
A X O N G U I D E

Chapter 11

DEVELOPMENT ENVIRONMENTS

Computers and computer programs are becoming ever more sophisticated. This advancing
technology has tended to make the need for programming obsolete. For instance, to write a
manuscript, one simply pulls up one's favorite word processor like WordPerfect, Microsoft Word
or Nota Bene and starts typing. Similarly, financial problems or models with graphical output
are entered directly into spreadsheet programs like Lotus, Microsoft Excel or Quattro Pro. The
very success of these programs seems to prove that programming is no longer necessary. Indeed,
there are many applications today that need no programming to be used successfully.
Nonetheless, the companies that developed the programs listed above realized that it is
impossible for their programs to perform every imaginable task required by the user. If nothing
else, the program developers themselves could not think of every possible problem. Therefore,
each program has included a powerful macro language that allows the user to customize or to add
almost any function one wishes.

Interestingly, the latest trend is to supply the user with more powerful rather than less powerful
programming environments. For instance, anyone who has used Lotus version 2.1 realizes there
are a wide variety of add-in programs, like Always, designed to extend Lotus because many
needed features were not built in (Lotus has a special facility built in to add utility programs).
One of the new features of Lotus version 3 is its powerful macro facility. Similarly, a powerful
spreadsheet program is an Apple Macintosh product called WINGZ, which includes a
comprehensive programming language that allows the user to change the program completely. In
fact, the spreadsheet itself was programmed in that language. This programming facility is one
of the reasons for the rave reviews earned by WINGZ. The new word processing program Word
for Windows from Microsoft includes a programming language that uses BASIC-like commands
quite similar to AxoBASIC. Almost 70% of the microcomputer database market uses dBASE,
because of its built-in programming language. Companies have realized that no two databases
are exactly the same; therefore, considerable programming is necessary when customizing an
application.

226 / Chapter eleven

AxoBASIC

You may be smiling to yourself right now, saying, "What has any of this to do with me? I type
manuscripts in WordStar and have never changed any part of the program. I use spreadsheets
like EXCEL to do graphics but, again, have never used macros. In fact, these programs have so
many more features than I could ever use, I can't imagine doing any programming." Scientists
indeed should not have to do programming of word processing or spreadsheet programs. If
scientists need extendibility in any program, it is most likely in software for data acquisition and
analysis used in conducting and analyzing experiments. A good word processor is nice but not
critical; a good graphics program is quite important, but satisfactory programs are available
(although users can generate graphs in AxoBASIC that even some outstanding graphics programs
cannot duplicate). But the highest priority is to be able to perform the required experiments and
to gather and analyze data. Scientists should not be limited by what their software programs can
handle; consequently, some programming may be required to accomplish certain tasks.
Hopefully, programming will be the exception rather than the rule. AxoBASIC allows users to
create a set of programs that will be widely distributed and available to all. For instance, at
present, there are whole-cell and single-channel programs available for the acquisition and
analysis of voltage-dependent channels. These include programs for controlling membrane
potentials and acquiring data from two independent patch clamps, as is done when studying gap-
junction channels or recording synaptic currents from two neurons? A fura-2 program for use
with a photomultiplier tube system is also available. There is an excellent set of programs for
recording from tissue slices. Currently, programs for ligand-gated channels are not available, but
they may become available soon. The programs are moderately complete, but they are also
customizable for any particular application that the user requires. For instance, an ugly-looking
screen can be changed. If one prefers different keys to change program parameters, they too can
be changed. If the colors of the data on the screen are not drawing your eye to important events,
change them. Everything can be changed or programmed. This is not to say that turn-key
systems can never be as useful as programmable systems. If the turn-key system does all or most
of what is required by a laboratory, then this is the system of choice. Turn-key programs are
usually simple to learn; in most cases new users can be performing experiments on the same day.
Nonetheless, programs written for programmable systems can be taught just as easily.
Programming these systems takes a little longer, but almost all users find the extra capabilities
worth the effort. In addition, users usually obtain a better understanding of the programs and,
therefore, are able to add desired features and to discover program bugs.

Is programming in AxoBASIC too difficult or time consuming to be worth the effort? The
answer to this question depends on how much of the user's requirements are satisfied by an
existing program. If a turn-key system provides all or most of the needed applications, the
benefits achieved by small improvements in the acquisition or analysis programs may not be
worth the effort of reprogramming. But if you have an application that simply does not exist
anywhere else, then a programmable, expandable environment is preferable. Or if you have seen
one of the application programs available for AxoBASIC and have decided it's exactly right for
your laboratory, then AxoBASIC is for you. For instance, fura-2 acquisition and analysis
programs for use with a photomultiplier tube are available only in a few standard turn-key
systems, each of which has certain undesirable limitations. For instance, one particular program
can acquire only 30 minutes' worth of data at a time, whereas a typical continuous acquisition
time should last 3 or 4 hr. In addition, these systems are very expensive. A set-up based on
software written in AxoBASIC, or other programmable language environments like ASYST, can

Development Environments / 227

A X O N G U I D E

be built for about one third of the cost of commercially available software. Moreover, the user-
programmable software can be customized within a short period of time to have precisely the
features needed by the user. For example, the fura-2 setup took less than three days to get
running (it's that simple!). The original programming took probably two to three weeks to get
working. Since then the programs have slowly been improved; nevertheless, 90% of the
programming was done in the initial two to three weeks. Now these fura-2 programs are
available for general use. Another example is from a laboratory that couldn't find an ideal
program for hippocampal slice work. The researchers wanted to record field potentials
simultaneously with intracellular potentials. They wanted to divide their display into four
separate windows, two showing raw data as it came in and two showing a running analysis of the
experiments. Originally, the programs took quite a while to write. Now the slice programs have
been used by several people for a couple of years. The effort of writing the program was more
than offset by the increased efficiency of the laboratory using a program specifically designed for
their needs. Was it difficult? The answer depends on the user; but many users are comfortable
programming in AxoBASIC on their first day. Users will be writing sophisticated programs
usually after two or three days.

If you have had any programming experience at all, AxoBASIC will be very easy to learn. Non-
programmers should understand that the software was designed to be easy to use, much like the
macro programming languages mentioned above. All of the difficult machine interfacing has
been done for you. BASIC was chosen because it is the easiest language for novices to learn.
New versions of BASIC, like AxoBASIC, which are based on Microsoft QuickBASIC, have all
of the modern programming constructs such as the following structures: IF...THEN...ELSE,
WHILE...WEND, DO...UNTIL, and CASE SELECT...CASE ELSE...END SELECT.

AxoBASIC has real subroutines, making it very modular. Line numbers can be used but are not
required, nor are they recommended. In older versions of BASIC, if you needed to make a
histogram from data residing in the computer memory, you would go to the part of the program
that made histograms with a GOTO statement. A typical example would be GOTO 5000 (this
jumps the program to line 5000). After finishing a typical program there would be many GOTO
statements. This lead to a common BASIC condition known as "spaghetti code." The programs
would be jumping all over the place, without any simple way of keeping track of where they
were jumping. Two months after finishing a program, GOTO 5000 did not tell the user anything.
This made programs difficult to maintain and hard to give to other laboratories who wanted to
change the programs. AxoBASIC, being a modern language, does not have these flaws. The
actual code for the histogram-making program would be in a small subroutine of no more than
100 - 200 lines (named, for instance, HISTOGRAM). If that subroutine did not provide enough
space, one would write additional subroutines that would be called by the HISTOGRAM
subroutine. Experience with the C programming language has shown that small, easy-to-
understand subroutines are the simplest to maintain. Therefore, that programming model would
be followed (some C programmers will limit subroutines to 50 lines of code, but that may be too
restrictive). After completing these subroutines, one can generate a histogram anywhere in the
program simply by typing in the word HISTOGRAM. Any time in the future, when one sees the
word HISTOGRAM one will still understand what it means. And since the subroutine
HISTOGRAM itself is small, stand-alone and fully functional, one will also understand how it
works. In fact, BASIC now has all of the structured programming constructs of PASCAL or C,
except for variable typing. (Variable typing refers to rules requiring variables to be declared
before they are used. If the variable has been defined previously, the user will not be able to use

228 / Chapter eleven

an integer variable where a floating-point variable is required, which is a very common error in
programming). BASIC programmers claim that the decision to exclude variable typing (as well
as some other BASIC features) make programming simpler and more powerful; but there is not a
complete consensus of opinion on this issue. Nevertheless, in recent years Microsoft
QuickBASIC has won many awards from a variety of computer magazines as the most
outstanding development environment available. For these reasons, AxoBASIC was originally
based on QuickBASIC version 4. Currently, AxoBASIC is based on MicrosoftBASIC PDS
(Professional Development System) version 7.1.

Is AxoBASIC an interpreted or compiled language? It is usually very painless and fast to
develop programs in an interpreter, but such programs typically run up to 50 times slower than
those compiled with a compiler. Interpreters usually translate lines of code into machine
language as they are run. Compilers translate an entire program into machine language and then
run the result. For example, the program listed below runs the program contained within the
FOR...NEXT loop 100 times:

J = 0
FOR I = 1 to 100
J = J+I
NEXT I

This program adds every number from 1 to 100. A compiler would convert the entire program to
machine language, whereas an interpreter would convert and execute each line as it is used.
Consequently, for each of the 100 times through the loop, the interpreter will translate each
statement into machine code, a very slow process, whereas the compiler will do it only once.
Nevertheless, many programmers use interpreters because program development time is
shortened significantly. The compile-link step in most compiler systems can be excruciatingly
slow during program development, even in sophisticated environments that include a MAKE
function. New in-memory compilers (like Turbo-Pascal or Quick C) have started to change the
way we use compilers because they almost function like interpreters. Nevertheless, BASIC's
interpretive environment will usually cut software development time significantly. Furthermore,
because of the threaded interpretive software techniques used in QuickBASIC and the pre-
compiled assembly language libraries used by AxoBASIC, programs typically run much faster
than those written in Microsoft C. AxoBASIC has all of the advantages of an interpreter with
none of the speed penalties, which makes it an almost ideal development environment.

Does that mean that programming in AxoBASIC is for everyone? Probably not. It is a matter of
personal preference. Nevertheless, Axon Instruments' goal is to have a network of users linked
together that trade application programs. Even users who enjoy programming realize that their
priority is doing scientific research, not writing programs. Therefore, almost anyone would
rather get a pre-written program than write it themselves. Of course, this does not preclude users
from customizing their applications to perform their individual tasks  a process that fortunately
is quite simple.

Programming in AxoBASIC is simple, right? How simple is simple? Below we have listed a
few examples of actual code that would be useful in the laboratory. For programmers, it will
look very simple. For the uninitiated, it may look complex, but it's not. For instance, anyone
who has looked at the C> prompt in DOS or the blank WordPerfect word processing screen for

Development Environments / 229

A X O N G U I D E

the very first time feels somewhat lost. After a short period of time, users happily move around
DOS or WordPerfect. We hope that AxoBASIC will provide a similar experience. And for
anyone who has wanted to learn to program, this may be the most painless way.

A Programming Example

Turning the Computer into a Digital Oscilloscope
Most readers are aware of the usefulness of a digital oscilloscope. In general, when the scope is
free-running, any signal brought into the scope is displayed on the screen. There is a scale on the
screen allowing the user to measure the amplitude of the signal. At any point in time, the user
can hit a button to hold the sweep on the screen. In another mode, the user can trigger the scope
from some external event. At all times the user can change the gain and timebase.

The entire program required for a free running scope (but with no display, no scale and no
options) is the following:

TEST:
wipe 'Clears the display screen of previously stored

'data sweeps
samplel 50, 1000, 1, 0, 0, 1 'Digitize one channel of data, '1000 points at 50

µs per point
disl 0, 1024 'Display the data just acquired
GOTO TEST

If a function generator producing a sine wave with a frequency of 80 Hz is connected to channel
0 of the ADC, we would see the following on the AxoBASIC VGA graphics monitor.

230 / Chapter eleven

If we now changed the output of the function generator to a triangle wave, we would see the
following on the screen.

So far this is pretty straightforward but not too useful. We have no way of changing anything or
stopping the program. Next we will put in the options to hold the present sweep, put in a defined
trigger pulse, acquire the next sweep and stop, free run, change the sampling rate, change the
voltage gain, or exit the program.

choices$ = "F" 'Start the program free-running
oldchoice$ = "F"
scalefactor% = 1
clock% = 50 'Sampling clock 50 µs per point
axisx -2048, 0, 4096, 0, clock% 'Make an x-axis (Time) calibration bar that

starts 'at the left of screen and goes all the way
to the 'right. Time 0 is at left. Time 50 (ms) is
at 'right. (We are taking 1000 data points at 50
µs 'per point, therefore we will have 50 ms of
data.)

axisy 0, -2048, 4096, -10/scalefactor%, +10/scalefactor%
'Make a y-axis calibration bar that shows the
'data coming in in the range from -10 volts to
'+10 volts.

WHILE (choices$ <? "S") 'Run all of the program until the wend statement
'unless the variable choices$ is "S" (stop).

choices$ = inchar$(1) 'Read the keyboard to see if a key has been
'pressed. If yes return key to variable. Variable
'choices$ is a string.

IF choices$ = "" THEN 'No key was pressed by user, will repeat
'previous command.

choices$ = oldchoice$
END IF

Development Environments / 231

A X O N G U I D E

IF choices$ <> "C") AND (choices$ <> "F") AND (choices$ <> "H") AND
(choices$ <> "N") AND (choices$ <> "S") AND (choices$ <> "T") THEN

choices$ = oldchoice$ 'Check whether user hit a wrong key
END IF

CASE SELECT choices$ 'We determine which key has been pressed.
CASE "C" '"C" was pressed, meaning new clock rate for

'sampling data is required.
INPUT "Enter new sampling clock rate (µs) - "; clock%
axisx -2048, 0, 4096, 0, clock%
axisy 0, -2048, 4096, -10/scalefactor%,+10/scalefactor
oldchoice$ = "F" 'Return scope to free running condition

CASE "F" '"F" key pressed so user wants to scope to free
'run.

wipe 'Clear display screen
samplel clock%,1000,1,0,0,1 'Digitize data into the computer.
scmul = scalefactor% 'Factor to multiply data before display
disl 0, 1000 'Display the data just acquired
oldchoice$ = "F" 'Return scope to free running

CASE "G" '"G" key was hit so user wants to change voltage
'gain.

INPUT "Enter new multiplication factor (1-100) -"; scalefactor%
axisx -2048, 0, 4096, 0, clock%
axisy 0, -2048, 4096, -10/scalefactor%, +10/scalefactor

CASE "H" '"H" key was pressed so user wishes to hold on
'this sweep.

hold 'Hold here until any key is pressed.
oldchoice$ = "F" 'Return scope to free running

CASE "N" '"N" key means acquire next sweep and then
'hold.

wipe 'Clear display screen
samplel clock%, 1000, 1, 0, 0, 1 'Take data into the computer.
scmul = scalefactor% 'Factor to multiply data before display
disl 0, 1000 'Display the data just acquired
hold 'Hold here until any key is pressed.
oldchoice$ = "F" 'Return scope to free running

CASE "T" '"T" key means trigger the next sweep externally
after a delay set by the user. Trigger will come
in on A/D channel 15.

ASK_AGAIN:
INPUT "Please enter delay after trigger - "; delay
IF (delay < 0) THEN GOTO ASK_AGAIN
INPUT "Please enter trigger potential (-10 to +10 volts) -"; trigpotential
IF (trigpotential > 10) OR (trigpotential < -10) THEN GOTO ASK_AGAIN
TRIGPOTENTIAL = TRIGPOTENTIAL*204.8

'Convert to computer units by multiplying by
'204.8

232 / Chapter eleven

INPUT "(1) Trigger greater or (2) trigger less than trigger potential - ";
trigdirection
IF (trigdirection < 1) OR (trigdirection ? 2) THEN GOTO ASK_AGAIN

IF trigdirection = 1 THEN
WHILE (ad(15) < trigpotential)
WEND

ELSE
WHILE (ad(15) > trigpotential)
WEND

END IF

waitclock delay 'Wait number of ms specified by delay
wipe 'Clear display screen
samplel clock%, 1000, 1, 0, 0, 1 'Digitize data into the computer
scmul = scalefactor% 'Factor to multiply data before display
disl 0, 1024 'Display the data just acquired
hold 'Hold here until any key is pressed
oldchoice$ = "F" 'Return scope to free running

CASE ELSE
END SELECT
WEND
STOP

That's it. About 70 lines of code make this program run quite well. This program illustrates the
power of the AxoBASIC program. With a relatively small number of commands, a user can
write some quite powerful programs. It would not take experienced users very long to write a
program like the one above (perhaps an hour or two), and they would probably write a much
improved version over the one above. This program also illustrates the structured constructs
available like WHILE...WEND, CASE SELECT and IF...THEN...ELSE.

Comparison Between AxoBASIC and BASIC-23

BASIC-23 was originally written for the Digital Equipment Corporation line of PDP computers.
It was a dialect of BASIC specifically designed for laboratory data acquisition and analysis. The
first version was written by Dr. Dan Brown while he was in the laboratory of Dr. Charles
Stevens. The language was updated later by Dr. Gary Yellen while he was in Dr. Stevens's
laboratory. The concept of the language was simple  to have an interpreted, easy to program
language that took care of all of the hardware support like A/D converters, data display, etc. To
provide speed, all data manipulation was to be done using precompiled (in assembly language)
subroutines that worked on blocks of data in a USER BUFFER. This concept of operating on
arrays of data was first popularized in array processors. Drs. Brown and Yellen did a
magnificent job. The language was small, fast, easy to program, and allowed for large amounts
of data storage. Both integer and floating point arithmetic were supported. Unfortunately, the

Development Environments / 233

A X O N G U I D E

platform on which the system was based, the PDP-11, has become obsolete. Today's IBM PC-
based microcomputers are much faster and much cheaper than the PDP line of machines.
Unfortunately there was no BASIC-23 available for IBM PCs, so AxoBASIC was written to be a
clone of BASIC-23. The use of the Microsoft QuickBASIC environment reduced the
programming task enormously. The parser, the editor and some of the hardware support are
performed by QuickBASIC. AxoBASIC adds all of the buffer manipulation routines and
laboratory hardware support.

How similar is AxoBASIC to BASIC-23? It is very similar: 90% of the commands and the
syntax are identical. For the remaining 10%, AxoBASIC has equivalent commands that in some
cases are simpler to use and are otherwise required because of unavoidable constraints. For
instance, RESET clears the display screen in BASIC-23. RESET is a QuickBASIC reserved
word, so now CLRSCRN clears the display screen. With few exceptions (e.g., the DISPLAY
command), there are equivalent AxoBASIC and BASIC-23 commands. The BASIC-23 parser
has a more flexible parameter stack than that used by AxoBASIC. For instance, to display 256
points in BASIC-23, you would use either:

DISB 0, 1
or

DISB 0

BASIC-23 was smart enough to supply elements on the parameter stack that were missing. In
AxoBASIC you must specify the entire parameter list or the program will tell you that you are
missing an element. In AxoBASIC the following is the only accepted syntax: DISB 0,1.

It usually does not take very long to convert BASIC-23 to AxoBASIC, since the languages are
almost identical. The hard part is actually getting the text from a PDP to an IBM machine in
ASCII (not compressed or tokenized) form. Once transferred, it takes about 2 - 3 hours to get
modestly long programs, of 1,000 - 1,500 lines of code, to work. Usually, all it takes is to find the
BASIC-23 commands in which the entire parameter stack was not specified, i.e., in which the
programmed defaults were used. Then change the few commands that now have new names
(e.g., RESET to CLRSCRN). At this point the program should work as is.

Although AxoBASIC supports line numbers and lots of GOTO statements, this form of
programming is not recommended. Programs should be re-written to employ the new more
modern programming constructs available in AxoBASIC. In the long run, that will make the
programs much easier to maintain. The nice part is that re-writing is optional; it's not required.

Future Directions

What is lacking in AxoBASIC? New features are being added all the time. Many constraints are
imposed by DOS itself and the 640 KB (640 kilobyte) limit on IBM-compatible computers.
There are many statistical features that would be beneficial to AxoBASIC users. For instance,
wouldn't it be nice to have data sitting in the computer in an array and be able to do a linear
regression with a command like LINEREG. Or if you need to fit a double or triple exponential,
you could just pull up a SIMPLEX fitting routine built into AxoBASIC. While there are
programs that do regressions or fit with SIMPLEX, that is not quite as convenient as having them

234 / Chapter eleven

built into the language itself. There are many statistical functions that could be in the language,
but have not been incorporated due to space limitations. The more functions we put in, the fewer
of the 640 kB remain available for programming by the user. This is the common trade-off in the
MS-DOS environment. Fortunately, version 7.1 of the QuickBASIC extended environment
(QBX) allows very large programs if the user has expanded memory available in the computer.
In fact, there will be no practical limit on AxoBASIC's program size in the QBX environment.
Nevertheless, the AxoBASIC library, QBX and the data buffers still have to fit into 640 K;
therefore we cannot now add all of the above-mentioned statistical functions. Version 1.1 of
AxoBASIC also increases the number of graphic objects that can be sent to hardcopy, since the
display is quite difficult to overload. You can load in 100 sweeps of 1,024 vectors and 16,500
vectors and 16,500 plot points. Additionally, unlimited sized arrays can be set up in expanded
memory. The USER BUFFER is still limited to 64 KB, and future plans will focus on moving
the USER BUFFER to extended memory where it will be able to be as long as required.

What about hardware improvements? In fact, 80386 computers today make wonderful laboratory
computers because they are fast and cheap. With memory prices coming down, computers with
4-8 MB (megabytes) of memory will soon be in everyone's laboratories. The only drawback at
present for computers is in the display. AxoBASIC itself can be used in two configurations; one
of which has a very high resolution graphics subsystem. This combination is monochrome and a
little expensive, but it is superb for single-channel experiments because all channel transitions
can be seen easily by the user. AxoBASIC is also available for VGA monitors where it works
well, but the screen could have more resolution for single-channel experiments. Nevertheless,
everyone has VGA and it is relatively inexpensive? Higher resolution modes like 1024 x 768
graphics are commonly (and cheaply) available for PCs but as yet there is no standard definition
for this mode. At present there are several incompatible systems battling it out to see which one
wins the 1024 x 768 standard. As soon as the dust settles, there will be a version of AxoBASIC
available for the winning graphics standard.

Development Environments / 235

A X O N G U I D E

