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A novel technique was developed for injecting a time-varying conductance into a neuron, to allow quantitative measurement of 

the processing of synaptic inputs. In current-clamp recording mode, the membrane potential was sampled continuously and used to 

calculate and update the level of injected current within 60 ~zs, using a real-time computer, so as to mimic the electrical effect of a 

given conductance transient. Cellular responses to synthetic conductance transients modelled on the fast (non-N-methyl-l~-aspar- 

tare) phase of the glutarnatergic postsynaptic potential were measured in cultured rat hippocampal neurons. 

Introduction 

The inputs to a neuron consist of focal tran- 

sients of membrane conductance at the postsy- 

naptic sites, whose magnitude is essentially inde- 

pendent of the postsynaptic response. The output 

of a neuron is represented by the membrane 

potential in the cell body or axon. However, the 

relationship between transient conductance in- 

puts and the resulting trajectory of membrane 

potential has never been directly measured. The 

current lsyn(t) flowing through the synaptic con- 

ductance at a postsynaptic site depends on the 

postsynaptic membrane potential V(t), according 

to the equation 

l~yn(t) = g ( t ) ( E r e  v - V ( t ) )  (1) 

Correspondence: Hugh P.C. Robinson, Physiological Labora- 

tory, University of Cambridge, Downing St., Cambridge, CB2 

3EG, UK. Tel.: 0223-333835. 

where g(t) is the time-varying conductance and 

Ere ~, is the reversal potential for the conductance. 

In particular, for a given g(t), the current is 

diminished to zero and then reversed as the 

membrane is polarized through Er~ v. V(t) de- 

pends upon the complexities of current flow 

throughout the whole neuron, including l~yn(t), 

active voltage-dependent currents, and currents 

at other synaptic sites. The interdependence of 

Isyn(t) and V(t) is such that, even for a passive 

membrane consisting of a linear resistance and 

capacitance in parallel, the conductance input- 

voltage output relationship is non-linear. Further- 

more, injection of a fixed-current transient, with- 

out feedback of the membrane potential cannot, 

in general, reproduce the effect of a conductance 

input. Nevertheless, current injection has been 

the main technique employed to gain experimen- 

tal insight into the integrative action of mam- 

malian neurons (for a review, see Llinfis, 1988). 

The assumption that synaptic inputs are pre- 

scribed current transients also greatly simplifies 

the problem of calculating voltage responses for 
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passive membrane, which becomes linear (Rail, 

1977). However, as seen from Eqn. 1, this ap- 

proach can be valid only when the voltage is so 

far from the equilibrium potential that it can be 

considered constant. It cannot describe even ap- 

proximately the action of an inhibitory synapse as 

the membrane potential ranges on both sides of 

the reversal potential. The analytical theory of 

conductance inputs for passive membrane is ex- 

tremely difficult, and has not so far provided 

general solutions analogous to those for current 

inputs (MacGregor, 1968; Barrett and Crill, 1974; 

Poggio and Torre, 1978; Tuckwell, 1988). Numer- 

ical modelling has been the most profitable ap- 

proach to defining the role of conductance inputs 

(e.g., Koch et al., 1983; Turner, 1984; Wathey et 

al., 1992), but relies upon still fragmentary knowl- 

edge of the properties and distributions of neu- 

ronal membrane conductances. 

In order to characterize the integrative action 

of neurons experimentally, it is necessary to mea- 

sure the output V(t) in response to exactly speci- 

fied transients of conductance at defined loca- 

tions in the cell, which have the same kinetics and 

reversal potential as natural synaptic conductance 

transients. Neither voltage-clamp nor current- 

clamp techniques provide a direct approach to 

this problem. Voltage-clamp recording, in mea- 

suring g(t), necessarily cancels V(t), while cur- 

rent-clamp recording measures V(t) but not g(t). 
Here, we present a technique for stimulating a 

neuron, during current-clamp recording, with a 

current that follows Eqn. 1. This has the effect of 

simulating a known transient conductance, and 

allows the g(t)/V(t) relationship to be measured 

explicitly. In this technique, the injected current 

level is continuously updated according to Eqn. 1 

by a real-time computer, using the instantaneous 

measurement of the membrane potential, a pre- 

specified constant reversal potential and a time 

template for the conductance derived from volt- 

age-clamp recordings of synaptic currents. The 

method was applied in small cultured hippocam- 

pal neurons to demonstrate the processing of 

conductance transients mimicking the natural fast 

excitatory and inhibitory postsynaptic conduc- 

tances. A preliminary report of this work has 

appeared elsewhere (Robinson, 1991). 

Methods 

Dissociated hippocampal neurons were cul- 

tured from neonatal rats as described previously 

(Robinson et al., 1991), and maintained for 1-2 

weeks before experiments. Very small (diameter 

< 12 ~m), rounded neurons with few processes 

were selected for recording. To record natural 

spontaneous postsynaptic currents, pipettes were 

filled with the solution: 141 mM CsCI, 5 mM 

EGTA, 0.5 mM CaC12, 10 mM HEPES/Na (pH 

7.2). The bath solution contained: 150 mM NaCI, 

2.8 mM KC1, 0.5 mM CaCI2, 10 mM HEPES/Na 

(pH 7.2). For conductance injection, the pipette 

solution consisted of: 141 mM KCI, 0.5 mM 

CaCl~, 5 mM EGTA, 10 mM HEPES/Na (pH 

7.2), and the bath solution of 142 mM NaC1, 2.8 

mM KCI, 2 mM CaCI2, 1 mM MgC1 z, I0 mM 

HEPES/Na, 5 mM o-glucose (pH 7.2) to which 

were added 10 /zM CNQX (Tocris Neuramin, 

Buckhurst Hill, UK), 30 t~M APV (Tocris), and 

30 ~M strychnine (Tokyo Kasei Kogyo Co., 

Tokyo, Japan). All experiments were at room 

temperature (23-25°C). 

Conductance injection was carried out as fol- 

lows. Whole-cell recordings (Hamill et al., 1981) 

were established using a whole-cell patch-clamp 

amplifier (Axopatch l-D, Axon Instruments, Fos- 

ter City, CA) in current-clamp mode. In voltage- 

clamp mode, the capacitive charging time con- 

stant was less than 40 Izs. The real-time calcula- 

tion of the current command signal was per- 

formed by a dedicated analog processing board 

(AS-l, Cambridge Research Systems, Rochester, 

Kent, UK), which included a 12 MHz 80186 pro- 

cessor, clocks, 512 kbytes memory, and 12-bit 

analog-to-digital converters (ADC) and digital- 

to-analog converters (DAC). The settling time 

constant of the DACs was approximately 1 ~s. 

DAC update and ADC sampling were exactly 

synchronized using the direct memory access 

channels of the processor. The membrane poten- 

tial signal was sampled after passage through an 

anti-aliasing filter (5 kHz, -3dB Bessel charac- 

teristic). Conductance templates were stored in 

memory at a resolution of 16 bits, and the multi- 

plication, at each time step, by the result of 

subtracting the voltage from the reversal poten- 
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tial, was carried out to 28-bit intermediate preci- 

sion. The 12 most significant bits were written to 

the DAC connected to the current command 

input of the amplifier. The arithmetic in each 

cycle lasted only 4.58 p.s, with the remaining time 

used for handling timers, transferring samples to 

memory, and update of loop variables. The small- 

est attainable fit was 58.8 /zs, which was used 

throughout. 

Results 

Whole-cell voltage-clamp recording from small 

neurons cultured from rat hippocampus revealed 

2 types of spontaneous synaptic current. A gluta- 

matergic excitatory postsynaptic current (e.p.s.c) 

a 

(Fig. la), comprised a fast, non-N-methyl-D- 

aspartate (non-NMDA) receptor-mediated com- 

ponent with a decay time constant (r) of 1.5-4 

ms (Fig. la), and a slow, NMDA receptor-media- 

ted phase with a decay r of 80-150 ms (Eqn. 3) 

(Fig. lb), in which single channel openings could 

clearly be resolved in the whole-cell current (see 

Robinson et al., 1991). Similar biphasic gluta- 

matergic e.p.s.c.s have been described by Hestrin 

et al. (1988), Forsythe and Westbrook (1988), 

Bekkers and Stevens (1989) and Keller et al. 

(1991), and appear to be a general feature of 

most mammalian central neurons. An inhibitory 

postsynaptic current (i.p.s.c.) decayed monoexpo- 

nentially with a r of 30-40 ms (Fig. lc), as 

described by Segal and Barker (1984). 

We found that both the fast phase of the 

b c 
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Fig. 1. F i t t ing  of the  k ine t ics  of s p o n t a n e o u s  synapt ic  cu r ren t s  in ra t  h i p p o c a m p a l  neurons ,  a: 3 fast, n o n - N M D A  e.p.s.c.s, se lec ted  

for the absence  of  ear ly  ensu ing  N M D A  c h a n n e l  open ings .  Leas t - squa res  fits to the  equa t ion :  I( t )=K ( 1 - e x p ( - t / ~ -  0 )  

exp( - t / r  2) (Ere v -  V)  are  s u p e r i m p o s e d  wi th  the  va lues  of r I and  -r 2 ind ica ted .  V = - 7 5  mV, b a n d w i d t h  D C  - 1 0  kHz  

( app rox ima te  b a n d w i d t h  of ampl i f i e r  and  record ing  system, r e s a m p l e d  at  25 kHz).  b (3 top  traces):  s p o n t a n e o u s  e.p.s.c.s, wi th  the 

charac te r i s t i c  b iphas ic  a p p e a r a n c e  of the  n o n - N M D A  ( f a s t ) / N M D A  (slow, noisy) g l u t a m a t e r g i c  e.p.s.c. Single  channe l  open ings  

may be  seen  in the N M D A  phase .  ( lower  trace):  e n s e m b l e  ave rage  of  30 a l igned  s p o n t a n e o u s  e.p.s.c.s, wi th  a s ingle  exponen t i a l  fit 

of "r = 84 ms to the slow ( N M D A )  phase.  V = - 75 mV, b a n d w i d t h  D C  - 2 kHz  (Gauss ian) .  c: 3 i.p.s.c.s, wi th  fits as in (a). V = - 70 

rnV, b a n d w i d t h  D C  - 10 kHz,  as in (a). 
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e.p.s.c and i.p.s.c were well fitted by a product of 

2 exponential functions, so that the underlying 

conductance transients, g(t), could be written as 

( ' ) ,  
g ( t ) = K .  1 - e x p - -  . e x p - -  (2) 

TI "/'2 

Assuming that g(t) is independent of V, the 

current l(t) flowing at the synaptic site should be 

given by substituting Eqn. 2 for g(t) in Eqn. 1. 

This assumption is reasonable for the fast gluta- 

mate e.p.s.c., which shows only a 10% change in 

decay r over the range - 100 mV to 0 mV (Keller 

et al., 1991). To inject conductance transients, we 

used the discrete time approximation to Eqn. 1: 

ll+,~t=g, ( E r e  v - Vt), to determine the com- 

manded current in current-clamp recording mode. 

At time t + 6t, the commanded current level was 

updated to the product of the conductance value 

in the template for time t and the result of 

subtraction of the potential measured at time t 

from the reversal potential Ere v. This feedback 

loop has the effect of creating a current source 

which well approximates the effect of the synaptic 

conductance g(t) when ~t is small. In the present 

experiments, 3t was fixed at 58.8/zs. To confirm 

the accuracy of the conductance synthesis, we 

injected conductance transients of the form speci- 

fied by Eqn. 2 with r I = 2 ms and r 2 = 15 ms, 

into a model passive cell. The resulting voltage 

response was very close to the expected response, 

calculated by integrating the differential equation 

for the circuit numerically (Fig. 2). 

Fig. 3a shows the injection of a conductance 

transient modelled on that of the fast e.p.s.c, with 

a reversal potential of 0 mV. For all conductance 

injection experiments, the pipette contained a 

predominantly potassium chloride solution (see 

Materials and methods), while CNQX, APV, 
strychnine and magnesium were added to the 

bath. The intention was to block natural synaptic 

events without impairing the function of voltage- 

dependent  channels which react to synaptic con- 

ductance inputs under physiological conditions; it 

should be noted that strychnine is an effective 

blocker not only of glycine receptors, but also of 

GABA a receptors at the concentration used (30 

/zM) (Shirasaki et al., 1991). The measured po- 

tential is shown superimposed on the expected 

i' 
J 

E~e~ .................. ~ .... ....... 
i • 1 

V(t) . . /  ~ 50 mV 

300 pS 

20 m s  

g(t) 
Fig. 2. Conductance injection in a model ceil. g(t) was speci- 

fied by Eqn. 2, with K = 9 0 0  pS, r 1 = 2  ms, r z = 1 5  ms, 

Ere v = 200 mV (indicated by a dotted line). The parameters of 

the model cell are shown in the inset. The solid V(t) trace 

shows the measured response (averag e of 10 trials), while the 

dashed trace shows the expected response calculated by nu- 

merical integration (Euler integration, time step 1 ~s). 

passive response calculated by numerical integra- 

tion, using the values for cell input resistance and 

capacitance determined by small hyperpolarizing 

current steps from rest (see Fig. 3a inset). This 

reveals a non-linear active response due to volt- 

age-dependent inward current. The injected cur- 

rent is the product of the time-varying potential 

driving force and the conductance template, and 

reaches its peak approximately 0.5 ms before the 

peak of conductance, then falls biphasicaUy be- 

fore rising again in a small, late peak. Thus, 

current of a similar time course should flow 

through the non-NMDA channels during a 

synaptic potential in the unclamped active mem- 

brane. In Fig. 3b, a conductance template based 

on the slower kinetics of an inhibitory postsynap- 

tic event, and a reversal potential of - 6 0  mV, 

was injected repeatedly as the membrane poten- 

tial was changed between - 100 and - 25 mV by 

background current injection, illustrating the re- 

versal of the artificially induced transients. 

The relationship between the amplitude of a 

fast glutamate-like conductance transient and the 

depolarization was investigated by varying K (Fig. 

4a). At potentials near to rest, the form of re- 



sponses is as expected for a passive membrane, 

and the peak of each response showed the grad- 

ual sublinearity expected as the driving force was 

reduced by approaching Ere v. Around - 3 5  mV, 

a graded action potential appeared, whose peak 

becomes higher and earlier with increasing K. 

Graded action potentials are also observed in 

small cultured hippocampal neurons when stimu- 

lated by conventional current injection (Johann- 

son et al., 1992). From the plot of the peak of 

V( t )  against K (Fig. 4b), the resistance of this cell 

appears to be higher in the depolarizing direction 

than measured at rest, possibly due to the pres- 

ence of inward rectifier K ÷ channels. Similar 

peak V(t )  - K relationships were found in 3 other 

neurons. Fig. 5 shows the effect of varying the 

kinetics of the conductance transient, in the same 

neuron as in Fig. 4. When the 2 time constants in 

Eqn. 2 were multiplied by the same scaling factor, 

161 

(scaling in time only, without change in the peak 

conductance), the maximum depolarization at 

each value of K increased markedly as the kinet- 

ics were scaled from ~'~ = 0.5, r 2 = 2 ms, up to 

r 1 = 3, r 2 = 12 ms, but showed comparitively little 

further change at ~1 = 4, ~2 = 16 ms. 

Temporal  summation was investigated in 1 

neuron by varying the separation between 2 iden- 

tical excitatory conductance transients (Fig. 6). 

For K = 300 pS, separations of 10 ms and over 

were subthreshold for eliciting an action poten- 

tial. At smaller separations, however, a late ac- 

tion potential was elicited, which increased in 

amplitude to a maximum at 5 ms separation, 

declining sharply again as the separation was 

decreased further, though the peak value of in- 

jected conductance continued to increase. Thus, 

there was a sharply defined optimal separation of 

5 ms. The temporal summation experiments 

a 

0 mV ............... ~ , / ~ "  10 mV 

Voltage Response ~ lo m] 20 my 

Passive Membrane 

Current 
[ 10 pA 

b 

-60 mV - 

~ 10 mV 

100 pS 

20 ms 

f x  

Conductance ~ I 10o pS 

10 ms 

Fig. 3. Conductance injection, a (top trace): injection of a conductance transient modelled on the fast e.p.s.c., with K = 1 nS, ~'1 = 1, 

~'e = 4, Ere v = 0 mV; (top trace): measured voltage response superimposed on the expected response (calculated by numerical 

integration) if the cell comprised a 3.79 GO resistor and a 2.2 pF capacitor in parallel; values measured using 1.4 pA 

hyperpolarizing current steps from rest (inset). (middle trace): the (commanded) current injected during the transient, determined 

by the equation: I t + ~  = gt (Erev - Vt)" 6t  was 58.8 p,s. b: voltage responses to injection of a gt template modelled on the i.p.s.c. 

(bottom trace): K = 500 pS, ~'i = 1 ms, r 2 = 30 ms, Ere v = - 6 0  mV. The resting membrane potential was varied for each different 

voltage response by injection of an additional constant background current. Cell resistance, 3.5 GO; capacitance, 1.71 pF. 
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Fig. 4. Non-linear summation of excitatory conductance inputs. A family of conductance transients modelled on that underlying the 

fast glutamatergic e . p . s . c .  ( ' / '1  = 1 ms, T 2 = 4 ms, Ere v = 0 mV)was  injected into a neuron with a resting potential of - 6 5  inV. Each 

injection was separated by 10 s for recovery, and K was stepped from 50 pS to 1.1 nS in steps of 50 pS. a: measured potential 

responses (top) and conductance transients (bottom). b: peak membrane potential during each transient as a function of the K 

scaling value. Triangles: measured values. Solid line: computed responses for passive cell (R = 3.79 GO, C = 2.2 pF). 

showed a much higher variation in spike ampli- 

tude when compared to injection of a single con- 

ductance transient eliciting the same maximum 

response (not shown), and the greatest variation 

was at the optimal separation. 

Discussion 

The accuracy of the present method depends 

upon sufficiently fast current injection by the 

current-clamp amplifier, such that the com- 

manded current is not filtered significantly, and 

on the delay with which the current command is 

updated by the real-time computer, /~t, which 

should be short enough not to give rise to aliasing 

of the voltage transient. The close agreement of 

the time course and amplitude of voltage tran- 

sients with the calculated transients in the model 

cell (Fig. 2), implies that neither source of error 

was significant for passive responses to the syn- 

thetic synaptic conductance transients. In the 

neurons examined, the 17 kHz sampling rate used 

was sufficient not to alias measured active re- 

sponses, and current-clamp showed a fast time 

constant of about 50 gs. However, for cells with 

much larger active currents, for example at a 

later stage of development, it would be important 

to use a conventional amplifier designed for 

high-speed current-clamp with a voltage follower 

at the input stage, instead of a patch-clamp am- 

plifier, and also to decrease 8t further to prevent 

aliasing of the sampled potential. 

We used the product of 2 exponentials (Eqn. 

2) to describe the form of synaptic conductance 

changes, and showed that such a function pro- 

vides good fits to natural synaptic inhibitory and 

fast excitatory currents in these cells. When the 

ratio rl : % is large, this function becomes close 

to the difference (or convolution) of 2 exponen- 

tials, which may be expected theoretically if 

transmitter release is effectively pulsatile and 

synaptic channels have a single open and a single 

closed state. However, the method permits any 



form of conductance transient template to be 

used; indeed, natural synaptic currents recorded 

at a constant potential V and scaled down by a 

factor of (Ere v - V), could be used directly as the 

conductance template. 

The time course of the current injected during 

conductance injection can differ radically from 

that of the conductance transient, as seen in Fig. 

3, owing to the dynamic sensitivity of the current 

to the potential. As expected, conductance injec- 

tion gave the same saturating and reversible re- 

sponses as do natural synaptic conductances (Figs. 

3 and 4). It thus offers a considerably more 

realistic way to measure neuronal stimulus-re- 

sponse characteristics than does prescribed cur- 

rent injection. The relationship of K (peak con- 

1:r=4 

Xd= 16 

"Or=3 

'l:d= 12 

Xr= 2 

~d=8 

• ~ = 0.5 A 
Xd = 2 ~ d ~  ~ I0 mV 

~ m s  

Fig. 5. Effect of variation of kinetics of transient conductance 

inputs. Families of conductance transients were injected as in 

Fig. 3. For each set of values of r~ and ~'2 (indicated on the 

left), K was stepped from 100 pS to 1 nS in increments of 

100 pS. 
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ductance) to V(t) showed significant non-linearity 

(Fig. 4), in the passive range of membrane poten- 

tial as well as in the range of active responses. 

Temporal  summation of 2 excitatory conduc- 

tance transients revealed an even greater non-lin- 

earity of response (Fig. 6), with a sharply defined 

optimum interval between transients for eliciting 

the maximum depolarization, in this case at about 

5 ms. This phenomenon could lead to a resonant 

amplification of conductance inputs at a pre- 

ferred frequency. The variability of the response 

even at the optimum interval could be explained 

if the second conductance transient occurs when 

the membrane has been brought close to a rela- 

tively non-linear state by the first transient. The 

second response would therefore become a sensi- 

tive function of the membrane potential reached, 

and would be highly susceptible to perturbation 

by membrane current noise. 

We have demonstrated that conductance injec- 

tion allows the functional role of synaptic conduc- 

tances characterized by voltage-clamp to be stud- 

ied directly and quantitatively in unclamped ex- 

citable cells, obviating a full reconstruction of the 

membrane currents by numerical modelling. The 

site of conductance injection is the site of the 

electrode, and simulation of remote dendritic 

synaptic conductance transients would require 

appropriate placement of the electrode. Specific 

chemical effects of ions such as Ca 2+ flowing 

during natural conductance transients are not, of 

course, duplicated by the present method; this 

could, however, be useful in differentiating be- 

tween chemically dependent  and purely electrical 

components of synaptic responses. The technique 

could be extended in a number of ways. Using the 

much greater processing speeds of the presently 

available digital signal processor chips, it would 

be possible to measure the interaction of several 

t ime-dependent conductances with different re- 

versal potentials, as in simultaneous excitatory 

and inhibitory synaptic input. One additional 

multiplication per 8t with a value in a look-up 

table would enable simulation of permeabilities 

with non-linear instantaneous current-voltage re- 

lationships, such as the NMDA receptor channel 

(Mayer et al., 1984; Nowak et al., 1984). The 

injection of conductances with voltage-dependent 
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Fig. 6. Temporal summation of excitatory conductance inputs, a: the sum of 2 identical coL~cluctance transients (K = 300 pS, ~'1 = 1 

ms, r 2 = 4 ms, Ere v = 0 mV) offset by various intervals between 0 and 10 ms was iNected into a neuron. Three to 10 records were 

acquired at each interval, with 10 s between trials, b: the peak membrane potential reached was plotted as a function of the 

separation between the summed conductance transients (open triangles). Solid lines indicate the envelope of the response, which 

showed a marked optimum at 5 ms separation between conductance transients. Filled squares: computed response of the passive 

circuit of the neuron. 

kinetics described by the conventional model 

(Hodgkin and Huxley, 1952) would be feasible if 

the rate equations could be integrated accurately 

in real time. Injection of negative conductance 

could be used to cancel or titrate intrinsic con- 

ductances. 
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Small assemblies of neurons such as central pattern generators
(CPG) are known to express regular oscillatory ®ring patterns
comprising bursts of action potentials. In contrast, individual
CPG neurons isolated from the remainder of the network can
generate irregular ®ring patterns. In our study of cooperative
behavior in CPGs we developed an analog electronic neuron
(EN) that reproduces ®ring patterns observed in lobster
pyloric CPG neurons. Using a tuneable arti®cial synapse we

connected the EN bidirectionally to neurons of this CPG. We
found that the periodic bursting oscillation of this mixed
assembly depends on the strength and sign of the electrical
coupling. Working with identi®ed, isolated pyloric CPG neu-
rons whose network rhythms were impaired, the EN/biological
network restored the characteristic CPG rhythm both when
the EN oscillations are regular and when they are irregular.
NeuroReport 11:563±569 & 2000 Lippincott Williams & Wilkins.
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INTRODUCTION
Central pattern generators (CPGs) are widely studied
systems of rhythm generation in small neuron assemblies
[1]. The regularity and stationarity of the oscillatory pat-
terns generated by a small number of interacting neurons
is noteworthy, especially in light of evidence that such
networks are composed of individual neurons which can
oscillate chaotically when observed in isolation. Indeed,
CPG neurons with their synaptic inputs blocked have been
shown to express chaotic ®ring patterns [2±6]. Regular
rhythm generating neurons called pacemakers are com-
monly believed to be fundamental parts of the CPGs,
initiating the main oscillation [7]. A pacemaker neuron or
group may be required to synchronize all other neurons
and control joint rhythms because of the differences in the
properties of individual neurons.

The stomatogastric ganglion (STG) of crustaceans is a
well understood nervous system [8]. It contains the pyloric
CPG that generates a highly regular and repetitive motor
pattern resulting from interactions between 14 neurons. In
this system the anterior burster (AB) neuron is one of the
main pacemaker elements, having a central role in organiz-
ing the rhythm. The two electrically coupled pyloric dilator
(PD) neurons ®re in-phase with the AB forming a triplet of
pacemaker neurons. The robustness and uniformity of the

oscillation initiated by AB makes it dif®cult to manipulate
or interact with the rhythm and investigate the role of
individually irregular PDs in the pattern generation.

Based on our non-linear analysis of experimental data
from isolated pyloric neurons, we have developed a simple
analog electronic model of CPG neurons capable of repro-
ducing the observed ®ring patterns. The `electronic neuron'
(EN) was connected to the PD cells using an arti®cial
synapse, thus forming a mixed circuit. This approach
allowed us to dynamically interact with the biological
neurons rather than stimulating them using response-
independent current commands. In this fashion we have
shown that the regular, natural rhythm of the PD in the
intact network is restored when interacting with the ENs.
This occurs both when the EN is behaving regularly and
when it is set into a state of chaotic oscillations.

MATERIALS AND METHODS
Preparation and electrophysiology: The stomatogastric
nervous system (STNS) of the spiny lobster Panulirus
interruptus L. was dissected and prepared as described
earlier [9]. Brie¯y, the STG, the oesophageal ganglion and
the two comissural ganglia with the interconnecting nerves
were separated from the stomach and pinned in a Sylgard-
lined Petri dish containing standard Panulirus physiologi-



cal saline [3]. The STG was perfused separately from the
rest of the STNS using a vaseline chamber. Picrotoxin
(PTX; 7.5 ìM) was used to block glutamatergic synaptic
transmission and isolating the pyloric pacemaker group
from other pyloric neurons. Nerve cells were identi®ed by
comparing intracellular signals with extracellular burst
patterns monitored simultaneously from output motor
nerves. Partial isolation of the two PD neurons was
performed by photoinactivating the presynaptic AB neuron
[10]. The membrane potential of the cells was measured
with Neuroprobe 1600 current-clamp ampli®ers (AM-Sys-
tems). The PD neuron which we connected to the electronic
neuron was impaled with two microelelectrodes ®lled with
3M KCl and with resistances of 10-15MÙ. One of these
was used to monitor the membrane potential, while the
other served as a current passing electrode. This method
allowed us to avoid any problems arising from imperfect
bridge balancing or non-linearities of the current passing
electrode. A total of 198 trials were performed on nine
preparations.

Electronic neuron and synapse: We have designed and
built a three degree of freedom analog electronic circuit
realization of a mathematical model of bursting neurons.
The model was suggested by the work of Hindmarsh and
Rose [11]. It uses a polynomial representation of the
dependence of ion currents on the membrane potential
according to the following differential equations:
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where x is the membrane potential, y and z are `fast' and
`slow' internal variables, å represents the external currents,
and ì is the time constant of the slow variable. Both å and
ì are tuneable parameters. The HR model captures the
most important ®ring/bursting modes of real CPG neurons
[12]. This model, however, generates spikes with too large
an amplitude relative to the depth of interburst hyperpo-
larization. To make this ratio more realistic we used an
additional nonlinear ampli®er which reshaped the output
of the HR model neuron and made the membrane potential
oscillation more similar to that of bursting pyloric neurons
(compare Fig. 1A, PD trace with Fig. 2A, EN trace). The
EN, connected bidirectionally to the PD, was able to
receive and process incoming signals in the same fashion
as biological neurons receiving synaptic inputs. This func-
tionality came from an additional electronic circuit simulat-
ing an electrotonic synapse. The potential difference
between the EN and the biological neuron was measured,
and a current signal proportional to the difference was
generated. This current was fed back to the EN and
connected to the current input of the intracellular ampli®er
with opposite polarity. The amplitude and sign of the
current depended on the actual potential difference and a
conductance parameter, set by the experimenter.

Data acquisition and analysis: The extra- and intracellu-
lar signals were acquired at 10 kS/s rate by the Axoscope
7.0 program running on a PC. Raw membrane potential
data were visually inspected, and detailed quantitative

analysis was performed using spike arrival times. The time
derivative of the intracellular time series was used to detect
spike events, and interspike-interval (ISI) sequences were
constructed for each train. First-order return maps of the
ISIs were used as a graphical tool characterizing the overall
dynamics and the regularity of the ®ring patterns. The
spike-density function (SDF) [13] was used to characterize
modulations of the ®ring patterns and to detect correla-
tions between simultaneous spike trains. The SDF tech-
nique allowed us to obtain ®ring rate as a continuous
function of the elapsed time [14]. An SDF was constructed
by convolving the time of each spike event with a
Gaussian-function (kernel) of unit area and ®xed half-
width, typically 0.2 s here. The Fourier transform of the
spike density functions was used to detect any periodicities

Fig. 1. Comparison of the activity patterns of pyloric neurons with the
main pacemaker neuron AB present and shortly after photoinactivation
of AB. Glutamatergic transmission was blocked by PTX. (a) Spikes of the
LP (large), PD and PY (small) neurons appear in the extracellular
recording from the lateral ventricular nerve (lvn). Activity of the VD
neuron was monitored from the medial ventricular nerve (mvn). The
bottom trace shows the ®ring pattern of the PD neuron (intracellular).
(b) Disruption of the pyloric oscillation shortly after killing the AB
neuron. PD and VD neurons were ®ring tonically; large spikes in the lvn
recording indicate irregular bursts in LP.
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in the ®ring patterns. Phase portraits were constructed by
plotting the SDF of one neuron against that of the other.
This graphical tool revealed cross-correlations between
neurons recorded simultaneously.

RESULTS
Intact and reduced pyloric network: The pyloric pace-
maker group of the lobster consists of four electrotonically
coupled neurons: AB, two PDs and the VD neuron [7].
There are strong symmetrical connections between AB and
the PD neurons and weaker rectifying connections between
the AB and VD [15]. These nerve cells express a regular
oscillatory pattern in the intact preparation (Fig. 1A).
Picrotoxin, while blocking all glutamatergic synaptic inputs
and functionally isolating the pacemaker network, had
little effect on the frequency or amplitude of the ongoing
oscillation. In contrast, photoinactivation of the main pace-
maker neuron AB led to complete disruption of the pyloric
rhythm. Removal of AB led to cessation of the bursting

activity in PD neurons and in VD (Fig. 1B). Initially, after
photoinactivation the PD expressed irregular spiking beha-
vior that evolved after about 1 h into irregular bursting.
The irregular bursting pattern remained for the lifetime of
the preparation.

Connecting EN to isolated PD neuronsÐregular bur-
sting: Because of the ¯exibility of our analog circuit, we
could generate a broad range of ®ring/bursting patterns in
EN by tuning the å and ì parameters. In the experiments
reported here, we ®rst generated regular bursting in the
EN and connected it to the PD. Essentially the EN behaved
as a new pacemaker neuron: it acted as a replacement for
the AB in the network. Prior to connection, we adjusted the
parameters of the EN to obtain oscillation similar in
amplitude (30±40mV) and frequency (1.2±1.8Hz) to that
seen in AB. Electrotonic coupling shifted the ®ring pattern
of PD from tonic spiking to bursting (Fig. 2A,B). The slow-
wave components of the oscillations synchronized, while
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Fig. 2. Comparison of the intracellular ®ring patterns of the EN and the PD. Left panels: neurons disconnected, synapse off; right panels: electrotonic
coupling. IPD in each panel is the current ¯owing into PD through the electronic synapse. (a) Periodic bursting in EN with tonic spiking in PD (AB killed).
(b) Synchronous bursting in EN and PD after switching on the electrical connection. (c) Chaotic ®ring in EN with irregular spiking in PD, no coupling.
(d) Generation of the bursting pattern in the EN±PD mixed network after coupling via an electrotonic synapse. (e) Same as in (c). (f) Periodic antiphase
bursting in EN and PD neuron with negative conductance connection.
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single spikes in EN and PD did not. The bursting pattern
of PD induced by the electrotonic coupling resembled that
in the intact pyloric pacemaker network. Monitoring activ-
ity of the output nerve lvn showed that the burst pattern of
the postsynaptic neuron LP was also synchronized with
the EN±PD pair, leading to a partial restoration of the
pyloric rhythm. Inserting EN as a regular, periodic burst-
ing element into the impaired neuronal network induced a
new overall oscillation, quite similar to the original pyloric
rhythm.

Connecting chaotic electronic and pyloric neurons: The
EN is also able to generate chaotic patterns. In this case, no
periodic spike patterns were produced by the EN. Figure
2C shows the similarities of the time series of chaotic EN
and the isolated PD neurons before coupling, both ®ring in
an irregular manner. Non-linear analysis using the method
of false nearest neighbors [16] of the bursting pattern of the
free-running PD neuron indicated high-dimensional (up to
seven) chaotic dynamics. Remarkably, electrotonic cou-
pling dramatically altered the ®ring patterns of both EN
and PD. Synchronized bursting appeared immediately
after coupling the electronic model to the pyloric cell
(Fig. 2D). The frequency of the bursting was close to that
seen in the intact pyloric network. As a consequence of this
high-degree of synchronization, the synaptic current being
injected into PD showed only minor ¯uctuations.

To approximate a graded inhibitory synapse, we used
negative conductance coupling between the neurons.

Although the synaptic current remained a linear function
of the membrane potential difference, negative conduc-
tance coupling was in some aspects similar to a mutual
inhibitory chemical connection but without delay, thresh-
old or non-linear properties. The effect observed upon
coupling in the chaotic EN to the PD was even more
dramatic (Fig. 2F), although the neurons were bursting in
anti-phase. A clearly periodic bursting pattern appeared
after initiating this coupling, and the time series of the PD
was virtually indistinguishable from that seen in the intact
CPG. Inhibitory postsynaptic potentials from EN were
apparent in the membrane potential of PD, and strong
rebound plateaus followed the hyperpolarized states.
These data clearly demonstrate that regular and robust
oscillatory patterns characteristic of the intact pyloric CPG
can be achieved by simply coupling the intrinsically
irregular/chaotic EN to the PD neuron. As a control, we
performed experiments with constant negative current
injection into the PD neuron and with unidirectional
coupling between EN and PD. In that case, we did not
observe regularization of PD. Regularization appears only
when the PD is connected bidirectionally to the EN.

Analysis of spike time data: Spike density functions
clearly showed the most prominent features of the EN±PD
interaction and revealed new details about this process.
The SDFs of the uncoupled neurons, when both were ®ring
in an irregular pattern, were aperiodic and random-like
(not shown). The corresponding phase-portrait possesses

Fig. 3. Spike density functions (SDFs) calculated from the spike trains of coupled EN and PD neurons. (a,b) 25 s long sections of the SDFs with
positive and negative conductance synaptic connections, respectively. The functions exhibit oscillating ®ring patterns in both neurons. Variation of the
SDF is smaller when using negative conductance coupling, indicating strong mutual regularization. (c) Phase-portrait graphs before (nC, no connection)
and after (EC�) connecting the EN to PD via positive conductance synapse. (d) Same graphs with negative conductance (ECÿ) connection.
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no apparent structure or orientation (Fig. 3C, left). Positive
electrotonic coupling led to synchronized oscillations in the
SDF (Fig. 3A) and diagonal trajectories in the phase-
portrait (Fig. 3C, right). SDFs in negative conductance
coupling experiments exhibited a similar behavior. SDFs of
both EN and PD are precisely periodic (Fig. 3B), and the
phase-portrait consists of a tight trajectory with negative
slope (Fig. 3D, right). The Fourier transforms of the SDFs
of uncoupled irregular EN and PD neurons had a broad
band `noisy' distribution characteristic of chaotic dynamics
(Fig. 4). Sharp peaks in the Fourier spectra appear as a
consequence of periodic bursting when the neurons were
connected. The frequency of the oscillation (1.8 and 1.4Hz
with positive and negative coupling, respectively) was
close to the pyloric rhythm observed in the intact prepara-
tion.

Dependence of the effects on coupling strength: The ex-
periments involved systematic scanning of the parameters
of the EN, tuning the shape of the oscillation, as well as
changing the synaptic strength between the electronic and
pyloric neuron. ISI sequences measured from a long-term
experiment and return maps of the same data are shown in
Fig. 5. The intrinsically chaotic EN was coupled to an
irregular PD neuron via positive conductance electrotonic
synapse. The `burstiness' of the ®ring patterns depended
on the strength of the connection. Weak coupling resulted
in minor changes in the PD, whereas strong coupling
resulted in clear burst activity, with a bimodal ISI distribu-

tion. The triangular structure of the ISI return map shown
in Fig. 5C and D is characteristic of periodically bursting
neurons. This pattern emerged after electrically coupling
an intrinsically chaotic EN to the isolated PD. Negative
conductance coupling had a stronger regularizing effect on
the ®ring of the neurons in all cases. The magnitude of the
changes in the ISI pattern of the EN was a function of the
connection strength as well as the ®ring pattern set prior to
the coupling. Switching off the electrotonic connection
commonly led to quick restoration of the irregular ®ring or
bursting pattern in PD.

DISCUSSION
Several implementations of neural models in electronic
circuits have been used to capture aspects of neuronal
function and organization in what recently has been called
neuromorphic systems [17,18]. Mixed circuits consisting of
biological neurons and electronic devices are particularly
useful in studying small neural systems such as those of
CPGs. Only in very few instances have analog implementa-
tions of model neurons and synapses actually been used to
interact with biological cells. An analog network of
coupled subthreshold oscillators was connected to olivary
neurons in Yarom's work [19] and the mechanisms of
synchronized neural oscillations were investigated. In an-
other study Le Masson and coauthors used BiCMOS
implementations of complex, multiparameter Hodgkin±
Huxley models [20]. Several features of the neural function
of stomatogastric neurons as well as thalamocortical cells

Fig. 4. Fourier transforms of the spike density functions of free-running and coupled EN and PD neurons. The spectra were calculated from
simultaneous sections of the SDFs. (a,c) EN; (b,d) PD. Broad band, `noisy' Fourier spectra imply irregular dynamics of both the EN and the PD when
disconnected (nC). A very weak periodicity with 1Hz frequency can be detected in the free-running PD. Clear peaks appear as a consequence of
periodic bursting behavior when using a positive (EC�) or negative (ECÿ) conductance synapse.
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were reconstructed by these electronic models. A similar
approach has been utilized by constructing arti®cial synap-
tic connections between existing biological neurons using
advanced computer techniques [21,22]. Clearly, response-
dependent stimulation of biological neurons have proven a
fruitful method to study details of cellular excitability or
network dynamics.

In our work we used a simpli®ed, yet realistic, electro-
nic model of a stomatogastric neuron. Instead of making
an effort to simulate all ionic conductances contributing to
the membrane potential of the living lobster neurons, we
built a three-variable analog circuit. Previously we have
shown that computational models of Hindmarsh±Rose
type neurons reproduce several aspects of the neural
function of spiking/bursting neurons [12]. These mathe-
matical models exhibited various ®ring/bursting patterns
and bifurcations similar to those seen in living stomato-
gastric neurons, when coupled in dynamic clamp experi-
ments [22].

In this note we have presented evidence that two differ-
ent irregular neurons, one biological and one electronic, are
able to produce regular rhythm, when coupled electrically
over a wide range of coupling strengths. Regular rhythms
can be produced by intrinsically nonregular neurons. These
results also suggest that it is not necessary to reproduce all
of the biological aspects of the operation of nerve cells to
address issues of communication and cooperation among
oscillating neurons in CPG-like networks. The full mechan-
ism of the observed regularization phenomenon is not

clearly understood yet and requires additional investiga-
tion. However, from the dynamical systems theory point of
view such behavior is plausible: coupling two different
chaotic elements in fact means the creation of a new
dynamical system with new types of possible behavior. In
our case the slow bursting dynamics suppresses the chaotic
instability of spikes and leads to regular synchronized
oscillations.

CONCLUSION
We have shown here the broad value of a `mixed technol-
ogy' in the investigation of important physiological pro-
blems related to the dynamics of small neural networks.
The interaction of an EN with groups of living neurons
provides the potential for changing the connectivity and
topology of neural networks. It also allows better under-
standing of the roles of intrinsic and synaptic properties of
neurons in rhythm generation or information processing.
The noteworthy simplicity of our EN suggests that these
circuits may be used as replacement neurons in other CPGs
that appear as control systems in more complex organisms.
The application of these mixed systems to robotics may
also be possible.
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The dynamic clamp comes of age
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The dynamic clamp uses computer simulation to intro-

duce artificial membrane or synaptic conductances into

biological neurons and to create hybrid circuits of real

and model neurons. In the ten years since it was first

developed, the dynamic clamp has become a widely

used tool for the study of neural systems at the cellular

and circuit levels. This review describes recent state-of-

the-art implementations of the dynamic clamp and

summarizes insights gained through its use, ranging

from the role of voltage-dependent conductances in

shaping neuronal activity to the effects of synaptic

dynamics on network behavior and the impact of

in vivo-like input on neuronal information processing.

The term dynamic clamp refers to a variety of hardware
and software implementations used to create artificial
conductances in neurons. Since its introduction more than
ten years ago [1–3], the dynamic clamp has become a
standard tool of electrophysiology, used in awide variety of
experimental preparations to address a host of different
issues. This review describes how the dynamic clamp
creates an artificial conductance, provides an overview of
some of the different dynamic-clamp systems currently in
use and discusses what can and has been achieved using
the technique.

What is the dynamic clamp?

In contrast to conventional voltage- or current-clamp
recording configurations, the dynamic clamp effectively
alters the conductance of a neuron [1,2]. It does so by using
the measured membrane potential to control the amount
of current injected into a neuron. To simulate a particular
conductance, the dynamic clamp computes the difference
between the measured membrane potential and the
reversal potential for that conductance, multiplies this
‘driving force’ by the desired amount of conductance, and
injects the resulting current into the neuron. Accurate
dynamic-clamp performance requires uninterrupted,
rapid sampling of the membrane potential and fast
computation of the current to be injected. If the sampling
and computation are fast enough, the electrophysiological
effects of any set of ion-conducting channels can be repro-
duced as if these were located at the site of voltage
measurement and current injection.

Any time- or voltage-dependent conductance that has
been described mathematically and can be simulated on a
computer can be introduced into a neuron using the
dynamic clamp. For a voltage-dependent conductance, the
injected current is determined by a set of differential

equations that describe the voltage and time dependence
of the conductance. For a synaptic conductance, the
current injected by the dynamic clamp is computed on
the basis of presynaptic input that is either recorded from
another neuron, or generated by a model neuron or by a
descriptive model of typical in vivo input.

Dynamic-clamp implementations

Obtaining sufficiently high update rates in the first
dynamic-clamp implementations of the early 1990s
pushed the limits of computer and data acquisition
board technologies available at that time. As a result,
some of the earliest dynamic-clamp programs were
written in machine language [1,2] and used look-up
tables [3], and some implementations used digital
signal processing (DSP) boards to achieve the required
speed [4]. Today, computers and boards are so fast that
hardware speed is no longer a significant issue, and
many different dynamic-clamp systems have been
developed and used in several laboratories around
the world. These systems vary considerably in their
front-end user interfaces, in how readily programmable
they are, in how many different conductances can be
simulated, in how many neurons can be studied
simultaneously, in whether they display and save
voltage and current traces online, and in their cost.
Our conservative estimate is that there are at least 20
different dynamic-clamp setups in use in laboratories
around the world today, and many more papers than
can be cited here have been published with some
version of dynamic-clamp implementation. Table 1 lists
several of the dynamic-clamp systems presently in use
to illustrate the diversity of approaches, hardware, and
features. Because computers and boards change so
quickly, this list provides only a snapshot of the
present situation.

Currently available implementations of the dynamic
clamp include applications that run under the Windows or
Real-Time Linux operating systems, systems that use
embedded processors or DSP boards, and versions that use
analog devices. The advantages and disadvantages of
these different approaches are outlined briefly below.

Windows-based applications

Windows-based dynamic-clamp systems typically
achieve update rates of 2–20 kHz, depending on the
computational load for the particular conductances
being simulated [5–7]. This is fast enough for most
purposes, but extremely fast conductances, such as
those of fast Naþ currents, can only be approximated
crudely. An additional problem stems from the fact thatCorresponding author: Astrid A. Prinz (prinz@brandeis.edu).
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any Windows-based program must deal with operating
system interrupts through which Windows distributes
processor time between different tasks. These can lead
to discontinuities and gaps in dynamic-clamp operation
and prevent real-time performance, even at low update
rates.

The Windows-based dynamic clamp described by Pinto
and colleagues [6] uses a Digidata 1200 board (Axon
Instruments, http://www.axon.com) for data acquisition
and digital-to-analog conversion. Because such boards are
commonly used (and this dynamic-clamp software is
available for free download from the developers), this
particular implementation requires no more of a financial
investment than that required for a standard electro-
physiology rig.

Real-Time Linux-based applications

Recently developed versions of the dynamic clamp that
operate under Real-Time Linux avoid the interrupt
problem of a Windows-based system and can achieve
update rates of 20–50 kHz, depending on the data
acquisition board [8–10]. At the moment, the installation
and operation of the real-time operating system requires
considerable expertise, which can deter some users. How-
ever, with several laboratories developing more user-
friendly Real-Time Linux-based dynamic-clamp systems,
the installation and use of these systems is rapidly
becoming easier.

Embedded-processor and DSP-based systems

Update rates of 20–50 kHz can also be achieved by using
an embedded processor or DSP board [4,11–13]. These
devices can be controlled by a host computer and
programmed through a graphical programming language
with a user-friendly interface [12] or through Real-Time
Workshop (The MathWorks, http://www.mathworks.com),
but these advantages literally come at a high price. The
costs for the additional hardware, necessary drivers, and
compiler software can be betweenUS$5000 andUS$10 000.

Analog devices

For some applications, the dynamic clamp can be imple-
mented using analog circuits that perform the basic

subtraction and multiplication operations needed to
convert a desired conductance and a measured potential
into an injected current [14]. These analog circuits are
commercially available (e.g. SM-1 from Cambridge
Conductance, http://homepage.ntlworld.com/cambridge.
conductance; or ITC-18 from Instrutech Corporation,
http://www.instrutech.com). The advantage of an analog
approach is its high speed, which is essentially instan-
taneous on the scale of typical membrane and synaptic
time constants. However, the basic analog system only
makes the conversion from conductance to injected
current. For any application other than the simulation of
a constant conductance, these systemsmust be driven by a
digital computer programmed to calculate the desired
conductance and drive the analog circuitry. As a result,
analog systems are most useful in cases where synaptic,
rather than voltage-dependent, conductances are being
simulated.

Applications of the dynamic clamp

Uses of the dynamic clamp have been divided here into five
broad categories: simulation of voltage-independent con-
ductances, simulation of voltage-dependent conductances,
simulation of synapses between neurons, construction of
biological–computer hybrid circuits, and simulation of
in vivo synaptic input. For each of these categories, a single
example from the many possibilities in the literature has
been chosen to illustrate what can be achieved and what
has been learned using these approaches. Additional
selected studies using the same dynamic-clamp approach
are briefly summarized for each category.

Effects of voltage-independent conductances

Simulating a voltage-independent conductance is the
simplest thing that can be achieved with the dynamic
clamp (Figure 1a) but, nevertheless, it is useful for
studying the effects of leakage conductances or ligand-
gated conductances on neuronal dynamics. Figure 1b
provides an example inwhich a dynamic clampwas used to
duplicate the effect of a ligand-gated conductance with a
reversal potential of275 mV in a neuron of the crustacean
stomatogastric ganglion to study the effects of a voltage-
independent GABA conductance [2].

Table 1. Recent examples of dynamic-clamp implementationsa

Windows-based Real-time Linux-based Embedded processor or
DSP

Analog device

References [6] [9] [10] [12] [14] Instrutech, ITC-18
URL inls.ucsd.edu/~rpinto/ www.bu.edu/ndl/rtldc.

html
www.neuro.
gatech.edu/mrci/

NA NA www.instrutech.
com

Programming language Cþþ C, Cþþfor user interface MRCI modeling
language, C

Real-Time LabView NA NA

Update rateb 10 kHz 20 kHzd 30 kHz 40 kHz NA 50 kHz
Existing applications Artificial conductances;

artificial chemical or
electrical synapses
between up to four cells

Artificial conductances;
hybrid two-cell networks;
adding multiple
compartments

Artificial synaptic
inputs; hybrid two-
cell networks

Artificial conductances;
artificial chemical
synapses; recording
current–voltage curves

Artificial synaptic inputs Artificial synaptic
inputs

Number of channelsc Four in, four out Two in, two outd Two in, two out Two in, one out Four in, four out Four in, four out
User interface Graphical Graphical Command line Graphical NA NA
Saves traces? No Yes Yes Yes NA NA
Displays traces? No Yes No Yes NA NA

aAbbreviations: DSP, digital signal processing; MRCI, model reference current injection; NA, not available.
bUpdate rates vary depending on the computational load. Updates rates given here are maximum values of published versions of the systems and will increase with time.
cChannel numbers given here are those of published versions of the systems. Most systems can be modified to handle larger channel numbers if different hardware is used.
dNewer, unpublished versions of this system can achieve update rates of up to 40 kHz, and can handle as many as 16 input and 2 output channels (J. White, pers. commun.).
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Dynamic-clamp conductances act in parallel with the
normal membrane conductances of the neuron, and the
interaction between the added and existing conductances
is what makes such manipulations interesting. In the
example shown in Figure 1b, current pulses of constant
amplitude were introduced to show that the dynamic
clamp was modifying the conductance of the neuron
(Figure 1b, bottom) in exactly the same way as a bath
application of GABA (Figure 1b, top). The dynamic clamp
mimics both the GABA-induced hyperpolarization and the
reduction in the voltage response to constant-amplitude
current pulses caused by the GABA conductance. In a
related approach, the dynamic clamp has been used to add
artificial GABA conductances in thalamocortical relay
cells to elucidate the role of GABA-mediated inhibitory
postsynaptic potentials (IPSPs) in rebound burst firing
and burst inhibition [15,16].

In addition to being added, conductances can, with some
restrictions, be subtracted using the dynamic clamp.
Figure 1c shows an example. The leakage conductance
introduced by the electrode penetration required for
intracellular recordings made with sharp electrodes is a
potential source of distortion of the natural activity of the
recorded neuron. Figure 1c shows an example in which the
dynamic clamp was used to simulate a negative conduc-
tance designed to cancel out the impact of the leakage
introduced by electrode penetration [17]. Addition of an
artificial leak conductance had been shown previously to
switch leech heartbeat interneurons from an active state
with high-frequency bursting to an inactive state [18].
Because of this sensitivity of bursting to additional leak
conductance, the electrode leak was removed by the
dynamic clamp. The bursting activity that is the natural
mode of operation for this neuron was revealed only after
the leakage conductance introduced by electrode pene-
tration was subtracted using the dynamic clamp.

Taken together, dynamic-clamp studies that simulate
voltage-independent conductances in different prepar-
ations demonstrate important roles for seemingly simple
leak and ligand-gated currents in shaping neural activity.
The importance of voltage-independent conductances is
further supported by reports that dynamic-clamp simu-
lated leak current can increase motoneuron spiking in the
mammalian spinal cord [19] and that adding a Ca2þ

window current or subtracting leak current can render
thalamocortical neurons bistable [20].

Figure 1. Using the dynamic clamp to simulate voltage-independent conductances.

(a) Schematic of the experimental configuration. The dynamic clamp computes

the current, I, flowing through a voltage-independent conductance, g, as g multi-

plied by the instantaneous driving force, V–E, where E is the reversal potential and

V is the membrane potential. In every cycle of dynamic-clamp operation, V is

measured and fed into the computer, I is computed based on the momentary

value of V, and I is injected into the cell. Voltage measurement and current injec-

tion can be made through the same electrode with discontinuous clamp tech-

niques, or through two separate electrodes. (b) Voltage traces recorded from a

cultured crab stomatogastric neuron during 30 s bath application of 0.1 mM GABA

(top) and during dynamic-clamp injection of an exponentially rising (t ¼ 5 s) and

falling (t ¼ 15 s) GABA conductance with a reversal potential of 275 mV (bottom).

The starts of bath and dynamic-clamp application are indicated by asterisks.

During both runs, current pulses of 20.5 nA were applied every 3 s to illustrate the

change in input conductance. Adapted, with permission, from Ref. [2]. (c) Voltage

trace from a leech heart interneuron before and during injection of a negative leak

conductance of 26 nS with a reversal potential at 0 mV. The leak subtraction com-

pensates for the effect of sharp microelectrode penetration, which suppresses

bursting. Adapted, with permission, from Ref. [17] q (2002) by the Society for

Neuroscience.
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Figure 2. Adding or subtracting voltage-dependent conductances. (a) Schematic of

the experimental configuration. The dynamic-clamp current is computed as in

Figure 1, but in this case the conductance, g, varies with time and depends on the

membrane potential, V. (b) Each panel shows 65 superimposed spikes from an

Aplysia R20 neuron in response to 7 Hz current pulse injection. In control con-

ditions, the action potential is initially narrow and broadens during the spike train

(top-left). Spike broadening is abolished in 50 mM tetraethylammonium (TEA) and

10 mM 4-aminopyridine (4-AP; top-middle) and rescued when an A-type and a

delayed-rectifier Kþ current are added with the dynamic clamp (top-right). In a

different cell (bottom), the action of the blockers was approximated by subtracting

these two conductances with the dynamic clamp. Adapted, with permission, from

Ref. [21]q (1996) by the Society for Neuroscience.
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Effects of voltage-dependent conductances

The dynamic clamp can be used to introduce voltage-
dependent conductances into a neuron (Figure 2a),
which is useful for exploring the impact of different
intrinsic membrane conductances on neuronal activity.
Specific conductances already present in the ensemble
of intrinsic conductances in the neuron can be
augmented or decremented to reveal the role that
they play in generating its particular pattern of firing.
Used in this manner, the dynamic clamp supplements
more traditional methods of blocking conductances
pharmacologically because it allows for very specific
targeting and very precise control of the amount of the
modification being made on any conductance. In
addition, non-native voltage-dependent conductances
can be added to the natural complement of the neuron
to see what novel dynamics can be generated.

Figure 2b provides an example of this type of manipu-
lation [21]. Each panel shows 65 superimposed spikes
recorded from an Aplysia R20 neuron responding to the
injection of current pulses at 7 Hz. In control conditions,
the action potential broadens during repetitive spiking
(Figure 2b, top-left). This broadening was abolished when
A-typeanddelayed-rectifierKþ conductanceswerepharma-
cologically blocked because the initial spikes were already
broad (Figure 2b, top-middle). Spike broadening was
restored under the pharmacological block by adding
these conductances back using the dynamic clamp
(Figure 2b, top-right). This result clearly implicates
A-type and delayed-rectifier Kþ conductances in the
phenomenon of spike broadening. The dynamic clamp
could also partially duplicate the effect of the pharmaco-
logical blockade when it was used to subtract these two
conductances (Figure 2b, bottom).

Dynamic-clamp simulation of voltage-dependent con-
ductances has been used in stomatogastric ganglion
neurons to investigate the roles of transient Kþ

currents and hyperpolarization-activated inward cur-
rents [22,23], to study the effects of a neuromodulatory
peptide-elicited current on the output of a rhythmic
network [24], to show that a slow Kþ conductance can
underlie cellular short-term memory [25], and to
demonstrate how the relative amounts of different

Ca2þ and Kþ conductances can determine whether a
neuron is silent, spikes tonically, or bursts [26].
Artificial voltage-dependent currents have been used
in preparations as diverse as pancreatic b-cells
[27,28], thalamocortical [29] and neocortical neurons [5],
and hippocampal interneurons [11]. The dynamic-clamp
studies in these systems have identified individual
voltage-dependent conductances involved in subthres-
hold membrane resonances [5], high-frequency spiking
[11], bursting [27–29] and delta oscillations [29], and
have thus contributed considerably to our under-
standing of dynamic processes in these systems.

Building and modifying neuronal circuits with artificial

synapses

Thus far, we have focused on applications in which the
dynamic clamp is used to introduce or remove
membrane conductances to assess their role at the
single neuron level. The remaining examples show uses
of the dynamic clamp for creating artificial synaptic
conductances. In these applications, the neuron being
dynamically clamped acts as the postsynaptic element,
and another neuron or a computer model acts as the
source of presynaptic input. Here, cases in which the
presynaptic element is another neuron are considered.
As illustrated in Figure 3a, this approach requires
recording the membrane potential of the ‘presynaptic’
neuron and using it and the dynamic clamp to control
current injection into the ‘postsynaptic’ neuron. A
synapse in an existing circuit can be augmented or
decremented to study its effect on network activity, or a
simulated synapse can be introduced where none
existed before, allowing for the construction and
study of completely novel neural circuits. The dynamic
clamp provides the experimenter with complete control
over the strength and other properties of these
artificial synapses.

Figure 3b shows an example in which a so-called ‘half-
center’ oscillator was constructed by connecting two
stomatogastric ganglion neurons with reciprocally inhibi-
tory synapses thatwere simulatedwith the dynamic clamp
[6]. To construct the half-center oscillator, the two neurons
were first isolated and then connected by artificial

Figure 3. Creating artificial synapses between real neurons. (a) Schematic of the experimental configuration. The current that is injected into the postsynaptic neuron (IPD or

ILP) is the product of the synaptic conductance, which depends on the membrane potential of the presynaptic neuron, and the driving force. (b) Voltage and dynamic-clamp

current traces for a pyloric dilator (PD) and a lateral pyloric (LP) neuron of the lobster stomatogastric ganglion before and after the dynamic clamp was switched on. The

artificial synapses induced the neurons to oscillate in antiphase. Adapted, with permission, from Ref. [6].
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synapses. The anti-phasic oscillations exhibited by the two
cells with artificial synapses are reminiscent of
their behavior in the intact circuit, where they mutually
inhibit each other through biological synapses. In an
earlier study connecting two other stomatogastric
ganglion neurons with reciprocal inhibitory connections,
artificial synaptic connections allowed the examination
of how the presence, frequency, and phase relations of
oscillations depended on synaptic parameters and on
intrinsic membrane conductances [30].

The approach of coupling two ormore biological neurons
with artificial inhibitory [6,30–33] or electrical [34–37]
synapses has been used to study the effects of synapse
strength [38] and dynamics on neuronal firing patterns
[36], on the synchronization between oscillatory neurons
[30,33,36,37] and rhythmic circuits [32], and on the intra-
burst firing pattern of bursting neurons [31].

Building hybrid computer–biological neural circuits

The dynamic clamp can provide an approach to the study
of neural systems that falls midway between computer
modeling and experimental electrophysiology. Inmodeling
studies, we often want to assess the role of certain
elements, such as individual conductances or synapses,
that we might be able to model accurately. However, in a
conventional modeling approach, we must incorporate
these well-described elements into a model of a neuron or
neural circuit that is inevitably much cruder. The dynamic
clamp allows us to manipulate the well-modeled elements
we wish to study with the same degree of precision and
freedom that we have in a model, while allowing them to
interact with real neurons or neural circuits, with all their
complexities intact. Used properly, the dynamic clamp
allows studies that combine the best features of computer
modeling and experimental electrophysiology. An excel-
lent example is the construction of hybrid circuits that
involve interacting computer-modeled and biological
elements (Figure 4a).

Figure 4b shows an example in which a real thalamo-
cortical neuron was coupled using the dynamic clamp to
two model neurons, one simulated by a digital computer

and the other by an analog circuit [13]. The digital model
neuron represented a reticular interneuron, while the
analog circuit modeled a retinal ganglion cell. When
coupled together, these three elements formed a circuit
that could generate the type of spindle activity seen in the
thalamus during sleep states. During sleep, the corre-
lation between spikes in retinal ganglion cells and spikes
in thalamocortical neurons is low, so that the cortex is
functionally disconnected from its sensory drive. Systema-
tic variation of the artificial inhibitory synapse from the
model reticular interneuron to the biological thalamo-
cortical neuron showed that the strength of this connection
regulates the temporal correlation between the sensory
input and the thalamocortical cell firing pattern [13].

Similar hybrid network configurations have been used
to determine the effect of synaptic depression on oscillation
frequency and bistability in reciprocally inhibitory pairs of
neurons [7,39], to probe aspects of pain processing in the
spinal cord [40], and to examine the effect of electrical
coupling strength on synchronization of rabbit sinoatrial
node cells [41].

Simulating in vivo conditions

Neurons and neural circuits are frequently studied in slice
preparations. Slice preparations have distinct advantages
in terms of accessibility for visualization and recording,
but the disadvantage of being relatively silent. Because
each neuron receives much less ongoing synaptic input in
the slice than it would in an intact brain, neurons in slices
are studied in an environment that is significantly
different from that in which they normally operate. The
dynamic clamp offers a way of studying neurons in slices
while simulating in vivo synaptic input.

Figure 5a shows a dynamic clamp setup used to
simulate in vivo-like synaptic input, both excitatory and
inhibitory, entering a cortical pyramidal neuron [14]. In
the absence of this input, the neuron fired regularly in
response to current injection (Figure 5b, top), but when the
simulated synaptic bombardment was introduced, the
response was irregular with large subthreshold voltage
fluctuations, as seen in vivo (Figure 5b, bottom). Figure 5c

Figure 4. Building hybrid circuits of real and model neurons. (a) Schematic of the experimental configuration. The computer integrates the differential equations that

describe the digital model neuron (dig) and its synaptic connections, while the analog model (ana) is an electrical circuit that mimics another neuron and its synapses.

(b) Voltage traces from a thalamocortical cell (V), an analog retinal model neuron (Vana) and a digital model reticular interneuron (Vdig). The thalamocortical neuron receives

excitation from the analog and inhibition from the digital model neuron and excites the digital model neuron. The hybrid circuit generates spontaneous spindle activity

similar to that in the sleep-like state. Adapted, with permission, from Ref. [13].
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indicates that modulation of this synaptic bombardment
can have important functional consequences. The slopes of
the firing-rate versus input current curves shown in this
figure decrease for increasing amounts of total dynamic-
clamp simulated background synaptic input. This
suggests that background synaptic input in vivo can act
as a gain control mechanism [14,42,43]. The results of
Figure 5c depend on the conductance modification that is
due to the simulated synaptic input, so they could not have
been obtained on the basis of current injection without
using the dynamic clamp.

The dynamic clamp has been used to mimic realistic
synaptic input patterns in many different neural
systems, including auditory brainstem [44], lateral
geniculate nucleus [45], basal ganglia [46], cerebellum
[43,47–49], cortex [14,50,51], and avian nucleus lami-
naris [52]. In these systems, the technique has
provided insights about the role of timing [47,48],
rate [46], and synchrony [50,52] of synaptic inputs in
postsynaptic signal processing.

Limitations of the dynamic clamp

A major limitation of the dynamic clamp is that the
conductances it simulates are restricted to the site of
current injection. As a result, conductances located far
from the injection site can be mimicked only approxi-
mately. Normally, the injection site is the soma, but the
advent of dendritic patch recording makes it feasible to
simulate and apply conductances to dendrites. It would
be particularly interesting to compare the effects of
dynamic-clamp simulations carried out using dendritic
and somatic injection sites. An alternative approach,
which is useful for simulating dendritic conductances
with somatic current injection, is to modify the current
being injected by the dynamic clamp to include
dendritic cable effects on the basis of a multi-compart-
ment model.

Another limitation is that the dynamic clamp duplicates
the electrical but not the signal conduction consequences
elicited by specific ionic currents. In particular, with

conventional electrode solutions, the dynamic clamp
can simulate the electrical current from a set of Ca2þ

channels, but it does not reproduce the changes in
intracellular Ca2þ concentration that normally accom-
pany the gating of such channels. In some cases, this
limitation can be exploited to isolate voltage-mediated
effects from other mechanisms.

Finally, the dynamic clamp shares a limitation with
traditional current- and voltage-clamp techniques: arti-
facts of electrode resistance and capacitance. These
artifacts can be minimized by using low-resistance
electrodes, by using separate electrodes for voltage record-
ing and current injection, or by temporally separating
recording and injection through a single electrode using
the discontinuous current-clamp technique.

Concluding remarks

To understand how neurons and neural circuits work,
we must do more than simply watch them in action.
We must probe and perturb them in various ways and
study how they respond. Current clamping is one
method for probing neuronal dynamics, and voltage
clamping to realistic waveforms can provide interesting
insights into the currents flowing during neuronal
activity. The dynamic clamp, which creates a program-
mable conductance, provides yet another probe – one
that permits a sophisticated range of perturbations.
Dynamic-clamp experiments allow simulations with
biological neurons or the creation of hybrid circuits of
biological and model neurons. The dynamic clamp
breaks down barriers between mathematical modeling
and experimental electrophysiology by allowing theor-
ists to model ‘in the dish’ and experimentalists to
perturb their system in ways that, perhaps, only a
modeler would imagine. It is our hope that use of the
method will continue to expand as new and clever
applications are devised, and that these applications
will continue to reveal new aspects and marvels of
neural circuit dynamics.

Figure 5. Simulating in vivo conditions in a slice preparation. (a) Schematic of the experimental configuration used to simulate balanced excitatory and inhibitory synaptic

background conductances in a pyramidal neuron from a slice of rat somatosensory cortex. The dynamic clamp computes the total synaptic current produced by a stochas-

tic model of ongoing cortical activity. The total synaptic current is the product of in vivo-like conductances ge and gi and the appropriate driving forces for excitatory (e) and

inhibitory (i) synapses. (b) Voltage traces from a pyramidal neuron in response to constant driving current without (top) and with (bottom) artificial background synaptic

input. (c) Firing rates of a neuron as a function of constant driving current without simulated background synaptic input (diamonds), with a given amount of background

synaptic input (circles), with twice that amount (squares) and with three times that amount (triangles). Changing the level of synaptic background input modulates the gain

of the neuron. Reproduced, with permission, from Ref. [14].
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Neural Networks: Models and Neurons
Show Hybrid Vigor in Real Time

Astrid A. Prinz

Hybrid networks in which living neurons interact

with digital or analog model neurons are providing

insights into the role of neural and synaptic

properties in shaping neural network activity.

Faced with the complexities of brain activity, some

neuroscientists are turning to hybrid networks —

neural networks consisting of living nerve cells inter-

acting with model neurons — to help them understand

how neural and synaptic properties shape the

electrical activity of neural circuits [1,2] or to validate

models of neurons in a network setting [3–5]. 

Neural activity is fundamentally complex. Neurons in

networks with many synapses and feedback loops

constantly receive inputs from other neurons, integrate

them and generate electrical activity patterns in

response. Network activity is thus shaped by

interactions between the non-linear electrical properties

of neurons and synapses. These complex interactions

allow neural circuits to process information, support

cognitive functions and control behavior.

Cellular electrophysiology experiments do not

always acknowledge this complexity. Much of our

understanding of neural circuits at the small network

level relies on highly reductionist experiments. We

characterize the response of isolated neurons to

simple stimuli such as current injections or voltage

steps, or we measure the signal transmitted through a

single synapse. These time-proven experimental

approaches are essential for our understanding of the

building blocks of neural networks, but their

reductionist nature raises the question whether we are

missing something by probing a complex system with

simple perturbations.

To examine the behavior of neurons and small

networks under more realistic conditions, researchers

in the early 90s began to study the interactions of

living nerve cells with model neurons in hybrid

networks [6,7]. Such connections between living and

model neurons combine physiological realism with

complete control over the neural and synaptic

properties of the artificial network components. Hybrid

networks thus create an interface between

experimental and modeling studies, combining the

best of both worlds [7].

The model neurons and synapses in hybrid

networks can be digital or analog [7]. In hybrid

networks with digital components, a technique called

the ‘dynamic clamp’ [8,9] is used to monitor the

membrane potential of living neurons, to numerically

simulate model neurons and synapses on a computer,

and to inject synaptic currents into living neurons in

real-time, as if the living neurons were synaptically

connected to the model neurons. Alternatively, the

dynamic clamp can be used to insert artificial

membrane conductances into living neurons embed-

ded in a network, thus exploring the role of intrinsic

conductances in shaping network output.

In hybrid networks with analog model neurons and

synapses, a specially designed electronic circuit

constitutes the artificial part of the network [10]. Such

hardware model neurons and synapses are connected

to living circuits through electrodes, creating a hybrid

circuit that consists of a biological part and a dedi-

cated silicon chip.

Electrical signalling in biological neurons occurs on

many timescales, some as short as milliseconds. To

be physiologically realistic, model neurons in hybrid

circuits must interact with their living counterparts in

real-time. For digital model neurons, this poses a

challenge, especially if many digital components are

to be included in a hybrid network. This is because the

amount of real-time computation necessary for a

hybrid network with digital model neurons scales with

the number of model neurons and synapses involved,

and quickly reaches the limit of current computer

performance. In contrast, analog model neurons

always operate in real-time, regardless how many

model neurons participate in a hybrid circuit [7]. This

scalability is a major advantage of hybrid networks

with analog model components.

On the other hand, hybrid networks with digital

model neurons are extremely flexible, because the

artificial part of the network can easily be modified by

re-programming the software that simulates the model

neurons and synapses. In contrast, modifying the

hardware circuit that emulates model neurons and

synapses in a hybrid circuit with analog models often

requires manufacturing a new chip [11], although a

limited number of analog model parameters can

usually be controlled by the experimenter [7].

Analog and digital model neurons also differ in their

precision. While digital models operate essentially

noise-free, analog model neurons are noisy and

variable because of technical issues related to chip

manufacture [11,12]. While variability and noise may

be problematic, proponents of analog model neurons

argue that they endow hybrid networks with a

measure of realism [11] and can be exploited to test

network activity for robustness [13].

In recent months, both types of hybrid network —

with digital or analog model components — have

become easier to implement because of newly

developed real-time systems. The construction of

hybrid networks with digital components is facilitated

by the arrival of more user-friendly dynamic clamp

systems [9]. And hybrid systems with analog model

neurons can now be constructed using a simulation
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platform based on biologically realistic electronic

neurons [11]. These developments promise to

increase the number of researchers that use the

hybrid network method [7].

Most hybrid network applications fall into two

categories. One group of studies investigates the role

of neural and synaptic properties in shaping the

behavior of a network, while another type of

application uses hybrid networks to validate model

neurons. Both approaches were combined in a recent

study by Sorensen et al. [1], who coupled a bursting

model neuron with a living interneuron in a half-center

configuration to investigate the involvement of a

membrane current, the hyperpolarization-activated

inward current Ih, in pattern generation in the leech

heartbeat timing network.

A half-center oscillator consists of a pair of mutually

inhibiting neural oscillators that burst in alternation;

such oscillators are involved in pattern generation for

rhythmic behaviors such as breathing, swimming or

chewing [14]. By varying the amount of Ih unilaterally

in one part of their hybrid oscillator, Sorensen et al. [1]

showed that Ih influences the frequency and activity

pattern of the leech heartbeat half-center oscillator by

regulating how long an oscillator stays in its inhibited

phase. In addition, the authors demonstrated that the

rhythmic pattern generated by the hybrid circuit was

similar to the pattern generated by the biological

circuit, thus validating their model of a leech heartbeat

interneuron at a functional level not accessible to con-

ventional experimental techniques.

In other recent examples of hybrid network

applications, Nowotny et al. [2] used a hybrid circuit

with an Aplysia neuron to show that spike-timing

dependent plasticity enhances synchronization in

neural networks, while Manor and Nadim [15]

demonstrated that synaptic depression in neural

networks with recurrent inhibition gives rise to

bistability by combining a digital model neuron with a

biological pacemaker neuron. 

In a particularily elegant study, Le Masson et al. [16]

reconstructed a thalamocortical circuit by coupling

living neurons in the lateral geniculate nucleus to

digital and analog model neurons. The researchers

showed how feedback inhibition can functionally

disconnect the cortex from sensory input in a state

reminiscent of sleep, demonstrating the potential of

the hybrid network approach in elucidating network

function even in large circuits.

From a wider perspective, hybrid network

investigations are part of a continuum of new

experimental approaches towards brain investigation

that range from the small network studies described

here to brain–machine interfaces between external

devices and neural circuits in behaving animals.

Miguel Nicolelis [17] recently proposed to call these

approaches ‘real-time neurophysiology’, emphasizing

the need to operate at the time-scale of neural activity

when interacting with neural tissue. Hybrid systems at

all levels of neural organization have the potential to

complement more traditional neurophysiological

methods and to further our understanding of complex

neural processes.
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