
PHYSICAL REVIEW E 88, 012712 (2013)

Optimal channel efficiency in a sensory network
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Spontaneous neural activity has been increasingly recognized as a subject of key relevance in neuroscience. It
exhibits nontrivial spatiotemporal structure reflecting the organization of the underlying neural network and has
proved to be closely intertwined with stimulus-induced activity patterns. As an additional contribution in this
regard, we report computational studies that strongly suggest that a stimulus-free feature rules the behavior of
an important psychophysical measure of the sensibility of a sensory system to a stimulus, the so-called dynamic
range. Indeed in this paper we show that the entropy of the distribution of avalanche lifetimes (information
efficiency, since it can be interpreted as the efficiency of the network seen as a communication channel) always
accompanies the dynamic range in the benchmark model for sensory systems. Specifically, by simulating the
Kinouchi-Copelli (KC) model on two broad families of model networks, we generically observed that both
quantities always increase or decrease together as functions of the average branching ratio (the control parameter
of the KC model) and that the information efficiency typically exhibits critical optimization jointly with the
dynamic range (i.e., both quantities are optimized at the same value of that control parameter, that turns out to
be the critical point of a nonequilibrium phase transition). In contrast with the practice of taking power laws to
identify critical points in most studies describing measured neuronal avalanches, we rely on data collapses as
more robust signatures of criticality to claim that critical optimization may happen even when the distribution of
avalanche lifetimes is not a power law, as suggested by a recent experiment. Finally, we note that the entropy
of the size distribution of avalanches (information capacity) does not always follow the dynamic range and the
information efficiency when they are critically optimized, despite being more widely used than the latter to
describe the computational capabilities of a neural network. This strongly suggests that dynamical rules allowing
a proper temporal matching of the states of the interacting neurons is the key for achieving good performance in
information processing, rather than increasing the number of available units.
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I. INTRODUCTION

In the end of the past century appeared the first claims on
the criticality hypothesis, stating that some biological systems
could evolve towards the edge of chaos [1–6], the critical sur-
face separating two phases in an abstract space of parameters.
The heuristic justification for this hypothesis is that adaptation
of biological systems would be guided by selective pressures
favoring the optimization of some key attributes, e.g., the
capacity of sensing environments. No matter how appealing
was the proposal, earlier work [1–3] relied only on simulations
and the lack of experimental validation combined with some
criticisms [7] turned down the theory for some time. However,
captivating researchers on brain dynamics, the idea acquired
a wholly new motivation [8]. Indeed not only new theoretical
evidence of increased computational performance at criticality
showed up recently [9–12], but mainly the observation of
power-law behavior of neuronal avalanches in cortical net-
works both in vitro [13,14] and in vivo [15–17] constituted
stronger-than-ever evidence of the relevance of the edge of
chaos to the operation of biological systems. There was some
debate regarding the proper characterization of the recorded
power laws [18,19] and whether criticality would be the sole
explanation for the observed scale invariance [20], but this
time the criticality hypothesis is standing up to criticism [5,6].
Remarkably, some experiments have explicitly revealed maxi-
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mized quantities as information transmission [13,21], infor-
mation capacity [21], synchronizability [22], and dynamic
range [23] in cortical networks at a critical condition.

The dynamic range is a sensibility measure associated
to the high-slope region of a tuning curve (also response
function, the stimuli-response relationship characterizing a
sensory network), where nearby stimuli can be most easily
discriminated since small changes in stimulus lead to high
changes in the firing response. Theoretical work [11] indicated
that the dynamic range should be maximized in sensory
systems when the topology of the network was set in a
specific condition, critical for the signal propagation among
interacting excitable neurons. A beautiful marriage of theo-
retical prediction with experimental confirmation happened
when an optimal dynamic range was found [23] in cortex
slice cultures with a proper balance between excitatory
and inhibitory interactions achieved through pharmacological
manipulation.

In this study, we employ simulations to show that, when
the Kinouchi-Copelli (KC) model [11] is tuned at the edge of
chaos, the Shannon entropy of its avalanche lifetime statistics
(hereafter information efficiency) is always jointly maximized
with the dynamic range, both in the original [11] random
graph topology and alternatives. We note that the information
capacity (the entropy of avalanche size distribution) does not
always exhibit such a critical optimization. Indeed, we believe
that information efficiency rules the behavior of the dynamic
range and outweighs by far the relevance of information
capacity in determining the information processing properties
of a sensory network. Two previous works discussed critical
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optimization of entropies of avalanches sizes. The first one [24]
was a theoretical study of measures of information propagation
in Boolean networks and the second one was the discovery of
optimal information capacity in critical cortical networks [21].
None of them have raised the possibility that the information
efficiency could be maximized instead of capacity.

II. MODEL

We start giving a concise description of the KC model
[11]: each of the N neurons is a cellular automaton that
can be at states 0 (quiescent or excitable), 1 (excited), or
2, . . . ,m − 1 (refractory states). The neurons are arranged
as a weighted undirected graph with mean degree K . The
sequential transitions 1 → 2, 2 → 3, . . ., m − 2 → m − 1,
and m − 1 → 0 are deterministic. On the other hand, the
transition 0 → 1 happens for neuron k if either (i) a spark
of any of its excited neighbors j reaches it, with probability
pkj drawn from a uniform distribution in [0,pmax], or (ii) if k

gets an external stimulus, modeled by a Poisson process with
rate r , resulting in an excitation probability λ = 1 − exp(r�t)
at each time interval �t . All other transitions are forbidden.

By setting pmax = 2σ/K , the mean number of excitations
an excited neuron could generate in one time step if all its
neighbors were quiescent is σ , namely, the average branching
ratio. Given the fraction of excited nodes ρt at time t , the proper
psychophysical response of the system is the average activity
F = T −1 ∑T

t=1 ρt . Consequently, the response is a function
F = F (r) of the stimulus rate r . The dynamic range � is
defined in decibels as � = 10 log10(r0.9/r0.1), where F (rx) =
Fmin + x[Fmax − Fmin], x ∈ [0,1], Fmax = F (∞) is the sat-
urated response, and Fmin = F (r → 0) is the spontaneous
activity. Kinouchi and Copelli showed that self-sustained
activity is possible if σ is greater than σc = 1 [11], so that
Fmin plays the role of the order parameter in a phase transition
in the neural activity with σ as a control parameter. They have
also found a critical optimization for �.

In [11] the authors studied only the Erdös-Rényi topology
(ERT) with a fixed number NK/2 of connections and focused
on characterizing the maximization of the dynamic range,
as did further works on alternative topologies [25–27]. They
did not dwell on exploring the bursts of activity (avalanches)
generated by their model, although stating that critical net-
works exhibit both large variance of avalanche lifetimes and
a power-law distribution for avalanche sizes with the classical
exponent −3/2 [28,29].

In this work, we study the avalanches exhibited by the KC
model implemented on both the ERT and the Barabási-Albert
[30] topology (BAT). Unless explicitly stated otherwise, the
simulations were performed with N = 105 and K = 10. Given
a randomly generated representant of a topology, with chosen
average connectivity K and average branching ratio σ , we
randomly choose a neuron of the network to be initially
excited, while all others are quiescent and record both the
number s of neurons that get excited due to that single spark
and the number t of consecutive generations the network
remained active. We repeat this procedure a large number of
times in order to get the distributions {ps} and {pt } of the size
and the lifetime of an avalanche, respectively. In this setting,
there is no role at all for a stimulus rate.

III. SIZE AND LIFETIME DISTRIBUTIONS

Figure 1(a) illustrates the critical (at σc = 1) emergence
of power-law scaling in the bursts of activity, ps ∼ s−1.5 and
pt ∼ t−1.9, for the ERT (exponents estimated with standard
techniques [31,32]). Since the ERT allows the propagation of
almost independent branches of activity, this behavior should
be compatible with a branching process [28,29] and it can be
illustrative to understand this phenomenology more deeply in
terms of a stochastic process.

Consider one excited neuron in a network with mean
degree K and N → ∞ in the ERT. All neurons excited by
this active neuron on the ensuing time step are considered
its offspring. Also suppose for simplicity all weights equal
σ/K , accounting for σ as the average number of excitations
generated by this neuron. Then, the probability of having n

new excited neurons is

P (n) =
∞∑

j=n

(
j

n

)
(σ/K)n (1 − σ/K)j−n e−KKj

j !
= e−σ σ n

n!
,

(1)

where we have taken the degree distribution as a Poisson
distribution. This is the offspring distribution, and, as a
fundamental result from branching processes, the average
number of excited neurons (or mean activity) should go
to zero when σ � 1, in accordance with the first results
from Kinouchi and Copelli [11]. Using Eq. (1), we can
show [33] that the cumulative distribution of avalanche

FIG. 1. (Color online) Distributions of (top) burst size and
(bottom) activity lifetimes for (a) Erdös-Rényi and (b) Barabási-
Albert topologies. In (a), power laws emerge for σc = 1 and the
solid lines in the bottom result from the theory of branching process
(see text). In (b), especially in the bottom, huge avalanches become
more frequent when σ = 0.4. We have evidence that this is the critical
condition, despite the lack of a power law (see text).
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size is

P(s) = 1 + σ +
√

(1 + σ )2 − 4σs

2σ
, (2)

which is the cumulative distribution of a power law with
−3/2 exponent when σ = 1 (critical case). For the lifetime
distribution, it is only possible to numerically calculate its
distribution [28,33] and indeed this predicts the solid lines in
the bottom of Fig. 1(a).

In Fig. 1(b) we exhibit the avalanche distributions in a
BAT. It is harder to estimate these distributions and there
is much uncertainty in the size distribution, but the bottom
of Fig. 1(b) shows clearly the presence of a bump in the
lifetime distribution for σ = 0.4 (ps ∼ s−2 and pt ∼ t−2.9 in
the first decades) and strongly suggests power-law behavior
for slightly smaller values of σ . A naı̈ve analysis based on the
criterium of a power law as a signature of critical behavior
would favor the latter against the former, but we remark that
the observation of power laws in the KC model in this topology
demands subsampling to a 2%–10% level (not shown, but see
also [16,34]) and below we will present results supporting the
“bumpy” curve as the critical one. Despite this behavior being
unexpected, such claims have recently started appearing in the
literature, from our original report [35] to later studies [36–38].

We also note that Larremore and collaborators were able
to link their spectral results regarding the phase transition in
the KC model [39,40] to the statistical properties of avalanches
[41], with both numerical and analytical results (they have also
explained the deviation of σc from 1 in alternative topologies).
This was done, however, without considering refractory peri-
ods (i.e., m = 2) and the bumps were not observed. We have
then tested our results in a similar network used by Larremore
et al., the uncorrelated version [42] of the configuration model
[43], and we have found an additional feature: depending on
the length of the refractory period m − 2, the bumps may
vanish and the avalanche lifetime and size distributions may
scale as a pure power law (see Fig. 2). Moreover, bumps in
BAT are never lost, even with m = 2, proving an interplay
between topology and the refractoriness. This is noteworthy,
since it shows that “macroscopic” signatures of the dynamics
on networks, such as our reported bumps, may have their roots
in the intrinsic-local dynamics of the nodes (refractoriness)
and not only in topological-global features of the system
(connectivity patterns), as is widely believed.
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FIG. 2. (Color online) Using the uncorrelated configuration
model [42], we show that bumps may disappear when there are
no refractory states, in agreement with recent work by Larremore
et al. [41]. As we increased the refractoriness (m − 2 is the length of
this period), a bump emerges and become steadily more pronounced
as m grows.

IV. INFORMATION EFFICIENCY

The Shannon entropy H of a distribution {pn},

H ({pn}) = −
∑

n

pn log pn,

is a standard measure of the uncertainty of a stochastic
observable and so it is quite obvious it should be applied to
the analysis of avalanches. We will set n as either s or t to
indicate which distribution we are talking about. In Fig. 3, we
jointly illustrate the behavior of the dynamic range � and of
the entropies as functions of σ , given K and a topology.

It was not surprising to observe in Fig. 3(a) H ({ps}) getting
maximized jointly with � in the ERT, since two previous stud-
ies [21,24], in different contexts, reported such an effect for the
information capacity. Moreover, it seems natural to associate
the dynamic range to those entropies (as measures of the flex-
ibility of the system in dealing with signals), so that heuristi-
cally H ({pt }) should exhibit critical optimization following �.

Thus, since the critical optimization of � in BAT’s has
already been established [25,26], the lack of a corresponding
peak for H ({ps}) in Fig. 3(b) came as a complete surprise.
Later we will discuss how that happens while H ({pt }) and �

keep getting optimized jointly, this time at σ = 0.4.
Is this optimization really critical? As did the authors

of [25], we claim so invoking as first evidence the plot

FIG. 3. (Color online) Dynamic range (�) and entropies of
avalanche size and lifetime distributions as functions of the average
branching ratio σ in (a) Erdös-Rényi and (b) Barabási-Albert
topologies. Concomitant critical optimization emerges clearly in (a),
but only the lifetime entropy gets optimized jointly with � in (b). The
green dashed lines are guides for the eyes. Inset: Fmin vs σ , clearly
indicating the critical value σc ≈ 0.4.
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of the order parameter Fmin of the KC model against the
control parameter σ in the inset of Fig. 3(b). However, our
results suggest σc = 0.4, while σc ≈ 0.5 was estimated in [25].
Despite the much smaller networks simulated in that work,
such a divergence demands an even more stringent analysis
regarding the critical nature of the position of the peaks in this
topology, namely, a tentative of data collapse into a scaling
function. We emphasize we are not going to take the abscissa
of the peak as the location of a critical point a priori, since
there is no support for such a procedure. Quite the opposite,
in [24], for instance, stochasticity makes H ({ps}) exhibit a
peak away from criticality.

We also remark that (i) there is no critical optimization for
BAT’s grown node by node (i.e., the information efficiency
and the dynamic range keep behaving jointly even in such a
“charmless” scenery) and (ii) whatever be the critical point,
it is very clear from Fig. 3(b), mainly from the plot of the
information efficiency H ({pt }), that the joint optimization of
H ({pt }) and � does not happen at the values of σ resembling
power-law behavior in Fig. 1(b) (e.g., σ ≈ 0.36).

Critical optimization. Despite the inset in Fig. 3(b) being a
classical signature of a phase transition, the aforementioned
displacement of the critical point prompted us to perform
a scaling analysis in order to confidently assess the issue
of criticality. Let ρN (t) be the complementary cumulative
distribution function (CDF) of the lifetime of an avalanche
when there are N neurons in the KC model [i.e., ρN (t) is the
probability of the duration of an avalanche surviving for at
least t given a network with N units]. Given a topology and
a value of σ thought to be a critical point, we have looked
for exponents γ and D able to make all the transformed
distributions xγ ρN (x) collapse into a single universal curve
F when plotted against x/ND , regardless the value of N .
Figure 4 illustrates the success of such endeavor, considering
the distributions obtained with σc = 1 in the ERT and σc = 0.4
in the BAT.

There are two more observations supporting our claim of
criticality in the absence of pure power laws in the avalanches
(data not shown). Both preliminary results on the collapse of

FIG. 4. (Color online) Instances of (top) CDF’s for several system
sizes and (bottom) their collapse into a scaling function for both
(a) Erdös-Rényi and (b) Barabási-Albert topologies. To collapse the
CDF’s at the proposed critical conditions, we have fit γER = 0.9,
DER = 0.5, γBA = 1.25, and DBA = 1 (see text). The distributions
in (b) closely resemble the ones presented recently by Dehghani
et al. [44].

avalanche shapes, as advocated by [45] and implemented in
[46], and an analysis of the extinction probability (a branching-
process-like study to be discussed elsewhere) point to σc = 0.4
in the BAT.

We also report complementary observations regarding data
not shown in this paper. In contrast with other contexts
[9,47], our results are qualitatively robust to changes in the
distribution of edge weights (even for constant weights). Most
alternative topologies [48,49] leading to more realistic degree
distributions [50] are qualitatively equivalent to the BAT and
exhibit even more pronounced bumps. In the uncorrelated
configuration model [43], bumps are still present in the
avalanche distributions but both information capacity and
efficiency exhibit critical optimization. This behavior fits in
the phenomenology we describe here, but also suggests that
the existence of degree correlations in the BAT may be the
reason why H ({ps}) does not maximize in that topology.

V. DISCUSSION

Neuroscientists regularly employ the mutual information
as a measure of the statistical dependence between stimulus
and response, taking into account both specificity (change
in stimulus implying change in response) and fidelity (low
variability given a stimulus) of responses. Notwithstanding the
relevance of such studies, indispensable for the comprehension
of neural coding, we remark our aim in this paper is the study
of intrinsic, stimulus-free, behavior of sensory systems rather
than of patterns of response variability. Now it is clear [51,52]
that, instead of being simply “random noise,” this spontaneous
activity is a signature of the organization of neural systems
and may be responsible for a considerable extent of the
variability of many patterns originally believed to represent
exclusively induced responses to environments and/or artificial
stimuli [53–58].

The KC model [11] revealed that the stimulus-dependent
measure � is optimized precisely at σc, a critical point of
the self-sustained activity Fmin, that does not depend at all on
the nature of the stimulus. If not a theoretical artifact, that
phenomenology suggests that generally the behavior of actual
excitable networks (e.g., sensory systems) could be strongly
determined by its stimulus-free properties. Accordingly, an
optimal dynamic range was observed experimentally at a
condition determined in the absence of stimuli [23] and there
is further robust evidence that stimulus-evoked activity is
strongly dependent on the spontaneous (r = 0) firing patterns
in the cortex (see references in [23]). Therefore, despite it
seeming quite plausible per se that the sensibility measured by
the dynamic range gets optimal when signals do not either fade
out fast (subcritical) or frenetically superimpose themselves
(supercritical), there is enough motivation for scrutiny on the
microscopic mechanisms leading to improvements in informa-
tion processing capabilities even in stimulus-free conditions.

We firmly believe to have discovered one such mechanism.
It seems fairly intuitive to expect that a sensory system be more
flexible if it disposes of greater variability of the duration of
the bursts of neural activity it must process. Indeed, the support
of the avalanche lifetime distribution (the interval of lifetimes
with positive probabilities) achieves a maximum jointly with
the dynamic range, while noncritical distributions hold for no
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longer than two decades (see Fig. 1). We have chosen the
information efficiency as the proper measure of that effect
because it takes into account not only the magnitude of the
reportoire of lifetimes but also a balanced utilization [59] of
that resource for information transmission (from the olfactory
bulb to the cortex, for instance).

It is not evident why such arguments are always valid
for the information efficiency but not for the capacity. We
speculate that an explanation must rely on the relationship
between the microstructure of the network (motifs) and the
dynamics of the excitable units. Progress beyond the initial
studies on the synchronizability properties of the KC model
[22,27,60] will be probably achieved by deciphering such a
relationship. As a rule of thumb, greater values of the clustering
coefficient [49] should lead to stronger deviations from the
−3/2 law. It is also worth mentioning that it has already
been suggested [61] that “the lifetime distributions of neuronal
avalanches may carry rich information about the local cortical
circuit structure” and may exhibit consistent deviations from
power-law scaling, while the size distribution would be much
more well behaved. Anyway, despite our praise of the intrinsic
activity, it is definitively worth studying stimuli-dependent
features of excitable networks by information-theoretic tools
like mutual information and transfer entropy.

The notion of criticality without power laws may have
wide implications in the interpretation of observations of
neuronal avalanches. Recent experiments exhibiting critical
optimization [21–23] have described the phase transitions in
terms of a control parameter κ resembling σ but based on
the tacit assumption that neuronal avalanches are pure power
laws. Further investigations are necessary to reveal eventual
consequences of the breakdown of that hypothesis. Likewise,

Ref. [44] employed robust statistical techniques to analyze
neuronal avalanches in vivo and stand up against critical
dynamics. However, the CDF’s they present are very similar
to Fig. 4(b), so that probably their data is ruling out power-law
scaling, but not criticality. Finally, distributions pretty much
like the ones in Fig. 1(b) have been recently observed in
high-resolution experiments in vitro [46] and the bumps were
no obstacle for a remarkable data collapse constituting very
compelling evidence of critical behavior in brain dynamics.

VI. SUMMARY

Summarizing, we studied the avalanches in the Kinouchi-
Copelli model in a first attempt to figure out detailed mech-
anisms of information transmission in cortical networks. We
discovered that, in a critical point, the entropy of avalanche
lifetime statistics (information efficiency) is always maxi-
mized jointly with the dynamic range, an important measure of
information transmission extracted from the psychophysical
tuning curves. Our findings fit in the discussions regarding
the role of criticality in information processing [5,6] and
the relationship of long bursts of activity with the dynamic
range [23], especially because they suggest critical behavior
without pure scale invariance.
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