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mined by the Hodgkin-Huxley functions αm(V) and βm(V) and appropri-
ate combinatoric factors. State 4 is the open state. The transition to the
inactivated state 5, however, is quite different from the inactivation pro-
cess in the Hodgkin-Huxley model. Inactivation transitions to state 5 can
only occur from states 2, 3, and 4, and the corresponding transition rates
k1, k2, and k3 are constants, independent of voltage. The deinactivation
process occurs at the Hodgkin-Huxley rate αh(V) from state 5 to state 3.

Figure 5.13 shows simulations of this Na+ channel model. In contrast to
the K+ channel model shown in figure 5.12, this model does not repro-
duce exactly the results of the Hodgkin-Huxley model when large num-
bers of channels are summed. Nevertheless, the two models agree quite
well, as seen in the lower right panel of figure 5.13. The agreement, de-
spite the different mechanisms of inactivation, is due to the speed of the
activation process for the Na+ conductance. The inactivation rate func-
tion βh(V) in the Hodgkin-Huxley model has a sigmoidal form similar
to the asymptotic activation function m∞(V) (see equation 5.24). This is
indicative of the actual dependence of inactivation on m and not V. How-
ever, the activation variable m of the Hodgkin-Huxley model reaches its
voltage-dependent asymptotic value m∞(V) so rapidly that it is difficult
to distinguish inactivation processes that depend on m from those that de-
pend on V. Differences between the two models are only apparent during
a sub-millisecond time period while the conductance is activating. Exper-
iments that can resolve this time scale support the channel model over the
original Hodgkin-Huxley description.

5.8 Synaptic Conductances

Synaptic transmission at a spike-mediated chemical synapse begins when
an action potential invades the presynaptic terminal and activates voltage-
dependent Ca2+ channels leading to a rise in the concentration of Ca2+

within the terminal. This causes vesicles containing transmitter molecules
to fuse with the cell membrane and release their contents into the synaptic
cleft between the pre- and postsynaptic sides of the synapse. The trans-
mitter molecules then diffuse across the cleft and bind to receptors on
the postsynaptic neuron. Binding of transmitter molecules leads to the
opening of ion channels that modify the conductance of the postsynap-
tic neuron, completing the transmission of the signal from one neuron to
the other. Postsynaptic ion channels can be activated directly by binding
to the transmitter, or indirectly when the transmitter binds to a distinct re-
ceptor that affects ion channels through an intracellular second-messenger
signaling pathway.

As with a voltage-dependent conductance, a synaptic conductance can be
written as the product of a maximal conductance and an open channel
probability, gs = gsP. The open probability for a synaptic conductance can
be expressed as a product of two terms that reflect processes occurring on
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the pre- and postsynaptic sides of the synapse, P = PsPrel. The factor Ps issynaptic open
probability Ps the probability that a postsynaptic channel opens given that the transmit-

ter was released by the presynaptic terminal. Because there are typically
many postsynaptic channels, this can also be taken as the fraction of chan-
nels opened by the transmitter.

Prel is related to the probability that transmitter is released by the presy-
naptic terminal following the arrival of an action potential. This reflects thetransmitter release

probability Prel fact that transmitter release is a stochastic process. Release of transmitter
at a presynaptic terminal does not necessarily occur every time an action
potential arrives, and, conversely, spontaneous release can occur even in
the absence of action potential induced depolarization. The interpretation
of Prel is a bit subtle because a synaptic connection between neurons may
involve multiple anatomical synapses, and each of these may have multi-
ple independent transmitter release sites. The factor Prel, in our discussion,
is the average of the release probabilities at each release site. If there are
many release sites, the total amount of transmitter released by all the sites
is proportional to Prel. If there is a single release site, Prel is the probabil-
ity that it releases transmitter. We will restrict our discussion to these two
interpretations of Prel. For a modest number of release sites with widely
varying release probabilities, the current we discuss only describes an av-
erage over multiple trials.

Synapses can exert their effects on the soma, dendrites, axon spike-
initiation zone, or presynaptic terminals of their postsynaptic targets.
There are two broad classes of synaptic conductances that are distin-
guished by whether the transmitter binds to the synaptic channel and acti-
vates it directly, or the transmitter binds to a distinct receptor that activatesionotropic synapse
the conductance indirectly through an intracellular signaling pathway.metabotropic

synapse The first class is called ionotropic and the second metabotropic. Ionotropic
conductances activate and deactivate more rapidly than metabotropic con-
ductances. Metabotropic receptors can, in addition to opening chan-
nels, cause long-lasting changes inside a neuron. They typically operate
through pathways that involve G-protein mediated receptors and vari-
ous intracellular signalling molecules known as second messengers. A
large number of neuromodulators including serotonin, dopamine, nore-
pinephrine, and acetylcholine can act through metabotropic receptors.
These have a wide variety of important effects on the functioning of the
nervous system.

Glutamate and GABA (γ-aminobutyric acid) are the major excitatoryglutamate, GABA
and inhibitory transmitters in the brain. Both act ionotropically and
metabotropically. The principal ionotropic receptor types for glutamate
are called AMPA and NMDA. Both AMPA and NMDA receptors produceAMPA, NMDA
mixed-cation conductances with reversal potentials around 0 mV. The
AMPA current is fast activating and deactivating. The NMDA receptor
is somewhat slower to activate and deactivates considerably more slowly.
In addition, NMDA receptors have an unusual voltage dependence that
we discuss in a later section, and are rather more permeable to Ca2+ than
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AMPA receptors.

GABA activates two important inhibitory synaptic conductances in the GABAA, GABAB

brain. GABAA receptors produce a relatively fast ionotropic Cl− conduc-
tance. GABAB receptors are metabotropic and act to produce a slower and
longer lasting K+ conductance.

In addition to chemical synapses, neurons can be coupled through electri-
cal synapses (gap junctions) that produce a synaptic current proportional gap junctions
to the difference between the pre- and postsynaptic membrane potentials.
Some gap junctions rectify so that positive and negative current flow is not
equal for potential differences of the same magnitude.

The Postsynaptic Conductance

In a simple model of a directly activated receptor channel, the transmitter
interacts with the channel through a binding reaction in which k transmit-
ter molecules bind to a closed receptor and open it. In the reverse reaction,
the transmitter molecules unbind from the receptor and it closes. These
processes are analogous to the opening and closing involved in the gating
of a voltage-dependent channel, and the same type of equation is used to
describe how the open probability Ps changes with time,

dPs

dt
= αs(1 − Ps) − βsPs . (5.27)

Here, βs determines the closing rate of the channel and is usually as-
sumed to be a constant. The opening rate, αs, on the other hand, de-
pends on the concentration of transmitter available for binding to the re-
ceptor. If the concentration of transmitter at the site of the synaptic channel
is [transmitter], the probability of finding k transmitter molecules within
binding range of the channel is proportional to [transmitter]k, and αs is
some constant of proportionality times this factor.

When an action potential invades the presynaptic terminal, the transmitter
concentration rises and αs grows rapidly causing Ps to increase. Follow-
ing the release of transmitter, diffusion out of the cleft, enzyme-mediated
degradation, and presynaptic uptake mechanisms can all contribute to a
rapid reduction of the transmitter concentration. This sets αs to zero, and
Ps follows suit by decaying exponentially with a time constant 1/βs. Typi-
cally, the time constant for channel closing is considerably larger than the
opening time.

As a simple model of transmitter release, we assume that the transmit-
ter concentration in the synaptic cleft rises extremely rapidly after vesicle
release, remains at a high value for a period of duration T, and then falls
rapidly to zero. Thus, the transmitter concentration is modeled as a square
pulse. While the transmitter concentration is nonzero, αs takes a constant
value much greater that βs, otherwise αs = 0. Suppose that vesicle release
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occurs at time t = 0 and that the synaptic channel open probability takes
the value Ps(0) at this time. While the transmitter concentration in the cleft
is nonzero, αs is so much larger than βs that we can ignore the term involv-
ing βs in equation 5.27. Integrating equation 5.27 under this assumption,
we find that

Ps(t) = 1 + (Ps(0) − 1)exp(−αst) for 0 ≤ t ≤ T . (5.28)

The open probability takes its maximum value at time t = T and then, for
t ≥ T, decays exponentially at a rate determined by the constant βs,

Ps(t) = Ps(T)exp(−βs(t − T)) for t ≥ T . (5.29)

If Ps(0) = 0, as it will if there is no synaptic release immediately before the
release at t = 0, equation 5.28 simplifies to Ps(t) = 1 − exp(−αst) for 0 ≤

t ≤ T, and this reaches a maximum value Pmax = Ps(T) = 1 − exp(−αsT).
In terms of this parameter, a simple manipulation of equation 5.28 shows
that we can write, in the general case,

Ps(T) = Ps(0) + Pmax(1 − Ps(0)) . (5.30)

Figure 5.14 shows a fit to a recorded postsynaptic current using this for-
malism. In this case, βs was set to 0.19 ms−1. The transmitter concentra-
tion was modeled as a square pulse of duration T = 1 ms during which
αs = 0.93 ms−1. Inverting these values, we find that the time constant de-
termining the rapid rise seen in figure 5.14A is 0.9 ms, while the fall of the
current is an exponential with a time constant of 5.26 ms.

10 ms

6
0

p
A

Figure 5.14: A fit of the model discussed in the text to the average EPSC (exci-
tatory postsynaptic current) recorded from mossy fiber input to a CA3 pyramidal
cell in a hippocampal slice preparation. The smooth line is the theoretical curve
and the wiggly line is the result of averaging recordings from a number of trials.
(Adapted from Destexhe et al., 1994.)

For a fast synapse like the one shown in figure 5.14, the rise of the con-
ductance following a presynaptic action potential is so rapid that it can
be approximated as instantaneous. In this case, the synaptic conductance
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due to a single presynaptic action potential occurring at t = 0 is often writ-
ten as an exponential, Ps = Pmax exp(−t/τs) (see the AMPA trace in figure
5.15A) where, from equation 5.29, τs = 1/βs. The synaptic conductance
due to a sequence of action potentials at arbitrary times can be modeled
by allowing Ps to decay exponentially to zero according to the equation

τs
dPs

dt
= −Ps , (5.31)

and, on the basis of the equation 5.30, making the replacement

Ps → Ps + Pmax(1 − Ps) (5.32)

immediately after each presynaptic action potential.

Equations 5.28 and 5.29 can also be used to model synapses with slower
rise times, but other functional forms are often used. One way of describ-
ing both the rise and the fall of a synaptic conductance is to express Ps as
the difference of two exponentials (see the GABAA and NMDA traces in
figure 5.15). For an isolated presynaptic action potential occurring at t = 0,
the synaptic conductance is written as

Ps = PmaxB
�
exp(−t/τ1) − exp(−t/τ2)

�
(5.33)

where τ1 > τ2, and B is a normalization factor that assures that the peak
value of Ps is equal to one,

B =

��
τ2

τ1

�τrise/τ1

−

�
τ2

τ1

�τrise/τ2

�−1

. (5.34)

The rise time of the synapse is determined by τrise = τ1τ2/(τ1 − τ2),
while the fall time is set by τ1. This conductance reaches its peak value
τrise ln(τ1/τ2) after the presynaptic action potential.

Another way of describing a synaptic conductance is to use the expression

Ps =
Pmaxt

τs
exp(1 − t/τs) (5.35)

for an isolated presynaptic release that occurs at time t = 0. This expres-
sion, called an alpha function, starts at zero, reaches its peak value at t = τs, alpha function
and then decays with a time constant τs.

We mentioned earlier in this chapter that NMDA receptor conductance NMDA receptor
has an additional dependence on the postsynaptic potential not normally
seen in other conductances. To incorporate this dependence, the current
due to the NMDA receptor can be described using an additional factor
that depends on the postsynaptic potential, V. The NMDA current is writ-
ten as gNMDAGNMDA(V)P(V − ENMDA). P is the usual open probability
factor. The factor GNMDA(V) describes an extra voltage dependence due
to the fact that, when the postsynaptic neuron is near its resting potential,
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Figure 5.15: Time-dependent open probabilities fit to match AMPA, GABAA, and
NMDA synaptic conductances. A) The AMPA curve is a single exponential de-
scribed by equation 5.31 with τs = 5.26 ms. The GABAA curve is a difference of
exponentials with τ1 = 5.6 ms and τrise = 0.3 ms. B) The NMDA curve is the dif-
ferences of two exponentials with τ1 = 152 ms and τrise = 1.5 ms. (Parameters are
from Destexhe et al., 1994.)

NMDA receptors are blocked by Mg2+ ions. To activate the conductance,
the postsynaptic neuron must be depolarized to knock out the blocking
ions. Jahr and Stevens (1990) have fit this dependence by (figure 5.16)

GNMDA =

�

1 +
[Mg2+]

3.57 mM
exp(V/16.13 mV)

�−1

. (5.36)

-80 -20-40-60 20 40 600
0

0.5

1.0

[Mg2+]

Figure 5.16: Dependence of the NMDA conductance on the extracellular Mg2+

concentration. Normal extracellular Mg2+ concentrations are in the range of 1 to 2
mM. The solid lines are the factors GNMDA of equation 5.36 for different values of
[Mg2+] and the symbols indicate the data points. (Adapted from Jahr and Stevens,
1990.)

NMDA receptors conduct Ca2+ ions as well as monovalent cations. En-
try of Ca2+ ions through NMDA receptors is a critical event for long-term
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modification of synaptic strength. The fact that the opening of NMDA re-
ceptor channels requires both pre- and postsynaptic depolarization means
that they can act as coincidence detectors of simultaneous pre- and postsy- coincidence

detectionnaptic activity. This plays an important role in connection with the Hebb
rule for synaptic modification discussed in chapter 8.

Release Probability and Short-Term Plasticity

The probability of transmitter release and the magnitude of the resulting
conductance change in the postsynaptic neuron can depend on the history
of activity at a synapse. The effects of activity on synaptic conductances
are termed short- and long-term. Short-term plasticity refers to a number short-term

plasticityof phenomena that affect the probability that a presynaptic action poten-
tial opens postsynaptic channels and that last anywhere from milliseconds
to tens of seconds. The effects of long-term plasticity are extremely persis- long-term

plasticitytent, lasting, for example, as long as the preparation being studied can
be kept alive. The modeling and implications of long-term plasticity are
considered in chapter 8. Here we describe a simple way of describing
short-term synaptic plasticity as a modification in the release probability
for synaptic transmission. Short-term modifications of synaptic transmis-
sion can involve other mechanisms than merely changes in the probability
of transmission, but for simplicity we absorb all these effects into a modifi-
cation of the factor Prel introduced previously. Thus, Prel can be interpreted
more generally as a presynaptic factor affecting synaptic transmission.

Figure 5.17 illustrates two principal types of short-term plasticity, depres-
sion and facilitation. Figure 5.17A shows trial-averaged postsynaptic cur- depression

facilitationrent pulses produced in one cortical pyramidal neuron by evoking a reg-
ular series of action potentials in a second pyramidal neuron presynaptic
to the first. The pulses decrease in amplitude dramatically upon repeated
activation of the synaptic conductance, revealing short-term synaptic de-
pression. Figure 5.17B shows a similar series of averaged postsynaptic cur-
rent pulses recorded in a cortical inhibitory interneuron when a sequence
of action potentials was evoked in a presynaptic pyramidal cell. In this
case, the amplitude of the pulses increases, and thus the synapse facili-
tates. In general, synapses can exhibit facilitation and depression over a
variety of time scales, and multiple components of short-term plasticity
can be found at the same synapse. To keep the discussion simple, we con-
sider synapses that exhibit either facilitation or depression described by a
single time constant.

Facilitation and depression can both be modeled as presynaptic processes
that modify the probability of transmitter release. We describe them using
a simple non-mechanistic model that has similarities to the model of Ps

presented in the previous subsection. For both facilitation and depression,
the release probability after a long period of presynaptic silence is Prel = P0.
Activity at the synapse causes Prel to increase in the case of facilitation
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Figure 5.17: Depression and facilitation of excitatory intracortical synapses. A)
Depression of an excitatory synapse between two layer 5 pyramidal cells recorded
in a slice of rat somatosensory cortex. Spikes were evoked by current injection into
the presynaptic neuron and postsynaptic currents were recorded with a second
electrode. B) Facilitation of an excitatory synapse from a pyramidal neuron to an
inhibitory interneuron in layer 2/3 of rat somatosensory cortex. (A from Markram
and Tsodyks, 1996; B from Markram et al., 1998.)

and to decrease for depression. Between presynaptic action potentials, the
release probability decays exponentially back to its ‘resting’ value P0,

τP
dPrel

dt
= P0 − Prel . (5.37)

The parameter τP controls the rate at which the release probability decays
to P0.

The models of facilitation and depression differ in how the release proba-
bility is changed by presynaptic activity. In the case of facilitation, Prel is
augmented by making the replacement Prel → Prel + fF(1 − Prel) immedi-
ately after a presynaptic action potential (as in equation 5.32. The param-
eter fF (with 0 ≤ fF ≤ 1) controls the degree of facilitation, and the factor
(1 − Prel) prevents the release probability from growing larger than one.
To model depression, the release probability is reduced after a presynaptic
action potential by making the replacement Prel → fD Prel. In this case, the
parameter fD (with 0 ≤ fD ≤ 1) controls the amount of depression, and the
factor Prel prevents the release probability from becoming negative.

We begin by analyzing the effects of facilitation on synaptic transmission
for a presynaptic spike train with Poisson statistics. In particular, we com-
pute the average release probability, denoted by �Prel�. �Prel� is determined
by requiring that the facilitation that occurs after each presynaptic action
potential is exactly canceled by the average exponential decrement that
occurs between presynaptic spikes. Consider two presynaptic action po-
tentials separated by an interval τ, and suppose that the release probability
takes its average value value �Prel� at the time of the first spike. Immedi-
ately after this spike, it is augmented to �Prel� + fF(1 − �Prel�). By the time
of the second spike, this will have decayed to P0 + (�Prel�+ fF(1 −�Prel�)−

P0)exp(−τ/τP), which is obtained by integrating equation 5.37. The aver-
age value of the exponential decay factor in this expression is the integral
over all positive τ values of exp(−τ/τP) times the probability density for
a Poisson spike train with a firing rate r to produce an interspike inter-
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val of duration τ, which is r exp(−rτ) (see chapter 1). Thus, the average
exponential decrement is

r

� ∞

0

dτ exp(−rτ − τ/τP) =
rτP

1 + rτP
. (5.38)

In order for the release probability to return, on average, to its steady-state
value between presynaptic spikes, we must therefore require that

�Prel� = P0 +
�
�Prel� + fF(1 − �Prel�) − P0

� rτP

1 + rτP
. (5.39)

Solving for �Prel� gives

�Prel� =
P0 + fFrτP

1 + r fFτP
. (5.40)

This equals P0 at low rates and rises toward the value one at high rates
(figure 5.18A). As a result, isolated spikes in low-frequency trains are
transmitted with lower probability than spikes occurring within high-
frequency bursts. The synaptic transmission rate when the presynaptic
neuron is firing at rate r is the firing rate times the release probability. This
grows linearly as P0r for small rates and approaches r at high rates (figure
5.18A).
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Figure 5.18: The effects of facilitation and depression on synaptic transmission.
A) Release probability and transmission rate for a facilitating synapse as a function
of the firing rate of a Poisson presynaptic spike train. The dashed curve shows the
rise of the average release probability as the presynaptic rate increases. The solid
curve is the average rate of transmission, which is the average release probability
times the presynaptic firing rate. The parameters of the model are P0 = 0.1, fF =

0.4, and τP = 50 ms. B) Same as A, but for the case of depression. The parameters
of the model are P0 = 1, fD = 0.4, and τP = 500 ms.

The value of �Prel� for a Poisson presynaptic spike train can also be com-
puted in the case of depression. The only difference from the above deriva-
tion is that following a presynaptic spike �Prel� is decreased to fD�Prel�.
Thus, the consistency condition 5.39 is replaced by

�Prel� = P0 + ( fD�Prel� − P0)
rτP

1 + rτP
(5.41)
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giving

�Prel� =
P0

1 + (1 − fD)rτP
(5.42)

This equals P0 at low rates and goes to zero as 1/r at high rates (figure
5.18B), which has some interesting consequences. As noted above, the av-
erage rate of successful synaptic transmissions is equal to �Prel� times the
presynaptic rate r. Because �Prel� is proportional to 1/r at high rates, the av-
erage transmission rate is independent of r in this range. This can be seen
by the flattening of the solid curve in figure 5.18B. As a result, synapses
that depress do not convey information about the values of constant, high
presynaptic firing rates to their postsynaptic targets. The presynaptic fir-
ing rate at which transmission starts to become independent of r is around
1/((1 − fD)τP).

Figure 5.19 shows the average transmission rate, �Prel�r, in response to a
series of steps in the presynaptic firing rate. Note first that the transmis-
sion rates during the 25, 100, 10 and 40 Hz periods are quite similar. This
is a consequence of the 1/r dependence of the average release probability,
as discussed above. The largest transmission rates in the figure occur dur-
ing the sharp upward transitions between different presynaptic rates. This
illustrates the important point that depressing synapses amplify transient
signals relative to steady-state inputs. The transients corresponding the 25
to 100 Hz transition and the 10 to 40 Hz transition are of roughly equal
amplitudes, but the transient for the 10 to 40 Hz transition is broader than
that for the 25 to 100 Hz transition.
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120010008006004002000
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25 Hz 100 Hz 10 Hz 40 Hz

Figure 5.19: The average rate of transmission for a synapse with depression when
the presynaptic firing rate changes in a sequence of steps. The firing rates were
held constant at the values 25, 100, 10 and 40 Hz, except for abrupt changes at
the times indicated by the dashed lines. The parameters of the model are P0 = 1,
fD = 0.6, and τP = 500 ms.

The equality of amplitudes of the two upward transients in figure 5.19 is
a consequence of the 1/r behavior of �Prel�. Suppose that the presynaptic
firing rate makes a sudden transition from a steady value r to a new value
r + �r. Before the transition, the average release probability is given by
equation 5.42. Immediately after the transition, before the release proba-
bility has had time to adjust to the new input rate, the average transmis-
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sion rate will be this previous value of �Prel� times the new rate r + �r,
which is P0(r + �r)/(1 + (1 − fD)rτP). For sufficiently high rates, this is
approximately proportional to (r + �r)/r. The size of the change in the
transmission rate is thus proportional to �r/r, which means that depress-
ing synapses not only amplify transient inputs, they transmit them in a
scaled manner. The amplitude of the transient transmission rate is propor-
tional to the fractional change, not the absolute change, in the presynaptic
firing rate. The two transients seen in figure 5.19 have similar amplitudes
because in both cases �r/r = 3. The difference in the recovery time for
the two upward transients in figure 5.19 is due to the fact that the effec-
tive time constant governing the recovery to a new steady-state level r is
τP/(1 + (1 − fD)τPr).

5.9 Synapses On Integrate-and-Fire Neurons

Synaptic inputs can be incorporated into an integrate-and-fire model by
including synaptic conductances in the membrane current appearing in
equation 5.8,

τm
dV

dt
= EL − V − rmgsPs(V − Es) + Rm Ie . (5.43)

For simplicity, we assume that Prel = 1 in this example. The synaptic cur-
rent is multiplied by rm in equation 5.43 because equation 5.8 was multi-
plied by this factor. To model synaptic transmission, Ps changes whenever
the presynaptic neuron fires an action potential using one of the schemes
described previously.

Figures 5.20A and 5.20B show examples of two integrate-and-fire neu-
rons driven by electrode currents and connected by identical excitatory
or inhibitory synapses. The synaptic conductances in this example are
described by the α function model. This means that the synaptic conduc-
tance a time t after the occurrence of a presynaptic action potential is given
by Ps = (t/τs)exp(−t/τs). The figure shows a non-intuitive effect. When
the synaptic time constant is sufficiently long (τs = 10 ms in this exam-
ple), excitatory connections produce a state in which the two neurons fire
alternately, out of phase with each other, while inhibitory synapses pro-
duce synchronous firing. It is normally assumed that excitation produces synchronous and

asynchronous
firing

synchrony. Actually, inhibitory connections can be more effective in some
cases than excitatory connections at synchronizing neuronal firing.

Synapses have multiple effects on their postsynaptic targets. In equation
5.43, the term rmgsPsEs acts as a source of current to the neuron, while the
term rmgsPsV changes the membrane conductance. The effects of the latter
term are referred to as shunting, and they can be identified most easily if
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Figure 5.20: Two synaptically coupled integrate-and-fire neurons. A) Excitatory
synapses (Es = 0 mV) produce an alternating, out-of-phase pattern of firing. B) In-
hibitory synapses (Es = -80 mV) produce synchronous firing. Both model neurons
have EL = -70 mV, Vth = -54 mV, Vreset = -80 mV, rmgs = 0.05, Pmax = 1, Rm Ie = 25
mV, and τs = 10 ms.

we divide equation 5.43 by 1 + rmgsPs to obtain

τm

1 + rmgsPs

dV

dt
= −V +

EL + rmgsPsEs + Rm Ie

1 + rmgsPs
. (5.44)

The shunting effects of the synapse are seen in this equation as a decrease
in the effective membrane time constant and a divisive reduction in the
impact of the leakage and synaptic reversal potentials, and of the electrode
current.

The shunting effects seen in equation 5.44 have been proposed as a possi-
ble basis for neural computations involving division. However, shunting
only has a divisive effect on the membrane potential of an integrate-and-
fire neuron; its effect on the firing rate is subtractive. To see this, assume
that synaptic input is arriving at a sufficient rate to maintain a relatively
constant value of Ps. In this case, shunting amounts to changing the value
of the membrane resistance from Rm to Rm/(1 + rmgsPs). Recalling equa-
tion 5.12 for the firing rate of the integrate-and-fire model and the fact that
τm = CmRm, we can write the firing rate in a form that reveals its depen-
dence on Rm,

risi ≈

�
EL − Vth

CmRm(Vth − Vreset)
+

Ie

Cm(Vth − Vreset)

�

+

. (5.45)

Changing Rm only modifies the constant term in this equation, it has no
effect on the dependence of the firing rate on Ie.
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Figure 5.21: The regular and irregular firing modes of an integrate-and-fire model
neuron. A) The regular firing mode. Upper panel: The membrane potential of the
model neuron when the spike generation mechanism is turned off. The average
membrane potential is above the spiking threshold (dashed line). Lower panel:
When the spike generation mechanism is turned on, it produces a regular spiking
pattern. B) The irregular firing mode. Upper panel: The membrane potential of
the model neuron when the spike generation mechanism is turned off. The aver-
age membrane potential is below the spiking threshold (dashed line). Lower panel:
When the spike generation mechanism is turned on, it produces an irregular spik-
ing pattern. In order to keep the firing rates from differing too greatly between
these two examples, the value of the reset voltage is higher in B than in A.

Regular and Irregular Firing Modes

Integrate-and-fire models are useful for studying how neurons sum large
numbers of synaptic inputs and how networks of neurons interact. One
issue that has received considerable attention is the degree of variability
in the firing output of integrate-and-fire neurons receiving synaptic input.
This work has led to the realization that neurons can respond to multi-
ple synaptic inputs in two different modes of operation depending on the
balance that exists between excitatory and inhibitory contributions.

The two modes of operation are illustrated in figure 5.21, which shows
membrane potentials of an integrate-and-fire model neuron responding to
1000 excitatory and 200 inhibitory inputs. Each input consists of an inde-
pendent Poisson spike train driving a synaptic conductance. The upper
panels of figure 5.21 show the membrane potential with the action po-
tential generation mechanism of the model turned off, and figures 5.21A
and 5.21B illustrate the two different modes of operation. In figure 5.21A,
the effect of the excitatory inputs is strong enough, relative to that of the
inhibitory inputs, to make the average membrane potential, when action
potential generation is blocked, more depolarized than the spiking thresh-
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old of the model (the dashed line in the figure). When the action poten-
tial mechanism is turned on (lower panel of figure 5.21A), this produces a
fairly regular pattern of action potentials.

The irregularity of a spike train can be quantified using the coefficient of
variation (CV), the ratio of the standard deviation to the mean of the in-
terspike intervals (see chapter 1). For the Poisson inputs being used in
this example, CV = 1, while for the spike train in the lower panel of figure
5.21A, CV = 0.3. Thus, the output spike train is much more regular than the
input trains. This is not surprising, because the model neuron effectively
averages its many synaptic inputs. In the regular firing mode, the total
synaptic input attempts to charge the neuron above the threshold, but ev-
ery time the potential reaches the threshold it gets reset and starts charging
again. In this mode of operation, the timing of the action potentials is de-
termined primarily by the charging rate of the cell, which is controlled by
its membrane time constant.

Figure 5.21B shows the other mode of operation that produces an irreg-
ular firing pattern. In the irregular firing mode, the average membrane
potential is more hyperpolarized than the threshold for action potential
generation (upper panel of figure 5.21B). Action potentials are only gener-
ated when there is a fluctuation in the total synaptic input strong enough
to make the membrane potential reach the threshold. This produces an
irregular spike train, such as that seen in the lower panel of figure 5.21B
which has a CV value of 0.84.

The high degree of variability seen in the spiking patterns of in vivo record-
ings of cortical neurons (see chapter 1) suggests that they are better ap-
proximated by an integrate-and-fire model operating in an irregular-firing
mode. There are advantages to operating in the irregular-firing mode that
may compensate for its increased variability. One is that neurons firing
in the irregular mode reflect in their outputs the temporal properties of
fluctuations in their total synaptic input. In the regular firing mode, the
timing of output spikes is only weakly related to the temporal character
of the input spike trains. In addition, neurons operating in the irregular
firing mode can respond more quickly to changes in presynaptic spiking
patterns and firing rates than those operating in the regular firing mode.

5.10 Chapter Summary

In this chapter, we considered the basic electrical properties of neurons
including their intracellular and membrane resistances, capacitances, and
active voltage-dependent and synaptic conductances. We introduced the
Nernst equation for equilibrium potentials and the formalism of Hodgkin
and Huxley for describing persistent, transient, and hyperpolarization-
activated conductances. Methods were introduced for modeling stochas-
tic channel opening and stochastic synaptic transmission, including the
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effects of synaptic facilitation and depression. We discussed a number of
ways of describing synaptic conductances following the release of a neuro-
transmitter. Two models of action potential generation were discussed, the
simple integrate-and-fire scheme and the more realistic Hodgkin-Huxley
model.

5.11 Appendices

A) Integrating the Membrane Potential

We begin by considering the numerical integration of equation 5.8. It is
convenient to rewrite this equation in the form

τV
dV

dt
= V∞ − V . (5.46)

where τV = τm and V∞ = EL + Rm Ie. When the electrode current Ie is
independent of time, the solution of this equation is

V(t) = V∞ + (V(t0) − V∞)exp(−(t − t0)/τV ) (5.47)

where t0 is any time prior to t and V(t0) is the value of V at time t0. Equa-
tion 5.9 is a special case of this result with t0 = 0.

If Ie depends on time, the solution 5.47 is not valid. An analytic solution
can still be written down in this case, but it is not particularly useful except
in special cases. Over a small enough time period �t, we can approximate
Ie(t) as constant and use the solution 5.47 to step from a time t to t + �t.
This requires replacing the variable t0 in equation 5.47 with t and t with
t + �t so that

V(t + �t) = V∞ + (V(t) − V∞)exp(−�t/τV ) . (5.48)

This equation provides an updating rule for the numerical integration of
equation 5.46. Provided that �t is sufficiently small, repeated application
of the update rule 5.48 provides an accurate way of determining the mem-
brane potential. Furthermore, this method is stable because, if �t is too
large, it will only move V toward V∞ and not, for example, make it grow
without bound.

The equation for a general single-compartment conductance-based model,
equation 5.6 with 5.5, can be written in the same form as equation 5.46 with

V∞ =

�
i gi Ei + Ie/A

�
i gi

(5.49)

and

τV =
cm�

i gi
. (5.50)
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Note that if cm is in units of nF/mm2 and the conductances are in the units
µS/mm2, τV comes out in ms units. Similarly, if the reversal potentials are
given in units of mV, Ie is in nA, and A is in mm2, V∞ will be in mV units.

If we take the time interval �t to be small enough so that the gating vari-
ables can be approximated as constant during this period, the membrane
potential can again be integrated over one time step using equation 5.48.
Of course, the gating variables are not fixed, so once V has been updated
by this rule, the gating variables must be updated as well.

B) Integrating the Gating Variables

All the gating variables in a conductance-based model satisfy equations of
the same form,

τz
dz

dt
= z∞ − z (5.51)

where we use z to denote a generic variable. Note that this equation has
the same form as equation 5.46, and it can be integrated in exactly the same
way. We assume that �t is sufficiently small so that V does not change ap-
preciably over this time interval (and similarly [Ca2+] is approximated as
constant over this interval if any of the conductances are Ca2+-dependent).
Then, τz and z∞, which are functions of V (and possibly [Ca2+]) can be
treated as constants over this period and z can be updated by a rule iden-
tical to 5.48,

z(t + �t) = z∞ + (z(t) − z∞)exp(−�t/τz). (5.52)

An efficient integration scheme for conductance-based models is to alter-
nate using rule (5.48) to update the membrane potential and rule (5.52)
to update all the gating variables. It is important to alternate the updat-
ing of V with that of the gating variables, rather than doing them all si-
multaneously, as this keeps the method accurate to second order in �t. If
Ca2+-dependent conductances are included, the intracellular Ca2+ concen-
tration should be computed simultaneously with the membrane potential.
By alternating the updating, we mean that the membrane potential is com-
puted at times 0,�t,2�t, . . . , while the gating variables are computed at
times �t/2,3�t/2,5�t/2, . . . . A discussion of the second-order accuracy
of this scheme is given in Mascagni and Sherman (1998).

5.12 Annotated Bibliography

Jack et al. (1975); Tuckwell (1988); Johnston & Wu (1995); Koch & Segev
(1998); Koch (1998) cover much of the material in this chapter and chap-
ter 6. Hille (1992) provides a comprehensive treatment of ion channels.
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Hodgkin & Huxley (1952) present the classic biophysical model of the ac-
tion potential, and Sakmann &Neher (1983) describe patch clamp record-
ing techniques allowing single channels to be studied electrophysiologi-
cally.

The integrate-and-fire model was introduced by Lapicque in 1907. Des-
texhe et al. (1994) describe kinetic models of both ion channels and short-
term postsynaptic effects at synapses. Marom & Abbott (1994) show how
the Na+ channel model of Patlak (1991) can be reconciled with typical
macroscopic conductance models. For a review of the spike-response
model, the integrated version of the integrate-and-fire model, see Gerst-
ner (1998). Wang (1994) has analyzed a spike-rate adaptation similar to
the one we presented, and Stevens & Zador (1998) introduce an integrate-
and-fire model with time-dependent parameters.

The dynamic aspects of synaptic transmission are reviewed in Magelby
(1987) and Zucker (1989). Our presentation followed Abbott et al. (1997),
Varela et al. (1997), and Tsodyks & Markram (1997). Wang & Rinzel (1992)
noted that inhibitory synapses can synchronize coupled cells, and in our
discussion we followed the treatment in Van Vreeswijk et al. (1994). Our
analysis of the regular and irregular firing mode regimes of integrate-and-
fire cells was based on Troyer & Miller (1997). Numerical methods for
integrating the equations of neuron models are discussed in Mascagni &
Sherman (1998).
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