Default Acquisition Parameters	~		

Template Manager

Future enhancement.

Module Manager

The Module Manager displays a list of installed SpectraSuite modules. You can select modules to uninstall and /or update.

First in Photonics"		9: Tools Menu Functi	
Module Manager			X
nstalled Modules:			
Modules	Active	Version	Uninstall
🗉 🎰 Infrastructure			
🗉 🍰 Ocean Optics			
🗄 🍰 Bridges			
∃ 🗊 Libraries			
escription:			
Update			<u>Close</u> <u>H</u> elp

Update Center

cean

The Update Center contains a link to allow you to connect to Ocean Optic's site to download updated SpectraSuite modules. To download upgrades to SpectraSuite, you must sign up for a yearly subscription (SpectraSuite-U). Bug fixes are provides free to all SpectraSuite customers.

Note

If the installation computer is not connected to the Internet, download the update files on another computer and copy them to the installation computer using a USB flash drive or CD. Extract the files to a convenient location, then from within the Update Center wizard, select **Install Manually Downloaded Modules (.nbm Files)** and browse to the directory containing the downloaded files.

► Procedure

To download SpectraSuite updates,

1. Select Tools | Update Center. The Update Center Wizard appears.

Steps	Select Location of Modules
Select Location of Modules Select Modules to Install Download Modules and Che Digital Signatures Wew Certificates and Instal Modules	Check the Web for Available Updates and New Modules. Select Update Center Update Center SpectraSuite Bits Update Center Proxy Configuration To initiate connection to the Update Center server, click Next. Install Manually Downloaded Modules (.nbm Files).
	<back next=""> Finish Cancel</back>

2. Click Next > to connect to the update center. The second Update Center Wizard screen appears.

9: Tools Menu Functions

🔀 Update Center Wizard		×
Steps Select Location of Modules Select Modules to Install Download Modules and Check Diptat Signatures View Certificates and Install Modules	Select Modules to Install Available Updates and New Modules: SpectraSuite Update Center Core Files SpectraSuite Libraries SpectraSuite Libraries SpectraSuite Absolute Irradiance SpectraSuite Absolute Irradiance SpectraSuite Strip Chart SpectraSuite Strip Chart SpectraSuite Color Measurement SpectraSuite Color Measurement	
	Installed Version: More More	
	< <u>B</u> ack Next > Einish Can	el

- 3. Click to move the all files/modules to the **Include in Install** pane.
 - Or,

Highlight the desired core files and/or modules to update and click to move the selected files modules to the **Include in Install** pane. When you highlight a module or file, the size and modification date appear in the lower pane.

Applicable version levels appear in the Available Version and Installed Version boxes.

4. Click Next > to display the SpectraSuite license agreement.

8: Tools Menu Functions

S License Agreement	3
SpectraSuite is copyright (c) 2005, Ocean Optics, Inc.	1
http://www.oceanoptics.com/	
Portions of this code is copyright by Sun Microsystems, Inc., Copyright (c) 2002 Extreme! Lab, Indiana University., Copyright (c) 2003-2004, Joe Walnes	
<u>A</u> ccept Decline)

5. Click Accept to accept the license agreement and start the download. The progress of the download appears on the next screen.

🏂 Update Center Wizard	
Steps 1. Select Location of Modules 2. Select Modules to Install 3. Download Modules and Check Digital Signatures 4. View Certificates and Install Modules	Download Modules The Update Center is now downloading modules and/or checking digital signatures. SpectraSuite Color Measurement [1/1] Update 365 of 365 KBytes.
	Done.
	< <u>Back</u> Next > Einish Cancel

6. Click Next > . The next Update Center Wizard screen appears.

🄀 Update Center Wizard		×
Steps	View Certificates and Install Modules	
 Select Location of Modules Select Modules to Install Download Modules and Check Digital Signatures Yien Certificates and Install Modules 	Select the modules you wish to install. If a module is signed, you must view and accept its certificate. Modules to Install Include : Module Name SpectraSuite Color Measurement - version 1.0.0 Not Signed	Global
	< Back Next > Einish	Cancel

7. Check the boxes on both sides (both Install and Global) next to the files/modules you want to install. If a module is signed, you must first view and accept its certificate. If the module isn't signed, a dialog box appears asking you to confirm that you want to install an unsigned module. Then click <u>Finish</u> to install the module(s). The Restart the IDE dialog box appears asking you whether you want to restart the IDE now or wait until later. If you choose to restart now, a dialog box appears asking you to confirm that you want to quit the SpectraSuite application. Once the IDE is restarted, the updates become active.

Chapter 9

Window Menu Functions

Overview

The Windows menu provides functions for manipulating the SpectraSuite graph windows.

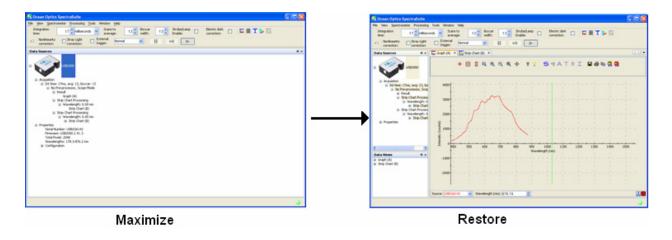
Close All Documents

Use this function to immediately close all the SpectraSuite

Documents

Select **Window** | **Documents** to display the Documents dialog box. Use this dialog box to switch the SpectraSuite display to one you select, close selected document(s), or save selected document(s).

🌠 Documents	
Documents: Graph (A) Strip Chart (B)	Switch to Document Close Document(s) Save Documents(s)
Description:	
	Close



Close Window

Use this selection to close the currently selected graph window.

Maximize/Restore Window

This selection toggles between maximizing the SpectraSuite currently selected SpectraSuite pane to fill the entire SpectraSuite window, and redisplaying (restoring) these panes in the window. See the example of a maximized Data Sources pane below.

Output

Select **Window** | **Output** to display a list of SpectraSuite status messages in a pane below the SpectraSuite window.

9: Window Menu Functions

🌠 Ocean Optics SpectraSuite		
File View Spectrometer Processing	Tools Window Help	
Integration 17 🗘 milliseco	nds 🛩 Scans to 13 🗘 Boxcar 13 🗘 Strobe/Lamp 🗆 Electric dark 💷 🖬 T 🕨 🖾	
≠1 Nonlinearity Stray Light correction:	External Normal II HI	
Data Sources 4 ×	🛄 Graph (A) 🗡	<.
E USE2000	♦ ⊞ ∐ Q Q Q Q + १ ? S + A T R I ■ ⊕ № 3 8	
Acquisition Int time: 17ms, avg: 13, bo No Pre-processor, Scop Result Graph (A) Properties	$\begin{array}{c} 4000 \\ 3000 \\ 1 \\ - \\ 2000 \\ 1 \\ - \\ 3000 \\ 1 \\ - \\ 3000 \\ 1 \\ - \\ 3000 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	· L = - · · · · · · · · · · · · · · · · · · ·
< <u>></u> >	1000 450 450 400 500 600 700 800 900 10	1500
Data Views 4 ×	-2000	- <u>1</u> -
	Source: USB2G6142 Vavelength (nm): 876.19	<u> </u>
Output - Status Messages		Ψ×
[May 1, 2006 8:26:47 AM EDT] [May 1, 2006 8:26:47 AM EDT]	Strip Chart module is loading. Speed Benchmark module is loading. Color Measurement module is loading. Spectral Correction module is loading.	
		٢

Chapter 10

Strip Charts

Overview

SpectraSuite allows you to use Strip Charts to track processes, perform kinetic analyses, and monitor spectral events all as a function of time. The Strip Chart shows you how the value that you selected appears over time. This value can be any of the following:

One pixel (a single wavelength)

The average of a range of pixels

An integral calculated by one of three methods representing the area beneath the graph's trend line You can acquire this data using any processing mode (transmission, absorbance, etc.).

Creating Strip Charts

► Procedure

- 1. Place SpectraSuite in Scope mode by clicking the Scope (>) icon in the Experiment mode toolbar or selecting **Processing** | **Processing Mode** | **Scope** from the menu.
- 2. Store a reference spectrum and a dark spectrum.
- 3. Choose the measurement mode (absorbance, transmission, etc.).
- 4. Click the Strip Chart button (\square)

OR

Select File | New | Strip Chart from the menu.

The Chart Trend Settings dialog box opens with the Update Rate tab shown.

10: Strip Charts

🔀 Chart Trend Settings	×
-Source # Spectrometers Spectrum Type USB2G6142 Processed	
Update Rate Display Options Auto-Save	
 Update after every scan 	Range Selection
🔿 Update after every: 100 🗢 scans	⊙ One Wavelength: 178.32 ♀ nm
O Between updates, wait at least:	
50 🗢 msec 🗸	O Average from 178.32
O Update with the first available scan every:	to 178.32 🔅 nm
50 📚 msec 🔍	O Integrate over 178.32
Start at the beginning of the next: minute 👽	to 178.32 💿 nm
Pause until started by user	Method: Rectangular 🔍
Stop after this many scans: 100 🗇	Compute Derivative:
Stop after this amount of time:	Derivative Order: 1 💲
100 📚 msec 🔍	Accept Cancel

5. Enter the following data to create your Strip Chart:

Field	Selections
Source	Select the source of the Strip Chart.
Update Rate tab:	Updates the strip chart:
Update after every scan Update after every <i>x</i> scans Between updates, wait at least Update with the first scan every Start at the beginning of the next	After every scan After the number of scans selected After the interval selected between updates After the first scan, then at the interval selected At the beginning of each new selected interval
Range Selection	Select the type of data for which you want to view the time trend from the following:
This section varies, depending on the units chosen for the x-axis (see <u>X-axis Units</u>)	One wavelength – For one pixel (used in fluorescence, for example). Select the wavelength.
	Average from – For a range of pixels. Select the starting and ending wavelengths.
	Integrate over – For the area underneath the trend line. Select the starting and ending wavelengths. Then, select the method for calculating the continuous area underneath the graph curve: Rectangular, Simpson's, or Trapezoid.

6. Click the Display Options tab.

10: Strip Charts

🌠 Chart Trend Settings	
Source	
# Spectrometers Spectrum Type 0 USB2G6142 Processed	
	One wavelength: 178.32 nm
Update Rate Display Options Auto-Save	Average from 178.32 to 178.32 nm
Trend Line Color: Select Color	Integrate over 178.32 to 178.32 nm
Scale Trend Value:	Method: Rectangular
	ODerivative at 178.32 🔅 nm
	Accept Cancel

Field	Selections	
Display Options	Select a color for the graph's trend line.	
Scale Trend Value	If you would like to adjust your data, enter the appropriate information in this field.	

7. Click the Auto-Save tab.

🔀 Chart Trend Settings		X
Source		
# Spectrometers 0 USB2G6142	Spectrum Type Processed	
		Wavelength Selection
Undate Rate Display Ontions Auto-Sa		One wavelength: 178.32 🔅 nm
Update Rate Display Options Auto-Sa Enable Trend Auto Save:	ve	Average from 178.32
Save to Directory:		to 178.32 💿 nm
Base Filename:		Integrate over 178.32
Padding Digits: 5		to 178.32 🗢 nm Method: Rectangular 🗸
Preview:		
Save after every: 10	sec 💌	O Derivative at 178.32 💿 nm
Clear Trend from Memory After Save:		Accept Cancel

Field	Selections
Auto-Save: Enable Trend Auto-Save Save to Directory Base Filename Padding Digits	Enables the auto-save option Enter the directory where you want to save the files Enter the filename to be used Enter the number of digits to be used when appending to a file (optor 2 to approximate of files, optor 4 to approximate
	a file (enter 3 to save hundreds of files, enter 4 to save thousands, etc. up to 15), for example: spectrumfile001 through spectrumfile999 if 3 is selected
Preview	For future use
Save after every	Enter the time interval for the save. If set to 0, every scan is saved.
Clear Trend from Memory After Save	Flushes the data from memory after each autosave to conserve memory usage.

8. Click Accept . The Strip Chart Options dialog box appears. Strip Chart Options lists all of the Strip Charts that you have created, along with the options that you have set for each one. Use this dialog box to add, edit, remove, or clear trends.

Note

Highlight the desired trend to make the **Clear**, **Remove Trend**, and **Edit Trend** buttons active.

cean ptics Inc.

10: Strip Charts

🧏 Strip Chart Options				
-Trends				
Source	Wavelength (nm)	Mode	Offset	Color
USB2G6142	178.32-178.32	Integral	0	
USB2G6142	178.32	Value	0	
Clear	Remove Trend	Edit Trend	Add Trend	
				Close

- 9. Click Close. The strip chart you created appears. Note the time scale along the x-axis. The y-axis in this example shows the percentage transmission for the selected pixel(s).
- 10. To add another trend to this graph, click Add Trend...

File <u>View</u> Spectrometer <u>Processing</u> <u>Tools</u> <u>Window</u>	Help	
Integration Scans		
time: avera		
External Normal		
Data Sources	Graph (A) 🗴 🔀 Strip Chart (C) 🗴	
	🚸 🖽 👖 🔍 🔍 🍭 🕂 📕 Configure 🕨 📕 📿 Clear 式	
	★ E3 B of of of the manual the first f	
	110 _T	- r r
 Acquisition Int time: 3ms, avg: 20, boxcar: 4 	+ · · · · · · · · · · ·	
😑 No Pre-processor, Transmission Mode		
	90	
Properties		
	80	
		1 I I I I I
		I I I
Data Views	8 60	$-\frac{1}{1}$ $ -\frac{1}{1}$ $ -\frac{1}{1}$
🗄 🛴 Graph (A)	80	
🗄 🔁 Strip Chart (C)		
	40	
		- + + I I I
	20	$-\frac{1}{1}$ $ -\frac{1}{1}$ $ -\frac{1}{1}$
	15:12:45 15:12:55 15:13:05 15:13:15 15:13:25 15:13:35 15:13:45 15:13:55 15:14:05 1 Time	5:14:15 15:14:25 15:14:35

Saving Strip Chart Data

Note

See Creating Strip Charts for information on autosaving.

► Procedure

To save strip chart data:

1. From the Strip Chart graph, click 🖬. The Save Trend dialog box appears.

🌠 Save Trend				
Source USB2G6142 USB2G6142 Filename:	Wavelength (nm) 178.32 178.32 Browse	Mode Value Value	Offset 0 0	
			Save	Close

2. Select the trend to save and enter a file name. Then click Save...

Strip Chart Controls

Use the following controls to adjust the display of your strip chart.

Control	Action
•	Resumes any strip chart trends you have paused.
П	Pauses all strip chart trends.
Q	Restarts any strip chart trends with a fixed length or duration (see Creating Strip Charts).
Clear	Clears all strip chart trends.
\rightarrow	Automatically scrolls the strip chart graph to the newest data.

Appendix A

Experiment Tutorials

Overview

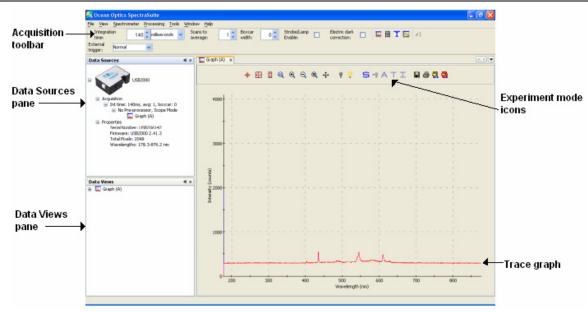
The following sections contain information on conducting sample experiments using a USB2000 Spectrometer and SpectraSuite.

For information on experiments with Ocean Optics spectrometers other than the USB2000, consult the operating instructions for your particular spectrometer model.

Preparing for Experiments

Verify that you have correctly installed SpectraSuite, installed the spectrometer, and configured the light source and other sampling optics.

If you followed the previous steps and started SpectraSuite, the spectrometer is already acquiring data in Scope mode. Even with no light in the spectrometer, SpectraSuite should display a dynamic trace in the bottom of the graph window. If you allow light into the spectrometer, the graph trace should rise with increasing light intensity. This indicates that you correctly installed the software and hardware.


Note the spectrometer(s) that you have installed are listed in the Data Sources pane. Information for each spectrometer listed in this pane consists of the following:

Acquisition parameters that you set via the (integration time, scans-to-average, boxcar smoothing),

Whether reference and/or dark spectra have been stored, the graph (A, B, C, etc.) associated with this spectrometer that appears in the right pane (important if you have installed more than one spectrometer),

Spectrometer's properties (serial number, firmware level, number of pixels, and wavelengths).

Once you install the hardware and software, and establish your sampling system, you are ready to take measurements.

This section details the following types of experiments:

Absorbance Experiments

Concentration Experiments

Transmission Experiments

Reflection Experiments

Irradiance Experiments

Fluorescence

The type of measurement you will take determines the configuration of the sampling optics for your system. Furthermore, your choice of reference and data analysis determines how SpectraSuite presents the results.

Note

For each measurement, you must first take a reference and dark spectrum before the

experiment mode icon (A, T, I) on the toolbar becomes active. After you take a reference and a dark spectrum, you can take as many measurement scans as needed. However, if you change any sampling variable (integration time, averaging, smoothing, fiber size, etc.), you must store a new reference and dark spectrum.

Application Tips

If the signal you collect is saturating the spectrometer (intensity greater than 4000 counts), you can decrease the light level on scale in scope mode by:

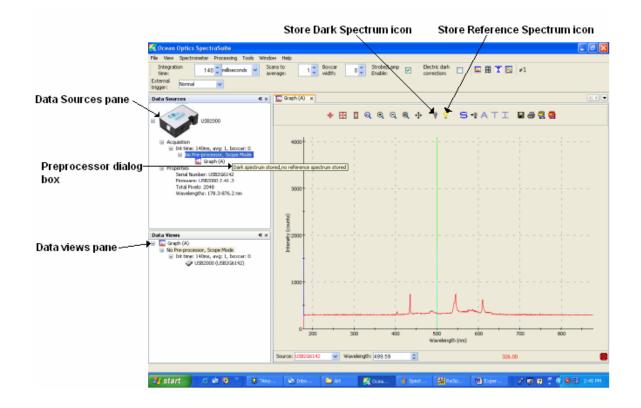
Decreasing the integration time

Attenuating the light going into the spectrometer

Using a smaller diameter fiber

Using a neutral density filter with the correct optical density

If the signal you collect has too little light, you can increase the light level on scale in scope mode by:


Increasing the integration time

Using a larger diameter fiber

Removing any optical filters

Taking Reference and Dark Spectra

Reference and dark spectra must be stored before collecting experiment data. If you pass the cursor over the **No-preprocessor** line in either the Data Sources or Data Views pane, a dialog box informs you whether reference and/or dark spectra have been stored.

A reference spectrum is taken when the light source is on and the there is no sample present. Click the

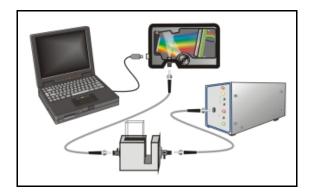
Store Reference Spectrum icon (\checkmark) to take a reference spectrum.

A dark spectrum is taken in the absence of light. Block the light path, uncheck the **Strobe/Lamp Enable** option on SpectraSuite's Acquisition toolbar, or turn off the lamp, and then click the Store Dark Spectrum icon (**P**) to take a dark spectrum.

Absorbance Experiments

Absorbance spectra are a measure of how much light a sample absorbs. For most samples, absorbance relates linearly to the concentration of the substance. SpectraSuite calculates absorbance (A_{λ}) using the following equation.

$$A_{\lambda} = -\log_{10} \left(\frac{S_{\lambda} - D_{\lambda}}{R_{\lambda} - D_{\lambda}} \right)$$


Where:

 S_{λ} = Sample intensity at wavelength λ

 D_{λ} = Dark intensity at wavelength λ

 R_{λ} = Reference intensity at wavelength λ

Typical absorbance setup: The light source (far right) sends light via an input fiber into a cuvette in a cuvette holder (bottom center). The light interacts with the sample. The output fiber carries light from the sample to the spectrometer (top center) connected to the computer (far left).

Absorbance is also proportional to the concentration of the substance interacting with the light (this is known as Beer's Law). Common absorption applications include the quantification of chemical concentrations in aqueous or gaseous samples.

► Procedure

Follow the steps below to take an absorbance measurement using SpectraSuite:

- 1. Place SpectraSuite in Scope mode by clicking the Scope () icon in the Experiment mode toolbar or selecting **Processing | Processing Mode | Scope** from the menu.
- 2. Ensure that the entire signal is on scale. The intensity of the reference signal's peak differs depending on the device being used. If necessary, adjust the integration time until the intensity is appropriate for your device.
- 3. Select File | New | Absorbance Measurement from the menu or click A to start the Absorbance Measurement Wizard.

🧏 Absorbance Measurement		
Steps	wizard (1 of 4)	
Data Source Acquisition Parameters Reference Spectrum Dark Spectrum		
	Source Type Details Preview	
	U582G6142 U582000 178.32-876.19nm	
8	Select one spectral source from the table above.	
< <u>Back</u> Next > Einish Cancel Help		

4. Select the source of your absorbance measurement and click Next >. The second page of the wizard appears.

🔀 Absorbance Measurement		X	
Steps	Set Acquisition Parameters wizard (2 of 4)		
 Data Source Acquisition Parameters Reference Spectrum Dark Spectrum 	Integration Time	Smoothing Scans to average: 1 🗘	
	Strobe/Lamp Enable: 2210.0	Boxcar width:	
	Recommended peak value: 3480 Set Automatically	Preview 4000†	
6	Advanced Settings Turn on the light source and set the integration time so that the peak value reaches the recommended level.	3000 3000 1000 1000 200 400 600 800 Wavelength (nm)	
< <u>Back</u> Next > Einish Cancel Help			

Turn on your light source and set your acquisition parameters so that the peak value reaches the recommended level. Then click Next >. The third page of the wizard appears.

B: Troubleshooting

🏂 Absorbance Measurement	
Steps 1. Data Source 2. Acquisition Parameters 3. Reference Spectrum 4. Dark Spectrum	wizard (3 of 4) Store Reference Spectr Stobe/Lamp Image: Comparison of the store of the store of the spectrum Preview Image: Comparison of the store of the spectrum Preview Image: Comparison of the spectrum Preview
	< <u>Back</u> Next > Einish Cancel Help

6. If you have not already done so, place a sample of the solvent into a cuvette to take a reference spectrum. You must take a reference spectrum before measuring absorbance.

Note

Do not put the sample itself in the path when taking a reference spectrum, only the solvent.

7. Click the Store Reference Spectrum (?) icon on the screen. This command merely stores a reference spectrum in memory. You must click the Save Spectra (.) icon on the toolbar or select File | Save | Save Spectra Collection from the menu bar to permanently save the reference spectrum to disk.

been unit to unsk.

Then click Next > . The fourth page of the wizard appears.

🧏 Absorbance Measurement	
Steps 1. Data Source 2. Acquisition Parameters 3. Reference Spectrum 4. Dark Spectrum	Dark Spectrum wizard (4 of 4) Store Dark Spectrum Strobe/Lamp Enable: Image: Ima
	< <u>B</u> ack Next > Einish Cancel Help

Block the light path to the spectrometer, uncheck the Strobe/Lamp Enable box, or turn the light source off. Then, take a dark spectrum by clicking . You must take a dark spectrum before measuring absorbance.

This command merely stores a dark spectrum in memory. You must click the Save Spectra (icon on the toolbar or select **File** | **Save** | **Save Spectra Collection** from the menu bar to permanently save the spectrum to disk.

Note

If possible, do not turn off the light source when taking a dark spectrum. If you must turn off your light source to store a dark spectrum, allow enough time for the lamp to warm up again before continuing your experiment. After the lamp warms up again, store a new reference.

9. Put the sample in place and ensure that the light path is clear. Then, click

If you have already taken one or more absorbance measurements, a dialog box appears asking you to specify whether to display the new data in a new graph, or on the existing graph.

8		×
Please choose w	here new graph will b	e displayed.
O Show data i	n new tab	
💿 Show data i	n existing tab	
Tab	X-Axis	Y-Axis
Graph (B)	Wavelength	Absorbance
		Accept Cancel

Note the following changes on the screen:

- The experiment mode listed in the Data Sources and Data Views panes changes to **Absorbance Mode**.
- The units listed on the Graph pane changes to Absorbance (OD).

10. To permanently save the spectrum to disk, click the Save Spectra (\square) icon on the toolbar.

Note

If you change any sampling variable (integration time, averaging, smoothing, fiber size, etc.), you must store a new reference and dark spectrum.

Concentration Experiments

To discover the unknown concentration of a substance in a solution, you must first take spectral scans of a series of solutions with different known concentrations of the same substance. You begin this process by taking an absorbance spectrum of the solution with the highest known concentration.

While going through the wizard, when asked to store a reference spectrum, put a cuvette full of your solvent in the spectrometer's cuvette holder.

There are three methods you can use to calculate the concentration of a sample:

Using Beer's Law (see Calculating Concentration Using Beer's Law)

Calibrating from a solution of known concentration (see <u>Calibrating from Solutions of Known</u> <u>Concentration</u>)

Loading a previously stored calibration from a file (see *Loading Calibration from an Existing File*) The Concentration Measurement Setup Wizard allows you to choose one of these three methods.

Before measuring concentration, you must first take an absorbance measurement (see <u>Absorbance</u> <u>Experiments</u> for instructions).

► Procedure

1. Select File | New | Concentration Experiment from the menu to open the Concentration Measurement Setup Wizard.

Sconcentration Measurement	Setup 🔀
	wizard (Concentration Measurement Setup Wizard) Select basis for concentration calculation: Beer-Lambert Law Calibrate from solutions of known concentration Coad calibration from file
	< Back Next > Finish Cancel Help

2. Select the basis for the concentration calculation.

Calculating Concentration Using Beer's Law

 Select Beer-Lambert Law to specify the molar extinction constant ε and a wavelength. Then, Click Next >

The following window appears:

B: Troubleshooting

Sconcentration Measurement	Setup			
	wizard (Concentration Measurement Setup Wizard)			
	Molar Extinction ε:	594	1/c * 1/cm	
	Path length {:	1	cm	
	Wavelength:	400	nm	
	Compound Name:	Sample 1]	
	Concentration Units:	mol]	
U				
	< <u>B</u> ack Next >	Einish	Cancel Help	

Fill in the fields according to the constants appropriate for your sample. The Compound Name and Concentration Units can be set to anything, and are simply provided for reference. Click
 Finish
 when done.

Calibrating from Solutions of Known Concentration

- a. Insert a sample for which the concentration is known into the spectrometer.
- b. Select Calibrate from solutions of known concentration, insert samples into the spectrometer for which you know the concentration and use that as a basis for computing the concentration of the unknowns. Then, click Next >. The following window appears:

wizard (Concentration Measurement Setup Wizard) Wavelength Selection One wavelength: 610.03 nm
Average from 400.12 to 188.80 to 188
< <u>B</u> ack Next > Einish Cancel Help

c. Choose a single wavelength where the absorbance of your compound is greatest. You can also choose an average or integral over a range of wavelengths, which may provide a more robust calibration, since it is not as reliant on the behavior of the compound at one wavelength. Then click Next > . The following window appears:

B:	Troub	leshooting
----	-------	------------

Sconcentration Measurement S	etup 🛛
	wizard (Concentration Measurement Setup Wizard) Calibration Data #: Concentration Absorbance Residual Notes
	Concentration: Absorbance: Use Last Scan Notes: Add Sample
	Compound Name: Remove Sample Concentration Units: Save Calibration
B	Regression Plot
	< <u>Back</u> Next > <u>Finish</u> Cancel <u>H</u> elp

- d. If desired, enter the name and concentration units for their compound in the indicated fields (this step is optional).
- e. To generate a calibration, enter a known concentration in the **Concentration** field, and either manually enter the corresponding **Absorbance** or place the corresponding cuvette into the cuvette holder and click **Use Last Scan** to measure the absorbance directly. Use **Notes** to enter any comments.
- f. Click **Add Sample** to log the concentration vs. absorbance point. It will appear on the Regression plot in the bottom of the window, and in the table at the top.
- g. After entering a few points, a regression line will be computed through the concentration points. This indicates that sufficient points have been sampled for concentrations to be estimated from unknowns.

Sconcentration Measurement S	etup	×
	wizard (Concentration Measurement Setup Wizard)	_
	Calibration Data	
	# Concentration Absorbance Residual Notes	
	1 20.0 0.221923 -4.2633E-14	
	2 7.0 0.0681418 -6.6613E-14	
	3 2.5 0.014653 -6.2172E-14	
	Concentration: Absorbance: Use Last Scan	
	Notes: Add Sample	
	Compound Name: Indigo Carmine Remove Sample Concentration Units: Ug/mL Save Calibration	
	Regression Plot	
	0rder: 2 \$ 2 Corder: 2 * Zero Intercept:	_
	Zero Intercept: Samples: 3 R^2: 1.0000E0 Order Coefficient]
A	Image: Concentration Order Coefficient 0.00 2 4 6 8 10 12 14 16 18 20 22 1 (\$\varepsilon\$) 8.3968E1 2 1.9585E0	-
	< <u>Back</u> Next > <u>Finish</u> Cancel <u>Help</u>	

- 5. Enter options for how the regression is computed in the lower-right corner of the window:
 - Order Set the regression order to 1 (straight line fit) or 2 (second order polynomial fit).
 - Zero Intercept You can force the regression line to pass through the origin (that is, zero concentration and absorbance) by checking this box.

For a first order fit, at least two data points are necessary. For a second order fit, three points are necessary. If **Zero Intercept** is selected, then only one point is required for a first order fit and two points for a second order fit.

In general, more data points result in a better estimation of the concentration of an unknown. It is recommended that as many calibration points be sampled in this way as is practical. Also, allow your reference lamp to stabilize before attempting a calibration with many points, as any drift in the lamp's emission will introduce error into these samples.

The quality of the regression is shown in the lower right as an \mathbb{R}^2 value, where 1.0 is a perfect fit (lower numbers indicate a poorer fit). The residual value for each point is also shown in the table at the top of the window; this indicates the difference between the known concentration for a sampled absorbance and the estimated concentration using the regression. In the ideal case, this value will approach zero. Note that very small values (on the order of 10-12 or smaller) are normal even for a good fit; this is due to a rounding error and should have no discernable effect on solution quality.

6. At any time, you can select a sample from the table at the top of the window and click **Remove** Sample to discard the point. Once enough points exist to compute a regression, the

Save Calibration... will be enabled to allow the current set of samples to be saved to disk for later retrieval.

7. Click when you have entered enough points to generate a regression line.

Loading Calibration from an Existing File

a. Select **Load calibration from file** to recall a calibration from known solutions that was performed previously. The following window appears (the example below is in Windows XP format):

Sconcentration Measurement	ietup	X
	wizard (Concentratio	n Measurement Setup Wizard)
	Look in: 🛅 te	mp 🕑 😥 📰 📰
	My Recent Documents	indigoCarmine.concentration
	Desktop	
	My Documents	
	My Computer	
Ω	110005	ame: indigoCarmine.concentration
0		of type: Concentration calibration files
		< Back Next > Finish Cancel Help

- b. Select a file that was previously saved with Save Calibration... in the Calibrating from Solutions of Known Concentration wizard (see <u>Calibrating from Solutions of Known</u> <u>Concentration</u>, Step h.). When an appropriate file is selected, the name of the compound and concentration units appear near the bottom of the window.
- c. Click Next > . The resulting window is the same as if you had just entered those values from a known concentration:

Sconcentration Measurement S	etup	×
	wizard (Concentration Measurement Setup Wizard)	
	Calibration Data	_
	# Concentration Absorbance Residual Notes 1 20.0 0.221923 -4.2633E-14 2 7.0 0.0681418 -6.6613E-14 3 2.5 0.014653 -6.2172E-14	
	Concentration: Absorbance: Use Last Scan	
	Notes: Add Sample Compound Name: ndigo Carmine Remove Sample	
	Concentration Units: ug/mL Save Calibration	
	Regression Plot	
0	O 0.20 O Zero Intercept: Samples: 3 R^2: 1.0000E0 Order Coefficient	
0	0.00 2 4 6 8 10 12 14 16 18 20 22 Concentration 0 1.2692E0 1 (c) 8.3968E1 2 1.9585E0	-
	< <u>Back</u> Next > Einish Cancel Help	

When the concentration of the sample has been calculated using one of the three available methods, click Finish. The Concentration window appears:

B: Troubleshooting

State of the sector of the sec		
File View Spectrometer Processing Tools	Window Help	
Integration 7 🗘 milliseconds 🗸	Scans to average: 20 Boxcar width: 5 Strobe/Lamp Electric dark Enable: Enable: Correction: Correction	Stra corr
Data Sources	Graph (B) × 📙 Graph (C) ×	
■ HR2000		
	Indigo Carmine Concentration:	
	6.6914E0 ug/mL	
Data Views • ×		
Graph (b) If (c) If (c)	Single Update Continuous Update	
	Measurement Setup	
	8	ļ

By default, the window will not update on its own. Perform a single scan by clicking
 Single Update (for instance, after inserting each cuvette of unknown concentration). Click
 Continuous Update if you want the values to update as quickly as possible.

Note the following on this window:

- The name of the compound and the units you provided are shown.
- The numeric value for the concentration appears in black if the calculation was within the bounds of the measurement setup. If you calculated the concentration using the Beer-Lambert law, the concentration appears in black for any positive measured absorbance. If you calculated the concentration using known samples, the concentration will appear in black only if the measured absorbance is within the range of absorbance sampled by the user. If a sample is introduced that falls outside of this range, the concentration will appear in red to indicate that it is out-of-bounds and may not be accurate, as shown in the following example:

State of the sector of the sec	
File View Spectrometer Processing Tools	Window Help
Integration 7 C milliseconds	✓ Scans to average: 20 Boxcar 5 Strobe/Lamp Electric dark Nonlinearity 5 Strobe/Lamp Correction: C
Data Sources	Graph (B) × 1 Graph (C) ×
■ HR2000	
	Indigo Carmine Concentration:
	4.6216E-1 ug/mL
Data Views <th< th=""> <</th<>	Single Update Continuous Update
	Measurement Setup
At any time, you can cli	ck Measurement Setup to reopen the setup wizard and change the

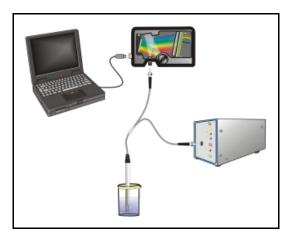
parameters for the concentration measurement.

Transmission Experiments

Transmission is the percentage of energy passing through a sample relative to the amount that passes through the reference. Transmission mode can also display the portion of light *reflected* from a sample, since transmission and reflection measurements use the same mathematical calculations. We express transmission as a percentage ($^{\%}T_{\lambda}$) relative to a standard substance (such as air). SpectraSuite calculates $^{\%}T_{\lambda}$ (or $^{\%}R_{\lambda}$) with the following equation.

$$\% T_{\lambda} = \frac{S_{\lambda} - D_{\lambda}}{R_{\lambda} - D_{\lambda}} x \ 100\%$$

Where:


 S_{λ} = Sample intensity at wavelength λ

 D_{λ} = Dark intensity at wavelength λ

 R_{λ} = Reference intensity at wavelength λ

Typical transmission setup: The light source (far right) sends light via the input leg of a transmission probe into a container (bottom center). The light interacts with the sample. The output leg of the transmission probe carries the information to the spectrometer (top center), which transmits the information to the computer (far left).

Common transmission applications include measuring light through solutions, optical filters, optical coatings, and other optical elements (such as lenses and fibers).

► Procedure

Perform the following steps to take a transmission measurement using SpectraSuite:

- 1. Place SpectraSuite in Scope mode by clicking the Scope () icon in the Experiment mode toolbar or selecting **Processing** | **Processing Mode** | **Scope** from the menu.
- 2. Ensure that the entire signal is on scale. The intensity of the reference signal's peak differs depending on the device being used. If necessary, adjust the integration time until the intensity is appropriate for your device.
- 3. If you have not already done so, place a sample of the solvent into a cuvette and take a reference spectrum. You must take a reference spectrum before measuring transmission.

Note

Do not put the sample itself in the path when taking a reference spectrum, only the solvent.

Click the Store Reference Spectrum (¹) icon on the toolbar or by select **File** | **Store** | **Store Reference Spectrum** from the menu bar to store the reference. This command merely stores a

reference spectrum in memory. You must click the Save Spectra (¹) icon on the toolbar to permanently save the reference spectrum to disk.

4. If you have not already done so, store a dark spectrum reading. To do this, either block the light path to the spectrometer, uncheck the **Strobe/Lamp Enable** box in the Acquisition toolbar, or

turn the light source off. Then, take a dark spectrum by clicking the Store Dark Spectrum (**V**) icon on the toolbar or by selecting **File** | **Store** | **Store Dark Spectrum** from the menu <u>bar</u>. This

command merely stores a dark spectrum in memory. You must click the Save Spectra (\square) icon on the toolbar or select **File** | **Save** | **Save Spectra Collection** from the menu bar to permanently save the spectrum to disk.

Note

If possible, do not turn off the light source when taking a dark spectrum. If you must turn off your light source to store a dark spectrum, allow enough time for the lamp to warm up again before continuing your experiment.

You must take a dark spectrum before measuring transmission.

- 5. Put the sample in place and ensure that the light path is clear. Then, take a transmission measurement by clicking on the Transmission (T) icon on the toolbar or selecting Processing | Processing Mode | Transmission from the menu. Note the following changes on the screen:
- The experiment mode listed in the Data Sources and Data Views panes changes to **Transmission Mode**.
- The units listed on the Graph pane changes to **Transmission (%)**.
- 6. To permanently save the spectrum to disk, click the Save Spectra () icon on the toolbar or select File | Save | Save Spectra Collection from the menu bar.

Note

If you change any sampling variable (integration time, averaging, smoothing, fiber size, etc.), you must store a new reference and dark spectrum.

Reflection Experiments

Reflection is the return of radiation by a surface, without a change in wavelength. Reflection can be:

Specular (the angle of incidence is equal to the angle of reflection)

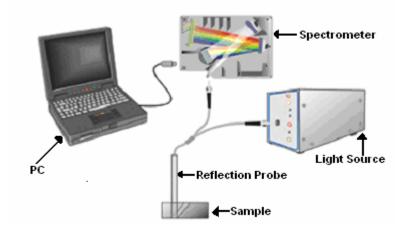
Diffuse (the angle of incidence is not equal to the angle of reflection)

Every surface returns both specular and diffuse reflections. Some surfaces may return mostly specular reflection, while others may return mostly diffuse reflection. Specular reflection increases proportionately with the amount of gloss on a surface.

Reflection is expressed as a percentage (% R_{λ}) relative to the reflection from a standard reference substance:

$$\% R_{\lambda} = \frac{S_{\lambda} - D_{\lambda}}{R_{\lambda} - D_{\lambda}} x \ 100\%$$

Where:


 S_{λ} = the sample intensity at wavelength λ

 D_{λ} = the dark intensity at wavelength λ

 R_{λ} = the reference intensity at wavelength λ

The following figure shows a typical reflection setup. A light source sends light via the input leg of a reflection probe onto a sample. A reflection probe holder holds the probe in either a 90 or 45-degree angle from the surface. The output leg of the reflection probe carries light from the sample to the spectrometer, which is connected to the computer.

Typical Reflection Setup

Common reflection applications include measuring the properties of mirrors and coatings. Other applications include measuring the visual properties of the color in paints, plastics, and food products.

► Procedure

Perform the following steps to take reflection measurements using SpectraSuite:

- 1. Place SpectraSuite in Scope mode by clicking the Scope () icon in the Experiment mode toolbar or selecting **Processing | Processing Mode | Scope** from the menu.
- 2. Ensure that the entire signal is on scale.
- 3. Take a reference spectrum with the WS-1 Diffuse Reflectance Standard or the STAN-SSH Highreflectivity Reference Standard. You must take a reference spectrum before measuring reflection.
- 4. Click the Store Reference Spectrum (¹) icon on the toolbar or by select **File** | **Store** | **Store** Reference Spectrum from the menu bar to store the reference. This command merely stores a

reference spectrum in memory. You must click the Save Spectra () icon on the toolbar to permanently save the reference spectrum to disk.

5. Either block the light path to the spectrometer, uncheck the **Strobe/Lamp Enable** box in the Acquisition toolbar, or turn the light source off. Then, take a dark spectrum by clicking the Store

Dark Spectrum ()) icon on the toolbar or by selecting File | Store | Store Dark Spectrum from the menu bar. This command merely stores a dark spectrum in memory. You must click the Save

Spectra (¹) icon on the toolbar or select **File** | **Save** | **Save Spectra Collection** from the menu bar to permanently save the spectrum to disk.

Note

If possible, do not turn off the light source when taking a dark spectrum. If you must turn off your light source to store a dark spectrum, allow enough time for the lamp to warm up again before continuing your experiment.

You must take a dark spectrum before measuring reflection.

- 6. Put the sample in place and ensure that the light path is clear. Then, take a reflection measurement by clicking on the Transmission (T) icon on the toolbar or selecting Processing | Processing Mode | Transmission from the menu (since the mathematical calculations used to calculate transmission and reflection are identical).
- If you received calibration file with your reference standard, click the Non-unity Correction icon (^{\$\ne\$1}) on the toolbar. The Select Reference File screen appears.

🐔 Select Reference File	
File Name: Browse	Preview
File Type: OOI Ascii Format	1 ₁
Reference Information	
	<u>α</u>
	Value
	ol
	0 1 Wavelength (nm)
	Apply Close

8. Browse to the location where you stored your reflectivity standard files. Then click the **Apply** button.

The reference information appears on the Select Reference File screen.

File Name: al STAN-SSH.Standard Browse File Type: OOI Asci Format Reference Information [StandardInformation] Version=1.1.2.0 Product Name=STAN-SSH Material=Al NIST=No Serial Number=00005 Start Wavelength=250 End Wavelength=2500 Data Type=R Measurement Type=Specular Reflection Measurement Type=Specular Reflection Apply Close

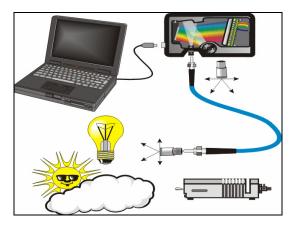
- 9. Click Apply to apply the file data to your graph on the main SpectraSuite screen.
- 10. To permanently save the spectrum to disk, click the Save Spectra () icon on the toolbar or select File | Save | Save Spectra Collection from the menu bar.

Note

If you change any sampling variable (integration time, averaging, smoothing, angle, temperature, fiber size, etc.), you must store a new reference and dark spectrum.

Irradiance Experiments

Irradiance is the amount of energy at each wavelength emitted from a radiant sample. Absolute irradiance is the measure of light in absolute terms. Relative irradiance is a comparison of the fraction of energy the sample emits and the energy the sampling system collects from a lamp with a blackbody energy distribution (normalized to 1 at the energy maximum). SpectraSuite calculates relative irradiance with the following equation:


$$\mathbf{I}_{\lambda} = \mathbf{B}_{\lambda} \left(\frac{\mathbf{S}_{\lambda} - \mathbf{D}_{\lambda}}{\mathbf{R}_{\lambda} - \mathbf{D}_{\lambda}} \right)$$

Where:

- B_{λ} = Relative energy of the reference (calculated from the color temperature) at wavelength λ
- S_{λ} = Sample intensity at wavelength λ
- D_{λ} = Dark intensity at wavelength λ
- R_{λ} = Reference intensity at wavelength λ

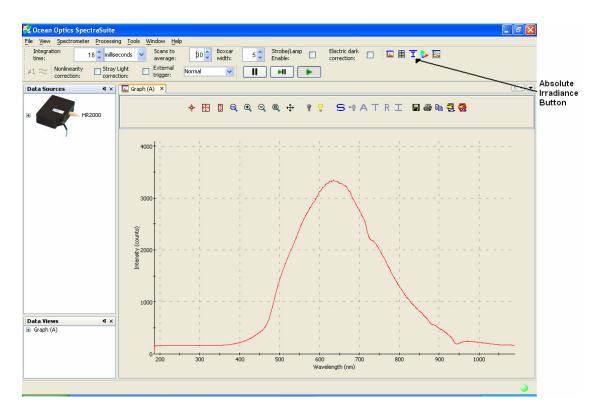
Typical relative irradiance setup: Use a light source with a known color temperature (such as the LS-1 or LS-1-LL (lower right) to take a reference spectrum. The light to measure (lower left) accumulates through a CC-3 Cosine Corrector (or FOIS integrating sphere) into an input fiber, which carries the light information to the spectrometer. The spectrometer then transmits the information to the computer, which compares the measured spectra against the reference spectrum, thus removing wavelength-dependent instrument response from the measurement.

Common applications include characterizing the light output of LEDs, incandescent lamps, and other radiant energy sources such as sunlight. Relative irradiance measurements also include fluorescence measurements, which measure the energy given off by materials excited by light at shorter wavelengths (see *Fluorescence*).

Absolute Irradiance

Although you have the option to do so, you do not need to store reference spectrum first since absolute irradiance is not relative to another measurement. However, you must store a dark spectrum and have a calibration file before you can measure absolute irradiance. Calibration equipment is available from Ocean Optics. Contact an Ocean Optics Application Scientist for more information.

If you select **File** | **New** | **Absolute Irradiance Measurement** or click I on the Irradiance toolbar, the Absolute Irradiance Wizard is activated to guide you through the process. If you select **File** | **New** | **Absolute Irradiance Graph**, the Absolute Irradiance graph in Scope mode appears, and you must work through the various steps required for an Absolute Irradiance measurement on your own.


The following procedure assumes that you are using the Absolute Irradiance Wizard.

► Procedure

Perform the following steps to take an absolute irradiance measurement using SpectraSuite:

1. Select File | New | Absolute Irradiance Measurement from the menu or click Irradiance toolbar to use the wizard to create the Absolute Irradiance graph.

The first page of the Absolute Irradiance Setup Wizard appears.

B: Troubleshooting

🏂 Absolute Irradiance Setup	
8	wizard (Absolute Irradiance Setup Wizard) Select data source for absolute irradiance: New spectral acquisition: Existing acquisition: Spectrometer Parameters
	< Back Next > Finish Cancel Help

Select to measure absolute irradiance from either a new or existing acquisition. Then, click
 Next >
 . The second page of the Absolute Irradiance Setup Wizard appears.

🏂 Absolute Irradiance Setup	
8	Select spectral source wizard (Absolute Irradiance Setup Wizard) Source Type HR281537 HR2000 185.99-1089,36nm Select one spectral source from the table above.
	< <u>Back</u> Next > <u>Finish</u> Cancel <u>Help</u>

3. If you have more than one spectrometer, highlight the one to be used. Then, click Next > The third page of the Absolute Irradiance Setup Wizard appears.

🏂 Absolute Irradiance Setup	
6	wizard (Absolute Irradiance Setup Wizard)
	<back next=""> Einish Cancel Help</back>

- 8. Choose one of the following:
 - <u>Get Irradiance Calibration from File</u>
 - New Calibration

Get Irradiance Calibration from File

a. After selecting **Get Irradiance Calibration from File**, browse to the desired calibration file.

🏂 Absolute Irradiance Setup		×
	wizard (Absolute Irradiance Setup Wizard)	_
	Look in: S IN HR2B1537 (D:)	
0	My Documents My Computer	
N	My Network Places File <u>name</u> : HR2B1537_111706_OOIIrrad.cal Files of <u>type</u> : OOIIrrad Calibration Files	
U	Spectrometer: HR2B1537 Fiber Diameter: 1000.0 micron	
	< <u>Back</u> Next > Einish Cancel Help	

b. Select the file and click Next >

🧏 Absolute Irradiance Setup	
8	wizard (Absolute Irradiance Setup Wizard) Use Integrating Sphere: Collection Area 0.007853982 cm^2 Tiber Diameter3 1000 micron
	< Back Next > Finish Cancel Help

- c. If you are using an integrating sphere, check the Use Integrating Sphere option.
- d. If you know the collection area, check Collection Area and enter the value.
- e. If you are using a bare fiber or a cosine corrector, check **Fiber Diameter** and enter the value.
- f. If you are using an Ocean Optics cosine corrector or a direct attach cosine corrector, enter the appropriate value for the Fiber Diameter as follows:

Cosine Corrector	Fiber Diameter
CC-3	3900 microns
CC-3-UV	3900 microns
CC-3-DA	7140 microns

g. Then click Next > . The Set Acquisition Parameters screen appears.

🧏 Absolute Irradiance Setup		
	Set Acquisition Parameters wizard (Absolute Irradiance Setup Wizard)	
	Integration Time	Smoothing
	Integration time:	Scans to 30 🗘
	Strobe/Lamp Enable:	Boxcar 5 🗢
	Last peak value: 3352.70	
	Recommended peak value: 3480.00 Set Automatically	Preview
8	Advanced Settings Turn on the light source and set the integration time so that the peak value reaches the recommended level.	3000 3000 1000 000 000 000 000 00
< <u>Back</u> Next > Einish Cancel Help		

Set your acquisition parameters for your experiment using the Integration time and h. Boxcar width so that the Last peak value is very close to the Recommended peak Next >

value. Then, click . The Dark Spectrum screen appears.

Block the light path or uncheck the **Strobe/Lamp Enable** box, then click **?** to take a i. Finish dark spectrum. The graph appears on the right side of the screen. Click

New Calibration

a. After selecting New Calibration, the Set Acquisition Parameters screen appears.

🏂 Absolute Irradiance Setup			X
	Set Acquisition Parameters	wizard (Absolute Irrad	iance Setup Wizard)
	Integration Time Integration time:	16 🗘 milliseconds 🗸	Smoothing Scans to average: 30 🗘
	Strobe/Lar Enable:	^{np}	Boxcar 5
	Last peak value:	3352.70	
	Recommended peak value:	3480.00	Preview
		Set Automatically	4000
8	Advanced Se Turn on the light source and so that the peak value reac level.	d set the integration time	3000 9 2000 1000 0 200 600 1000 Wavelength (nm)
< <u>B</u> ack Next > Einish Cancel Help			

b. Set your acquisition parameters for your experiment. Then, click Next >. The Store Reference screen appears.

A: Experiment Tutorials

c. Turn on your light source, then click 🔽 to store a reference spectrum. The Dark Spectrum screen appears.

d. Block the light path or uncheck the Strobe/Lamp Enable box, then click 💡 to take a dark spectrum. The graph appears on the right side of the screen. Click Next > . The Lamp File wizard screen appears.

e. Enter the name of the lamp file or browse to the desired file to use. The final screen of the calibration wizard appears. Note in the **Spectrometer Calibration Preview** that the lamp file curve (in yellow) is overlayed on the spectrometer's curve (red). Once you apply this calibration, the curves should be exactly the same.

f. Click Finish. The Absolute Irradiance Calibration measurement screen appears.

Relative Irradiance

Relative irradiance is a measurement of light relative to the known color temperature of a blackbody light source. Common applications include characterizing the light output of LEDs, incandescent lamps, and other radiant energy sources such as sunlight. Relative irradiance measurements also include fluorescence measurements, which measure the energy given off by materials excited by light at shorter wavelengths. You must have stored reference and dark spectra before measuring relative irradiance.

- Procedure
- 1. Place SpectraSuite in Scope mode by clicking the Scope () icon in the Experiment mode toolbar or selecting **Processing | Processing Mode | Scope** from the menu.
- 2. Ensure that the entire signal is on scale. The intensity of the reference signal's peak differs depending on the device being used. If necessary, adjust the integration time until the intensity is appropriate for your device.

- 3. Take a reference spectrum using a light source with a black body of a known color temperature, such as the LS-1.
- 4. Click the Store Reference Spectrum (¹) icon on the toolbar or by select **File** | **Store** | **Store** Reference Spectrum from the menu bar to store the reference. This command merely stores a

reference spectrum in memory. You must click the Save Spectra () icon on the toolbar or select **File** | **Save** | **Save Spectra Collection** from the menu bar to permanently save the reference spectrum to disk.

5. If you have not already done so, store a dark spectrum reading. To do this, either block the light path to the spectrometer, uncheck the **Strobe/Lamp Enable** box in the Acquisition toolbar, or

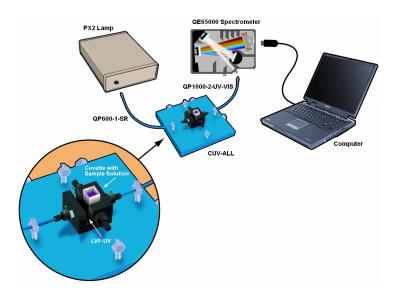
turn the light source off. Then, take a dark spectrum by clicking the Store Dark Spectrum (**V**) icon on the toolbar or by selecting **File** | **Store** | **Store Dark Spectrum** from the menu bar. This

command merely stores a dark spectrum in memory. You must click the Save Spectra () icon on the toolbar.

Note

If possible, do not turn off the light source when taking a dark spectrum. If you must turn off your light source to store a dark spectrum, allow enough time for the lamp to warm up again before continuing your experiment.

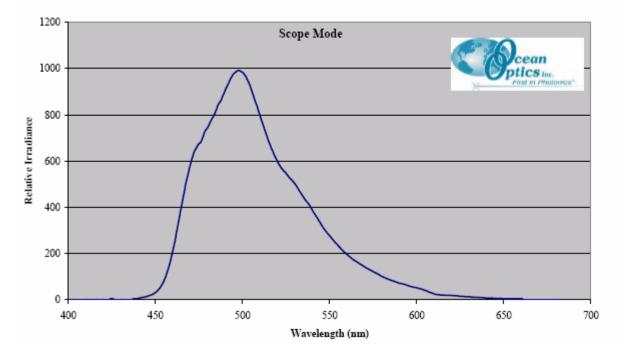
You must take a dark spectrum before measuring relative irradiance.


6. Position the fiber at the light source you want to measure. Then, click **I**. The Relative Irradiance graph appears.

Be Vew Sectometer Processing Tools Window Veb Dreep ation 2 millioneration Scars to there: 2 millioneration Data Sources 4 x Image: Hexadow Image: Millioneration Image: Millioneration Image: Millioneration Image: Millioneration Image: Millioneration Image: Millioneration Image: Millioneration Image: Millioneration Image: Millionera	🔀 Ocean Optics SpectraSuite		
Image:		w Help	
Plate lines	Integration 3 miliseconds V Sc ime: Sternal Automatic	ns to 20 🗘 Boxcar 6 Strobe).tamp Electric dark 🔲 🛄 🖬 🏗 🖾 🖈 1 rage: 20 🗘 Width: 6 💭 Enable: correction:	
Pelative Irradiance Button	Data Sources 4 ×	Graph (A) x	
Data Yiews 4 x Image: Comp (A)	■ HR2000		Relative Irradiance
Data Yiens 4 × Bata Yiens 4 × Image: Data Yiens		200	Button
Data Views 4 x		180	
Data Views 4 x			
Data Views Image: Complexity of the second sec			
Data Views Image: Complexity of the second sec			
		£120-1	
	🐨 🛄 Graph (A)	\$100 minute the second se	
		E so-	
		60]
0 200 300 400 500 600 700 800 900 1000 1100		40	
0 200 300 400 500 600 700 800 900 1000 1100			
200 300 400 500 600 700 800 900 1000 1100			
		200 300 400 500 600 700 800 900 1000 1	.00

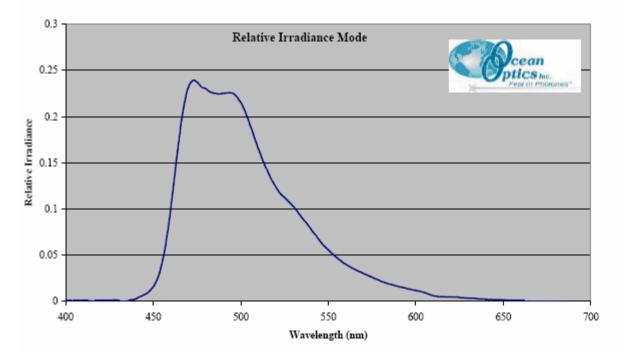
Fluorescence

A fluorescence measurement is a type of relative irradiance measurement in which the energy given off by materials excited by light at shorter wavelengths is measured. Advantages of fluorescence include High sensitivity, high speed (intensity changes on the order of picoseconds), and safety (nondestructive to sample and no hazardous by-products). A typical fluorescence set-up is shown below. Note that the fibers for the lamp and the spectrometer must be at a 90° angle to each other (or a CVD-DIFFUSE must be used).



Fluorescence can be measured in the following modes:

- Scope mode: Scope mode is the preferred mode for configuring your acquisition parameters. The signal graphed in Scope mode is the raw voltage coming out of the A/D converter. This spectral view mode provides complete control of signal processing functions before taking absorbance, transmission, reflection, and relative irradiance measurements. This mode reflects the intensity of the light source, the reflectivity of the grating and mirrors in the spectrometer, the response of the detector, and the spectral characteristics of the sample.
- Relative Irradiance mode: Relative Irradiance mode is the preferred mode for fluorescence experiments. Relative irradiance spectra are a measure of the intensity of a light source relative to a reference emission source. There are two methods of performing a fluorescence experiment in Relative Irradiance mode: run SpectraSuite in Relative Irradiance mode using the calibration files generated during factory calibration, or perform your own radiometric calibration using a blackbody of known color temperature. See <u>*Relative Irradiance*</u> for the experiment procedure.


See the following figures for examples of graphs of relative irradiance in a fluorescence measurement.

PVK sample measured with the USB2000-FL spectrometer, PX2 pulsed xenon light source, CUV-ALL-4-Way cuvette holder, 1000 um illumination fiber, 600 um detection fiber Sample in disposable cuvette

PVK sample measured with the USB2000-FL spectrometer, PX2 pulsed xenon light source, CUV-ALL-4-Way cuvette holder, 1000 um illumination fiber, 600 um detection fiber (LS-1 tungsten halogen light source used for reference) Sample in disposable cuvette

Note

If you have a spectrometer with a gated detector (such as the USB2000-FLG), you can initiate a fluorescence measurement with **File** | **New** | **New Gated Fluorescence Measurement**.

If you have a Curie UV-VIS Emission Spectrofluorometer (serial number starts with CUR), you can initiate a fluorescence measurement with **File** | **New** | **New Curie Fluorescence Measurement**.

Application Tips

If the signal you collect	You can	Ву
Saturates the spectrometer (peaks are off the scale)	Decrease the light level on scale in Scope mode	Decreasing the integration time, or
		 Incorporating linear variable filters into your experiment
Has too little light	Increase the light level on scale in Scope mode	Increasing the integration time, or
		Removing linear variable filters from the light path

Color Experiments

With SpectraSuite, you can obtain photopic data (in either lumens or lux per unit area) based on a CIE standard visibility curve. You can also control the parameters for all system and display functions, such as data acquisition, graph display, and cursor configuration. In addition, you can create a spreadsheet display of lamp output intensity by wavelength, providing an easy way to chart and analyze acquired data. SpectraSuite will compute all color measurements except RGB.

► Procedure

To collect color data,

1. From the main graph, click the Chromaticity icon >> on the Processing toolbar

OR

Select File | New | Color Measurement.

The New Color Measurement dialog box appears.

🏂 New Color Me	asurement 🔀
Select data source fo	r color measurement:
 New percent re 	lection processing
O New absolute in	radiance processing
🔘 New relative irra	adiance processing
O Existing process	ing:
# Spectrometers	
0 USB2G6142	Processed
L	
	Accept Cancel

2. Select the data source for the color measurement and click Accept. The first Color Measurement Setup wizard screen appears.

🏂 Color Measurement Setup				×
Steps 1. Data Source 2. Acquisition Parameters 3. Reference Spectrum 4. Dark Spectrum	wizard (1 of 4)			
	Source USB2G6142 Select one spectr	USB2000	Details Previ	iew
Highlight the desired spect		< <u>B</u> ack Next) Help

3. Highlight the desired spectral source to select it. Then click . The second Color Measurement Setup wizard screen appears.

Data Source		
 Acquisition Parameters Reference Spectrum Dark Spectrum 	Integration Time Integration Time Integration time: Integration Strobe/Lamp Enable: Last peak value: 3363.1 Recommended peak value: 3480 Set Automatically Advanced Settings Turn on the light source and set the integration time so that the peak value reaches the recommended level.	0 Preview 4000 † 3000 -

4. Turn on your light source. Adjust the **Integration time**, **Scans to average**, and **Boxcar width** so that the **Last peak value** is within the proper range (near the **Recommended peak value**). When

this happens, the **Last peak value** reading changes from pink to black. Then, click Next > The third Color Measurement Setup wizard screen appears.

cean

A: Experiment Tutorials

🏂 Color Measurement Setup	
Steps Data Source Acquisition Parameters Reference Spectrum Dark Spectrum 	wizard (3 of 4)Store Reference Spectr Enable:
	< <u>Back</u> Next > Einish Cancel Help

If you are performing an absolute irradiance calibration, go on to Step 6. Otherwise, continue with Step 5.

5. If you have not done so already, check the Strobe/Lamp Enable box or physically turn on the lamp. Once the lamp has warmed up, click to store a reference spectrum. The graph appears in Reference Spectrum Preview.

B: Troubleshooting

Steps 1. Data Source 2. Reference Spectrum 3. Dark Spectrum 5. Dark Spectrum 5. Dark Spectrum 5. Dark Spectrum 5. Dark Spectrum 5. Dark Spectrum 1. Dark Spectrum 5. Dark Spectrum 1. Dark Spectrum 5. Dark Spectrum 1. Dark Spectrum 5. Dark Spectrum 1. Dark Spectrum	🏂 Color Measurement Setup	
< <u>B</u> ack Next > Einish Cancel Help	Data Source Acquisition Parameters Reference Spectrum	Store Reference Spectr Strobe/Lamp Enable:
		< Back Next > Finish Cancel Help

6. Click Next > . The fourth Color Measurement Setup wizard screen appears.

A: Experiment Tutorials

🌠 Color Measurement Setup		×
Steps 1. Data Source 2. Acquisition Parameters 3. Reference Spectrum 4. Dark Spectrum	vitard (4 of 4)Store Dark Spectrum Strobe/Lamp Enable:Dark Spectrum Preview 	
	< <u>B</u> ack Next > <u>Finish</u> Cancel	Help

7. Block the light or uncheck **Strobe/Lamp Enable**. Then click **?** to store a dark reference spectrum. The graph appears in **Dark Spectrum Preview**.

B: Troubleshooting

🌠 Color Measurement Setup	
Steps	vizard (4 of 4)Store Dark Spectrum Strobe/Lamp Enable:Dark Spectrum Preview
	<back next=""> Finish Cancel Help</back>

8. Click **Finish**. The following screen appears.

5	×
Mode Emissive Reflective Observer: 2-degree	Details Graph Show details for: Observer V Description: 2 degree (photopic, daylight) observer
Illuminant: A	Reference: CIE 15.2 - 1986
Load Illuminant	Creator: Ocean Optics, Inc.
	Date: Thu Oct 13 17:43:38 EDT 2005
	Provided by Ocean Optics, Inc.
	Accept Cancel

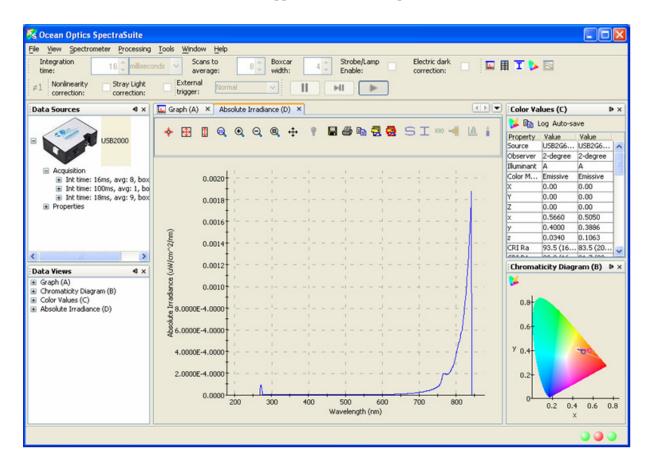
A: Experiment Tutorials

The fields on this screen are described in the following table.

Field	Description	
Mode	Either Emissive or Reflective mode is selected, depending on the type of color measurement selected in Step 1. You can change it here:	
	Reflective – Color measurement of a surface for a selectable CIE-defined illuminant.	
	Emissive - Measurement of the light emitted from an LED or a lamp (emission source).	
Observer	Specify the observer (viewing angle) using the drop-down list:	
	2° (CIE 1931) – photopic (daylight)	
	10° (CIE 1964) – scotopic (dark-adjusted)	
Illuminant	If you chose Reflective measurement under Mode , select the desired Illuminant from the drop-down list. This illuminant is theoretical and CIE-defined; it has nothing to do with the actual lamp used in the measurement.	
Load Illuminant	For future use.	

9. Your selections are reflected on the right side of the screen. Select to view either illuminant or observer details in the **Show details for** field. An example screen with details for the observer is shown below:

5	
Mode Emissive Reflective Observer: 2-degree	Details Graph Show details for: Observer 💌 Description: 2 degree (photopic, daylight) observer
Illuminant: A	Reference: CIE 15.2 - 1986 Creator: Ocean Optics, Inc.
Load Illuminant	Creator: Ocean Optics, Inc. Date: Thu Oct 13 17:43:38 EDT 2005 Provided by Ocean Optics, Inc.
	Accept Cancel



10. Select the Graph tab to view a graph reflecting the selections you have chosen. An example graph of the illuminant is shown below:

	Details	Graph
-Mode	Show	graph of: Illuminant 🛛 💌
Mode Emissive Reflective Observer: 2-degree Illuminant: A Load Illuminant	Value) 200 400 600 Wavelength (nm)
		Accept Cance

11. Click

. Your color data appears on the main SpectraSuite screen as shown below:

Тір

To close all three color views (**Graph**, **Color Values**, and **Chromaticity Diagram**) at once, highlight the color acquisition in the **Data Sources** pane, right-click and select **Terminate**.

Color Measurement Screen Controls

Once you have captured your color data on the Color Measurement screen shown above, you can use the following controls in the Color Values section of the screen:

Control	Action
	Edit Color settings. Use this control to edit the color settings in your graph. See <u>Edit</u> <u>Color Settings</u> for more information.
E)	Copy Spectral Data to Clipboard.
Log	Opens a browser for you to select a log file you have created.
Auto-save	Saves your color data to a file. See below for an example saved in Notepad. See <u>Exporting Processed Data</u> for more information

ile Edit Format										
ource obser		uminant	Color Mode	×	Y	z	×	Υ	z	CRI RA CRI
SB2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4849	0.3710	0.1441	84.5 (2096K)
5B2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4849	0.3710	0.1441	84.5 (2096K)
SB2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4891	0.3739	0.1371	85.9 (2075K)
B2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4891	0.3739	0.1371	85.9 (2075K)
5B2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4885	0.3720	0.1396	83.3 (2068K)
SB2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4885	0.3720	0.1396	83.3 (2068K)
5B2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4859	0.3755	0.1387	84.9 (2119K)
SB2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4859	0.3755	0.1387	84.9 (2119K)
5B2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4854	0.3749	0.1397	88.9 (2119K
SB2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4854	0.3749	0.1397	88.9 (2119K)
SB2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4830	0.3721	0.1449	86.2 (2124K) 86.2 (2124K)
SB2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4830	0.3721	0.1449	
SB2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4842	0.3703	0.1456	
SB2G6142	2-degree		Emissive	-0.00	-0.00	-0.00	0.4842	0.3703	0.1456	
5B2G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4887	0.3721	0.1392	85.6 (2066K)
582G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4887	0.3721	0.1392	85.6 (2066K) 84.1 (2093K)
SB2G6142 SB2G6142	2-degree 2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4847	0.3703	0.1449	84.1 (2093K) 84.1 (2093K)
	2-degree 2-degree	~	Emissive	-0.00	-0.00	-0.00	0.484/			87.0 (2095K
582G6142 582G6142	2-degree	A	Emissive	-0.00	-0.00	-0.00	0.4886	0.3760	0.1354	87.0 (2095K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4880	0.3725	0.1334	85.9 (2113K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4843	0.3725	0.1431	85.9 (2113K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4843	0.3720	0.1431	87.7 (2110K
SB2G6142	2-degree	Ä	Emissive	-0.00	-0.00	-0.00	0.4843	0.3720	0.1437	87.7 (2110K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4845	0.3699	0.1494	84.2 (2132K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4806	0.3699	0.1494	84.2 (2132K)
ISB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4812	0.3724	0.1464	82.9 (2144K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4812	0.3724	0.1464	82.9 (2144K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4856	0.3688	0.1456	83.4 (2073K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4856	0.3688	0.1456	83.4 (2073K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4859	0.3731	0.1410	84.9 (2101K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4859	0.3731	0.1410	84.9 (2101K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4866	0.3731	0.1403	83.5 (2094K
ISB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4866	0.3731	0.1403	83.5 (2094K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4918	0.3691	0.1391	85.0 (2016K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4918	0.3691	0.1391	85.0 (2016K)
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4843	0.3747	0.1410	86.8 (2130K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4843	0.3747	0.1410	86.8 (2130K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4790	0.3748	0.1461	84.7 (2186K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4790	0.3748	0.1461	84.7 (2186K)
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4841	0.3740	0.1419	85.9 (2127K
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4841	0.3740	0.1419	85.9 (2127K)
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4854	0.3704	0.1442	83.8 (2087K)
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4854	0.3704	0.1442	83.8 (2087K)
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4864	0.3761	0.1375	85.1 (2118K)
SB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4864	0.3761	0.1375	85.1 (2118K)
ISB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4851	0.3750	0.1400	88.1 (2123K
ISB2G6142	2-degree	Â	Emissive	-0.00	-0.00	-0.00	0.4851	0.3750	0.1400	88.1 (2123K)

Appendix B

Troubleshooting

Problem	Possible Cause(s)	Recommended Solution(s)	
SpectraSuite starts, but does not show my spectrometer	1. The spectrometer is not plugged into the computer.	1. Plug one end of the USB cable into the spectrometer, and the other end into the USB port of your computer.	
	2. The attached spectrometer is not supported by SpectraSuite.	2. See <u>USB Spectrometer and Device</u> <u>Control</u> for a list of spectrometers supported by SpectraSuite.	
	3. The device is not detected or identified.	3. Disconnect any lamps or plug-ins that may be attached to the spectrometer, disconnect and reconnect the spectrometer, wait 10 seconds, and try again. If the spectrometer is detected, repeat with the lamp or plug-in connected. This may indicate a problem with an attached device.	
		Under Windows and Linux, it is also possible that the spectrometer model may be newer than the driver file that informs the operating system about the spectrometer. The SpectraSuite update center does not yet update these system files, so it may be necessary to reinstall with the latest SpectraSuite installer to get the correct files.	
SpectraSuite's splash window opens, but never finishes loading when attached to a USB2000 Spectrometer.	The USB2000 Spectrometer has firmware older than 2.41.0.	Use the <u>USB Programmer</u> and verify that the USB2000 has firmware version 2.41.0 or newer. The USB Programmer will also let you program a newer firmware if necessary.	

The following table lists common problems and their possible solutions.

Problem	Possible Cause(s)	Recommended Solution(s)
Some of the menu and toolbar items are grayed out (inactive).	Some menu and toolbar items require some action to be taken before they can be used.	Acquisition parameters, storing reference/dark spectra, and the Strip Chart require an unambiguous selection of an acquisition. If no acquisitions are running, try starting one. If more than one acquisition is started, try clicking on the desired trend in the graph to select the correct target. Similarly, try expanding the tree under the icon of the spectrometer and see how the controls respond to selecting each item. Right-click these items (or Control-click in MacOSX) to see additional actions for each.
		Minus dark requires a dark spectrum to be stored.
		A, T, R, and I (relative irradiance) require a reference and dark spectrum to be stored.
		Absolute Irradiance mode (I) requires a calibration and a stored dark spectrum.
		Photometry and energy/power/photons measurements require an active absolute irradiance calculation.
It took longer than expected to get a spectrum on the graph.	The host computer requested some change in the spectrometer's acquisition parameters (integration time, status of the strobe/lamp enable, etc.).	SpectraSuite discards the next spectrum it acquires after making changes to acquisition parameters. This extra discarded <i>stability scan</i> causes the next single-shot acquisition to take longer than normal because it is really acquiring two scans.
		For the same reason, a second external hardware trigger pulse may be required if the <i>Normal</i> free-running trigger mode is not being used. When preparing to do single- shot acquisitions or external triggering, it is recommended that all of the acquisition parameters be set in the continuously acquiring free-running mode to minimize this effect.
		If SpectraSuite is taking turns acquiring spectra with different acquisition parameters from the same spectrometer, it may be doing a stability scan before every sample scan. Also, as above, the number of scans to average is multiplied by the integration time.

B: Troubleshooting

Problem	Possible Cause(s)	Suggested Solution(s)
Can't access Absolute Irradiance mode	A spectrometer calibration and a Dark spectrum have not been stored.	Go to File New New Absolute Irradiance Measurement to open a wizard to guide you through the process. Absolute irradiance requires a spectrometer calibration (either loaded from disk or generated using a calibrated lamp) and a stored dark spectrum. The most typical reason for not being able to access absolute irradiance mode is that you must store a dark spectrum after loading a calibration.
The graph window shows a broken pattern of dots instead of a spectrum line.	On Microsoft Windows systems, ATI video cards are known to have problems displaying the graph properly.	Right-click the desktop, choose Properties, then select the Settings tab and click the Advanced button. There should be a tab for the device that allows you to change the hardware acceleration. Set the hardware acceleration to about half and press Apply . That should immediately correct the problem. If not, try lowering the acceleration further.

Index

A

Absolute Irradiance Experiments, 129 graph, 33, 51 measurement, 34 mode, 71 Absorbance Experiments, 108 measurement, 32 mode, 69 acquisition, 57 controls, 16, 50 pause, 57 terminate, 57 toolbar, 49 acquisition settings default, 88 annotations, 45 application tips, 141

B

Beer's Law, 69 boxcar width, 49

C

calibration, 73 combine files, 73 chart. 46 close all documents, 95 close window, 96 collection area, 72 color Experiments, 141 measurement, 35 settings, 65 temperature, 80 Concentration Experiments, 113 measurement, 34 controls acquisition, 16

graph, 9 Convert Spectra, 42 correction toolbar, 50 Create a new spectral window, 22 Curie Fluorescence measurement, 22, 33 cursor, 46 Customize Toolbars, 55

D

Dark, 38, 41 dark spectra, 107 data display toolbar, 50 default acquisition settings, 88 device control, 1 document audience, vii purpose, vii summary, vii documentation, viii Documents, 95 draw, 46

Ε

Edit Menu, 44 Edit Result Colors, 84 electric dark correction, 50 Exit, 43 Experiments, 40, 105 Absolute Irradiance, 129 Absorbance, 108 Color, 141 Concentration, 113 Fluorescence, 139 Irradiance, 128 Preparing, 105 Reflection, 125 Relative Irradiance, 137 Transmission, 122 exporting data, 81

F

features, 2 File Menu Functions, 21 Configure Export, 40 Convert Spectra, 42 Exit, 43 Open, 38 Dark, 38 Experiment, 40 Reference, 38 Save, 40 Dark, 41 Reference, 41 Save Spectrum, 40 Stop Export, 40 Store, 41 Fluorescence measurement, 21, 22, 32, 33 Fluorescence Experiments, 139 **Functions** Edit Menu, 44 File Menu, 21 Overlay Menu, 65 Spectrometer Menu, 57 spectroscopic, 3

G

Gated Fluorescence measurement, 21, 32 graph controls, 9 Graph Layer options, 44

Η

high-speed data acquisition, 25 3-D chart, 29 capturing data, 25 using data, 30

image, 46 indicators, 18 status, 18 installation, 5 Linux, 7 Macintosh, 7 via CD, 5 via ftp, 6 Windows, 6 integration time, 49 Irradiance Experiments, 128

L

lamp enable, 50 layer tools, 14 legend, 48 Linux platform installation, 7

M

Macintosh platform installation, 7 measurement absorbance, 32 color, 35 concentration, 34 Curie fluorescence, 22, 33 gated fluorescence, 21, 32 new absolute irradiance, 34 reflection, 32 relative irradiance, 32 transmission, 32 memory toolbar, 51 minimize window, 96 MMS Raman spectrometer, 60 Module Manager, 88

Ν

new, 21 New Energy, Power, Photons, 74 nonlinearity correction, 50 non-uniform, 66 nonunity correction, 51, 66, 127

0

Open, 38 options, 87 Output, 96 overlay, 47 Overlay Menu, 65 overlay spectral data, 14

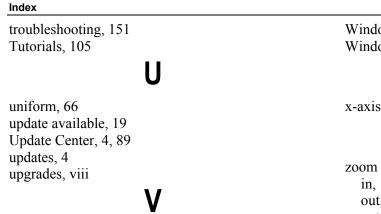
Ρ

pause acquisition, 57 peak finding, 16 peaks, 46 photometry, New Photometry Measurement, 77 preprocessing, 65 toolbar, 51 processed spectrum load stored spectrum, 38 Processing mode, 67 tools, 13 product description, 1 Progress Bar, 20

R

Raman, 84 shifts, 71 Reference, 38, 41 monitor. 66 spectra, 107 Reflection measurement, 32 mode, 70 **Reflection Experiments**, 125 **Relative Irradiance** Experiments, 137 measurement, 32 mode, 70 remove preprocessor, 65 rescan devices, 64 restore window, 96 resume acquisition, 57

S


Save Spectra Collection, 40 Spectrum, 40 scale, 44 scale graph height to fill window, 11 scale graph to fill window, 10 scans to average, 49 Scope Minus Dark, 69 Scope mode, 68, 71 screen capture, 42 SeaChanger module, 51 Set Laser Wavelength, 84

show devices, 64 small toolbar icons, 54 spectra dark, 107 reference, 107 spectra collection remove, 64 spectrometer features, 58 Spectrometer Menu, 57 spectrum graph, 22, 50 IO tools, 13 range, 48 storage tools, 13 table, 24, 51 status indicators, 18 Store, 41 strip chart, 35, 51 controls, 104 creating, 99 saving, 104 saving data, 104 strobe enable, 50 strobe gate delay toolbar, 54

T

Template Manager, 88 terminate acquisition, 57 testing toolbar, 54 toggle graph pane, 12 Tool menu, 87 toolbar, 48 acquisition, 49 correction, 50 customize, 55 data display, 50 memory, 51 preprocessing, 51 strobe gate delay, 54 testing, 54 trigger, 54 Transmission Experiments, 122 measurement, 32 mode, 70 trendline, 47 trigger toolbar, 54

visible spectrum, 47

W

what's new, vii

Window menu, 95 Windows platform installation, 6

X

x-axis units, 80

Ζ

in, 11 out, 12 out maximum, 10 region, 12 set numeric ranges, 11 tools, 10