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We considerN two-level atoms in a ring cavity interacting with a broadband squeezed vacuum centered at
frequencyvs and an input monochromatic driving field at frequencyv. We show that, besides the central mode
(at v), an infinity of sideband modesare produced at the output, with frequencies shifted fromv by multiples
of 2sv−vsd. We analyze the optical bistability of the two nearest sideband modes, red shifted and blue shifted.
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I. INTRODUCTION

Optical bistability (OB) has been the subject of intense
research since its prediction and observation in the 1970s
[1–3]. In Ref. [4] a model consisting of a system of homo-
geneously broadened two-level atoms driven by a coherent
resonant field proved to give a successful description of OB.
Due to its potential applications in optical devices there have
been a lot of efforts to observe and understand the phenom-
enon of optical bistability in two-level atoms[6–18].

The effects of the squeezed vacuum field on the absorp-
tive OB for a system of two-level atoms in a ring cavity(see
Fig. 1), with different relaxation rates of the in-quadrature
and in-phase components, were originally calculated in Ref.
[8]. The authors verified that the squeezed vacuum strongly
affects the OB through the increase of the atomic decay time
and through the introduction of a relative phase between the
input pumping and squeezed vacuum fields. Although sev-
eral aspects of squeezed vacuum effects on OB have been
considered[9–12], no explicit calculations were done, to our
knowledge, to the situation where the frequencies of the in-
put fields, pumpsvd, and broadband squeezed vacuum(car-
rier vs) are detuned. In Refs.[9–12], exact resonance be-
tween pump and squeezed field frequencies,v=vs, is
assumed in order to maximize the squeezing effects. None-
theless, consideration of detuning,vÞvs, is the source of
interesting physics as will be shown in this paper. Here, we
analyze the effects of that detuning over the OB in the output
field, produced by a system of two-level atoms in a cavity.
We show that, besides the central mode atv, the output field
contains an infinity of sideband modes at frequencies shifted
from v by multiples of 2sv−vsd. We analyze the OB of the
two nearest sideband modes, red shifted and blue shifted.

The paper is organized as follows: In Sec. II we introduce
the model we use and derive the system dynamical equa-
tions. In Sec. III we obtain the stationary solutions for the
output field. In Sec. IV we discuss the results and present our
conclusions. Finally, in the Appendix we derive the many-

body master equation and apply the mean-field approxima-
tion for a dilute atomic gas.

II. MODEL

We consider an input pump coherent signal of undepleted
electric-field amplitude Ein and a broadband squeezed
vacuum, with frequency distribution centered atvs, interact-
ing with N two-level atoms. The Hamiltonian of the system
is given by

H =
1

2
v0S0 + F*eivtS− + Fe−ivtS+ + o

k

vkbk
†bk

+ o
k

sgkbkS+ + gk
*bk

†S−d s1d

(we have set"=1), where the first term stands for the two-
level atomic system(transition frequencyv0), the two fol-
lowing terms represent the interaction between the atoms and
the input pump field amplitudeEin, F=mEin (m is the atomic
dipole moment), the fourth term corresponds to the squeezed
vacuum modes, and the last one is for the interaction be-
tween atoms and squeezed vacuum field. Operatorbk sbk

†d
annihilates(creates) squeezed field quanta of frequencyvk,
andgk is the coupling constant. The atomic collective opera-
tors are
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FIG. 1. Schematic ring cavity withN two-level atoms in a cell.
Input signal at the left, output at the right, and injection of squeezed
vacuum from above.M1 to M4 specify the mirrors.
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S0 = o
i=1

N

s0sid, S± = o
i=1

N

s±sid, s2d

wheres0sid and s±sid are single-particle operators satisfying
the commutation relationsfs0sid ,s±s jdg= ±2di,js±sid and
fs+sid ,s−s jdg=di,js0sid. Although the atoms do not interact di-
rectly with each other and the coherent field is assumed un-
depleted, they become correlated to each other only due to
their coupling with the squeezed vacuum field.

In the mean-field approximation and in a rotating frame at
frequencyv, the atomic system is described by a one-body
master equation, obtained by calculating the trace over the
squeezed vacuum degrees of freedom(see the Appendix for
a detailed derivation),

drstd
dt

=
1

i
fHeff,rstdg − HFeiueietSg

2
− inD2 sinhr

3coshrs+rs+ + H.c.G +
g

2
sinh2 rss−s+r − 2s+rs−

+ rs−s+d +
g

2
cosh2 rss+s−r − 2s−rs+ + rs+s−dJ . s3d

The term in braces represents the phase-sensitive damping
due to the squeezed vacuum,r is the squeezing parameter,
e=2sv−vsd is twice the detuning between input pump and
squeezed vacuum fields,g is the damping constant, andu is
a phase reference of the squeezed vacuum field.Heff is an
effective nonlinear mean-field single-particle Hamiltonian,
describing the motion of one atom in the sample,

Heff =
1

2
sd − n cosh 2rds0 + mHFEin +

N − 1

m
S− n + i

g

2
D

3ks+lGs− + H.c.J , s4d

where ks±l=Trsrs±d, d=v0−v is the detuning between
atomic transition and pump field frequencies, andn is the
dynamic frequency shift; being much smaller thang, it will

be neglected[19]. From second term in the Hamiltonian(4)
we see that effectively a single generic atom is excited by the
input field Ein plus a polarization field,

epolstd =
N − 1

m
S− n + i

g

2
Dks+l, s5d

due to the othersN−1d atoms.
The equations of motion for the atomic operators’ mean

values are

kṡ0l = 2imfeTstdks−l − eT
* stdks−l*g − gsks0lcosh 2r + 1d,

s6d

kṡ−l = − iVks−l + imeT
* stdks0l − Qeietks−l* , s7d

where kṡ+l=kṡ−l*, V;d− isg /2dcosh 2r, Q
;sg /2deiu sinh 2r, and

eTstd = Ein + epolstd s8d

is the total effective field experienced by a single atom. The
second term inV is due to the commutation relations in the
Heisenberg equations. Furthermore, in the induced atomic
polarization field,

epolstd ; Lkṡ−l*std/m SL = i
g

2
NeffD , s9d

we have assumed an effective number of atomsNeff contrib-
uting effectively to this fieldsNeff!Nd.

In the following section we obtain the stationary effective
field amplitudeeTstd as a function ofEin and system param-
eters.

III. STATIONARY SOLUTIONS

For no detuning between vacuum squeezed and pump
fields, e=0, there is no explicit time dependence in Eq.(7),
and the equilibrium solutionsskṡ−l=0,kṡ0l=0d ks−leq and
ks0leq are easily obtained as functions of the output fieldeT,
which, together with Eq.(8), enables to recover the well-
known result[8,10],

Ein = eT −
gmLsVeT − iQ*eT

* d
4m2VIueTu2 − 2m2fQeT

2 + Q*seT
* d2g − gfuVu2 − uQu2gcosh 2r

. s10d

The bistable behavior becomes evident from plotted output
field amplitude modulusueTu as a function of the same for the
pump fielduEinu, as displayed in Fig. 2. Above a critical value
of Neff an S-shaped curve is produced, meaning that there
are two possible output fields for a single input one. More-

over, theS-shaped curve is quite sensible to the phase dif-
ference between input and squeezed vacuum fields, as
stressed in Refs.[8,10].

We are interested in the situationeÞ0, when Eqs.(6) and
(7) are no more autonomous, so the asymptotic stationary
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solutions are periodical time-dependent series,

ks−l = o
n=−`

`

ane
inet, ks0l = o

n=−`

`

bne
inet, s11d

whose coefficients can be determined from Eqs.(6) and(7).
The output field amplitude is also expanded as an infinite
series,

eTstd = o
n=−`

`

Ene
inet. s12d

In a nonrotating frame, the total output field amplitude is a
superposition of an infinite and countable number of modes,

ETstd = eTstde−ivt = E0e
−ivt + E+1e

−isv−edt + E−1e
−isv+edt + ¯ ,

s13d

at frequenciesvn=v±ne for n=0,1,2, . . ..
Inserting the series(11) and(12) into Eqs.(6) and(7) and

equating coefficients with same time-dependent factoreinet,
one gets the following equations in termsan andbn:

Ein = E0 − La0
* for n = 0, s14d

En = La−n
* for n Þ 0. s15d

isne + Vdan + Qa−n+1
* = i o

m=−`

`

Em−n
* bm, s16d

sine + g cosh 2rdbn = 2i o
m=−`

`

sEn−mam − Em−n
* a−m

* d − gdn,0.

s17d

After a lengthy but straightforward algebraic manipulation of
Eqs. (15)–(17), one obtains an equation involving only the
coefficientsan and the central output field amplitudeE0,

Gnsedan + Fnseda−n
* + Qa−n+1

* + i
Eo

*

cosh 2r
dn,0

= − 2 o
lsÞnd

H Eo
*

Ynsed
fLal−n

* al − L*an−la−l
* g +

L*

Ylsed
fEoan−lan

− Eo
*an−la−n

* g + o
msÞnd

1

Ymsed
fuLu2an−mal−nal

− sL*d2an−man−la−l
* gJ , s18d

where

Gnsed = iFne + V +
gL*s1 − dn,0d

Y0sed G + 2
uEou2

Ynsed
, s19d

Fnsed = − 2
sE0

*d2

Ynsed
, s20d

and

Ynsed = ine + g cosh 2r . s21d

On the left-hand side(LHS) of Eq. (18) Neff enters only in
Gnsed, while on right-hand side(RHS) it enters the terms
involving the products ofan’s. For field intensities of side-
band modes much weaker than the central mode, we neglect
the nonlinear terms on the RHS of Eq.(18). This allows us to
rewrite the LHS in terms of a finite difference equation for
an,

Bnsedan + Cnsedan+1 + Dnsedan−1 = E0seddn,0 + H1seddn,1,

s22d

where

Bnsed = Gnsed −
FnsedF−n

* sed
G−n

* sed
−

uQu2

G−n+1
* sed

, s23d

Cnsed = −
Q*Fnsed
G−n

* sed
, s24d

Dnsed = −
QF−n+1

* sed
G−n+1

* sed
, s25d

Ensed = −
i

cosh 2r
FEoFnsed

G−n
* sed

+ Eo
*G , s26d

Hnsed = − i
QEo

G−n+1
* sedcosh 2r

. s27d

Even in this very linear approximation then dependence
in the coefficients(23)–(27) does not allow obtaining an ex-
act closed solution to Eq.(22) for eÞ0. In the present analy-
sis, we are going to determine only the first three sideband
coefficientsa0 anda±1. From Eq.(22) one gets the following
system of equations:

FIG. 2. Output vs input field amplitudes. Sensitivity to the phase
u is manifest.
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B0a0 + C0a1 + D0a−1 = E0,

B1a1 + C1a2 + D1a0 = H1,

B−1a−1 + C−1a0 + D−1a−2 = 0, s28d

which is not closed becausea0 and a±1 are coupled toa±2
that, by their turn, are coupled to higher-order coefficients.
Instead of simply disregardinga2 and a−2 in Eqs. (28), we
consider a better approximation by estimating them from
truncated continued fractions. Setting

xn ;
an

an−1
, y−n ;

a−sn+1d

a−n
, s29d

for an−1Þ0,a−nÞ0, andnÞ0,1, we can write Eq.(22) as
two equations,

xn =
− Dn

Bn + Cnxn+1
, n Þ 0,1, s30d

y−n =
− C−sn+1d

B−sn+1d + D−sn+1dy−sn+1d
, s31d

for positive integersn. For n=2 in Eq.(30), n=1 in Eq.(31)
and truncation of the continued fractions, up to a second-
order iteration, yields(a higher-order iteration does not affect
significantly the result)

a2

a1
= x2

s2d = −
D2

B2 −
C2D3

B3 −
C3D4

B4

, s32d

a−2

a−1
= y−1

s2d = −
C−2

B−2 −
D−2C−3

B−3 −
D−3C−4

B−4

. s33d

Substitutinga2=x2
s2da1, a−2=y−1

s2da−1, we get the coefficients

a0 =

E0 −
C0H1

B1 + C1x2
s2d

B0 −
D0C−1

B−1 + D−1y−1
s2d −

C0D1

B1 + C1x2
s2d

, s34d

a1 =
H1 − D1a0

B1 + C1x2
s2d , a−1 = −

C−1a0

B−1 + D−1y−1
s2d . s35d

IV. RESULTS AND CONCLUSIONS

Using the solutions for the amplitudesa0 and a±1, Eqs.
(34) and (35), we can analyze the functional dependence of
the output fieldsE0 andE± as a function of the input fieldEin
in modulus. To simplify the illustration of the bistable behav-
ior, we assumeu being the phase difference between pump
and squeezed input fields. The output field amplitudesuE0u,

uE+1u= uLa−1
* u, and uE−1u= uLa1

* u are plotted as functions ofEin
in Figs. 3(a)–3(c), respectively. The parameters are set as
Neff=101,e /g=2.0, r =0.5,d=0, andu=p. We verified that
the OB loses the phase sensitivity, varying more significantly
with r, because the coefficientsa0, a1, anda−1 now depend
on uQu2, instead ofQ. Although the sideband field intensities
are much weaker than the central one, they also display a
bistable behavior, with turning points occurring at the same
input field intensity. The dashed lines correspond to the un-
stable branches; the arrows indicate the path followed by the
output field variation as the input is increased or decreased.
The bistable behavior of the central mode[Fig. 3(a)] is simi-
lar to the case wheree=0; however, the sideband modesE1
[Fig. 3(b)] and E−1 [Fig. 3(c)] that are, respectively, red
shifted and blue shifted with respect to the central mode

FIG. 3. Output modes vs input fieldEin. Dashed lines are for the
unstable branches. Arrows indicate the direction of variation of out-
put amplitudes with increasing(decreasing) Ein. (a) Central mode
amplitudeE0. The jumps goes fromsad→ sbd fscd→ sddg increasing
[decreasing] the output amplitude.(b) red-shifted sideband mode
E+1. The jumps are in same direction as in(a). (c) Blue-shifted
sideband modeE−1. The jump goes fromsad→ sbd fscd→ sddg with
decreasing[increasing] amplitude of the output field. Both jumps
occur in direction opposite to those in(a) and (b). The parameters
are set asNeff=101,e /g=2.0, r =0.5, d=0, andu=p.
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show some qualitative differences. Differently from the cen-
tral mode, at strong pump amplitude modulus, the sideband
modes show a monotonic decrease in the amplitude modulus
at the output. The sideband modes also present the following
different features in the switchings, or jumps from low to
high amplitude(and vice versa) in comparison with the cen-
tral mode.

(i) By increasing the input field intensity thesad→ sbd
switch is from low to high amplitude in modesE0 andE+1,
see Figs. 3(a) and 3(b); however it is inverted in modeE−1,
switching from high to low amplitude, see Fig. 3(c).

(ii ) By reverting the path, going from high to low input
intensity the switches occur from high to low output ampli-
tudes,scd→ sdd, in modesE0 and E+1, Figs. 3(a) and 3(b),
while it is from low to high in modeE−1. Essentially, the
sideband modes show inverse behavior, with respect to the
switchings.

(iii ) In comparison to the central mode, the sidebands
present a higher contrast in the jumps from higher to lower
amplitude.

A possible application of the above results could be the
simultaneous transmission of a message by the output field
through three different channels(the three modes), where the
triplicated information could be useful for error control. Ad-
ditionally, the codification in the blue-shifted sideband
s0,1,1,0,0,1, . . .d is the inverse of that in the other mode
s1,0,0,1,1,0, . . .d, so the sideband modes could transmit in-
formation as the codification occurring in the DNA double-
strand macromolecule, where one strand sequence is the in-
verse of the other.

In conclusion, we have shown that the frequency detuning
between input pump and squeezed vacuum fields, interacting
with two-level atoms, gives rise to a multiple-mode output
field with frequencies that are multiples ofe. By analyzing
the closest(red shifted and blue shifted) sideband modes to
the central one, we did verify different features in the
bistable behavior. Although the obtention of pump and
squeezed fields with controllable phase difference could be,
at the moment, experimentally difficult, because both should
derive from a common source, we believe that the reported
physical effects could be useful in optical devices and in the
transmission of information.
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APPENDIX: MASTER EQUATION

In a referential frame rotating at frequenciesv−vk the
Hamiltonian(1) becomes

H = H0S+ Vstd, sA1d

where

H0S=
d

2
S0 + F*S− + FS+, sA2d

the collective operators are defined in Eq.(2) d=v−v0, and

Vstd = o
k

sgkbkS+eisv−vkdt + H.c.d. sA3d

Following the usual procedure[19], by eliminating the
reservoir degrees of freedom one obtains a premaster equa-
tion for the system density operatorrstd,

drstd
dt

=
1

i
fH0S,rstdg −E

0

t

dt8 TrR†Vstd,fVst8d,rst8drRg‡,

sA4d

whererR is the state of the reservoir at thermal equilibrium.
Substituting the interaction(A3) in Eq. (A4) one gets

drstd
dt

= − ifH0S,rstdg −E
0

t

dt8hj11st,t8d†S+,fS+,rst8dg‡

+ j12
* st,t8dfS−,S+rst8dg sA5d

+ j21st,t8dfS+,S−rst8dg + H.c.j. sA6d

The coefficientsji jst ,t8d are characterized by the kind of res-
ervoir,

E
0

t

dt8j11st,t8drst8d

=E
0

t

dt8 o
v8,v9

gv8gv9e
isv−v8dt+isv−v9dt8kbv8bv9lRrst8d,

sA7d

E
0

t

dt8j12st,t8drst8d

=E
0

t

dt8 o
v8,v9

gv8
* gv9e

−isv−v8dt+isv−v9dt8kbv8
† bv9lRrst8d,

sA8d

E
0

t

dt8j21st,t8drst8d

=E
0

t

dt8 o
v8,v9

gv8gv9
* eisv−v8dt−isv−v9dt8kbv8bv9

† lRrst8d,

sA9d

wherekbv8bv9lR=TrRsrRbv8bv9d. For a squeezed reservoir
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kbv8bv9lR = − eiu sinh r coshrd fv9 − s2vs − v8dg,

sA10d

kbv8
† bv9lR = sinh2 r dsv8 − v9d,

kbv8bv9
† lR = cosh2 r dsv8 − v9d, sA11d

wherer is the squeeze parameter,u is the reference phase of
the squeezed field, andvs is the central resonant frequency
of the squeezing device. Going from sums to integrals in
Eqs.(A7)–(A9) and using expressions(A10) and(A11), one
gets, for example,

E
0

t

dt8j11st,t8drst8d = − eiu sinh r coshrE
0

`

dv8Dsv8dgsv8d

3gs2vs − v8deisv−v8dt

3E
0

t

dt8eisv−2vs+v8dt8rst8d,

whereDsvd is the reservoir density of modes. Making the
change t− t8=t and invoking the Markov approximation
rst−td.rstd we obtain

E
0

t

dte−isv−2vs+v8dtrst − td > E
0

`

dte−isv−2vs+v8dtrstd

= rstdFpdsv − 2vs + v8d

− iP
1

v − 2vs + v8
G ,

and

E
0

t

dt8j11st,t8drst8d > j̃11stdrstd

with

j̃11std = − eiu sinh r coshre2isv−vsdtFpDs2vs − vdgs2vs

− vdgsvd − iPE
0

`

dv8
Dsv8dgsv8dgs2vs − v8d

v − 2vs + v8 G ,

where P stands for the Cauchy principal value. Foruvs−vu
!v the two terms in the brackets are assumed being ap-
proximately constant, so we define the damping constantg
and the dynamical frequency shiftn:

g ; 2pDg2, n ; PE
0

`

dv8
Dsv8dgsv8dgs2vs − v8d

v − 2vs + v8
,

therefore

j̃11std = − eiu sinh r coshr e2isv−vsdtSg

2
− inD .

Following the same procedure one obtains the other coeffi-
cients

j̃12 = Sg

2
− inDsinh2 r, j̃21 = Sg

2
− inDcosh2 r ,

which are time independent.
Thus the master equation for anN-atom system becomes

drNstd
dt

=
1

i
fH0S

sNd,rNstdg − hj̃11std†S+,fS+,rNstdg‡

+ j̃12
* fS−,S+rNstdg + j̃21fS+,S−rNstdg + H.c.j,

sA12d

while for a system ofp-atom system,p,N, it is

drpstd
dt

= − ifH0S
spd,rpstdg −Hj̃11std o

i,j=1

p

†s+sid,fs+s jd,rpstdg‡

+ j̃12
* So

i,j=1

p

fs−sid,s+s jdrpstdg + sN − pd

3o
i=1

p

fs−sid,Trp+1s+sp + 1drp+1stdgD
+ j̃21So

i,j=1

p

fs+sid,s−s jdrpstdg + sN − pd

3o
i=1

p

fs+sid,Trp+1s−sp + 1drp+1stdgD + H.c.J .

sA13d

For a dilute system the atomic correlations may be disre-
garded, so we shall consider a single generic atomsp=1d
moving in a mean field produced by all the others, with the
two-atom density operator factorized asr2<r1 ^ r1. In this
approximation Eq.(A13) reduces to

dr1std
dt

=
1

i
fH0S

s1d,r1stdg − hj̃11std†s+,fs+,r1stdg‡

+ j̃12
*
„fs−,s+r1stdg + sN − 1dks+lfs−,r1stdg…

+ j̃21„fs+,s−r1stdg + sN − 1dks−lfs+,r1stdg… + H.c.j,

sA14d

with the single-particle Hamiltonian

H0S
s1d =

d

2
s0 + F*s− + Fs+ sA15d

and ks±l=Trss±r1d is the mean value. Rearranging the terms
in Eq. (A14) and dropping the subscript 1 inr1 we can write
Eq. (A14) as
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drstd
dt

= − ifHeff,rstdg − H2Feiue2isv−vsdtSg

2
− inDsinh r

3coshrs+rs+ + H.c.G +
g

2
sinh2 rss−s+r − 2s+rs−

+ rs−s+d +
g

2
cosh2 rss+s−r − 2s−rs+ + rs+s−dJ .

sA16d

The single-particle effective Hamiltonian in Eq.(16) is given
by

Heff =
1

2
sd − n cosh 2rds0 + sF*s− + Fs+d

+ sN − 1dFS− n + i
g

2
Dks+ls− + H.c.G . sA17d

It contains nonlinear terms due to the mean-field effect of the
remainingN−1 atoms. The frequency shiftn cosh 2r is due
to the interaction with the reservoir. The second term in the
RHS of Eq.(A16) stands for the dissipative part due to the
decay in the squeezed vacuum[19]. By settingv=vs, iden-
tifying sinh r coshr →m̄, sinh2 r → n̄, and cosh2 r → n̄+1,
the dissipative term of the master equation takes the same
form as considered in Ref.[8].
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