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Chapter  10

DATA  ANALYSIS

This chapter provides guidelines to selecting certain key data acquisition parameters, and
discusses current methods used in analysis of biological data, including fitting models to data and
analyzing single ion-channel recordings.  The scope of this discussion is limited to brief,
practical introductions with references to more detailed discussion in this Guide and in the
literature.  The manuals for the various software programs can be used for more specific step-by-
step instructions, and the text by Dempster (1993) is a useful collection of standard techniques in
this field.

Choosing  Appropriate  Acquisition  Parameters

Successful analysis of a data set requires that the signals be recorded using appropriate data
acquisition parameters.  Following are guidelines to selecting several critical recording
parameters.

Gain and Offset
Sufficient gain and offset should be maintained on all transducers and amplifiers during data
acquisition, because data review and analysis software can usually provide only limited amounts
of additional ("software") offset and gain.  More than 10x of software gain usually results in
excessively jagged traces; this is because the digitized signal does not vary smoothly but is
quantized (see Chapter 9), and too much amplification allows the difference between one
quantization level and the next to become visible.  Software offset is limited to the full range of
the analog-to-digital converter (ADC) input, which is usually equivalent to about ±10 V referred
to the input of the ADC.  Signal resolution is best preserved when the signal fills this voltage
range without exceeding it.

Sampling Rate
The sampling rate used should be selected considering the particular experiment.  Use of
excessively high sampling rates wastes disk space and will increase the time required for
analysis.  Furthermore, a higher sampling rate is usually associated with a higher filtering
frequency, which in turn allows a larger amount of noise to contaminate the signal.  Subsequent
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analysis of the data may therefore require noise reduction using analysis-time filtering, which can
be time-consuming.  Guidelines to choosing the correct sampling rate are discussed in the
following paragraphs (Colquhoun and Sigworth, 1983, and Ogden, 1987).

Biological signals are most commonly analyzed in the time domain.  This means that the time
dependence of the signals is examined, e.g. to characterize the membrane response to a voltage-
clamp pulse.  The usual rule for time-domain signals is that each channel should be sampled at a
frequency between 5 and 10 times its data bandwidth.  Knowing the value of the data bandwidth
is required in order to set the filter cut-off frequency during acquisition and analysis.

For a sinusoidal waveform, the data bandwidth is the frequency of the sine itself.  For most
biological signals, the data bandwidth is the highest frequency of biological information of
interest present in the recorded signal.  This can be determined directly by examining a power
spectrum of rapidly sampled unfiltered data, though this is rarely done.  Alternatively, one can
estimate the number of points per time interval required to give a data record whose points can
be easily "connected" by eye and calculate the sampling rate directly.  The data bandwidth and
filter frequency can then be calculated from the sampling rate.  For example, if a fast action
potential (1 ms to peak) is to be recorded, 25 samples on the rising phase would yield a
reasonably good 40 µs resolution, requiring a sampling rate of 25 kHz and an approximate data
bandwidth of 5 kHz.

The rules are more straightforward in some special cases.  Single-channel recording is discussed
below.  For signals with exponential relaxation phases, the sampling rate needed to estimate a
time constant depends on the amount of noise present; for moderately noise-free data, at least 15
points should be taken per time constant over a period of 4 to 5 time constants.  Many fitting
routines will fail if sampling is performed over only 3 time constants, since the waveform does
not relax sufficiently far towards the baseline.  For a sum of multiple exponentials, the sampling
rate is determined in this way from the fastest phase; sampling must extend to 4 time constants of
the slowest phase.  If this would result in too many samples, a split clock (as in the program
CLAMPEX of Axon Instruments' pCLAMP suite) or other methods of slowing the acquisition
rate during the acquisition, could be employed as long as at least 15 points are taken over each
time constant.

When a set of several channels is recorded (e.g., channels 0 through 3), most data acquisition
systems sample the channels sequentially rather than simultaneously.  This is because the system
usually has only one analog-to-digital converter circuit that must be shared among the channels
in the set.  For example, if four channels are sampled at 10 kHz per channel, one might expect
that they would be sampled simultaneously at 0 µs, 100 µs, 200 µs, etc.  Instead, channel 0 is
sampled at 0 µs, channel 1 at 25 µs, channel 2 at 50 µs, channel 3 at 75 µs, channel 0 again at
100 µs, channel 1 again at 125 µs, etc.  There is therefore a small time skew between the
channels; if this causes difficulties in analysis or interpretation, a higher sampling rate can be
used to minimize the time skew (but this may cause problems associated with high sampling
rates, as mentioned above).

An additional consideration arises from the fact that on many data acquisition systems, including
the Digidata 1200 from Axon Instruments, the digital-to-analog converter (DAC) is updated
whenever the ADC is read, even if there is no change in the DAC output.  This means that the
DAC is updated only at the sample rate over all channels.  For example, if a stimulus is a 0 to
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150 mV ramp and 50 samples are acquired from one channel at a sampling interval of 25 µs, the
DAC output will appear as a series of steps each 25 µs long followed by an upward jump of 150
mV/50 = 3 mV, which may be too large for some electrophysiological applications.  Therefore, if
a rapidly changing continuous waveform is applied while acquiring slowly, the output waveform
should be checked with an oscilloscope and, if necessary, the sampling interval should be
increased.  The computer preview of a waveform cannot be relied upon for this purpose because
it does not account for the effect of sampling.  Note, however, that since most users acquire
significantly more samples per sweep than 50, this problem will not occur except in very unusual
situations.

Filtering
The signal should be filtered using an analog filter device before it arrives at the ADC.  As
discussed in Chapter 6 and in Colquhoun and Sigworth, 1983 and Ogden, 1987, this is done to
prevent aliasing (folding) of high-frequency signal and noise components to the lower
frequencies of biological relevance.

Acquisition-time filtering of time-domain signals is usually performed using a Bessel filter with
the cut-off frequency (-3 dB point; see Chapter 6) set to the desired value of the data bandwidth.
A 4-pole filter is usually sufficient unless excessive higher frequency noise requires the 6- or 8-
pole version.  The Bessel filter minimizes both the overshoot (ringing) and the dependence of
response lag on frequency.  The latter two effects are properties of the Chebyshev and
Butterworth filters (see Chapters 6 and 12, or Ogden, 1987), which are less appropriate for time-
domain analysis.

Filtering  at  Analysis  Time

It is sometimes reasonable to sample data at higher rates than seems necessary, e.g., when a
greater bandwidth might be required during analysis.  If excessive sample rates are used, the
filter frequency must be set to a higher value.  Since there is more noise at higher frequency,
more noise is likely to contaminate the signal.  Therefore, the data must be filtered further during
analysis in order to reduce the noise and avoid aliasing of high-frequency signal content.

This analysis-time filtering is performed using filters implemented in software.  The Gaussian
filter is most commonly used for this purpose because of its execution speed, though the Bessel
filter is employed as well.  If one wants to write a computer program for a filter, the Gaussian is
easier to implement than the Bessel filter (see program example in Colquhoun and Sigworth,
1983).  Note that all filters alter the waveform; for example, a Gaussian-filtered step function
deviates from the baseline before the time of transition of the unfiltered signal.  The user can
examine data records filtered at different frequencies to make sure that there is no significant
distortion of the quantities of interest, such as time of transition or time to peak.

Another common software filter is smoothing, the replacement of a data point by a simply
weighted average of neighboring points, used to improve the smoothness of the data in a record
or graph.  In contrast to the smoothing filter, the Bessel and Gaussian types have well-known
filtering (transfer) functions, so that (i) it is easy to specify an effective cut-off frequency, and (ii )
the effect of the filter may be compensated for by a mathematical procedure analogous to a high-
frequency boost circuit in a voltage-clamp amplifier (Sachs, 1983).  These advantages are
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important if the frequency properties must be known throughout the analysis.  If not, the
smoothing filter is much faster to execute, especially on long data records, and easier to
implement if one writes one's own software.

Integrals  and  Derivatives

The integral function is used to calculate the area under a digitized data trace.  Applications
include measuring the total charge transfer from records of membrane current, and measuring the
area under a miniature endplate potential.  The integral is generally calculated by direct
summation of y(xi)∆xi between two cursors placed along the x axis.  For a data record, y(xi) is the
amplitude at time point xi, and ∆xi is the sampling interval at that time.  For a histogram, y(xi) is
the amplitude of the bin at location xi, and ∆xi is the bin width of bin i (this allows for
nonuniform bin width).  The y values must be corrected for any superfluous baseline before
integration using a fixed or slanting baseline, as appropriate.  If the sample rate were low
compared to the rate of change of the signal, so that y values show large changes from one xi to
the next, the integral is considerably less accurate than if significantly more samples were taken.
Large inaccuracies can also occur if the signal does not return to baseline by the end of the data
set or if part of the data is corrupted by an extraneous signal.  In some cases, errors in the integral
can be reduced by first fitting a smooth curve to the available data and then using the formula
and parameters of the best fit to calculate the integral.

The derivative function is used to determine the rates of change of a digitized signal.  This can be
used to help in peak location (where the derivative will be near zero), transition detection (large
positive or negative derivative), sudden departure from baseline, etc.  The derivative will,
however, amplify noise, making it difficult to determine trends.  The signal should therefore be
filtered beforehand or fit to a function which can then be used to obtain a noise-free form of the
derivative.  However, the worse the fit, the greater the error in the derivative.

Single-Channel  Analysis

Goals and Methods
The goal of single-channel current analysis is to reconstruct the idealized current waveforms
from which information about the mechanisms of channel function is derived.  Specific
information can be deduced with respect to channel state diagrams, kinetics of channel opening,
closing and gating, channel barrier models, and the effects of channel blocking agents and
membrane constituent on channel function.

Articles that present approaches and methods used in single-channel current analysis include
Colquhoun and Hawkes, 1983; Colquhoun and Sigworth, 1983; McManus, Blatz and Magleby,
1987; Sigworth and Sine, 1987; and French et al., 1990.

The current from a single ion channel is idealized as a rectangular waveform, with a baseline
current of zero (closed-channel), an open-channel current dependent on the conductance and
membrane potential, and rapid transitions between these current levels.  In practice, this idealized
current is distorted by the limited bandwidth of the apparatus and contaminated by noise.  Shifts
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in the baseline may occur during the recordings, and capacitative current spikes are present in
sweeps in which voltage changes are applied across the membrane.  The current signal is further
altered  by filtering and by periodic sampling.  These effects can impede making confident
inferences from data regarding channel behavior.

Sampling at Acquisition Time
In order to adequately reconstruct the transitions, the sampling rate should be no less than
5 times higher than the cut-off frequency of the filter (Colquhoun and Sigworth, 1983; French et
al., 1990).  An even higher sampling rate is needed if interpolation of the data record is used to
increase the accuracy of transition detection (unavailable in the pCLAMP single-channel analysis
program).

Filtering at Acquisition Time
As discussed above, the input signal should be filtered with a Bessel filter during acquisition.
The cut-off frequency must usually be set sufficiently low to prevent unacceptably frequent
occurrences of noise, which cause false closings and false brief open-close events during the
construction of idealized channel currents.  French et al. (1990) discuss how to decide on the cut-
off frequency for a particular situation:  open events of longer duration are more likely to be
falsely closed by noise, so it is convenient to specify the longest duration dmax that can be
recorded with less than 1% occurrence of these false closings.  Once dmax has been specified, the
required cut-off frequency fc can be calculated using the following combination of equations (18)
and (19) in French et al. (1990):

f
f

d FTC
c

c
*
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(1)

Here FTC*  is the observed rate of false threshold crossings measured using recordings made
with an arbitrary cut-off frequency fc

* .  FTC*  can be measured from idealized single-channel
records generated using a threshold set on the side of the baseline opposite to where transitions
are observed.  This analysis can be achieved using the FETCHAN program in the pCLAMP
suite.

Analysis-Time Filtering
The digital Gaussian filter can be used for additional analysis-time filtering of single-channel
records.  This introduces symmetrical time delays at both opening and closing and can therefore
be used for the unbiased estimation of latencies using the 50% criterion (see below).

Generating the Events List
The first step during analysis of single-channel current records is to idealize the current records
to a series of noise-free open and closed states having infinitely short (or at least shorter than the
sample interval) transition times.  This analysis, which can be performed by FETCHAN,  results
in a list of durations and amplitudes, called the events list.  Several effects that tend to complicate
this reconstruction are briefly discussed below; more thorough discussions are presented in the
cited literature.



214  /  Chapter ten

Setting the Threshold for a Transition
A transition between states of a channel occurs when the current amplitude passes through a
threshold between two levels.  The most commonly used threshold is 50% of the difference
between the levels.  The advantage of this threshold setting is that the event durations are not
biased because the values of the threshold are the same for both opening and closing transitions.

Baseline Definition
The accuracy of the threshold method for transition detection depends on the stability of the
baseline (i.e., closed-channel) current or, if the baseline is unstable, on the ability of an
automated procedure to correctly identify the baseline as it changes.  A number of ways have
been devised to track a moving baseline, including (1) averaging the baseline current level to get
the new baseline; (2) defining the new baseline as that level which maximizes the number of
times that the current signal crosses it during the closed state ("zero crossings" method; Sachs,
1983); and (3) defining the new baseline at the peak of the histogram of the baseline current
amplitude (e.g., G. Yellen, quoted in Sachs, 1983).  FETCHAN uses a hybrid approach in which
the average of the most recent closed channel current level is averaged with the old baseline
level, weighted by a selectable factor.  Regardless of the method used, the user must carefully
monitor the baseline to ensure that any automatic procedure does not lose track of the baseline
value.

Missed Events
Events will be missed if their true durations are shorter than the dead time of the system, which is
determined by the filter cut-off frequencies used during acquisition and analysis.  Events will
also be missed if their superthreshold portions happen to miss the times when the signal is
sampled even if their durations are longer than this dead time.  The resulting error is minimal if
the fastest time constant in the system is much longer than the sampling interval because few
events will be shorter than the sampling interval.  If this is not the case, the sampling rate must be
increased with respect to the filter cut-off frequency (see the relevant sections above).

False Events
The probability of detecting false events depends on the amount and spectrum of noise in the
system, the filter characteristics and the rate of sampling (French et al., 1990).

Multiple Channels
The presence of multiple channels complicates the determination of the kinetic behavior of a
channel.  If a record shows a transition from two open channels to one open, it cannot be
determined if the transition was due to the closing of the first or the second channel.  A number
of methods have been proposed to deal with this ambiguity (French et al., 1990).  As a
precaution, the amplitude histogram of the raw data can be inspected to determine if multiple
channels are present.

Analyzing the Events List
The second step in the analysis procedure is the extraction of model-specific information from
the events list.  Because the number of events is usually large, it is often convenient to sort the
event data into bins.  The binned data may then be fit to a mathematical function whose
parameters are related to a state diagram of the channel.  The most common histograms include
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(1) the dwell time histogram, in which the duration of events is binned and which can be related
to state models; (2) the first latency histogram, in which the period of time from stimulus onset
to first opening is binned and which is used to extract kinetic information; and (3) the amplitude
histogram, in which the amplitudes of the levels or of all points in the records are binned and
yield information about the conductance, the system noise and the incidence of multiple
channels.

Histograms
The simplest histogram is one in which a series of bins are defined, each of which has an
associated upper and lower limit for the quantity of interest, e.g., dwell time.  Each dwell time
will then fall into one of the bins, and the count in the appropriate bin is incremented by one.  In
the cumulative histogram, a bin contains the number of observations whose values are less than
or equal to the upper limit for the bin.

Histogram Abscissa Scaling
Histograms may be scaled and displayed in a number of ways.  The most common histogram has
constant bin width, a linearly scaled abscissa (x axis), and counts displayed on the ordinate
(y axis).  A number of alternatives have been developed to improve the treatment of exponential
distributions, in which low-time bins have many counts and high-time bins have few, yielding
histograms that are difficult to visualize (e.g., McManus et al., 1987; Sigworth and Sine, 1987).
One solution is to increase the bin width logarithmically, so that for a single exponential, a
constant number of events is expected per bin.  This has the disadvantage that the presence of
multiple time constants is not evident from the plot if the ordinate is not rescaled.  These issues
are discussed in the next section.

Histogram Ordinate Scaling
If a constant bin width histogram is used, linear scaling of the ordinate is the most common
(Figure 1A).  If a logarithmic bin width is used,  several methods are common.  In one of the
methods, the number of counts in each bin is divided by the bin width and plotted on a
logarithmic axis, in which case multiple time constants are evident (Figure 1B).  The main
difficulty with this scaling is that the bins do not have the same weight during the fit process (see
below), because the variance of the bin depends on the number of counts it contains.  This can be
compensated for using the transformation of Sigworth and Sine (1987).  In this transformation
the bin width is constant and the square root of the number of counts per bin is plotted on the
ordinate, with time plotted logarithmically on the abscissa (Figure 1C).
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Figure 10-1.  Histogram Scaling
[Three] representations of a dwell-time distribution with two exponential components.
5,120 random numbers were generated according to a distribution with time constants of
10 ms (70% of the events) and 100 ms (30%) and binned for display as histograms in the
lower panel of each part of the figure.  Superimposed are the theoretical probability
density functions for each component (dashed curves) and their sum (continuous curve).
In each part of the figure the upper panel plots the absolute value of the deviation of the
height of each bin from the theoretical curve, with dashed curves showing the expectation
value of the standard deviation for each bin.  The upper panels were plotted with vertical
expansion factors of 2.1, 5.4, 3.1, and 4.9, respectively.  (A)  Linear histogram.  Events
are collected into bins of 1 ms width and plotted on a linear scale.  The 100-ms
component has a very small amplitude in this plot.  (B)  Log-log display with variable-
width (logarithmic) binning.  The number of entries in each bin is divided by the bin
width to obtain a probability density in events/s which is plotted on the ordinate...  (C)
Square-root ordinate display of a logarithmic histogram.  Note that the scatter about the
theoretical curve is constant throughout the display (reproduced with permission from
Sigworth and Sine, 1987).
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Errors Resulting from Histogramming Events Data
Problems may appear as a result of the histogram process.  The first problem may occur in either
amplitude or time histograms if the bin size is not an integral multiple of the resolution of the
signal.  For a dwell time, the resolution is the interval between successive samplings of the ADC
channel; for an amplitude, the resolution is determined by the gain and the ADC.  The symptom
is that occasional or periodic peaks or valleys appear artifactually in the histogram.  This
problem is less severe if the bin width corresponds to many resolution intervals (e.g., 10).  If bin
widths are variable, the smallest bin width must likewise include many resolution intervals.

A second problem is called sampling promotion error.  Sampling promotion error (Sine and
Steinbach, 1986) occurs because data are sampled periodically.  Suppose data were acquired with
1 ms sampling rate and dwell times binned into a histogram with bin width equal to the sampling
rate (1 ms) and centered around 3 ms, 4 ms, 5 ms, etc.  The 4 ms bin would therefore contain
events whose true dwell times lie between 3 and 5 ms (Figure 2).  If the dwell times fall
exponentially with increasing times, the 4 ms bin would contain more events from 3 to 4 ms than
from 4 to 5.  The subsequent fit would treat all these events as if they had occurred at 4 ms (the
midpoint), thereby resulting in an error.  In a single exponential fit, this affects only the intercept
and not the time constant; but there may be more subtle effects in a multi-exponential fit.  The
error is small when the bin width is much smaller (perhaps by a factor of 5) than the fastest time
constant present.

5 ms
event

3  ms
event

sample
t imes

1 ms

Figure 10-2.  Sampling Error
This figure illustrates how a 1 ms sampling rate can result in an apparent 4 ms open time
for events of between 3 and 5 ms.  The dots in the top part of the figure represent times
when the signal is sampled.  The lower part of the Figure shows two events whose
waveforms are high at 4 sample times.

A third problem is termed binning promotion error.  In an exponentially falling dwell time
distribution, a bin is likely to contain more events whose true dwell times are at the left side of
the bin than are at the right side.  The average dwell time of the events in that bin is therefore less
than the midpoint time t.  The error occurs when a fit procedure assumes that all the bin events
are concentrated at a single point located at the midpoint t, instead of at the average, which is less
than t.  Binning promotion error can occur in addition to sampling promotion error because
binning takes place in a different step.  Both of these errors are due to the asymmetric
distribution of true dwell times about the bin midpoint.  A correction procedure has been
proposed by McManus et al. (1987).
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The degree of these bin-width-related errors may be reduced independently of the corrective
procedures mentioned above, if the fit procedure explicitly uses the fact that a bin actually
represents an area instead of an amplitude.  Some errors may be eliminated if the individual data
points are used without ever using a histogram, as in the maximum likelihood fitting method.

Lastly, as discussed in the section on missed events, short events may not be detected by the 50%
threshold criterion.  This can give rise to a number of errors in the extracted fit parameters,
which relate specifically to state models.  For further details, consult the references cited in
French et al., 1990.

Amplitude Histogram
Amplitude histograms can be used to define the conductances of states of single channels.  Two
kinds of amplitude histograms are common:  point histograms and level histograms.  The former
use all the acquired data points; they are useful mainly for examining how "well-behaved" is a
data set.  Abnormally wide distributions may result from high noise if the signal were over-
filtered, or if baseline drift had been significant.  Similarly, the number of peaks will indicate the
presence of multiple channels or subconductance states.  The all-points histogram will probably
not be useful for determining the conductances unless baseline drift is small.  Level histograms
use only the mean baseline-corrected amplitudes associated with each event in the events list.
Such histograms can be fitted to the sum of one or more Gaussian functions in order to estimate
conductances.

Fitting to Histograms
Amplitude and dwell time histograms can be fitted by appropriate functions, usually sums of
several Gaussian functions for the former and sums of exponentials for the latter (see the section
on Fitting below).  The time constants and amplitudes can be related to the parameters of several
single-channel models, but this will not be described here.

Histogram bins containing zero counts should usually be excluded from a fit because the chi-
square function (see below) is not defined when a bin i contains Ni = 0 counts and therefore has 
σi = 0.  Alternatively, adjacent bins can be combined to yield a nonzero content.

Fitting

Reasons for Fitting
Fitting a function to a set of data points, such as a histogram or a time series, may be done for
any of the following reasons:

(1) A function could be fitted to a data set in order to describe its shape or behavior, without
ascribing any "biophysical" meaning to the function or its parameters.  This is done when a
smooth curve is useful to guide the eye through the data or if a function is required to find
the behavior of some data in the presence of noise.
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(2) A theoretical function may be known to describe the data, such as a probability density
function consisting of an exponential, and the fit is made only to extract the parameters, (e.g.,
a time constant).  Estimates of the confidence limits on the derived time constant may be
needed in order to compare data sets.

(3) One or more hypothetical functions might be tested with respect to the data, e.g., to decide
how well the data were followed by the best fit function.

The fitting procedure begins by choosing a suitable function to describe the data.  This function
has a number of free parameters whose values are chosen in order to optimize the fit between the
function and the data points.  The set of parameters that gives the best fit is said to describe the
data, as long as the final fit function adequately describes the behavior of the data.  Fitting is best
performed by software programs; the software follows an iterative procedure to successively
refine the parameter estimates until no further improvement is found and the procedure is
terminated.  Feedback about the quality of the fit allows the model or initial parameter estimates
to be adjusted manually before restarting the iterative procedure.  Fitting by pure manual
adjustment of the parameters (the so-called "chi by eye") may be effective in simple cases but is
usually difficult and untrustworthy in more complex situations.

The two following topics will be briefly discussed below:  statistics, i.e., how good is the fit and
how confident is the knowledge of the parameters, and optimization, i.e., how to find the best fit
parameters.  The statistical aspects are well discussed in Eadie et al. (1971); Colquhoun and
Sigworth (1983) provide examples relevant to the electrophysiologist.  A number of aspects of
optimization are presented in Press et al. (1988).

Statistical Aspects of Fitting
Statistics deals with the probability of occurrence of events.  Probability is difficult to define;
there are two ways in which the word is used.  (1)  Direct probability:  If we observe that N1 of N
single-channel events have open channel durations between 10 and 20 ms, we say that the
probability p1 of this occurring is N1/N, as long as N is very large.  The probability density
function (pdf) is an algebraic expression that when summed or integrated between 10 and 20 ms
gives the value of p1.  (2) Inverse probability:  If you are told by your physician that you have one
of three possible diseases D1, D2 or D3, and you ask what the probability is that you have D2, the
physician might say, "It's either 0 or 1,"  meaning that either you already have D2 or you do not
have it, but the physician cannot yet determine which of these two situations exists.  To be
helpful, your physician might give an inverse probability of 0.6, meaning that if you had D2, the
probability that your particular set of symptoms would have been observed is 0.6.

The Likelihood Function
Inverse probability is more appropriate for the scientist who may have N measurements of
open channel durations and wants to know which time constant best describes their
exponential distribution.  For a particular time constant, τ1, one can calculate the direct
probability of getting those N observed durations by first calculating the probability of
observing each duration and then multiplying these individual probabilities together.  The
resulting number is called the likelihood of the time constant τ1.  One could calculate the
likelihoods for many such values of τ and plot the logarithm of these likelihoods versus
their respective τ values (Figure 3).  If N is sufficiently large, this curve will usually be
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Gaussian.  The value τ*  at the peak of the function is called the maximum likelihood value
of τ.  The root-mean-square spread of the function about τ is known as the standard
deviation of τ* , though this is not the same as a standard deviation of a set of numbers in the
direct probability case.

ln  L

τ
τ∗

Figure 10-3.  The Likelihood Function

The logarithm of the likelihood presented as a function of variable τ; the maximum
likelihood of the function occurs at τ*.  For large numbers of samples, the shape of this
curve approaches a Gaussian.

It turns out that τ*  reliably converges to the true time constant if the number of events N is
sufficiently large.  For this reason it is important to either collect a large enough number of
data points or repeat the experiment several times so as to reduce the variation of the
parameters obtained over the data sets to an acceptable level.  If the noise is large or there
are sources of significant variability in the signal, the data may be useless except in a
qualitative way because of large variations of the best fit parameters between the runs.  If
one long run is taken instead of several smaller ones, the run can be broken up into
segments and the analysis results of the segments compared with each other to assure that
convergence is near.

Although the maximum likelihood method is the most reliable, the time requested for the
calculations may be prohibitively long.  The chi-square method, described below, is an
alternative that requires less time.

The Chi-Square Function  (Least-Squares Method)
Suppose that a set of p measurements are made at the times x1, x2, ..., xp, and that the values
measured are y1, ..., yp.  If each yi is measured with a measurement error distributed as a
Gaussian with standard deviation σ1, ..., σp, the maximum likelihood method is equivalent
to minimizing the chi-square function
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where y*
i is the fit value corresponding to yi.  Minimizing chi-square is also called the least-

squares method.  If the fit is made to a data sweep, each yi is the value measured at the time
xi, and each σi is the standard deviation or uncertainty of that value.  In the typical case
when all the σi's are equal (i.e., the uncertainty in the data does not depend on the time), the 
σi's can be ignored while performing the search for the best fit parameters, but must be
specified if the goodness of fit is to be calculated.  If the fit is made to a histogram, each yi is
the numbers of events Ni in bin i, and each σi is √Ni.

It is much easier to maximize the chi-square function than to minimize the likelihood
function, whether for data or for many mathematical functions used as models.  Since the
use of the chi-square function is equivalent to the use of the likelihood function only if the
uncertainties in the data (e.g., noise) are distributed as Gaussians, the correctness of a least-
squares fit can depend on the characteristics of this uncertainty.

The Goodness of Fit
After a best fit has been obtained, the user might wish to know if the fit was good.  If the fit
to p data points employed M free parameters, the probability of obtaining a chi-square value
greater than that of the best fit, given p - M degrees of freedom, can be read from a table of
probabilities of chi-square and compared to a chosen significance level.

Often several models are fitted to a single set of data so as to define the best-fit model.
Horn (1987) discussed choosing between certain types of models using their respective chi-
square values (with the F test) or the logarithm of the ratio of the likelihoods, which follows
the chi-square distribution.  These tests can help decide whether the model contains
irrelevant parameters, e.g., if a three-exponential function was fitted to a set of data
containing only two exponentials.

Confidence Limits for the Parameters
An estimate of the confidence limits for each of the parameters is often useful.  For a model
with one parameter a, some fit programs will derive the standard deviation σ from the
dependence of the likelihood or chi-square on the parameter.  One then says that the 68.3%
confidence limits are within a distance σa from a* , the chosen value for a.  This does not
mean that 68.3% of the time the true value of a will fall between a*  + σa and a* - σa.  It
does mean that we will be right 68.3% of the time if we assert that these limits include the
true a.  In the limit of a large number of data sets, a*  will tend to converge to the true value
of a.

Suppose there are two parameters a and b to be fit.  One can make a two-dimensional
contour plot of the likelihood or chi-square function, with each axis corresponding to one of
the parameters, showing the probability of the limits including the true parameter values
(Figure 4).  The resultant ellipse is usually inclined at an angle to the parameter axes due to
the correlation of the two parameters.  These correlations tend to increase the confidence
limits, which are indicated by the dotted lines which project to the respective axes.  The
probability that the confidence limits for the best fit a includes the true a is 0.683, but this
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does not specify anything about b, as indicated by the shaded region.  If, in addition, limits 
±σb are specified for the best fit b, the joint probability that both sets of confidence limits
include the true a and b has an upper limit of (0.683)2 or 0.393, i.e., the probability content
of the area inside the ellipse.  If one has a five exponential fit with an offset, the analogous
cumulative joint probability will be (0.683)11, or 0.015, which is quite small.

Figure 10-4.  Confidence Limits
Two-dimensional contour plot of a likelihood or chi-square function vs. two parameters a
and b around the function minimum, with the two sets of dashed lines indicating the
respective confidence limits.

Statistical Tests of Significance for Parameters
If one wishes to compare, for example, two time constants from two data sets obtained
under different conditions, one must first obtain the standard deviation of the time constant,
usually derived from the fitting procedure.  Conventional statistical tests, such as the chi-
square table, the F test or Student's t test, can then be applied to determine significance.

Methods of Optimization
Optimization methods are concerned with finding the minimum of a function (e.g., the chi-
square) by adjusting the parameters.  A global minimum, i.e., the absolute minimum, is clearly
preferred.  Since it is difficult to know whether one has the absolute minimum, most methods
settle for a local minimum, i.e., the minimum within a neighborhood of parameter values.  A
number of algorithms have been developed to find such a minimum.  For example, to find time
constants and coefficients in an exponential fit, the pCLAMP program pSTAT allows the user to
choose between the following:

• Minimizing the chi-square using the Levenberg-Marquardt method.

• Minimizing the chi-square using the Simplex method.

• Maximizing the likelihood using the Simplex method.

b*+ σ

b* -σ

a*+σ a*+σa a

b

b
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Of the three methods, the Simplex method is fast and relatively insensitive to shallow local
minima.  Though it will reliably find the region of the global minimum or maximum, it may not
find the precise location of the minimum or maximum if the function is rather flat in that vicinity.
The Levenberg-Marquardt method is slower and more easily trapped in local minima of the
function, but it can provide better fits than the Simplex because it uses the mathematical
characteristics of the function being minimized to find the precise location of the minimum or
maximum, within the numerical resolution of the computer.  This method also provides statistical
information sufficient to find the confidence limits.

These methods are iterative, i.e., they continue refining parameter values until the function stops
changing within a certain convergence criterion.  They also require reasonable starting estimates
for the parameters, so that the function to be minimized or maximized is not too far away from its
optimum value; a poor starting set can lead some fit programs to a dead end in a shallow local
minimum.

Axon Instruments' analysis programs CLAMPFIT for the IBM-PC and AxoGraph for the Apple
Macintosh provide a non-iterative method, in which the data points and function to be fit are
transformed using a set of orthogonal Chebyshev polynomials, and the fit function coefficients
are quickly calculated using these transformed numbers in a linear regression.  This method is
very fast and requires no initial guesses, though the parameters may be slightly different than
those found by the methods listed above because the underlying algorithm minimizes a quantity
other than the sum of squared differences between fit and data.

References

Colquhoun, D. and Sigworth, F.J.  Fitting and Statistical Analysis of Single-Channel Records.  in
Single-Channel Recording.  Sakmann, B. and Neher, E., Eds.  Plenum Press, New York, 1983.

Colquhoun, D.  and Hawkes, A.G.  The Principles of the Stochastic Interpretation of Ion-
Channel Mechanisms.  in  Single-Channel Recording.  Sakmann, B. and Neher, E., Eds.
Plenum Press, New York, 1983.

Dempster, J.  Computer Analysis of Electrophysiological Signals.  Academic Press, London,
1993.

Eadie, W.T., Drijard, D., James, F.E., Roos, M, Sadoulet, B.  Statistical Methods in Experimental
Physics.  North-Holland Publishing Co., Amsterdam, 1971.

Horn, R.  Statistical methods for model discrimination.  Biophysical Journal.  51:255-263, 1987.

McManus, O.B., Blatz, A.L. and Magleby, K.L.  Sampling, log binning, fitting, and plotting
distributions of open and shut intervals from single channels and the effects of noise.  Pflügers
Arch, 410:530-553, 1987.



224  /  Chapter ten

Ogden, D.C.  Microelectrode electronics.  in  Microelectrode Techniques.  The Plymouth
Workshop Handbook.  Standen, N.B., Gray, P.T.A. and Whitaker, M.J., eds.  The Company of
Biologists Ltd., Cambridge, 1987.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T.  Numerical Recipes in C.
Cambridge University Press, Cambridge, 1988.

Sachs, F.  Automated Analysis of Single-Channel Records.  in  Single-Channel Recording.
Sakmann, B. and Neher, E., Eds.  Plenum Press, New York, 1983.

Sigworth, F.J. and Sine, S.M.  Data transformations for improved display and fitting of single-
channel dwell time histograms.  Biophysical Journal, 52:1047-1054, 1987.

Sine, S.M. and Steinbach, J.H.  Activation of acetylcholine receptors on clonal mammalian
BC3H-1 cells by low concentrations of agonist.  Journal of Physiology (London), 373:129-162,
1986.

Wonderlin, W.F., French, R.J. and Arispe, N.J.  Recording and analysis of currents from single
ion channels.  in  Neurophysiological Techniques.  Basic Methods and Concepts.  Boulton,
A.A., Baker, G.B. and Vanderwolf, C.H., Eds.  Humana Press, Clifton, N.J., 1990.



Data  Analysis  /  225

A X O N   G U I D E


