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Optical bistability in sideband output modes induced by a squeezed vacuum
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We consideiN two-level atoms in a ring cavity interacting with a broadband squeezed vacuum centered at
frequencyws and an input monochromatic driving field at frequercyWe show that, besides the central mode
(at w), an infinity of sideband modeare produced at the output, with frequencies shifted feolyy multiples
of 2(w—wg). We analyze the optical bistability of the two nearest sideband modes, red shifted and blue shifted.
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[. INTRODUCTION body master equation and apply the mean-field approxima-

Optical bistability (OB) has been the subject of intense tion for a dilute atomic gas.

research since its prediction and observation in the 1970s

[1-3]. In Ref.[4] a model consisting of a system of homo- Il. MODEL

geneously broadened two-level atoms driven by a coherent

resonant field proved to give a successful description of OB. e consider an input pump coherent signal of undepleted
Due to its potential applications in optical devices there haveyjectric-field amplitude E,, and a broadband squeezed
been a lot of efforts to observe and understand the phenor%cuum, W|th frequency distribution Centeredxgt interact_

enon of optical bistability in two-level aton{$-18. ing with N two-level atoms. The Hamiltonian of the system
The effects of the squeezed vacuum field on the absorps given by

tive OB for a system of two-level atoms in a ring cavisee

Fig. 1), with different relaxation rates of the in-quadrature 1

and in-phase components, were originally calculated in Ref. -z * ot Siot A

[8]. The authors verified that the squeezed vacuum strongly H 2(1)0SO+ Fevs +Fes,+ zk: Db

affects the OB through the increase of the atomic decay time .

and through the introduction of a relative phase between the + > (OGS + gblS) (1)
input pumping and squeezed vacuum fields. Although sev- k

eral aspects of squeezed vacuum effects on OB have been

considered9-12, no explicit calculations were done, to our (we have seti=1), where the first term stands for the two-
knowledge, to the situation where the frequencies of the infeve| atomic Systemtransition frequencyuo)' the two fol-

put fields, pump(w), and broadband squeezed vacu@ar-  |owing terms represent the interaction between the atoms and
rier wg) are detuned. In Ref§9-12, exact resonance be- the input pump field amplitudg;,, F=xE;, (« is the atomic
tween pump and squeezed field frequenciessws, is  dipole momeny, the fourth term corresponds to the squeezed
assumed in order to maximize the squeezing effects. Non&acuum modes, and the last one is for the interaction be-
theless, consideration of detuning# ws, is the source of tween atoms and squeezed vacuum field. Opemqub
interesting physics as will be shown in this paper. Here, weannihilates(creates squeezed field quanta of frequeney,

analyze the effects of that detuning over the OB in the outpugndg, is the coupling constant. The atomic collective opera-
field, produced by a system of two-level atoms in a cavity.tors are

We show that, besides the central modeathe output field

contains an infinity of sideband modes at frequencies shifted E
from o by multiples of Zw-wy). We analyze the OB of the sq
two nearest sideband modes, red shifted and blue shifted. Ei,, Eout
The paper is organized as follows: In Sec. Il we introduce > TP —
the model we use and derive the system dynamical equa- M.| Cellwith 2-level atoms | M
tions. In Sec. Il we obtain the stationary solutions for the ‘A Y 2
output field. In Sec. IV we discuss the results and present our
conclusions. Finally, in the Appendix we derive the many- P
M, M,
*Email address: Ipmaia@ifsc.sc.usp.br FIG. 1. Schematic ring cavity withN two-level atoms in a cell.
"Email address: gap@df.ufscar.br Input signal at the left, output at the right, and injection of squeezed
*Email address: salomon@df.ufscar.br vacuum from aboveM; to M, specify the mirrors.
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be neglected19]. From second term in the Hamiltonig#)
we see that effectively a single generic atom is excited by the
input field E;, plus a polarization field,

wheresy(i) ands.(i) are single-particle operators satisfying
the commutation relations[sy(i),s.(j)]=+26 ;s.(i) and
[s:(i),s.(j)]= 6 jso(i). Although the atoms do not interact di-
rectly with each other and the coherent field is assumed urdue to the othefN—-1) atoms.
depleted, they become correlated to each other only due to The equations of motion for the atomic operators’ mean
their coupling with the squeezed vacuum field. values are

In the mean-field approximation and in a rotating frame at S . x
frequencyw, the atomic system is described by a one-body (S = 2ipl er(t){s.) ~ ex(t)(s-) ] - ¥(spicosh 2 + 1),
master equation, obtained by calculating the trace over the (6)
squeezed vacuum degrees of freedeee the Appendix for

epoft) = NT'l(— - i§)<s+>, (5)

a detailed derivation (5)=—i(s) +iuert)(sy) - QeNs)", (7)

dpo(t) 1 - . . h S, )=(S_)*, O=6-i(v/2 h 2,
% = i—[Heff,p(t)] - { [e“’e“‘(% - Iv)Z sinhr va(i;(az)ég Sﬁ? 2r<,S;>nd I(v/2)cos Q
er(t) = Ein + €poi(t) (8)

xcoshrs, ps, + H.c.] + sint? r(s.s.p — 2s,pS-
2 is the total effective field experienced by a single atom. The
second term i) is due to the commutation relations in the
Heisenberg equations. Furthermore, in the induced atomic
polarization field,
The term in braces represents the phase-sensitive damping
due to the squeezed vacuumis the squeezing parameter,
e=2(w—wy) is twice the detuning between input pump and
squeezed vacuum fields,is the damping constant, argis
a phase reference of the squeezed vacuum figlgd.is an
effective nonlinear mean-field single-particle Hamiltonian,
describing the motion of one atom in the sample,

|

+ps.s,) + gcosﬁ r(s,s.p—2s_ps, + p&&)} )

Y
= |§Neff> , (9)
we have assumed an effective number of atdins contrib-
uting effectively to this field Ngi << N).
In the following section we obtain the stationary effective
field amplitudee(t) as a function ofg;, and system param-
eters.

pollt) = A (0] (A

Y

2

1

Herr=5(0- v cosh 2)so+ ”“{ [Ei” ¥ T lll. STATIONARY SOLUTIONS

For no detuning between vacuum squeezed and pump
fields, e=0, there is no explicit time dependence in Ed),
and the equilibrium solution$(s_)=0,(s;)=0) (s_)¢% and
(s9)¢9 are easily obtained as functions of the output field
which, together with Eq(8), enables to recover the well-
known result[8,10],

><<s+>]s_+ H.c.}, (4)
where (s,)=Tr(ps,), d=wg—w is the detuning between
atomic transition and pump field frequencies, ands the
dynamic frequency shift; being much smaller thgnit will

~ yuA(Qer—iQ ep)
4% |er]? - 2u Qe + Q' (1)1 - M[Q)? - |Q|Icosh 2

En=er (10)

The bistable behavior becomes evident from plotted outpubver, theS-shaped curve is quite sensible to the phase dif-

field amplitude moduluge;| as a function of the same for the ference between input and squeezed vacuum fields, as
pump field|E;,|, as displayed in Fig. 2. Above a critical value stressed in Refg8,10].

of Nefs an S-shaped curve is produced, meaning that there We are interested in the situatie 0, when Eqs(6) and

are two possible output fields for a single input one. More<{7) are no more autonomous, so the asymptotic stationary
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25 *
/] . « .
20l d Gr(e)a,+Fy(e)a, + Qay + lcosﬁ%o
__15} Eo i N
w =-2> °[Aa_a - Aaa, ]+ —I[Eanma
10l 1 N { Yn(e) a| na{ an-| | Y|(€) 0n-1ay
5 [ x *
- 5oan—la—n] + 2 Y, ( [|A|2an—ma{—nai
oL > m(#n) Y'm €)
E 25
" - (A*)zan—man—lail] ’ (18)
FIG. 2. Output vs input field amplitudes. Sensitivity to the phase
6 is manifest. where
i iodical ti i yA (1= 6,0 |Eol?
solutions are periodical time-dependent series, Ghle)=i|ne+Q+ @ O 2Y o (19)
o\€ nl€
()= 2 ad", (s9= 2 be", (11) (&)
=—00 =—00 F == 2 y 20
n n n(E) Yn(e) (20
whose coefficients can be determined from Egs.and(7). and
The output field amplitude is also expanded as an infinite Y.(€)=ine+y cosh 21)
n - .

series,
On the left-hand sidéLHS) of Eq. (18) Ng¢s enters only in

* _ G (e), while on right-hand sid¢éRHS) it enters the terms
e = X, £ (12)  involving the products of,’s. For field intensities of side-
n=—o0 band modes much weaker than the central mode, we neglect

the nonlinear terms on the RHS of E48). This allows us to
In a nonrotating frame, the total output field amplitude is arewrite the LHS in terms of a finite difference equation for
superposition of an infinite and countable number of modesa,,

E(t) = e—r(t)e_i“’t = Eoe_i“’t + 8+1e_i(w‘5)t + g_le—i(w+e)t oo Bn(€)a, + Cn(€)an1 + Dp(€)a,-1 = Eg(€) dno + Hil€) 6, 1,
(13) (22
where
at frequenciess,=wxne for n=0,1,2,.... E(OF 2
Inserting the seriegl1) and(12) into Egs.(6) and(7) and B,(¢) = G, (e) - ”(63 () _ *|Q| , (23)
equating coefficients with same time-dependent faeftst, G_,(e) G_pua(e)
one gets the following equations in termsandb,;:
_ Q* Fn(f)
En=E—-Aa, forn=0, (14) Cle) = G (¢ (24)
E,=Aa., forn#0. (15 Dn(6)=—QF++1(E), (25)
G—n+1(6)
. * . - g i gan(f) *
i(ne+Q)a,+Qa_,. =i & bm, 16 E.(e) =- - +&, |, 26
(ne+ Mg+ Qs Ex e (18 e COSh2|:G_n(6) ° (26
E
c R Hoe)=—i———— Qe : (27)
(ine+y cosh 2)b,=2i > (En-mm— Emenom) = Yono- G_p.1(e)cosh 2
m=—%

Even in this very linear approximation thredependence
(17) in the coefficientg23)—«(27) does not allow obtaining an ex-
act closed solution to E@22) for e# 0. In the present analy-
After a lengthy but straightforward algebraic manipulation ofsis, we are going to determine only the first three sideband
Egs. (15—17), one obtains an equation involving only the coefficientsa; anda,;. From Eq.(22) one gets the following
coefficientsa,, and the central output field amplituda, system of equations:
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Boag + Coay + D1 = Ey,
Bja; + Cia; + Diag=Hy,

Bja;+Cja+Dja,=0, (28)

which is not closed becausg anda,; are coupled ta,,

that, by their turn, are coupled to higher-order coefficients.

Instead of simply disregarding, anda_, in Egs. (28), we

consider a better approximation by estimating them from

truncated continued fractions. Setting

a, A (n+1)
Xn =, y—n = ’
-1 an
for a1 #0,a.,#0, andn#0,1, we can write Eq(22) as
two equations,

(29)

n

P O s —
Bn + Cnxn+1

, n#0,1, (30)

= C(n+p)

Y-n (31

- B—(n+l) + D—(n+1)Y—(n+l) ,
for positive integers. Forn=2 in Eq.(30), n=1 in Eq.(31)

and truncation of the continued fractions, up to a second- w
order iteration, yieldsa higher-order iteration does not affect

significantly the resujt

& oo P2 (32)
a ’ CD;
B- ———
3 _B4
2oyE=- = . (33)
&l _l B _ D_ZC_3
-2 D_sC_,
Bg— ———
By
Substitutingazzx(zz)al, aLZ:y(_Zl)a_l, we get the coefficients
__ Gt
0 (2)
B, + Cyx
3= e . (39
_ DCy  CoDy
° B.,+D_yd By+Cyxy
_ Hi-Djag _ C1a
al—B +C (2), ELJ_—_B +D (2) (35)
110X -1+ Dyl

IV. RESULTS AND CONCLUSIONS
Using the solutions for the amplitudeg and a.,, Egs.
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FIG. 3. Output modes vs input field,. Dashed lines are for the
unstable branches. Arrows indicate the direction of variation of out-
put amplitudes with increasin@ecreasingE;,. (a) Central mode
amplitude&,. The jumps goes fronta) — (b) [(c) — (d)] increasing
[decreasing the output amplitude(b) red-shifted sideband mode
&+1. The jumps are in same direction as (@. (c) Blue-shifted
sideband modé€_;. The jump goes fronta) — (b) [(c) — (d)] with
decreasindincreasing amplitude of the output field. Both jumps
occur in direction opposite to those (a) and(b). The parameters
are set adNg;=101, e/ y=2.0,r=0.5, =0, andf=1.

|€.1]=|Aa,], and|E_,|=|Aa}| are plotted as functions d&,

in Figs. 3a—-3(c), respectively. The parameters are set as
Ness=101, e/ y=2.0,r=0.5, 6=0, andd==. We verified that

the OB loses the phase sensitivity, varying more significantly
with r, because the coefficiengs, a;, anda_, now depend
on|Q|?, instead ofQ. Although the sideband field intensities
are much weaker than the central one, they also display a
bistable behavior, with turning points occurring at the same
input field intensity. The dashed lines correspond to the un-
stable branches; the arrows indicate the path followed by the

(34) and(35), we can analyze the functional dependence ofoutput field variation as the input is increased or decreased.

the output field€, and&. as a function of the input fiell;,

The bistable behavior of the central mddiég. 3a)] is simi-

in modulus. To simplify the illustration of the bistable behav- lar to the case where=0; however, the sideband modés
ior, we assumé being the phase difference between pump[Fig. 3b)] and £_; [Fig. 3(c)] that are, respectively, red

and squeezed input fields. The output field amplituidgs

shifted and blue shifted with respect to the central mode
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show some qualitative differences. Differently from the cen- S )

tral mode, at strong pump amplitude modulus, the sideband Hos= S+ F S +FS., (A2)
modes show a monotonic decrease in the amplitude modulus
at the output. The sideband modes also present the foIIowinﬁl1
different features in the switchings, or jumps from low to
high amplitude(and vice verspin comparison with the cen-

e collective operators are defined in E2) 6=w-wg, and

tral mode. V() = X (g S @ Wi+ H.c). (A3)
(i) By increasing the input field intensity th@)— (b) k
switch is from low to.hlgh amplitude in modeg and &, Following the usual procedurgl9], by eliminating the
see Figs. @) and 3b); however it is inverted in mod€_y,  reservoir degrees of freedom one obtains a premaster equa-
switching from high to low amplitude, see Figc} tion for the system density operatoft),

(i) By reverting the path, going from high to low input
intensity the switches occur from high to low output ampli-

tudes,(c) — (d), in modes&, and &,4, Figs. 3a) and 3b), dp_(t) :} H t f dt’ Tr-IV). TVt ot

while it is from low to high in modef_;. Essentially, the [Hosp(D] - RLVO. V(). p()prll,
sideband modes show inverse behavior, with respect to the (A4)
switchings.

(iii) In comparison to the central mode, the sidebands . . I
present a higher contrast in the jumps from higher to lowevherepr is the state of the reservoir at thermal equilibrium.

amplitude. Substituting the interactio(A3) in Eqg. (A4) one gets
A possible application of the above results could be the
simultaneous transmission of a message by the output field dp(t)
through three different channdlhe three modgswhere the dt
triplicated information could be useful for error control. Ad-
ditionally, the codification in the blue-shifted sideband + &,(L)[S.,Sip(t)] (AS5)
(0,1,1,0,0,1,.).is the inverse of that in the other mode
(1,0,0,1,1,0,.), so the sideband modes could transmit in- , ,
formation as the codification occurring in the DNA double- +E1(LE)[S,Sp(t)] + H.cl.
strand macromolecule, where one strand sequence is the in-
verse of the other. The coeff|C|ent§.§IJ (t,t") are characterized by the kind of res-
In conclusion, we have shown that the frequency detunin@'voir,
between input pump and squeezed vacuum fields, interacting
with two-level atoms, gives rise to a multiple-mode output t
field with frequencies that are multiples ef By analyzing f
the closestred shifted and blue shift¢dideband modes to 0
the central one, we did verify different features in the
bistable behavior. Although the obtention of pump and f
squeezed fields with controllable phase difference could be, 0
at the moment, experimentally difficult, because both should (A7)
derive from a common source, we believe that the reported
physical effects could be useful in optical devices and in the

~i[Hos,p(t)] = Jdt {11t SIS p(t)]]

(A6)

dt’ &14(t,t)p(t")

dt’ 2 gwrgwrre i (Caly <b /b H>Rp(t )

roon
w ,w

transmission of information. t , N
dt’&5(t,t)p(t")
0
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APPENDIX: MASTER EQUATION f 0 dt'Ea(t1)p(t")
In a referential frame rotating at frequencies wy the t B PR
Hamiltonian(1) becomes = fo dt’ > 9,0, e h bt en(t!),
H = Hos+ V1), (A1) (A9)
where where(b, b, r=Trs(prb,/b.). FOr a squeezed reservoir
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— _ Af o " _ 0
(b, b,mr=—¢€?sinhr coshré[w” - 2ws— w')], ~§11(t) — —d%sinhr coshr eZi(w_ws)t(Z _ iv).
(A10) 2

Following the same procedure one obtains the other coeffi-
<bL,bw,,>R: sinft r Sw' — "), cients

c oY _. : R A
<bw/b1;,,>R=COSﬁr 5((0/_(0”), (All) §12—(5—|V>Sln|"F r, fﬂ_-(i‘lV)COSHf,

wherer is the squeeze parametéris the reference phase of which are time independent.
the squeezed field, ang is the central resonant frequency  Thus the master equation for &hkatom system becomes
of the squeezing device. Going from sums to integrals in

Eqgs.(A7)«A9) and using expression#10) and(A11), one don®) _ 1 0 Y
gets, for example, Tt [Hos s on(D)] = {€01(D[S,, [Sh, pn(D)]]
t . - + 84S, Sn]+ & S, S py(D] + H.ch,
f dt’ &,(t,t)p(t") = - € sinhr coshrf do'D(w’)g(w") i N ? N
0 0 (A12)
Xg(2ws— w')e @ ot while for a system op-atom systemp<N, it is
t
1 al (0205t 0"t ’ d (t) . ~ b . .
. fo are P, T2 =~ i[HR.p,(0)] - {gna) 3 [s0)s:0).pp(0)]]
ij=1
where D(w) is the reservoir density of modes. Making the - [ & . .
changet-t'=7 and invoking the Markov approximation +é| 2 [s:0),5:)pp®] + (N - p)
p(t—7)=p(t) we obtain =1
p
t . , ” . , x 2, [s.(i),Tr +1 t
f ezt = f dreo2ust 2 [5-0). Trpes8.(p + ppu )])
0 0 b
= p(t)|:ﬂ-5(w - 20+ ') + 521( iél [s:(1),5-(j)pp(D)] + (N - p)
1 P
- iP—,:| ) XE [5+(i),Trp+15—(p + 1)Pp+1(t)]) +H.c.[.
02wt w i=1
and (A13)
‘ For a dilute system the atomic correlations may be disre-
dt'&,,(t,t)p(t') = & 4(b)p(t garded, so we shall consider a single generic atpml)
Jo fa(tp(t) = £u0p(0) moving in a mean field produced by all the others, with the
two-atom density operator factorized gs~ p; ® p;. In this
with approximation Eq(A13) reduces to
~ ) ) dps(t) 1 ~
£4(t)=—€? sinhr coshrez'(“"“’s)‘l ™D (20— 0)g(20g # = T[Hgls),pl(t)] —{&n®[s:[shp1(D]]
7 D(e)g(e)g(20s~ o) &[S 5] + (N = D(s)[s.,pa(0)])
-w)g(w) - iP| do’ oot o ’ -
0 @TeOsT O + &1([sn,5-p1(D)]+ (N = 1)(s)[s,p2(1)]) + H.c},
(A14)

where P stands for the Cauchy principal value. @ o]
<w the two terms in the brackets are assumed being apyi he single-particle Hamiltonian
proximately constant, so we define the damping consfant

and the dynamical frequency shift 5 X
HiE = SSo+F's +Fs, (A15)
© D ! ! 2 _ !
y=2maDd?, vEPf do’ (@)glw)g( ws, w), _ ,
o 0= 2w+ w and(s,)=Tr(s.p;) is the mean value. Rearranging the terms
in Eqg. (A14) and dropping the subscript 1 jq we can write

therefore Eq. (Al4) as
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dp(t - 1 .
% == i[Hetr, p()] - {Z[e"’ez'(“"“@t(% - iv)sinh r Het= 5(5— v cosh 2)sy+ (F's_+Fs,)

Xcoshrs, ps, + H.c.] + %/sinh2 r(s_s,p — 2s,ps. +(N- 1){(— v+ i%)(a)& + H.c.] . (A17)

N LY R p N It contains nonlinear terms due to the mean-field effect of the
pS-Si) ,C0S r(s,S.p=25.pS. +ps.s) (. remainingN-1 atoms. The frequency shiftcosh 2 is due
(A16) to the interaction with the reservo!r. '.I'he.second term in the
RHS of Eq.(A16) stands for the dissipative part due to the
decay in the squeezed vaculf®]. By settingow=w, iden-
tifying sinhr coshr —m, sintf r—n, and coshr—n+1,
The single-particle effective Hamiltonian in E@.6) is given  the dissipative term of the master equation takes the same
by form as considered in Ref8].
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