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Abstract. This paper presents the exact analytical solution, valid for all gen-
erations and initial conditions, for the frequency distribution of haploids with
infinite-sites genome carrying a given number of mutations in a population evolv-
ing deterministically on a truncated fitness landscape. This landscape is a general-
ization of the single sharp peak one, widely used in quasispecies theory, although
here there are no reverse mutations.

1. Introduction

In general, it is very hard to find exact analytical results in population genet-
ics models of selection. Although the behavior of a population of competing
genes is usually modeled in a very simplified way, additional assumptions
like assuming weak effects of mutation and/or selection are often needed in
order to turn the models tractable. Even so, in many cases only stationary
solutions can be found. But there are experiments where the population un-
der study can only be monitored for periods significantly shorter than the
mean life time of its organisms, like the one described in [10], page 112. The
equilibrium condition is never attained in such a situation. Besides that,
the idea of a population reaching an equilibrium state by evolving for a
long time in a static environment may prove inadequate to describe many
systems.

In this context, it is very useful to know the dynamical behavior of pop-
ulation genetics models. Two of the very rare works along these lines are [5]
and [11], and [22] is a interesting review about dynamic fitness landscapes.
We [13] recently found the solution for the full dynamics of a deterministic
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model of organisms evolving on a multiplicative fitness landscape using a
simple generating function.

This work is a new contribution along these lines. The exact evolution
dynamics of an infinite population of haploid organisms on a truncated fit-
ness landscape was determined for all generations and initial conditions.
Although the general solution is a bit cumbersome, very simple expressions
were found for the stationary state and for the complete dynamics of a sim-
pler case, the single sharp peak landscape. After describing the properties
and relevance of truncation selection in section 2, the details of the popu-
lation genetics model and its solution are given in sections 3 and 4, respec-
tively. Following the conclusions in section 5, the basic properties of special
numbers involved in the solution, the Eulerian numbers, are described in
appendix A.

2. The truncated fitness landscape

The truncated fitness landscape incorporates synergetic epistasis in a ex-
treme way. The fitness of an individual is constant for all mutational loads
with k or fewer mutations. Above this threshold, the next mutation reduces
the fitness by a factor of 1 − s, where s is a selective coefficient, but after
that the fitness becomes again insensible to mutations. In symbols,

wj =

{
1, if j ≤ k
1− s, if j > k

. (1)

The fitness of a sequence depends only on the total number of mutations
in all its genes. So at the phenotypical level mutations in different genes
cannot be distinguished. If s = 1, there is a “sudden death” effect: a single
mutation can instantaneously kill an individual until then “healthy”. It
is possible that truncation selection acts on the evolutionary dynamics of
repetitive sequences in eukaryotes, as discussed in [4]. Some bounds on error
thresholds in landscapes slightly more general than the truncated one were
found in [21]. Actually, there are very few studies of truncation selection in
the sense of this paper until now, although some works can be found with the
same two-class model here employed but using other genotype-phenotype
mappings, as in the modeling of neutral networks.

The particular case when just one genotype has selective advantage and
all others are equally misfit, k = 0 and s 6= 1, is much more well studied.
There is a profusion of terminologies for this landscape in the literature,
including single sharp peak, sharply-peaked, singly-peaked, isolated peak
and master sequence landscape. The first one will be adopted with the
hope this choice is less subject to misinterpretations. An individual with
the fittest genotype is called a master sequence.

The single sharp peak landscape was originally proposed by Manfred
Eigen, associated with his quasispecies theory for prebiotic evolution [7].
Since then, this landscape has been associated with the determination of
error thresholds [19]. It was the model of choice in the first study of an
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error threshold in finite populations [16]. An useful review on all this topics
is [2]. The literature up to 1989 on the quasispecies theory, including the
main applications of the single sharp peak landscape, was reviewed in [8].
However, it is worth stressing that standard quasispecies theory assumes
finite genome size, in contrast with this paper.

The single sharp peak landscape was also used to describe evolution of
the coliphage Qβ [6], and to study the imperfect replication of viruses [17],
[14], and RNA [18]. But despite its popularity it is nowadays considered just
a toy model for biological evolution and its effective usefulness is controver-
sial [15], [3]. It should be taken seriously only as a possible model to describe
the behavior of restrict regions of the genome like the ones that code the
few sites in the active center of an enzyme, easily disabled by any mutation.
Even so, many error thresholds calculations dangerously assume the whole
genome evolves under that landscape. Besides that, in some approximations
(there is no exact analytical solution for the quasispecies model even under
such a simple case) it is even possible to say strong selection makes the
population stable with any mutation rate [1], reinforcing severe criticisms
on the error threshold concept [20], [21].

It is well known (see, e.g., [21]) that the stationary concentration of the
master sequence in an infinite population of individuals with infinite genome
is

C0(∞) =
1− eU (1− s)

s eU
(2)

and that the stationary mean fitness is w(∞) = e−U . Until this work, no
simple expression was known for the asymptotic concentration of mutants,
Cm>0(∞). Both results assume C0(0) 6= 0 and that the mutation rate is
smaller than the error threshold, U < − ln(1 − s). If at least one of these
conditions is not satisfied, Ci(∞) = 0 ∀i and w(∞) = 1− s.

3. The population genetics model

The model describes the deterministic evolution of an infinite population
subject to mutation and selection. Even so, it is instructive to describe the
dynamics as if the population was finite and Wright-Fisher sampling could
be used, what reveals a nice probabilistic interpretation.

The individuals reproduce asexually in discrete time, without superposi-
tion of generations. Each member of generation t (son) is chosen by sorting
an individual of generation t − 1 (father) with probability proportional to
its fitness. The son inherites all mutations of its father and gets an addi-
tional number k of them (interpreted as replication failures) sampled from
a Poisson distribution with mean U ,

Mk = e−U
Uk

k!
. (3)
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The individuals are haploid. Each one is represented by a single sequence
of infinite genes (Kimura’s infinite sites model) and therefore no gene can
ever mutate more than one time and there are no reverse mutations.

If Ci(t) is the fraction of sequences that carry i mutations at time t, each
one with fitness wi, the probability that a sequence carrying j mutations be
chosen to reproduce is

Pj(t) =
Cj(t)wj
w(t)

, (4)

where

w(t) =
∞∑

k=0

Ck(t)wk (5)

is the mean fitness at time t. The phenotypical evolution of the population
is described by the convolution equation

Ci(t) =
i∑

j=0

Pj(t− 1)Mi−j =
i∑

j=0

Cj(t− 1)wj
w(t− 1)

e−U
U i−j

(i− j)! , (6)

used for the first time by Kimura and Maruyama [12].

In principle, the r.h.s. of Eq. (6) can be useful in studies of finite pop-
ulations too since it is the conditional probability of an individual with j
mutations in generation t− 1 be chosen to reproduce and generate an indi-
vidual with i mutations in generation t, given the concentrations at t − 1.
Only in the infinite population limit this probability is exactly equal to Ci(t)
(absence of genetic drift).

4. The solution

The truncated fitness landscape allows the mean fitness of the population
to be expressed in terms of a generating function, what turns the problem
solvable just like in [13]. The generating function here employed is defined
as

G(z, t) =
∞∑

i=0

Ci(t)z
i. (7)

Given it, the frequency of individuals carrying i mutations at instant t can
be easily found as the coefficient of zi in the Taylor’s power series expansion
of G(z, t),

Ci(t) =
1

i!

{
∂i

∂zi
G(z, t)

}

z=0

. (8)
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A recurrence equation for the generating function is found by multiplying
both sides of Eq. (6) by zi and summing i from 0 up to ∞ so that

G(z, t) =
ezU

[
s
∑k
j=0 z

jCj(t− 1) + (1− s)G(z, t− 1)
]

eU
[
s
∑k
j=0 Cj(t− 1) + (1− s)

] . (9)

Recursively back to t = 0,

G(z, t) =

{
s ezU

k∑

j=0

t−1∑

i=0

k−j∑

l=0

zjCj(0)[ezU (1− s)]t−1−i (iUz)
l

l!

+[ezU (1− s)]tG(z, 0)

}

÷



s e

U
k∑

j=0

t−1∑

i=0

k−j∑

l=0

Cj(0)[eU (1− s)]t−1−i (iU)l

l!
+ [eU (1− s)]t



 . (10)

The distribution of frequencies comes from Eq. (8),

Cm(t) =



s

min(k,m)∑

j=0

t−1∑

i=0

min(k,m)−j∑

l=0

Cj(0)
Um−j

(m− j)! (1− s)
t−1−i

×
(
m− j
l

)
il(t− i)m−j−l + (1− s)t

m∑

j=0

Cj(0)
(Ut)m−j

(m− j)!





÷



s e

U
k∑

j=0

t−1∑

i=0

k−j∑

l=0

Cj(0)[eU (1− s)]t−1−i (iU)l

l!
+ [eU (1− s)]t



 . (11)

The concentrations of the fittest individuals are somewhat simpler,

Cm≤k(t) =





m∑

j=0

Cj(0)
(Ut)m−j

(m− j)!





÷



s e

U
k∑

j=0

t−1∑

i=0

k−j∑

l=0

Cj(0)[eU (1− s)]t−1−i (iU)l

l!
+ [eU (1− s)]t



 . (12)

The mean fitness of the population is

w(t) = 1− s+ s
k∑

m=0

Cm(t) = 1− s+



s

k∑

j=0

Cj(0)

k−j∑

l=0

(Ut)l

l!





÷



s e

U
k∑

j=0

t−1∑

i=0

k−j∑

l=0

Cj(0)[eU (1− s)]t−1−i (iU)l

l!
+ [eU (1− s)]t



 (13)
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and at any time the last two equations depend only on the initial concentra-
tions of the fittest sequences. It is not possible to simplify these expressions
in the general case. But the k = 0 and t→∞ cases allow analytical progress.

4.1. The single sharp peak case

From Eq. (12), the master sequence concentration in the single sharp peak
landscape is

C∗0 (t) =
[1− eU (1− s)]C0(0)

s eUC0(0) + {1− eU + s eU [1− C0(0)]} {eU (1− s)}t
(14)

and from (13) the mean fitness is given either by

w∗(t) = 1− s+ sC∗0 (t), (15)

or, more explicitly, by

w∗(t) =
sC0(0) + (1− s)

{
1− eU + s eU [1− C0(0)]

}{
eU (1− s)

}t

s eUC0(0) + {1− eU + s eU [1− C0(0)]} {eU (1− s)}t
. (16)

Both the error threshold and the stationary solution (2) follow by a straigh-
forward analysis of the asymptotic behavior of Eqs. (14) and (15).

The frequencies of the mutants are found from Eq. (11),

Cm>0(t) =
{

1− eU (1− s)
}

×





s

1− sC0(0)
Um

m!

t∑

j=1

jm(1− s)j + (1− s)t
m∑

j=0

Cj(0)
(Ut)m−j

(m− j)!





÷
{
s eUC0(0) +

{
1− eU + s eU [1− C0(0)]

}{
eU (1− s)

}t}
. (17)

The first sum in this equation can be formally expressed in terms of gener-
alized Eulerian numbers (see the second reference in [9]), but it is not useful
due to the complexity of the procedure. Using Eq. (23) from appendix A,
the stationary concentration of the mutants below the error threshold is
easily found to be

Cm>0(∞) =

{
1− eU (1− s)

s eU

}{
(U/s)

m

m!

}
Pm(1− s), (18)

where

Pm(x) ≡
m−1∑

k=0

Em,kx
k (19)

and the Eulerian numbers Em,k are discussed in appendix A.
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4.2. The general stationary state solution

With no loss of generality, one can assume C0(0) 6= 0 (otherwise k is rede-
fined in terms of the first non-null concentration). It is not hard to see from
(12) that for 0 ≤ m < n < k

lim
t→∞

Cm(t)

Cn(t)
= 0. (20)

So, asymptotically, all sequences with less than k mutations disappear what-
ever be the mutation rate and the selection coefficient. Consequently, the
stationary state of the population on a truncation selection landscape is
the same one found for the single sharp peak landscape with the individ-
uals carrying k mutations playing the role of master sequences. Of course,
the error threshold is the same too, as could be guessed by looking at the
general solution. Obviously, explicit calculations (not shown) confirm this
observations. So, if eU (1− s) < 1 and P0(x) ≡ 1, Cm<k(∞) = 0 and

Cm≥k(∞) =

{
1− eU (1− s)

s eU

}{
(U/s)

m−k

(m− k)!

}
Pm−k(1− s). (21)

This result is not surprising because the truncated landscape is flat below
k and it is well known that a flat landscape cannot prevent the probability
mass from spreading. Only the entropic barrier at k can possibly do that,
if the error threshold is not crossed.

5. Conclusions

The dynamical behavior of an infinite population of asexual haploid organ-
isms evolving on a truncated fitness landscape (a generalization of the most
popular toy landscape, the single sharp peak one) was found for any ini-
tial condition. In particular, the dynamics of the single sharp peak case is
described by simple expressions and its stationary state also describes the
mutation-selection balance reached under truncation selection. Far from the
error threshold condition, convergence to the stationary concentrations can
be very fast due to exponential terms in time dependence. In such condi-
tions, the already known Eq. (2) and the mean fitness result below it may
be used to estimate the parameters of the model. However, there is evidence
that some populations actually evolve close to their error thresholds, where
the full dynamical solution can be useful.

Even if the fittest sequences cannot be distinguished one from another,
the first equality in (13) shows that it is possible to get information about
the selection parameter at any time if the mean fitness of the population
and the total concentration of fittest organisms are known. The mutation
rate can be found by looking at the state of the system in different times,
independently of the initial conditions.

Finally, it is worth noting that, under strong selection (s = 1), a pop-
ulation evolving on the truncated landscape here studied reaches the same
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stationary state (the concentration follows a Poisson distribution with pa-
rameter U) reached under a multiplicative landscape [13], as long as asymp-
totically there is only one kind of sequence favored in both models. So these
two landscapes are indistinguishable in this situation.

A. Appendix - On Eulerian numbers

The Eulerian numbers En,k are special numbers specified by two integers,
like binomial coefficients. And although they are much less famous than
their binomial cousins, Eulerian numbers also generate a symmetric triangle
like Pascal’s one and have an interesting combinatorial interpretation: En,k
is the number of permutations π1π2...πn of {1, 2, ..., n} that have k places
where πj < πj+1 (“rises”). So k can assume any value from 0 to n− 1 and∑n−1
k=0 En,k = n!. The symmetry En,k = En,n−1−k is due to the fact that the

permutation π1π2...πn can have n− 1− k “rises” if and only if its reflection
πn...π2π1 has k “rises”.

By alternately differentiating and multiplying by x the usual geometric
series for | x |< 1

1

1− x =
∞∑

i=0

xi (22)

one gets

x

(1− x)n+1

n−1∑

k=0

En,kx
k =

∞∑

i=1

inxi. (23)

This procedure reveals that Eulerian numbers can be generated with the
recurrence

En,k = (k + 1)En−1,k + (n− k)En−1,k−1. (24)

The first Eulerian numbers are shown in table 1.
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Table 1. Euler’s triangle

n En,0 En,1 En,2 En,3 En,4 En,5 En,6 En,7 En,8

0 1
1 1 0
2 1 1 0
3 1 4 1 0
4 1 11 11 1 0
5 1 26 66 26 1 0
6 1 57 302 302 57 1 0
7 1 120 1191 2416 1191 120 1 0
8 1 247 4293 15619 15619 4293 247 1 0


