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Fontanari et al. introduced �Phys. Rev. Lett. 91, 218101 �2003�� a model for studying Muller’s ratchet
phenomenon in growing asexual populations. They studied two situations, either including a death probability
for each newborn or not, but were able to find analytical �recursive� expressions only in the no-decay case. In
this Brief Report a branching process formalism is used to find recurrence equations that generalize the
analytical results of the original paper besides confirming the interesting effects their simulations revealed.
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It is widely recognized that the rate of deleterious muta-
tions being much higher than that of either reverse or ben-
eficial mutations can be a serious threat to the survival of
populations at the molecular level. About 40 years ago,
Muller conjectured �1� that in such conditions, the mean fit-
ness of finite lineages lacking mechanisms of genetic repair
should decay with time due to the successive loss of the
fittest individuals. This stepwise fluctuation-induced phe-
nomenon is known as Muller’s ratchet �2� and has received
growing attention in recent years. It has been argued to be
responsible for the origin of some diseases, for the fitness
decay in some experiments with micro-organisms and even
for the origin of sex, as summarized in �3,4�, although many
of these claims still lack conclusive evidence.

In contrast to the first studies �5�, recent work on Muller’s
ratchet have focused on models with variable population
size, either under growing conditions �6,7� or mixing growth
with bottlenecks �8,9�. Indeed, this is the realistic condition
that holds both in nature and in controlled experiments �10�,
with exponential growth of micro-organisms and bottleneck
transfers.

Specifically, in �7� Fontanari et al. �henceforth, FCH� in-
troduced a fully stochastic discrete time model for growing
asexual lineages in which each member of the population is
replaced in the next generation by a number k of descendants
distributed according to a Poisson distribution of parameter
�=R, i.e., with probability

p�k;�� = exp�− ��
�k

k!
. �1�

Each newborn acquires a number of new mutations that are
also Poisson distributed but now with mean value U. In ad-
dition, an individual with j mutations has a chance to leave
an offspring only if it survives, which happens with probabil-
ity �1−s� j, where s� �0,1� is a selective coefficient. FCH
focused on finding conditions for the halting of Muller’s
ratchet when the population is founded by a single mutation-
free individual �called master sequence�. They used three
recursion equations to study the neutral case s=0 and re-
curred to simulations in the case of evolution under decay.

The aim of this Brief Report is to show that the theory of
branching stochastic processes, both in its simple �just one

type of individual� and multitype versions, allows a complete
description of FCH’s model, not only recovering their ana-
lytical results in the neutral case in a straightforward way but
also giving expressions valid for the case s�0. In particular,
it is shown that the counterintuitive acceleration of the
ratchet activity with an increase in the selective coefficient
found through simulations in �7� is a real phenomenon and
not an artifact. The theory of branching processes is a veri-
table subject, originally developed by Haldane �11� and
Fisher �12,13� in the birth of the modern population genetics,
and today it is described in many textbooks such as in �14�.
The multitype theory has found a lot of applications in evo-
lutionary dynamics, e.g., �15�.

To start with, we consider the neutral case. Defining
N�k , t� as the probability that the population is composed of
k individuals in generation t, regardless of their mutational
load, FCH found that the generating function g�z , t�
=�k=0

� zkN�k , t� obeys the equation

g�z,t + 1� = g�e−R�1−z�,t� , �2�

with S�t� being the probability that the population is not ex-
tinct at generation t, S�t�=1−g�0, t� and they argued that

S�t+1� = 1 − exp�− RS�t�� . �3�

In a general simple branching process �SBP�, if there is a
single founder and ��z� is the generating function of the
progeny distribution f�k�, ��z�=�k=0

� zNf�k�, then

g�z,t + 1� = g���z�,t� = ��g�z,t�� , �4�

and it is easily seen that Eqs. �2� and �3� are just particular
instances of the above equation in the Poissonian case, f�k�
= p�k ;R�.

It is another standard result in the theory of the SBP that
the mean number of the offspring of an individual being
strictly greater than 1 is a necessary and sufficient condition
for the asymptotic survival probability of the population to
be greater than zero. In the neutral case, neglecting the geno-
type of all individuals is harmless; they can all be considered
equivalent. Thus, the evolution of the system is properly de-
scribed by a SBP, and when s=0, a necessary condition for
the survival of the population is R�1, a result of FCH de-
rived from Eq. �3�.

More results follow from a decomposition theorem �16�
that is essential to this work. Roughly speaking, it states that
if each “object” generated by a Poisson process with mean R
is independently attributed to a class with probability pi, then*lpmaia@ifsc.usp.br
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the number of objects in class i is again Poisson distributed,
with parameter Rpi, and is independent of other classes. This
“allocation” is exactly what mutation does and the classes
are defined by the mutational load.

With e−U being the probability of a perfect replication,
each individual originates an average of Re−U error-free rep-
licas of itself, following a Poissonian SBP. Therefore, if
Re−U�1, the mutation-free subpopulation certainly goes ex-
tinct. Remembering that we are still in the no-decay case,
this argument applies qualitatively to all classes of individu-
als even whether a new class that had just became the least-
loaded one has more than one member at that moment.
Hence, if R�1 but Re−U�1, all classes of sequences have a
finite lifetime and Muller’s ratchet never halts in the surviv-
ing populations. Conversely, if Re−U�1, there is a positive
probability S��� that the least-loaded class survives the ex-
pansion process, given by the asymptotic solution of Eq. �3�
when R is replaced by Re−U. Every time the ratchet clicks is
equivalent to a new start of the process, which is always with
a positive survival probability. Hence, if the population does
not become extinct, some classes will survive indefinitely
and halt the ratchet.

FCH noticed that the criterion they found for the halting
of Muller’s ratchet �U� ln R or, equivalently, Re−U�1� im-
plies that, on average, each master sequence must generate
more than one perfect replica in order for the population to
be viable. However, despite recognizing that criterion as in-
tuitive, they could not predict it in advance. Actually, they
derived it from a recursion for Pn�t�, the probability that at
generation t the minimum number of mutations in the popu-
lation be n, valid only in the neutral case. It turns out to be
the most relevant quantity for the study of Muller’s ratchet
since it reveals the time dependence of the mean number of
mutations of the fittest member of the population. So it is
noteworthy that the theory of a multitype branching process
allowed the finding of the main result of this Brief Report, an
analogous recursion for Pn�t� in the general case s� �0,1�,
which will be discussed from now on. To be honest, there is
an infinite number of types of individuals, since there is no
such thing as a maximal mutational load. But the results
inspire confidence in the adopted approach.

At this point, some remarks on notation are necessary. A
vector u has infinite components and the first index is 0, to
account for the mutation-free class. Explicitly, a phrase such
as “the population is in state k” means that k= �k0 ,k1 , . . .�
and there are kj individuals in class j. It is also convenient to
define u= �u�j� ,u�j��, where u�j�= �u0 , . . . ,uj−1� and u�j�

= �uj ,uj+1 , . . .� for any j�1. The same rules apply to constant
vectors too. So, 0�j� means a vector with just j components,
all null, and despite how close 1�j� appears to be to 1, they
are not the same object, since the first index referred to in 1�j�

is j.
Let f i�k� be the probability of an i individual to generate

offspring k and Ni�k , t� be the probability that the population
is in state k at generation t, given a single founder with i
mutations. The generating functions associated with these
two joint distributions are

�i�z� = �
k

f i�k��
j=0

�

zj
kj , �5�

and

gi�z,t� = �
k

Ni�k,t��
j=0

�

zj
kj , �6�

respectively. The generalization of Eq. �4� to the multitype
setting is

g�z,t� = ��g�z,t − 1�� �7�

when there is only one founder. Thus, to characterize the
population at a given time, whatever the initial condition is,
it is necessary to know its properties in the preceding gen-
eration as if it had originated from all possible types of
founders.

Inquiries about extinction acquire a broader sense in this
case, since now it is possible to talk about the survival of
specific classes inside the community. Let qi�j , t� be the
probability that the smallest index of a populated class at
time t be at least j, given a founder in class i. From Eqs. �6�
and �7�,

q�j,t� = g��0�j�,1�j��,t� = ��q�j,t − 1�� . �8�

It is clear that Pij�t�, the probability distribution of the small-
est index j of a class still alive at t, given a founder in class
i, is given by

Pij�t� = qi�j,t� − qi�j + 1,t� , �9�

and since Pn�t�=P0n�t�, this is all the information needed to
study Muller’s ratchet.

The existence of analytical expressions for the multidi-
mensional generating functions is essential for this proposal
to be useful. At this point, the decomposition theorem of
Poisson processes enters again. It is important to notice that
under decay, each mutant is temporarily allocated on some
class, depending on its mutational load, but after that it may
not survive and thus may be “redirected” to a “sink class”
that plays no role on the dynamics. Therefore, the factor pi
informally introduced in the presentation of the decomposi-
tion theorem must take into account both mutation and the
survival probability, while the number of individuals in any
class still is Poisson distributed with parameter Rpi. For in-
stance, the number of individuals with i mutations directly
descending from a j mutant is given by a Poisson distribution
with mean Rp�i− j ;U��1−s�i. Of course, independence of
classes still holds and this allows a convenient factorization
of the joint distribution f i�k� as the product of Poisson dis-
tributions. Consequently, �i�k� also factorizes �as a product
of Poissonian generating functions�, and after some algebra,
it follows from Eq. �8� that

qi�j,t� = �
k=i

j−1

exp�Rp�k − i;U��1 − s�k�qk�j,t − 1� − 1�� . �10�

The product is finite because qi�j , t�	1 when j� i. Some
time after discovering this result, we were informed that it is
a special case of a general theory developed in �15,17�.
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Nonetheless, its present application to the study of Muller’s
ratchet in FCH’s model is still unreported.

When s=0, qi�j , t� depends only on j− i and Eqs. �9� and
�10� together are equivalent to the recursion for Pn�t� derived
in �7�, as expected. Moreover, under decay, they still can be
iterated easily. As an example, Fig. 1 �similar to Fig. 2 of �7��
illustrates an unexpected phenomenon discovered by FCH; at
a given generation, it is possible that the average mutation
load of the least-loaded class increases if selection gets stron-
ger, R and U kept fixed. Indeed, this effect seems counterin-
tuitive at first. But since fitness is absolute in the model, any
explanation must not rely on the competition in the popula-
tion and the analysis may not be straightforward. It seems
valid for the author to reverse the reasoning; why should an
increase in the intensity of decay always imply a decrease in
the average mutational load of the fittest class in such a com-
plex model, in which fitness is absolute and any change in
parameters affect the probability of extinction? It is impor-
tant to remember that all averages are calculated with prob-
abilities conditioned on the survival of the population.
Maybe the enhanced activity of Muller’s ratchet seen in Fig.
1 is just a consequence of some peculiar dynamics of the
spectrum of the population �regarding the distribution of in-
dividuals among the mutational classes� in some region of
the parameter space. If R is not big and mutation is high
enough, the lower classes contribute mostly to higher ones,
become less populated, and consequently, are more sensible
to fluctuations. This scenery seems appropriate for an abrupt
loss of lower classes and that is exactly what results from an
empirical study of some combinations of parameters, that the
occurrence of the anomalous behavior in Muller’s ratchet is
favored by high mutation rates and low fertility. For instance,
Fig. 2, where the mutation rate is just a bit lower than in Fig.
1, already shows a monotonic response of Muller’s ratchet to
variation in s.

Finally, the SBP theory gives the condition for the halting
of Muller’s ratchet also under decay. The reasoning is analo-
gous to the neutral case. By definition, if the ratchet does not
halt, the minimum number of mutations in the system grows
unrestrictively. In this case, since �1−s� j decreases mono-

tonically to zero with the mutational load, no matter how
small s�0 is, there is a finite time when the minimal muta-
tional load j� is so high that the average number of perfect
replicates of each of the fittest individuals, Re−U�1−s� j�, is
smaller than 1 and even the fittest subpopulation certainly
goes extinct, and obviously extinction is the fate of the whole
population. Thus, no population can stand endless mutation
accumulation, and the ratchet is certainly halted in any in-
definitely surviving lineage. Besides that, Re−U�1 turns out
to be the necessary condition for survival under decay, since
the master class is unaffected by s and performs better than
all other classes in surviving.

Hence, whatever s is, the halting criterion of Muller’s
ratchet is Re−U�1, although it does not assure the survival
of the population. It is noteworthy that this result is a direct
consequence of the basic theory of branching processes. But
this formalism also gives elaborate quantitative tools that
allow a thorough study of models of mutation accumulation
in growing lineages. In particular, any decay law can be ana-
lyzed and the assumptions concerning the asymptotic sur-
vival of individuals with few mutations can now be evalu-
ated at low computational cost.

Besides that, the stochastic dynamics of a growing lineage
described in the present Brief Report, as well as analogous
dynamical solutions recently found for the deterministic be-
havior of infinite populations evolving on multiplicative �18�
and truncated �19� fitness landscapes, may prove useful in
the construction of general theoretical models �an early ex-
ample is �8�� suited for describing populations mixing
growth with bottlenecks, similar to that evolved under the
serial transfer protocol of experimental evolution �10,20�.
These important themes are out of the scope of this Brief
Report and will be discussed elsewhere.

This research was supported by the Brazilian agency
FAPESP and initiated when the author worked at both his
current address and at Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos-SP,
Brazil.
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FIG. 1. Dynamical behavior of the average mutational load of
the least-loaded class for R=2 and U=0.6. At t=15, from top to
bottom, s=0.1, 0.05, 0.03, 0.0, and 0.2, and from this value s in-
creases to 0.7 in steps of 0.1. The anomalous activity of Muller’s
ratchet found by FCH appears clearly. The continuous lines just aid
visualization of the discrete time dynamics.
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FIG. 2. Dynamical behavior of the average mutational load of
the least-loaded class for R=2 and U=0.2. At t=15, from top to
bottom, s=0.0, 0.03, 0.05, and 0.1, and from this value s increases
to 0.7 in steps of 0.1. Here, Muller’s ratchet presents a monotonic
dependence on s. The lines are as in Fig. 1.
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