
Chapter 5

Model Neurons I:
Neuroelectronics

5.1 Introduction

A great deal is known about the biophysical mechanisms responsible for
generating neuronal activity, and these provide a basis for constructing
neuron models. Such models range from highly detailed descriptions
involving thousands of coupled differential equations to greatly simpli-
fied caricatures useful for studying large interconnected networks. In this
chapter, we discuss the basic electrical properties of neurons and the math-
ematical models by which they are described. We present a simple but
nevertheless useful model neuron, the integrate-and-fire model, in a basic
version and with added membrane and synaptic conductances. We also
discuss the Hodgkin-Huxley model, which describes the conductances re-
sponsible for generating action potentials. In chapter 6, we continue by
presenting more complex models, both in terms of their conductances and
their morphology. Circuits and networks of model neurons are discussed
in chapter 7. This chapter makes use of basic concepts of electrical circuit
theory, which are reviewed in the Mathematical Appendix.

5.2 Electrical Properties of Neurons

Like other cells, neurons are packed with a huge number and variety of
ions and molecules. A cubic micron of cytoplasm might contain, for ex-
ample, 1010 water molecules, 108 ions, 107 small molecules such as amino
acids and nucleotides, and 105 proteins. Many of these molecules carry
charges, either positive or negative. Most of the time, there is an excess
concentration of negative charge inside a neuron. Excess charges that are
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2 Model Neurons I: Neuroelectronics

mobile, like ions, repel each other and build up on the inside surface of the
cell membrane. Electrostatic forces attract an equal density of positive ions
from the extracellular medium to the outside surface of the membrane.

The cell membrane is a lipid bilayer 3 to 4 nm thick that is essentially im-cell membrane
permeable to most charged molecules. This insulating feature causes the
cell membrane to act as a capacitor by separating the charges lying along
its interior and exterior surfaces. Numerous ion-conducting channels em-ion channels
bedded in the cell membrane (figure 5.1) lower the effective membrane
resistance for ion flow to a value about 10,000 times smaller than that of a
pure lipid bilayer. The resulting membrane conductance depends on the
density and types of ion channels. A typical neuron may have a dozen
or more different types of channels, anywhere from a few to hundreds of
channels in a square micron of membrane, and hundreds of thousands to
millions of channels in all. Many, but not all, channels are highly selective,channel selectivity
allowing only a single type of ion to pass through them (to an accuracy of
about 1 ion in 104). The capacity of channels for conducting ions across the
cell membrane can be modified by many factors including the membrane
potential (voltage-dependent channels), the internal concentration of vari-
ous intracellular messengers (Ca2+-dependent channels, for example), and
the extracellular concentration of neurotransmitters or neuromodulators
(synaptic receptor channels, for example). The membrane also contains
selective pumps that expend energy to maintain differences in the concen-ion pumps
trations of ions inside and outside the cell.

channel

pore

lipid bilayer

Figure 5.1: A schematic diagram of a section of the lipid bilayer that forms the
cell membrane with two ion channels embedded in it. The membrane is 3 to 4 nm
thick and the ion channels are about 10 nm long. (Adapted from Hille, 1992.)

By convention, the potential of the extracellular fluid outside a neuron is
defined to be zero. When a neuron is inactive, the excess internal negative
charge causes the potential inside the cell membrane to be negative. Thismembrane potential
potential is an equilibrium point at which the flow of ions into the cell
matches that out of the cell. The potential can change if the balance of ion
flow is modified by the opening or closing of ion channels. Under normal
conditions, neuronal membrane potentials vary over a range from about
-90 to +50 mV. The order of magnitude of these potentials can be estimated
from basic physical principles.
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5.2 Electrical Properties of Neurons 3

Membrane potentials are small enough to allow neurons to take advan-
tage of thermal energy to help transport ions across the membrane, but are
large enough so that thermal fluctuations do not swamp the signaling ca-
pabilities of the neuron. These conditions imply that potential differences
across the cell membrane must lie in a range so that the energy gained or
lost by an ion traversing the membrane is the same order of magnitude as
its thermal energy. The thermal energy of an ion is about kBT where kB

is the Boltzmann constant and T is the temperature on an absolute Kelvin
scale. For chemists and biologists (though not for physicists), it is more
customary to discuss moles of ions rather than single ions. A mole of ions
has Avagadro’s number times as much thermal energy as a single ion, or
RT, where R is the universal gas constant, equal to 8.31 joules/mol K◦

= 1.99 cal/mol K◦. RT is about 2500 joules/mol or 0.6 kCal/mol at nor-
mal temperatures. To estimate the size of typical membrane potentials, we
equate this to the energy gained or lost when a mole of ions crosses a mem-
brane with a potential difference VT across it. This energy is FVT where
F is the Faraday constant, F = 96,480 Coulombs/mol, equal to Avagadro’s
number times the charge of a single proton, q. Setting FVT = RT gives VT

VT =
RT

F
=

kBT

q
. (5.1)

This is an important parameter that enters into a number of calculations.
VT is between 24 and 27 mV for the typical temperatures of cold and
warm-blooded animals. This sets the overall scale for membrane poten-
tials across neuronal membranes, which range from about -3 to +2 times
VT.

Intracellular Resistance

Membrane potentials measured at different places within a neuron can
take different values. For example, the potentials in the soma, dendrite,
and axon can all be different. Potential differences between different parts
of a neuron cause ions to flow within the cell, which tends to equalize
these differences. The intracellular medium provides a resistance to such
flow. This resistance is highest for long and narrow stretches of dendritic
or axonal cable, such as the segment shown in figure 5.2. The longitudi-
nal current IL flowing along such a cable segment can be computed from longitudinal

current ILOhm’s law. For the cylindrical segment of dendrite shown in figure 5.2,
the longitudinal current flowing from right to left satisfies V2 − V1 = IL RL.
Here, RL is the longitudinal resistance, which grows in proportion to the longitudinal

resistance RLlength of the segment (long segments have higher resistances than short
ones) and is inversely proportional to the cross-sectional area of the seg-
ment (thin segments have higher resistances than fat ones). The constant
of proportionality is called the intracellular resistivity, rL, and it typically intracellular

resistivity rLfalls in a range from 1 to 3 k�·mm. The longitudinal resistance of the seg-
ment in figure 5.2 is rL times the length L divided by the cross-sectional
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4 Model Neurons I: Neuroelectronics

area πa2, RL = rL L/πa2. A segment 100 µm long with a radius of 2 µm
has a longitudinal resistance of about 8 M�. A voltage difference of 8 mV
would be required to force 1 nA of current down such a segment.

L

V1 V2

Figure 5.2: The longitudinal resistance of a cylindrical segment of neuronal cable
with length L and radius a. The difference between the membrane potentials at
either end of this segment is related to the longitudinal current within the segment
by Ohm’s law, with RL the longitudinal resistance of the segment. The arrow in-
dicates the direction of positive current flow. The constant rL is the intracellular
resistivity, and a typical value is given.

We can also use the intracellular resistivity to estimate crudely the con-
ductance of a single channel. The conductance, being the inverse of a re-single-channel

conductance sistance, is equal to the cross-sectional area of the channel pore divided by
its length and by rL We approximate the channel pore as a tube of length 6
nm and opening area 0.15 nm2. This gives an estimate of 0.15 nm 2/(1 k�

mm × 6 nm) ≈ 25 pS, which is the right order of magnitude for a channel
conductance.

Membrane Capacitance and Resistance

The intracellular resistance to current flow can cause substantial differ-
ences in the membrane potential measured in different parts of a neuron,
especially during rapid transient excursions of the membrane potential
from its resting value, such as action potentials. Neurons that have few of
the long and narrow cable segments that produce high longitudinal resis-
tance may have relatively uniform membrane potentials across their sur-
faces. Such neurons are termed electrotonically compact. For electroton-electrotonic

compactness ically compact neurons, or for less compact neurons in situations where
spatial variations in the membrane potential are not thought to play an
important functional role, the entire neuron may be adequately described
by a single membrane potential. Here, we discuss the membrane capaci-
tance and resistance using such a description. An analysis for the case of
spatially varying membrane potentials is presented in chapter 6.

We have mentioned that there is typically an excess negative charge on
the inside surface of the cell membrane of a neuron, and a balancing pos-
itive charge on its outside surface (figure 5.3). In this arrangement, themembrane

capacitance Cm cell membrane creates a capacitance Cm, and the voltage across the mem-
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5.2 Electrical Properties of Neurons 5

brane V and the amount of this excess charge Q are related by the stan-
dard equation for a capacitor, Q = CmV. The membrane capacitance is
proportional to the total amount of membrane or, equivalently, to the sur-
face area of the cell. The constant of proportionality, called the specific
membrane capacitance, is the capacitance per unit area of membrane, and specific membrance

capacitance cmis approximately the same for all neurons, cm ≈ 10 nF/mm2. The total
capacitance Cm is the membrane surface area A times the specific capaci-
tance, Cm = cm A. Neuronal surface areas tend to be in the range 0.01 to 0.1
mm2, so the membrane capacitance for a whole neuron is typically 0.1 to 1
nF. For a neuron with a total membrane capacitance of 1 nF, 7 × 10−11 C or
about 109 singly charged ions are required to produce a resting potential
of -70 mV. This is about a hundred-thousandth of the total number of ions
in a neuron and is the amount of charge delivered by a 0.7 nA current in
100 ms.
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Figure 5.3: The capacitance and membrane resistance of a neuron considered as
a single compartment. The membrane capacitance determines how the membrane
potential V and excess internal charge Q are related. The membrane resistance Rm

determines the size of the membrane potential deviation �V caused by a small
current Ie entering through an electrode, for example. Equations relating the to-
tal membrane capacitance and resistance, Cm and Rm, to the specific membrane
capacitance and resistance, cm and rm, are given along with typical values of cm

and rm. The value of rm may vary considerably under different conditions and for
different neurons.

We can use the membrane capacitance to determine how much current
is required to change the membrane potential at a given rate. The time
derivative of the basic equation relating the membrane potential and
charge,

Cm
dV

dt
=

dQ

dt
, (5.2)

plays an important role in the mathematical modeling of neurons. The
time derivative of the charge dQ/dt is equal to the current passing into the
cell, so the amount of current needed to change the membrane potential
of a neuron with a total capacitance Cm at a rate dV/dt is CmdV/dt. For
example, 1 nA will change the membrane potential of a neuron with a
capacitance of 1 nF at a rate of 1 mV/ms.
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6 Model Neurons I: Neuroelectronics

The capacitance of a neuron determines how much current is required to
make the membrane potential change at a given rate. Holding the mem-
brane potential steady at a level different from its resting value also re-
quires current, but this current is determined by the membrane resistance
rather than by the capacitance of the cell. For example, if a small constant
current Ie is injected into a neuron through an electrode, as in figure 5.3, the
membrane potential will shift away from its resting value by an amount
�V given by Ohm’s law, �V = IeRm. Rm is known as the membrane or
input resistance. The restriction to small currents and small �V is requiredmembrane

resistance Rm because membrane resistances can vary as a function of voltage, whereas
Ohm’s law assumes Rm is constant over the range �V.

The membrane resistance is the inverse of the membrane conductance,membrane
conductance and, like the capacitance, the conductance of a piece of cell membrane

is proportional to its surface area. The constant of proportionality is the
membrane conductance per unit area, but we write it as 1/rm, where rm is
called the specific membrane resistance. Conversely, the membrane resis-specific membrane

resistance rm tance Rm is equal to rm divided by the surface area. When a neuron is in a
resting state, the specific membrane resistance is around 1 M�·mm2. This
number is much more variable than the specific membrane capacitance.
Membrane resistances vary considerably among cells and under different
conditions and at different times for a given neuron, depending on the
number, type, and state of its ion channels. For total surface areas between
0.01 and 0.1 mm, the membrane resistance is typically in the range 10 to
100 M�. With a 100 M� membrane resistance, a constant current of 0.1 nA
is required to hold the membrane potential 10 mV away from its resting
value.

The product of the membrane capacitance and the membrane resistance is
a quantity with the units of time called the membrane time constant, τm =membrane time

constant τm RmCm. Because Cm and Rm have inverse dependences on the membrane
surface area, the membrane time constant is independent of area and equal
to the product of the specific membrane capacitance and resistance, τm =

rmcm. The membrane time constant sets the basic time scale for changes
in the membrane potential and typically falls in the range between 10 and
100 ms.

Equilibrium and Reversal Potentials

Electric forces and diffusion are responsible for driving ions through chan-
nel pores. Voltage differences between the exterior and interior of the cell
produce forces on ions. Negative membrane potentials attract positive
ions into the neuron and repel negative ions. In addition, ions diffuse
through channels because the ion concentrations differ inside and outside
the neuron. These differences are maintained by the ion pumps within the
cell membrane. The concentrations of Na+ and Ca2+ are higher outside the
cell than inside, so these ions are driven into the neuron by diffusion. K+
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5.2 Electrical Properties of Neurons 7

is more concentrated inside the neuron than outside, so it tends to diffuse
out of the cell.

It is convenient to characterize the current flow due to diffusion in terms
of an equilibrium potential. This is defined as the membrane potential at equilibrium

potentialwhich current flow due to electric forces cancels the diffusive flow. For
channels that conduct a single type of ion, the equilibrium potential can
be computed easily. The potential difference across the cell membrane bi-
ases the flow of ions into or out of a neuron. Consider, for example, a
positively charged ion and a negative membrane potential. In this case,
the membrane potential opposes the flow of ions out of the the cell. Ions
can only cross the membrane and leave the interior of the cell if they have
sufficient thermal energy to overcome the energy barrier produced by the
membrane potential. If the ion has an electric charge zq where q is the
charge of one proton, it must have a thermal energy of at least −zqV
to cross the membrane (this is a positive energy for z > 0 and V < 0).
The probability that an ion has a thermal energy greater than or equal to
−zqV, when the temperature (on an absolute scale) is T, is exp(zqV/kBT).
This is determined by integrating the Boltzmann distribution for energies
greater than or equal to −zqV. In molar units, this result can be written as
exp(zFV/RT), which is equal to exp(zV/VT) by equation 5.1.

The biasing effect of the electrical potential can be overcome by an oppos-
ing concentration gradient. A concentration of ions inside the cell, [inside],
that is sufficiently greater than the concentration outside the cell, [outside],
can compensate for the Boltzmann probability factor. The rate at which
ions flow into the cell is proportional to [outside]. The flow of ions out of
the cell is proportional to [inside] times the Boltzmann factor, because in
this direction only those ions that have sufficient thermal energy can leave
the cell. The net flow of ions will be zero when the inward and outward
flows are equal. We use the letter E to denote the particular potential that
satisfies this balancing condition, which is then

[outside] = [inside] exp(zE/VT) . (5.3)

Solving this equation for E, we find Nernst equation

E =
VT

z
ln

�
[outside]

[inside]

�

. (5.4)

Equation 5.4 is the Nernst equation. The reader can check that, if the result
is derived for either sign of ionic charge or membrane potential, the result
is identical to 5.4, which thus applies in all cases. Equilibrium potentials
for K+ channels, labeled EK, typically fall in the range between -70 and
-90 mV. Na+ equilibrium potentials, ENa, are 50 mV or higher, and ECa

for Ca2+ channels is higher still, around 150 mV. Finally, Cl− equilibrium
potentials are typically around -60 to -65 mV, near the resting potential of
many neurons.

The Nernst equation (5.4) applies when the channels that generate a par-
ticular conductance allow only one type of ion to pass through them. Some
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8 Model Neurons I: Neuroelectronics

channels are not so selective, and in this case the potential E is not deter-
mined by equation 5.4, but rather takes a value intermediate between the
equilibrium potentials of the individual ion types that it conducts. An ap-
proximate formula known as the Goldman equation (see Tuckwell, 1988;
or Johnston and Wu, 1995) can be used to estimate E for such conduc-Goldman equation
tances. In this case, E is often called a reversal potential, rather than anreversal potential
equilibrium potential, because the direction of current flow through the
channel switches as the membrane potential passes through E.

A conductance with an equilibrium or reversal potential E tends to move
the membrane potential of the neuron toward the value E. When V > E
this means that positive current will flow outward, and when V < E pos-
itive current will flow inward. Because Na+ and Ca2+ conductances have
positive reversal potentials, they tend to depolarize a neuron (make itsdepolarization
membrane potential less negative). K+ conductances, with their negative
E values, normally hyperpolarize a neuron (make its membrane potentialhyperpolarization
more negative). Cl− conductances with reversal potentials near the resting
potential, may pass little net current. Instead, their primary impact is to
change the membrane resistance of the cell. Such conductances are some-
times called shunting, although all conductances ‘shunt’, that is, increaseshunting

conductances the total conductance of a neuron. Synaptic conductances are also charac-
terized by reversal potentials and are termed excitatory or inhibitory on
this basis. Synapses with reversal potentials less than the threshold for ac-
tion potential generation are typically called inhibitory, while those withinhibitory and

excitatory synapses more depolarizing reversal potentials are called excitatory.

The Membrane Current

The total current flowing across the membrane through all of its ion chan-
nels is called the membrane current of the neuron. By convention, the
membrane current is defined as positive when positive ions leave the neu-
ron and negative when positive ions enter the neuron. The total membrane
current is determined by summing currents due to all of the different types
of channels within the cell membrane, including voltage-dependent and
synaptic channels. To facilitate comparisons between neurons of differ-
ent sizes, it is convenient to use the membrane current per unit area of cell
membrane, which we call im. The total membrane current is obtained frommembrane current

per unit area im im by multipling it by A the total surface area of the cell.

We label the different types of channels in a cell membrane with an index
i. As discussed in the last section, the current carried by a set of channels
of type i with reversal potential Ei, vanishes when the membrane poten-
tial satisfies V = Ei. For many types of channels, the current increases or
decreases approximately linearly when the membrane potential deviates
from this value. The difference V − Ei is called the driving force, and thedriving force

conductance per
unit area gi

membrane current per unit area due to the type i channels is written as
gi(V − Ei). The factor gi is the conductance per unit area due to these
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5.3 Single-Compartment Models 9

channels. Summing over the different types of channels, we obtain the
total membrane current membrane current

im =

�

i

gi(V − Ei) . (5.5)

Sometimes a more complicated expression called the Goldman-Hodgkin-
Katz formula is used to relate the membrane current to gi and membrane
potential (see Tuckwell, 1988; or Johnston and Wu, 1995), but we will re-
strict our discussion to the simpler relationship used in equation 5.5.

Much of the complexity and richness of neuronal dynamics arises because
membrane conductances change over time. However, some of the fac-
tors that contribute to the total membrane current can be treated as rela-
tively constant, and these are typically grouped together into a single term
called the leakage current. The currents carried by ion pumps that main- leakage current
tain the concentration gradients that make equilibrium potentials nonzero
typically fall into this category. For example, one type of pump uses the
energy of ATP hydrolysis to move three Na+ ions out of the cell for every
two K+ ions it moves in. It is normally assumed that these pumps work at
relatively steady rates so that the currents they generate can be included in
a time-independent leakage conductance. Sometimes, this assumption is
dropped and explicit pump currents are modeled. In either case, all of the
time-independent contributions to the membrane current can be lumped
together into a single leakage term gL(V − EL). Because this term hides
many sins, its reversal potential EL is not usually equal to the equilibrium
potential of any specific ion. Instead it is often kept as a free parameter
and adjusted to make the resting potential of the model neuron match that resting potential
of the cell being modeled. Similarly, gL is adjusted to match the membrane
conductance at rest. The line over the parameter gL is used to indicate that
it has constant value. A similar notation is used later in this chapter to
distinguish variable conductances from the fixed parameters that describe
them. The leakage conductance is called a passive conductance to distin-
guish it from variable conductances that are termed active.

5.3 Single-Compartment Models

Models that describe the membrane potential of a neuron by a single vari-
able V are called single-compartment models. This chapter deals exclu-
sively with such models. Multi-compartment models, which can describe
spatial variations in the membrane potential, are considered in chapter
6. The equations for single-compartment models, like those of all neuron
models, describe how charges flow into and out of a neuron and affect its
membrane potential.

Equation 5.2 provides the basic relationship that determines the mem-
brane potential for a single-compartment model. This equation states that
the rate of change of the membrane potential is proportional to the rate

Draft: December 17, 2000 Theoretical Neuroscience



10 Model Neurons I: Neuroelectronics

at which charge builds up inside the cell. The rate of charge buildup is,
in turn, equal to the total amount of current entering the neuron. The
relevant currents are those arising from all the membrane and synaptic
conductances plus, in an experimental setting, any current injected into
the cell through an electrode. From equation 5.2, the sum of these currents
is equal to CmdV/dt, the total capacitance of the neuron times the rate of
change of the membrane potential. Because the membrane current is usu-
ally characterized as a current per unit area, im, it is more convenient to
divide this relationship by the surface area of the neuron. Then, the total
current per unit area is equal to cmdV/dt, where cm = Cm/A is the spe-
cific membrane capacitance. One complication in this procedure is that the
electrode current, Ie is not typically expressed as a current per unit area,
so we must divide it by the total surface area of the neuron, A. Putting allsingle-

compartment
model

this together, the basic equation for all single-compartment models is

cm
dV

dt
= −im +

Ie

A
. (5.6)

By convention, current that enters the neuron through an electrode is
defined as positive-inward, whereas membrane current is defined as
positive-outward. This explains the different signs for the currents in
equation 5.6. The membrane current in equation 5.6 is determined by

Figure 5.4: The equivalent circuit for a one-compartment neuron model. The
neuron is represented, at the left, by a single compartment of surface area A with
a synapse and a current injecting electrode. At right is the equivalent circuit. The

circled indicates a synaptic conductance that depends on the activity of a presy-
naptic neuron. A single synaptic conductance gs is indicated, but, in general, there

may be several different types. The circled indicates a voltage-dependent con-
ductance, and Ie is the current passing through the electrode, The dots stand for
possible additional membrane conductances.

equation 5.5 and additional equations that specify the conductance vari-
ables gi. The structure of such a model is the same as that of an electrical
circuit, called the equivalent circuit, consisting of a capacitor and a set ofequivalent circuit
variable and non-variable resistors corresponding to the different mem-
brane conductances. Figure 5.4 shows the equivalent circuit for a generic
one-compartment model.
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5.4 Integrate-and-Fire Models 11

5.4 Integrate-and-Fire Models

A neuron will typically fire an action potential when its membrane poten-
tial reaches a threshold value of about -55 to -50 mV. During the action
potential, the membrane potential follows a rapid stereotyped trajectory
and then returns to a value that is hyperpolarized relative to the threshold
potential. As we will see, the mechanisms by which voltage-dependent
K+ and Na+ conductances produce action potentials are well-understood
and can be modeled quite accurately. On the other hand, neuron models
can be simplified and simulations can be accelerated dramatically if the
biophysical mechanisms responsible for action potentials are not explic-
itly included in the model. Integrate-and-fire models do this by stipulat- integrate and fire

modeling that an action potential occurs whenever the membrane potential of
the model neuron reaches a threshold value Vth. After the action poten-
tial, the potential is reset to a value Vreset below the threshold potential,
Vreset < Vth.

The basic integrate-and-fire model was proposed by Lapicque in 1907,
long before the mechanisms that generate action potentials were under-
stood. Despite its age and simplicity, the integrate-and-fire model is still an
extremely useful description of neuronal activity. By avoiding a biophys-
ical description of the action potential, integrate-and-fire models are left
with the simpler task of modeling only subthreshold membrane potential
dynamics. This can be done with various levels of rigor. In the simplest
version of these models, all active membrane conductances are ignored,
including, for the moment, synaptic inputs, and the entire membrane con-
ductance is modeled as a single passive leakage term, im = gL(V − EL).
This version is called the passive or leaky integrate-and-fire model. For
small fluctuations about the resting membrane potential, neuronal con-
ductances are approximately constant, and the passive integrate-and-fire
model assumes that this constancy holds over the entire subthreshold
range. For some neurons this is a reasonable approximation, and for oth-
ers it is not. With these approximations, the model neuron behaves like
an electric circuit consisting of a resistor and a capacitor in parallel (fig-
ure 5.4), and the membrane potential is determined by equation 5.6 with
im = gL(V − EL),

cm
dV

dt
= −gL(V − EL) +

Ie

A
. (5.7)

It is convenient to multiply equation 5.7 by the specific membrane resis-
tance rm, which in this case is given by rm = 1/gL. This cancels the factor of
gL on the right side of the equation and leaves a factor cmrm = τm on the left
side, where τm is the membrane time constant of the neuron. The electrode
current ends up being multiplied by rm/A which is the total membrane
resistance Rm. Thus, the basic equation of the passive integrate-and-fire passive

integrate-and-fire
model

models is

τm
dV

dt
= EL − V + Rm Ie . (5.8)
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12 Model Neurons I: Neuroelectronics

To generate action potentials in the model, equation 5.8 is augmented by
the rule that whenever V reaches the threshold value Vth, an action po-
tential is fired and the potential is reset to Vreset. Equation 5.8 indicates
that when Ie = 0, the membrane potential relaxes exponentially with time
constant τm to V = EL. Thus, EL is the resting potential of the model cell.

The membrane potential for the passive integrate-and-fire model is deter-
mined by integrating equation 5.8 (a numerical method for doing this is
described in appendix A) and applying the threshold and reset rule for
action potential generation. The response of a passive integrate-and-fire
model neuron to a time-varying electrode current is shown in figure 5.5.
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Figure 5.5: A passive integrate-and-fire model driven by a time-varying electrode
current. The upper trace is the membrane potential and the bottom trace the driv-
ing current. The action potentials in this figure are simply pasted onto the mem-
brane potential trajectory whenever it reaches the threshold value. The parameters
of the model are EL = Vreset = −65 mV, Vth = −50 mV, τm = 10 ms, and Rm = 10
M�.

The firing rate of an integrate-and-fire model in response to a constant
injected current can be computed analytically. When Ie is independent of
time, the subthreshold potential V(t) can easily be computed by solving
equation 5.8 and is

V(t) = EL + Rm Ie + (V(0) − EL − Rm Ie)exp(−t/τm) (5.9)

where V(0) is the value of V at time t = 0. This solution can be checked
simply by substituting it into equation 5.8. It is valid for the integrate-and-
fire model only as long as V stays below the threshold. Suppose that at
t = 0, the neuron has just fired an action potential and is thus at the reset
potential, so that V(0) = Vreset. The next action potential will occur when
the membrane potential reaches the threshold, that is, at a time t = tisi

when

V(tisi) = Vth = EL + Rm Ie + (Vreset − EL − Rm Ie)exp(−tisi/τm) . (5.10)

By solving this for tisi, the time of the next action potential, we can de-
termine the interspike interval for constant Ie, or equivalently its inverse,
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5.4 Integrate-and-Fire Models 13

which we call the interspike-interval firing rate of the neuron,

risi =
1

tisi
=

�

τm ln

�
Rm Ie + EL − Vreset

Rm Ie + EL − Vth

��−1

. (5.11)

This expression is valid if Rm Ie > Vth − EL, otherwise risi = 0. For suffi-
ciently large values of Ie, we can use the linear approximation of the loga-
rithm (ln(1 + z) ≈ z for small z) to show that

risi ≈

�
EL − Vth + Rm Ie

τm(Vth − Vreset)

�

+

, (5.12)

which shows that the firing rate grows linearly with Ie for large Ie.
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Figure 5.6: A) Comparison of interspike-interval firing rates as a function of in-
jected current for an integrate-and-fire model and a cortical neuron measure in
vivo. The line gives risi for a model neuron with τm = 30 ms, EL = Vreset = −65
mV, Vth = −50 mV and Rm = 90 M�. The data points are from a pyramidal cell in
the primary visual cortex of a cat. The filled circles show the inverse of the inter-
spike interval for the first two spikes fired, while the open circles show the steady-
state interspike-interval firing rate after spike-rate adaptation. B) A recording of
the firing of a cortical neuron under constant current injection showing spike-rate
adaptation. C) Membrane voltage trajectory and spikes for an integrate-and-fire
model with an added current with rm�gsra = 0.06, τsra = 100 ms, and EK = -70
mV (see equations 5.13 and 5.14). (Data in A from Ahmed et al., 1998, B from
McCormick, 1990.)

Figure 5.6A compares risi as a function of Ie, using appropriate parame-
ter values, with data from current injection into a cortical neuron in vivo.
The firing rate of the cortical neuron in figure 5.6A has been defined as
the inverse of the interval between pairs of spikes. The rates determined
in this way using the first two spikes fired by the neuron in response to
the injected current (filled circles in figure 5.6A) agree fairly well with the
results of the integrate-and-fire model with the parameters given in the
figure caption. However, the real neuron exhibits spike-rate adaptation, in spike-rate

adaptationthat the interspike intervals lengthen over time when a constant current
is injected into the cell (figure 5.6B) before settling to a steady-state value.
The steady-state firing rate in figure 5.6A (open circles) could also be fit by
an integrate-and-fire model, but not using the same parameters as were
used to fit the initial spikes. Spike-rate adaptation is a common feature of
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14 Model Neurons I: Neuroelectronics

cortical pyramidal cells, and consideration of this phenomenon allows us
to show how an integrate-and-fire model can be modified to incorporate
more complex dynamics.

Spike-Rate Adaptation and Refractoriness

The passive integrate-and-fire model that we have described thus far is
based on two separate approximations, a highly simplified description of
the action potential and a linear approximation for the total membrane
current. If details of the action potential generation process are not im-
portant for a particular modeling goal, the first approximation can be re-
tained while the membrane current is modeled in as much detail as is nec-
essary. We will illustrate this process by developing a heuristic description
of spike-rate adaptation using a model conductance that has characteris-
tics similar to measured neuronal conductances known to play important
roles in producing this effect.

We model spike-rate adaptation by including an additional current in the
model,

τm
dV

dt
= EL − V − rmgsra(V − EK) + Rm Ie . (5.13)

The spike-rate adaptation conductance gsra has been modeled as a K+ con-
ductance so, when activated, it will hyperpolarize the neuron, slowing any
spiking that may be occurring. We assume that this conductance relaxes
to zero exponentially with time constant τsra through the equation

τsra
dgsra

dt
= −gsra . (5.14)

Whenever the neuron fires a spike, gsra is increased by an amount �gsra,
that is, gsra → gsra +�gsra. During repetitive firing, the current builds up in
a sequence of steps causing the firing rate to adapt. Figures 5.6B and 5.6C
compare the adapting firing pattern of a cortical neuron with the output
of the model.

As discussed in chapter 1, the probability of firing for a neuron is signifi-
cantly reduced for a short period of time after the appearance of an action
potential. Such a refractory effect is not included in the basic integrate-
and-fire model. The simplest way of including an absolute refractory pe-
riod in the model is to add a condition to the basic threshold crossing rule
forbidding firing for a period of time immediately after a spike. Refratori-
ness can be incorporated in a more realistic way by adding a conductance
similar to the spike-rate adaptation conductance discussed above, but with
a faster recovery time and a larger conductance increment following an
action potential. With a large increment, the current can essentially clamp
the neuron to EK following a spike, temporarily preventing further firing
and producing an absolute refractory period. As this conductance relaxes
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5.5 Voltage-Dependent Conductances 15

back to zero, firing will be possible but initially less likely, producing a rel-
ative refractory period. When recovery is completed, normal firing can re-
sume. Another scheme that is sometimes used to model refractory effects
is to raise the threshold for action potential generation following a spike
and then to allow it to relax back to its normal value. Spike-rate adapta-
tion can also be described by using an integrated version of the integrate-
and-fire model known as the spike-response model in which membrane
potential wave forms are determined by summing pre-computed postsy-
naptic potentials and after-spike hyperpolarizations. Finally, spike-rate
adaptation and other effects can be incorporated into the integrate-and-
fire framework by allowing the parameters gL and EL in equation 5.7 to
vary with time.

5.5 Voltage-Dependent Conductances

Most of the interesting electrical properties of neurons, including their
ability to fire and propagate action potentials, arise from nonlinearities
associated with active membrane conductances. Recordings of the current
flowing through single channels indicate that channels fluctuate rapidly
between open and closed states in a stochastic manner (figure 5.7). Models stochastic channel
of membrane and synaptic conductances must describe how the probabil-
ity that a channel is in an open, ion-conducting state at any given time de-
pends on the membrane potential (for a voltage-dependent conductance), voltage-dependent,

synaptic, and
Ca2+-dependent

conductances

the presence or absence of a neurotransmitter (for a synaptic conduc-
tance), or a number of other factors such as the concentration of Ca2+

or other messenger molecules inside the cell. In this chapter, we con-
sider two classes of active conductances, voltage-dependent membrane
conductancesand transmitter-dependent synaptic conductances.An addi-
tional type, the Ca2+-dependent conductance,is considered in chapter 6.
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Figure 5.7: Recording of the current passing through a single ion channel. This
is a synaptic receptor channel sensitive to the neurotransmitter acetylcholine. A
small amount of acetylcholine was applied to the preparation to produce occa-
sional channel openings. In the open state, the channel passes 6.6 pA at a holding
potential of -140 mV. This is equivalent to more than 107 charges per second pass-
ing through the channel and corresponds to an open channel conductance of 47
pS. (From Hille, 1992.)
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16 Model Neurons I: Neuroelectronics

In a later section of this chapter, we discuss stochastic models of individ-
ual channels based on state diagrams and transition rates. However, most
neuron models use deterministic descriptions of the conductances arising
from many channels of a given type. This is justified because of the large
number of channels of each type in the cell membrane of a typical neuron.
If large numbers of channels are present, and if they act independently of
each other (which they do, to a good approximation), then, from the law of
large numbers, the fraction of channels open at any given time is approx-
imately equal to the probability that any one channel is in an open state.
This allows us to move between single-channel probabilistic formulations
and macroscopic deterministic descriptions of membrane conductances.

We have denoted the conductance per unit area of membrane due to a set
of ion channels of type i by gi. The value of gi at any given time is deter-
mined by multiplying the conductance of an open channel by the density
of channels in the membrane and by the fraction of channels that are open
at that time. The product of the first two factors is a constant called the
maximal conductance and denoted by gi. It is the conductance per unit
area of membrane if all the channels of type i are open. Maximal conduc-
tance parameters tend to range from µS/mm2 to mS/mm2. The fraction
of channels in the open state is equivalent to the probability of finding any
given channel in the open state, and it is denoted by Pi. Thus, gi = gi Pi.open probability Pi

The dependence of a conductance on voltage, transmitter concentration,
or other factors arises through effects on the open probability.

The open probability of a voltage-dependent conductance depends, as its
name suggests, on the membrane potential of the neuron. In this chap-
ter, we discuss models of two such conductances, the so-called delayed-
rectifier K+ and fast Na+ conductances. The formalism we present, which
is almost universally used to describe voltage-dependent conductances,
was developed by Hodgkin and Huxley (1952) as part of their pioneering
work showing how these conductances generate action potentials in the
squid giant axon. Other conductances are modeled in chapter 6.

Persistent Conductances

Figure 5.8 shows cartoons of the mechanisms by which voltage-dependent
channels open and close as a function of membrane potential. Channels
are depicted for two different types of conductances termed persistent (fig-
ure 5.8A) and transient (figure 5.8B). We begin by discussing persistent
conductances. Figure 5.8A shows a swinging gate attached to a voltage
sensor that can open or close the pore of the channel. In reality, channelactivation gate
gating mechanisms involve complex changes in the conformational struc-
ture of the channel, but the simple swinging gate picture is sufficient if
we are only interested in the current carrying capacity of the channel. A
channel that acts as if it had a single type of gate (although, as we will see,
this is actually modeled as a number of identical sub-gates), like the chan-
nel in figure 5.8A, produces what is called a persistent or noninactivating
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5.5 Voltage-Dependent Conductances 17

conductance. Opening of the gate is called activation of the conductance
and gate closing is called deactivation. For this type of channel, the prob-
ability that the gate is open, PK, increases when the neuron is depolarized
and decreases when it is hyperpolarized. The delayed-rectifier K+ conduc-
tance that is responsible for repolarizing a neuron after an action potential
is such a persistent conductance.

B

activation
gate

inactivation
gate

intracellularextracellular

A
lipid bilayer

aqueous
pore

selectivity
filter
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protein

channel
protein

sensor

intracellularextracellular
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Figure 5.8: Gating of membrane channels. In both figures, the interior of the
neuron is to the right of the membrane, and the extracellular medium is to the left.
A) A cartoon of gating of a persistent conductance. A gate is opened and closed by
a sensor that responds to the membrane potential. The channel also has a region
that selectively allows ions of a particular type to pass through the channel, for
example, K+ ions for a potassium channel. B) A cartoon of the gating of a transient
conductance. The activation gate is coupled to a voltage sensor (denoted by a
circled +) and acts like the gate in A. A second gate, denoted by the ball, can block
that channel once it is open. The top figure shows the channel in a deactivated
(and deinactivated) state. The middle panel shows an activated channel, and the
bottom panel shows an inactivated channel. Only the middle panel corresponds
to an open, ion-conducting state. (A from Hille, 1992; B from Kandel et al., 1991.)

The opening of the gate that describes a persistent conductance may in-
volve a number of conformational changes. For example, the delayed-
rectifier K+ conductance is constructed from four identical subunits, and
it appears that all four must undergo a structural change for the channel
to open. In general, if k independent, identical events are required for a
channel to open, PK can be written as

PK = nk (5.15)

where n is the probability that any one of the k independent gating events
has occurred. Here, n, which varies between 0 and 1, is called a gating
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18 Model Neurons I: Neuroelectronics

or an activation variable, and a description of its voltage and time depen-activation variable
n dence amounts to a description of the conductance. We can think of n as

the probability of an individual subunit gate being open, and 1 − n as the
probability that it is closed.

Although using the value of k = 4 is consistent with the four subunit struc-
ture of the delayed-rectifier conductance, in practice k is an integer chosen
to fit the data, and should be interpreted as a functional definition of a
subunit rather than a reflection of a realistic structural model of the chan-
nel. Indeed, the structure of the channel was not known at the time that
Hodgkin and Huxley chose the form of equation 5.15 and suggested that
k = 4.

We describe the transition of each subunit gate by a simple kinetic
scheme in which the gating transition closed → open occurs at a voltage-channel kinetics
dependent rate αn(V), and the reverse transition open → closed occurs at
a voltage-dependent rate βn(V). The probability that a subunit gate opens
over a short interval of time is proportional to the probability of finding
the gate closed, 1 − n, multiplied by the opening rate αn(V). Likewise, the
probability that a subunit gate closes during a short time interval is pro-
portional to the probability of finding the gate open, n, multiplied by the
closing rate βn(V). The rate at which the open probability for a subunit
gate changes is given by the difference of these two terms

dn

dt
= αn(V)(1 − n) − βn(V)n. (5.16)

The first term describes the opening process and the second term the clos-
ing process (hence the minus sign) that lowers the probability of being in
the configuration with an open subunit gate. Equation 5.16 can be written
in another useful form by dividing through by αn(V) + βn(V),gating equation

τn(V)
dn

dt
= n∞(V) − n , (5.17)

whereτn(V)

τn(V) =
1

αn(V) + βn(V)
(5.18)

andn∞(V)

n∞(V) =
αn(V)

αn(V) + βn(V)
. (5.19)

Equation 5.17 indicates that for a fixed voltage V, n approaches the limit-
ing value n∞(V) exponentially with time constant τn(V).

The key elements in the equation that determines n are the opening and
closing rate functions αn(V) and βn(V). These are obtained by fitting ex-
perimental data. It is useful to discuss the form that we expect these rate
functions to take on the basis of thermodynamic arguments. The state
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5.5 Voltage-Dependent Conductances 19

transitions described by αn, for example, are likely to be rate-limited by
barriers requiring thermal energy. These transitions involve the move-
ment of charged components of the gate across part of the membrane, so
the height of these energy barriers should be affected by the membrane po-
tential. The transition requires the movement of an effective charge, which
we denote by qBα, through the potential V. This requires an energy qBαV.
The constant Bα reflects both the amount of charge being moved and the
distance over which it travels. The probability that thermal fluctuations
will provide enough energy to surmount this energy barrier is propor-
tional to the Boltzmann factor, exp(−qBαV/kBT). Based on this argument,
we expect αn to be of the form

αn(V) = Aα exp(−qBα/kBT) = Aα exp(−BαV/VT) (5.20)

for some constant Aα. The closing rate βn should be expressed similarly,
except with different constants Aβ and Bβ. From equation 5.19, we then
find that n∞(V) is expected to be a sigmoidal function

n∞(V) =
1

1 + (Aβ/Aα)exp((Bα − Bβ)V/VT)
. (5.21)

For a voltage-activated conductance, depolarization causes n to grow
toward one, and hyperpolarization causes them to shrink toward zero.
Thus, we expect that the opening rate, αn should be an increasing function
of V (and thus Bα < 0) and βn should be a decreasing function of V (and
thus Bβ > 0). Examples of the functions we have discussed are plotted in
figure 5.9.
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Figure 5.9: Generic voltage-dependent gating functions compared with Hodgkin-
Huxley results for the delayed-rectifier K+ conductance. A) The exponential αn

and βn functions expected from thermodynamic arguments are indicated by the
solid curves. Parameter values used were Aα = 1.22 ms−1, Aβ = 0.056 ms−1,
Bα/VT = −0.04/mV, and Bβ/VT = 0.0125/mV. The fit of Hodgkin and Huxley
for βn is identical to the solid curve shown. The Hodgkin-Huxley fit for αn is the
dashed curve. B) The corresponding function n∞(V) of equation 5.21 (solid curve).
The dashed curve is obtained using the αn and βn functions of the Hodgkin-Huxley
fit (equation 5.22). C) The corresponding function τn(V) obtained from equation
5.18 (solid curve). Again the dashed curve is the result of using the Hodgkin-
Huxley rate functions.
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20 Model Neurons I: Neuroelectronics

While thermodynamic arguments support the forms we have presented,
they rely on simplistic assumptions. Not surprisingly, the resulting func-
tional forms do not always fit the data and various alternatives are often
employed. The data upon which these fits are based are typically obtained
using a technique called voltage clamping. In this techniques, an amplifiervoltage clamping
is configured to inject the appropriate amount of electrode current to hold
the membrane potential at a constant value. By current conservation, this
current is equal to the membrane current of the cell. Hodgkin and Huxley
fit the rate functions for the delayed-rectifier K+ conductance they studied
using the equations

αn =
.01(V + 55)

1 − exp(−.1(V + 55))
and βn = 0.125 exp(−0.0125(V + 65))

(5.22)

where V is expressed in mV, and αn and βn are both expressed in units
of 1/ms. The fit for βn is exactly the exponential form we have discussed
with Aβ = 0.125 exp(−0.0125 · 65) ms−1 and Bβ/VT = 0.0125 mV−1, but
the fit for αn uses a different functional form. The dashed curves in figure
5.9 plot the formulas of equation 5.22.

Transient Conductances

Some channels only open transiently when the membrane potential is de-
polarized because they are gated by two processes with opposite voltage-
dependences. Figure 5.8B is a schematic of a channel that is controlled by
two gates and generates a transient conductance. The swinging gate in fig-
ure 5.8B behaves exactly like the gate in figure 5.8A. The probability that
it is open is written as mk where m is an activation variable similar to n,activation

variable m and k is an integer. Hodgkin and Huxley used k = 3 for their model of the
fast Na+ conductance. The ball in figure 5.8B acts as the second gate. The
probability that the ball does not block the channel pore is written as h and
called the inactivation variable. The activation and inactivation variablesinactivation

variable h m and h are distinguished by having opposite voltage dependences. De-
polarization causes m to increase and h to decrease, and hyperpolarization
decreases m while increasing h.

For the channel in figure 5.8B to conduct, both gates must be open, and,
assuming the two gates act independently, this has probability

PNa = mkh , (5.23)

This is the general form used to describe the open probability for a tran-
sient conductance. We could raise the h factor in this expression to an
arbitrary power as we did for m, but we leave out this complication to
streamline the discussion. The activation m and inactivation h, like all gat-
ing variables, vary between zero and one. They are described by equations
identical to 5.16, except that the rate functions αn and βn are replaced by
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5.5 Voltage-Dependent Conductances 21

either αm and βm or αh and βh. These rate functions were fit by Hodgkin
and Huxley using the equations (in units of 1/ms with V in mV )

αm =
.1(V + 40)

1 − exp[−.1(V + 40)]
βm = 4 exp[−.0556(V + 65)]

αh = .07 exp[−.05(V + 65)] βh = 1/(1 + exp[−.1(V + 35)]) . (5.24)

Functions m∞(V) and h∞(V) describing the steady-state activation and
inactivation levels, and voltage-dependent time constants for m and h can
be defined as in equations 5.19 and 5.18. These are plotted in figure 5.10.
For comparison, n∞(V) and τn(V) for the K+ conductance are also plot-
ted. Note that h∞(V), because it corresponds to an inactivation variable,
is flipped relative to m∞(V) and n∞(V), so that it approaches one at hy-
perpolarized voltages and zero at depolarized voltages.
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Figure 5.10: The voltage-dependent functions of the Hodgkin-Huxley model. The
left panel shows m∞(V), h∞(V), and n∞(V), the steady-state levels of activation
and inactivation of the Na+ conductance and activation of the K+ conductance.
The right panel shows the voltage-dependent time constants that control the rates
at which these steady-state levels are approached for the three gating variables.

The presence of two factors in equation (5.23) gives a transient conduc-
tance some interesting properties. To turn on a transient conductance max-
imally, it may first be necessary to hyperpolarize the neuron below its rest-
ing potential and then to depolarize it. Hyperpolarization raises the value
of the inactivation h, a process called deinactivation. The second step, de- deinactivation
polarization, increases the value of m, a process known as activation. Only activation
when m and h are both nonzero is the conductance turned on. Note that
the conductance can be reduced in magnitude either by decreasing m or
h. Decreasing h is called inactivation to distinguish it from decreasing m, inactivation
which is called deactivation. deactivation

Hyperpolarization-Activated Conductances

Persistent currents act as if they are controlled by an activation gate, while
transient currents acts as if they have both an activation and an inactiva-
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tion gate. Another class of conductances, the hyperpolarization-activated
conductances, behave as if they are controlled solely by an inactivation
gate. They are thus persistent conductances, but they open when the neu-
ron is hyperpolarized rather than depolarized. The opening probability
for such channels is written solely of an inactivation variable similar to
h. Strictly speaking these conductances deinactivate when they turn on
and inactivate when they turn off. However, most people cannot bring
themselves to say deinactivate all the time, so they say instead that these
conductances are activated by hyperpolarization.

5.6 The Hodgkin-Huxley Model

The Hodgkin-Huxley model for the generation of the action potential, in
its single-compartment form, is constructed by writing the membrane cur-
rent in equation 5.6 as the sum of a leakage current, a delayed-rectified K+

current and a transient Na+ current,

im = gL(V − EL) + gKn4(V − EK) + gNam3h(V − ENa) . (5.25)

The maximal conductances and reversal potentials used in the model are
gL = 0.003 mS/mm2, gK = 0.036 mS/mm2, gNa = 1.2 mS/mm2, EL = -54.402
mV, EK = -77 mV and ENa = 50 mV. The full model consists of equation 5.6
with equation 5.25 for the membrane current, and equations of the form
5.17 for the gating variables n, m, and h. These equations can be integrated
numerically using the methods described in appendices A and B.

The temporal evolution of the dynamic variables of the Hodgkin-Huxley
model during a single action potential is shown in figure 5.11. The ini-
tial rise of the membrane potential, prior to the action potential, seen in
the upper panel of figure 5.11, is due to the injection of a positive elec-
trode current into the model starting at t = 5 ms. When this current drives
the membrane potential up to about about -50 mV, the m variable that
describes activation of the Na+ conductance suddenly jumps from nearly
zero to a value near one. Initially, the h variable, expressing the degree
of inactivation of the Na+ conductance, is around 0.6. Thus, for a brief
period both m and h are significantly different from zero. This causes a
large influx of Na+ ions producing the sharp downward spike of inward
current shown in the second trace from the top. The inward current pulse
causes the membrane potential to rise rapidly to around 50 mV (near the
Na+ equilibrium potential). The rapid increase in both V and m is due
to a positive feedback effect. Depolarization of the membrane potential
causes m to increase, and the resulting activation of the Na+ conductance
causes V to increase. The rise in the membrane potential causes the Na+

conductance to inactivate by driving h toward zero. This shuts off the Na+

current. In addition, the rise in V activates the K+ conductance by driving
n toward one. This increases the K+ current which drives the membrane
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Figure 5.11: The dynamics of V, m, h, and n in the Hodgkin-Huxley model during
the firing of an action potential. The upper trace is the membrane potential, the
second trace is the membrane current produced by the sum of the Hodgkin-Huxley
K+ and Na+ conductances, and subsequent traces show the temporal evolution of
m, h, and n. Current injection was initiated at t = 5 ms.

potential back down to negative values. The final recovery involves the
re-adjustment of m, h, and n to their initial values.

The Hodgkin-Huxley model can also be used to study propagation of an
action potential down an axon, but for this purpose a multi-compartment
model must be constructed. Methods for constructing such a model, and
results from it, are described in chapter 6.

5.7 Modeling Channels

In previous sections, we described the Hodgkin-Huxley formalism for
describing voltage-dependent conductances arising from a large number
of channels. With the advent of single channel studies, microscopic de-
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scriptions of the transitions between the conformational states of channel
molecules have been developed. Because these models describe complex
molecules, they typically involve many states and transitions. Here, we
discuss simple versions of these models that capture the spirit of single-
channel modeling without getting mired in the details.

Models of single channels are based on state diagrams that indicate the
possible conformational states that the channel can assume. Typically, one
of the states in the diagram is designated as open and ion-conducting,
while the other states are non-conducting. The current conducted by the
channel is written as gP(V − E), where E is the reversal potential, g is the
single-channel open conductance and P is one whenever the open state is
occupied and zero otherwise. Channel models can be instantiated directly
from state diagrams simply by keeping track of the state of the channel
and allowing stochastic changes of state to occur at appropriate transition
rates. If the model is updated in short time steps of duration �t, the prob-
ability that the channel makes a given transition during an update interval
is the transition rate times �t.
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Figure 5.12: A model of the delayed-rectifier K+ channel. The upper diagram
shows the states and transition rates of the model. In the simulations shown in the
lower panels, the membrane potential was initially held at -100 mV, then held at 10
mV for 20 ms, and finally returned to a holding potential of -100 mV. The smooth
curves in these panels show the membrane current predicted by the Hodgkin-
Huxley model in this situation. The left panel shows a simulation of a single chan-
nel that opened several times during the depolarization. The middle panel shows
the total current from 10 simulated channels and the right panel corresponds to
100 channels. As the number of channels increases, the Hodgkin-Huxley model
provides a more accurate description of the current.

Figure 5.12 shows the state diagram and simulation results for a model of
a single delayed-rectifier K+ channel that is closely related to the Hodgkin-
Huxley description of the macroscopic delayed-rectifier conductance. The
factors αn and βn in the transition rates shown in the state diagram of fig-
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ure 5.12 are the voltage-dependent rate functions of the Hodgkin-Huxley
model. The model uses the same four subunit structure assumed in the
Hodgkin-Huxley model. We can think of state 1 in this diagram as a state
in which all the subunit gates are closed. States 2, 3, 4, and 5 have 1, 2, 3,
and 4 open subunit gates respectively. State 5 is the sole open state. The
factors of 1, 2, 3, and 4 in the transition rates in figure 5.12 correspond to
the number of subunit gates that can make a given transition. For exam-
ple, the transition rate from state 1 to state 2 is four times faster than the
rate from state 4 to state 5. This is because any one of the 4 subunit gates
can open to get from state 1 to state 2, but the transition from state 4 to
state 5 requires the single remaining closed subunit gate to open.

The lower panels in figure 5.12 show simulations of this model involving
1, 10, and 100 channels. The sum of currents from all of these channels
is compared with the current predicted by the Hodgkin-Huxley model
(scaled by the appropriate maximal conductance). For each channel, the
pattern of opening and closing is random, but when enough channels are
summed, the total current matches that of the Hodgkin-Huxley model
quite well.

To see how the channel model in figure 5.12 reproduces the results of
the Hodgkin-Huxley model when the currents from many channels are
summed, we must consider a probabilistic description of the channel
model. We denote the probability that a channel is in state a of figure
5.12 by pa, with a = 1,2, . . . ,5. Dynamic equations for these probabilities
are easily derived by setting the rate of change for a given pa equal to the
probability per unit time of entry into state a from other states minus the
rate for leaving a state. The entry probability per unit time is the product
of the appropriate transition rate times the probability that the state mak-
ing the transition is occupied. The probability per unit time for leaving is
pa times the sum of all the rates for possible transitions out of the state.
Following this reasoning, the equations for the state probabilities are

dp1

dt
= βn p2 − 4αn p1 (5.26)

dp2

dt
= 4αn p1 + 2βn p3 − (βn + 3αn)p2

dp3

dt
= 3αn p2 + 3βn p4 − (2βn + 2αn)p3

dp4

dt
= 2αn p3 + 4βn p5 − (3βn + αn)p4

dp5

dt
= αn p4 − 4βn p5 .

A solution for these equations can be constructed if we recall that, in the
Hodgkin-Huxley model, n is the probability of a subunit gate being in the
open state and 1 − n the probability of it being closed. If we use that same
notation here, state 1 has 4 closed subunit gates, and thus p1 = (1 − n)4.
State 5, the open state, has 4 open subunit gates so p5 = n4

= P. State
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26 Model Neurons I: Neuroelectronics

2 has one open subunit gate, which can be any one of the four subunit
gates, and three closed states making p2 = 4n(1 − n)3. Similar arguments
yield p3 = 6n2(1 − n)2 and p4 = 4n3(1 − n). These expressions generate a
solution to the above equations provided that n satisfies equation 5.16, as
the reader can verify.

In the Hodgkin-Huxley model of the Na+ conductance, the activation and
inactivation processes are assumed to act independently. The schematic
in figure 5.8B, which cartoons the mechanism believed to be responsible
for inactivation, suggests that this assumption is incorrect. The ball that
inactivates the channel is located inside the cell membrane where it cannot
be affected directly by the potential across the membrane. Furthermore, in
this scheme, the ball cannot occupy the channel pore until the activation
gate has opened, making the two processes inter-dependent.
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Figure 5.13: A model of the fast Na+ channel. The upper diagram shows the
states and transitions rates of the model. The values k1 = 0.24/ms, k2 = 0.4/ms,
and k3 = 1.5/ms were used in the simulations shown in the lower panels. For
these simulations, the membrane potential was initially held at -100 mV, then held
at 10 mV for 20 ms, and finally returned to a holding potential of -100 mV. The
smooth curves in these panels show the current predicted by the Hodgkin-Huxley
model in this situation. The left panel shows a simulation of a single channel that
opened once during the depolarization. The middle panel shows the total current
from 10 simulated channels and the right panel corresponds to 100 channels. As
the number of channels increases, the Hodgkin-Huxley model provides a fairly
accurate description of the current, but it is not identical to the channel model in
this case.

The state diagram in figure 5.13 reflects this by having a state-dependent,
voltage-independent inactivation mechanism. This diagram is a simpli-state-dependent

inactivation fied version of a Na+ channel model due to Patlak (1991). The sequence
of transitions that lead to channel opening through states 1 ,2, 3, and 4 is
identical to that of the Hodgkin-Huxley model with transition rates deter-
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5.8 Synaptic Conductances 27

mined by the Hodgkin-Huxley functions αm(V) and βm(V) and appropri-
ate combinatoric factors. State 4 is the open state. The transition to the
inactivated state 5, however, is quite different from the inactivation pro-
cess in the Hodgkin-Huxley model. Inactivation transitions to state 5 can
only occur from states 2, 3, and 4, and the corresponding transition rates
k1, k2, and k3 are constants, independent of voltage. The deinactivation
process occurs at the Hodgkin-Huxley rate αh(V) from state 5 to state 3.

Figure 5.13 shows simulations of this Na+ channel model. In contrast to
the K+ channel model shown in figure 5.12, this model does not repro-
duce exactly the results of the Hodgkin-Huxley model when large num-
bers of channels are summed. Nevertheless, the two models agree quite
well, as seen in the lower right panel of figure 5.13. The agreement, de-
spite the different mechanisms of inactivation, is due to the speed of the
activation process for the Na+ conductance. The inactivation rate func-
tion βh(V) in the Hodgkin-Huxley model has a sigmoidal form similar
to the asymptotic activation function m∞(V) (see equation 5.24). This is
indicative of the actual dependence of inactivation on m and not V. How-
ever, the activation variable m of the Hodgkin-Huxley model reaches its
voltage-dependent asymptotic value m∞(V) so rapidly that it is difficult
to distinguish inactivation processes that depend on m from those that de-
pend on V. Differences between the two models are only apparent during
a sub-millisecond time period while the conductance is activating. Exper-
iments that can resolve this time scale support the channel model over the
original Hodgkin-Huxley description.

5.8 Synaptic Conductances

Synaptic transmission at a spike-mediated chemical synapse begins when
an action potential invades the presynaptic terminal and activates voltage-
dependent Ca2+ channels leading to a rise in the concentration of Ca2+

within the terminal. This causes vesicles containing transmitter molecules
to fuse with the cell membrane and release their contents into the synaptic
cleft between the pre- and postsynaptic sides of the synapse. The trans-
mitter molecules then diffuse across the cleft and bind to receptors on
the postsynaptic neuron. Binding of transmitter molecules leads to the
opening of ion channels that modify the conductance of the postsynap-
tic neuron, completing the transmission of the signal from one neuron to
the other. Postsynaptic ion channels can be activated directly by binding
to the transmitter, or indirectly when the transmitter binds to a distinct re-
ceptor that affects ion channels through an intracellular second-messenger
signaling pathway.

As with a voltage-dependent conductance, a synaptic conductance can be
written as the product of a maximal conductance and an open channel
probability, gs = gsP. The open probability for a synaptic conductance can
be expressed as a product of two terms that reflect processes occurring on
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