
Chapter 6

Model Neurons II:
Conductances and
Morphology

6.1 Levels of Neuron Modeling

In modeling neurons, we must deal with two types of complexity; the in-
tricate interplay of active conductances that makes neuronal dynamics so
rich and interesting, and the elaborate morphology that allows neurons to
receive and integrate inputs from so many other neurons. The first part of
this chapter extends the material presented in chapter 5, by examining
single-compartment models with a wider variety of voltage-dependent
conductances, and hence a wider range of dynamic behaviors, than the
Hodgkin-Huxley model. In the second part of the chapter, we introduce
methods that allow us to study the effects of morphology on the electrical
characteristics of neurons. An analytic approach known as cable theory
is presented first, followed by a discussion of multi-compartment models
that permit numerical simulation of complex neuronal structures.

Model neurons range from greatly simplified caricatures to highly de-
tailed descriptions involving thousands of differential equations. Choos-
ing the most appropriate level of modeling for a given research problem
requires a careful assessment of the experimental information available
and a clear understanding of the research goals. Oversimplified mod-
els can, of course, give misleading results, but excessively detailed mod-
els can obscure interesting results beneath inessential and unconstrained
complexity.
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2 Model Neurons II: Conductances and Morphology

6.2 Conductance-Based Models

The electrical properties of neurons arise from membrane conductances
with a wide variety of properties. The basic formalism developed by
Hodgkin and Huxley to describe the Na+ and K+ conductances respon-
sible for generating action potentials (discussed in chapter 5) is also used
to represent most of the additional conductances encountered in neuron
modeling. Models that treat these aspects of ionic conductances, known as
conductance-based models, can reproduce the rich and complex dynam-conductance-based

model ics of real neurons quite accurately. In this chapter, we discuss both single-
and multi-compartment conductance-based models, beginning with the
single-compartment case.

To review from chapter 5, the membrane potential of a single-compartment
neuron model, V, is determined by integrating the equation

cm
dV

dt
= −im +

Ie

A
. (6.1)

with Ie the electrode current, A the membrane surface area of the cell, and
im the membrane current. In the following subsections, we present ex-
pressions for the membrane current in terms of the reversal potentials,
maximal conductance parameters, and gating variables of the different
conductances of the models being considered. The gating variables and
V comprise the dynamic variables of the model. All the gating variables
are determined by equations of the form

τz(V)
dz

dt
= z∞(V) − z (6.2)

where we have used the letter z to denote a generic gating variable. The
functions τz(V) and z∞(V) are determined from experimental data. For
some conductances, these are written in terms of the open and closing
rates αz(V) and βz(V) (see chapter 5) as

τz(V) =
1

αz(V) + βz(V)
and z∞(V) =

αz(V)

αz(V) + βz(V)
. (6.3)

We have written τz(V) and z∞(V) as functions of the membrane potential,
but for Ca2+-dependent currents they also depend on the internal Ca2+

concentration. We call the αz(V), βz(V), τz(V), and z∞(V) collectively
gating functions. A method for numerically integrating equations 6.1 and
6.2 is described in the appendices of chapter 5.

In the following subsections, some basic features of conductance-based
models are presented in a sequence of examples of increasing complexity.
We do this to illustrate the effects of various conductances and combina-
tions of conductances on neuronal activity. Different cells (and even the
same cell held at different resting potentials) can have quite different re-
sponse properties due to their particular combinations of conductances.
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6.2 Conductance-Based Models 3

Research on conductance-based models focuses on understanding how
neuronal response dynamics arises from the properties of membrane and
synaptic conductances, and how the characteristics of different neurons
interact when they are coupled to each other in networks.

The Connor-Stevens Model

The Hodgkin-Huxley model of action potential generation, discussed in
chapter 5, was developed on the basis of data from the giant axon of the
squid, and we present a multi-compartment simulation of action poten-
tial propagation using this model in a later section. The Connor-Stevens
model (Connor and Stevens, 1971; Connor et al. 1977) provides an alterna-
tive description of action potential generation. Like the Hodgkin-Huxley
model, it contains fast Na+, delayed-rectifier K+, and leakage conduc-
tances. The fast Na+and delayed-rectifier K+ conductances have some-
what different properties from those of the Hodgkin-Huxley model, in
particular faster kinetics, so the action potentials are briefer. In addition,
the Connor-Stevens model contains an extra K+ conductance, called the
A-current, that is transient. K+ conductances come in wide variety of dif- A-type potassium

currentferent forms, and the Connor-Stevens model involves two of them.

The membrane current in the Connor-Stevens model is

im = gL(V − EL) + gNam3h(V − ENa) + gKn4(V − EK) + gAa3b(V − EA)

(6.4)

where gL = 0.003 mS/mm2 and EL = -17 mV are the maximal conductance
and reversal potential for the leak conductance, and gNa = 1.2 mS/mm2,
gK = 0.2 mS/mm2, gA = 0.477 mS/mm2, ENa = 55 mV, EK = -72 mV, and
EA = -75 mV (although the A-current is carried by K+, the model does not
require EA = EK) and are similar parameters for the active conductances.
The gating variables, m, h, n, a, and b, are determined by equations of the
form 6.2 with the gating functions given in appendix A.

The fast Na+ and delayed-rectifier K+ conductances generate action po-
tentials in the Connor-Stevens model just as they do in the Hodgkin-
Huxley model (see chapter 5). What is the role of the additional A-current?
Figure 6.1 illustrates action potential generation in the Connor-Stevens
model. In the absence of an injected electrode current or synaptic input,
the membrane potential of the model remains constant at a resting value of
−68 mV. For a constant electrode current greater than a threshold value,
the model neuron generates action potentials. Figure 6.1A shows how
the firing rate of the model depends on the magnitude of the electrode
current relative to the threshold value. The firing rate rises continuously
from zero and then increases roughly linearly for currents over the range
shown. Figure 6.1B shows an example of action potential generation for
one particular value of the electrode current.
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4 Model Neurons II: Conductances and Morphology
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Figure 6.1: Firing of action potentials in the Connor-Stevens model. A) Firing
rate as a function of electrode current. The firing rate rises continuously from zero
as the current increases beyond the threshold value. B) An example of action po-
tentials generated by constant current injection. C) Firing rate as a function of
electrode current when the A-current is turned off. The firing rate now rises dis-
continuously from zero as the current increases beyond the threshold value. D)
Delayed firing due to hyperpolarization. The neuron was held hyperpolarized for
a prolonged period by injection of negative current. At t = 50 ms, the negative
electrode current was switched to a positive value. The A-current delays the oc-
currence of the first action potential.

Figure 6.1C shows the firing rate as a function of electrode current for the
Connor-Stevens model with the maximal conductance of the A-current set
to zero. The leakage conductance and reversal potential have been ad-
justed to keep the resting potential and membrane resistance the same as
in the original model. The firing rate is clearly much higher with the A-
current turned off. This is because the deinactivation rate of the A-current
limits the rise time of the membrane potential between action potentials.
In addition, the transition from no firing for currents less than the thresh-
old value to firing with suprathreshold currents is different when the A-
current is eliminated. Without the A-current, the firing rate jumps dis-
continuously to a nonzero value rather than rising continuously. Neurons
with firing rates that rise continuously from zero as a function of electrode
current are called type I, and those with discontinuous jumps in their fir-
ing rates at threshold are called type II. An A-current is not the only mech-type I, type II
anism that can produce a type I response but, as figures 6.1A and 6.1C
show, it plays this role in the Connor-Stevens model. The Hodgkin-Huxley
model produces a type II response.

Another effect of the A-current is illustrated in figure 6.1D. Here the model
neuron was held hyperpolarized by negative current injection for an ex-
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6.2 Conductance-Based Models 5
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Figure 6.2: A burst of action potentials due to rebound from hyperpolarization.
The model neuron was held hyperpolarized for an extended period (until the con-
ductances came to equilibrium) by injection of constant negative electrode current.
At t = 50 ms, the electrode current was set to zero, and a burst of Na+ spikes was
generated due to an underlying Ca2+ spike. The delay in the firing is caused by
the presence of the A-current in the model.

tended period of time, and then the current was switched to a positive
value. While the neuron was hyperpolarized, the A-current deinactivated,
that is, the variable b increased toward one. When the electrode current
switched sign and the neuron depolarized, the A-current first activated
and then inactivated. This delayed the first spike following the change in
the electrode current.

Postinhibitory Rebound and Bursting

The range of responses exhibited by the Connor-Stevens model neuron can
be extended by including a transient Ca2+ conductance. The conductance transient Ca2+

conductancewe use was modeled by Huguenard and McCormick (1992) on the basis of
data from thalamic relay cells. The membrane current due to the transient
Ca2+ conductance is expressed as

iCaT = gCaT M2H(V − ECa) (6.5)

with, for the example given here, gCaT = 13 µS/mm2 and ECa = 120 mV.
The gating variables for the transient Ca2+ conductance are determined
from the gating functions in appendix A.

Several different Ca2+ conductances are commonly expressed in neuronal
membranes. These are categorized as L, T, N, and P types. L-type Ca2+ L, T, N and P type

Ca2+ channelscurrents are persistent as far as their voltage dependence is concerned, and
they activate at a relatively high threshold. They inactivate due to a Ca2+-
dependent rather than voltage-dependent process. T-type Ca2+ currents
have lower activation thresholds and are transient. N- and P-type Ca2+

conductances have intermediate thresholds and are respectively transient
and persistent. They may be responsible for the Ca2+ entry that causes the
release of transmitter at presynaptic terminals. Entry of Ca2+ into a neuron
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6 Model Neurons II: Conductances and Morphology

has many secondary consequences ranging from gating Ca2+-dependent
channels to inducing long-term modifications of synaptic conductances.

A transient Ca2+ conductance acts, in many ways, like a slower version of
the transient Na+ conductance that generates action potentials. Instead of
producing an action potential, a transient Ca2+ conductance generates a
slower transient depolarization sometimes called a Ca2+ spike. This tran-Ca2+ spike
sient depolarization causes the neuron to fire a burst of action potentials,burst
which are Na+ spikes riding on the slower Ca2+ spike. Figure 6.2 shows
such a burst and illustrates one way to produce it. In this example, the
model neuron was hyperpolarized for an extended period and then re-
leased from hyperpolarization by setting the electrode current to zero.
During the prolonged hyperpolarization, the transient Ca2+ conductance
deinactivated. When the electrode current was set to zero, the resulting
depolarization activated the transient Ca2+ conductance and generated a
burst of action potentials. The burst in figure 6.2 is delayed due to the pres-
ence of the A-current in the original Connor-Stevens model, and it termi-
nates when the Ca2+ conductance inactivates. Generation of action poten-
tials in response to release from hyperpolarization is called postinhibitory
rebound because, in a natural setting, the hyperpolarization would bepostinhibitory

rebound caused by inhibitory synaptic input, not by current injection.

The transient Ca2+ current is an important component of models of thala-
mic relay neurons. These neurons exhibit different firing patterns in sleepthalamic relay

neuron and wakeful states. Action potentials tend to appear in bursts during
sleep. Figure 6.3 shows an example of three states of activity of a model
thalamic relay cell due to Wang (1994) that has, in addition to fast Na+,
delayed-rectifier K+, and transient Ca2+ conductances, a hyperpolariza-
tion activated mixed-cation conductance, and a persistent Na+ conduc-
tance. The cell is silent or fires action potentials in a regular pattern or in
bursts depending on the level of current injection. In particular, injection
of small amounts of negative current leads to bursting. This occurs be-
cause the hyperpolarization due to the current injection deinactivates the
transient Ca2+ current and activates the hyperpolarization activated cur-
rent. The regular firing mode of the middle plot of figure 6.3 is believed to
be relevant during wakeful states when the thalamus is faithfully report-
ing input from the sensory periphery to the cortex.

Neurons can fire action potentials either at a steady rate or in bursts even
in the absence of current injection or synaptic input. Periodic bursting is a
common feature of neurons in central patterns generators, which are neu-
ral circuits that produce periodic patterns of activity to drive rhythmic mo-
tor behaviors such as walking, running, or chewing. To illustrate periodic
bursting, we consider a model constructed to match the activity of neu-
rons in the crustacean stomatogastric ganglion (STG), a neuronal circuitstomatogastric

ganglion that controls chewing and digestive rhythms in the foregut of lobsters and
crabs. The model contains fast Na+, delayed-rectifier K+, A-type K+, and
transient Ca2+ conductances similar to those discussed above, although
the formulae and parameters used are somewhat different. In addition,
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Figure 6.3: Three activity modes of a model thalamic neuron. Upper panel: with
no electrode current the model is silent. Middle panel: when a positive current
is injected into the model neuron, it fires action potentials in a regular periodic
pattern. Lower panel: when negative current is injected into the model neuron, it
fires action potentials in periodic bursts. (Adapted from Wang, 1994.)

the model has a Ca2+-dependent K+ conductance. Due to the complexity
of the model, we do not provide complete descriptions of its conductances
except for the Ca2+-dependent K+ conductance which plays a particularly
significant role in the model.

The repolarization of the membrane potential after an action potential is
often carried out both by the delayed-rectifier K+ conductance and by a
fast Ca2+-dependent K+ conductance. Ca2+-dependent K+ conductances Ca2+-dependent

K+ conductancemay be voltage dependent, but they are primarily activated by a rise in
the level of intracellular Ca2+. A slow Ca2+-dependent K+ conductance
called the after-hyperpolarization (AHP) conductance builds up during after-

hyperpolarization
conductance

sequences of action potentials and typically contributes to the spike-rate
adaptation discussed and modeled in chapter 5.

The Ca2+-dependent K+ current in the model STG neuron is given by

iKCa = gKCac4(V − EK) (6.6)

where c∞ depends on both the membrane potential and the intracellu-
lar Ca2+ concentration, [Ca2+] (see appendix A). The intracellular Ca2+

concentration is computed in this model using a simplified description in
which rises in intracellular Ca2+ are caused by influx through membrane
Ca2+ channels, and Ca2+ removal is described by an exponential process.
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Figure 6.4: Periodic bursting in a model of a crustacean stomatogastric ganglion
neuron. From the top, the panels show the membrane potential, the Ca2+ conduc-
tance, the intracellular Ca2+ concentration, and the Ca2+-dependent K+ conduc-
tance. The Ca2+-dependent K+ conductance is shown at an expanded scale so the
reduction of the conductance due to the falling intracellular Ca2+ concentration
during the interburst intervals can be seen. In this example, τCa = 200 ms. (Simu-
lation by M. Goldman based on a variant of a model of Turrigiano et al., 1995 due
to Z. Liu and M. Goldman.)

The resulting equation for the intracellular Ca2+ concentration, [Ca2+], is

d[Ca2+]

dt
= −γiCa −

[Ca2+]

τCa
. (6.7)

Here iCa is the total Ca2+ current per unit area of membrane, τCa is the time
constant determining the rate at which intracellular Ca2+ is removed, and
γ is a factor that converts from the electric current due to Ca2+ ion flow
to the rate at which the Ca2+ ion concentration changes within the cell.
Because the Ca2+ concentration is determined by dividing the number of
Ca2+ ions in a cell by the total cellular volume and the Ca2+ influx is com-
puted by multiplying iCa by the membrane surface area, γ is proportional
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6.3 The Cable Equation 9

to the surface to volume ratio for the cell. It also contains a factor that con-
verts from Coulombs per second of electrical current to moles per second
of Ca2+ ions. This factor is 1/(zF) where z is the number of charges on the
ion (z = 2 for Ca2+), and F is the Faraday constant. If, as is normally the
case, [Ca2+] is in mols/liter, γ should also contain a factor that converts the
volume measure to liters, 106 mm3/liter. Finally, γ must be multiplied by
the additional factor that reflects fast intracellular Ca2+ buffering. Most of
the Ca2+ ions that enter a neuron are rapidly bound to intracellular buffers,
so only a fraction of the Ca2+ current through membrane channels is actu-
ally available to change the concentration [Ca2+] of free Ca2+ ions in the
cell. This factor is about 1%. The minus sign in front of the γ factor in
equation 6.7 is due to the definition of membrane currents as positive in
the outward direction.

Figure 6.4 shows the model STG neuron firing action potentials in bursts.
As in the models of figures 6.2 and 6.3, the bursts are transient Ca2+ spikes
with action potentials riding on top of them. The Ca2+ current during
these bursts causes a dramatic increase in the intracellular Ca2+ concen-
tration. This activates the Ca2+-dependent K+ current which, along with
the inactivation of the Ca2+ current, terminates the burst. The interburst
interval is determined primarily by the time it takes for the intracellular
Ca2+ concentration to return to a low value, which deactivates the Ca2+-
dependent K+ current, allowing another burst to be generated. Although
figure 6.4 shows that the conductance of the Ca2+-dependent K+ current
reaches a low value immediately after each burst (due to its voltage de-
pendence), this initial dip is too early for another burst to be generated at
that point in the cycle.

The STG is a model system for investigating the effects of neuromodula-
tors, such as amines and neuropeptides, on the activity patterns of a neu-
ral network. Neuromodulators modify neuronal and network behavior by
activating, deactivating, or otherwise altering the properties of membrane
and synaptic channels. Neuromodulation has a major impact on virtually
all neural networks ranging from peripheral motor pattern generators like
the STG to the sensory, motor, and cognitive circuits of the brain.

6.3 The Cable Equation

Single-compartment models describe the membrane potential over an en-
tire neuron with a single variable. Membrane potentials can vary consid-
erably over the surface of the cell membrane, especially for neurons with
long and narrow processes or if we consider rapidly changing membrane
potentials. Figure 6.5A shows the delay and attenuation of an action po-
tential as it propagates from the soma out to the dendrites of a cortical
pyramidal neuron. Figure 6.5B shows the delay and attenuation of an ex-
citatory postsynaptic potential (EPSP) initiated in the dendrite by synaptic
input as it spreads to the soma. Understanding these features is crucial for
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10 Model Neurons II: Conductances and Morphology

determining whether and when a given synaptic input will cause a neuron
to fire an action potential.

10 ms
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Figure 6.5: Simultaneous intracellular recordings from the soma and apical den-
drite of a cortical pyramidal neuron in slice preparations. A) A pulse of current
was injected into the soma of the neuron to produce the action potential seen in the
somatic recording. The action potential appears delayed and with smaller ampli-
tude in the dendritic recording. B) A set of axon fibers was stimulated producing
an excitatory synaptic input. The excitatory postsynaptic potential is larger and
peaks earlier in the dendrite than in the soma. Note that the scale for the potential
is smaller than in A. (A adapted from Stuart and Sakmann, 1994; B adapted from
Stuart and Spruston, 1998.)

The attenuation and delay within a neuron are most severe when electri-
cal signals travel down the long and narrow, cable-like structures of den-
dritic or axonal branches. For this reason, the mathematical analysis of
signal propagation within neurons is called cable theory. Dendritic andcable theory
axonal cables are typically narrow enough that variations of the potential
in the radial or axial directions are negligible compared to longitudinal
variations. Therefore, the membrane potential along a neuronal cable is
expressed as a function of a single longitudinal spatial coordinate x and
time, V(x, t), and the basic problem is to solve for this potential.

Current flows within a neuron due to voltage gradients. In chapter 5, we
discussed how the potential difference across a segment of neuronal cable
is related to the longitudinal current flowing down the cable. The longi-
tudinal resistance of a cable segment of length �x and radius a is given
by multiplying the intracellular resistivity rL by �x and dividing by the
cross-sectional area, πa2, so that RL = rL�x/(πa2). The voltage drop across
this length of cable, �V, is then related to the amount of longitudinal cur-
rent flow by Ohm’s law. In chapter 5, we discussed the magnitude of this
current flow, but for the present purposes, we also need to define a sign
convention for its direction. We define currents flowing in the direction
of increasing x as positive. By this convention, the relationship between
�V and IL given by Ohm’s law is �V = −RL IL or �V = −rL�xIL/(πa2).
Solving this for the longitudinal current, we find IL = −πa2�V/(rL�x). It
is useful to take the limit of this expression for infinitesimally short cable
segments, that is as �x → 0. In this limit, the ratio of �V to �x becomes
the derivative ∂V/∂x. We use a partial derivative here, because V can also
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6.3 The Cable Equation 11

depend on time. Thus, for at any point along a cable of radius a and intra-
cellular resistivity rL, the longitudinal current flowing in the direction of
increasing x is

IL = −
πa2

rL

∂V

∂x
. (6.8)

The membrane potential V(x, t) is determined by solving a partial differ-
ential equation, the cable equation, that describes how the currents enter- cable equation
ing, leaving, and flowing within a neuron affect the rate of change of the
membrane potential. To derive the cable equation, we consider the cur-
rents within the small segment shown in figure 6.6. This segment has a
radius a and a short length �x. The rate of change of the membrane po-
tential due to currents flowing into and out of this region is determined
by its capacitance. Recall from chapter 5 that the capacitance of a mem-
brane is determined by multiplying the specific membrane capacitance cm

by the area of the membrane. The cylinder of membrane shown in fig-
ure 6.6 has a surface area of 2πa�x and hence a capacitance of 2πa�xcm.
The amount of current needed to change the membrane potential at a rate
∂V/∂t is 2πa�xcm∂V/∂t.

Figure 6.6: The segment of neuron used in the derivation of the cable equation.
The longitudinal, membrane, and electrode currents that determine the rate of
change of the membrane potential within this segment are denoted. The segment
has length �x and radius a. The expression involving the specific membrane ca-
pacitance refers to the rate at which charge builds up on the cell membrane gener-
ating changes in the membrane potential.

All of the currents that can change the membrane potential of the segment
being considered are shown in figure 6.6. Current can flow longitudinally
into the segment from neighboring segments, and expression 6.8 has been
used in figure 6.6 to specify the longitudinal currents at both ends of the
segment. Current can flow across the membrane of the segment we are
considering through ion and synaptic receptor channels, or through an
electrode. The contribution from ion and synaptic channels is expressed
as a current per unit area of membrane im times the surface area of the
segment, 2πa�x. The electrode current is not normally expressed as a
current per unit area, but, for the present purposes, it is convenient to
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12 Model Neurons II: Conductances and Morphology

define ie to be the total electrode current flowing into a given region of
the neuronal cable divided by the surface area of that region. The total
amount of electrode current being injected into the cable segment of figure
6.6 is then ie2πa�x. Because the electrode current is normally specified by
Ie, not by a current per unit area, all the results we obtain will ultimately be
re-expressed in terms of Ie. Following the standard convention, membrane
and synaptic currents are defined as positive when they are outward, and
electrode currents are defined as positive when they are inward.

The cable equation is derived by setting the sum of all the currents shown
in figure 6.6 equal to the current needed to charge the membrane. The
total longitudinal current entering the cylinder is the difference between
the current flowing in on the left and that flowing out on the right. Thus,

2πa�xcm
∂V

∂t
= −

�
πa2

rL

∂V

∂x

��
�
�
�
left

+

�
πa2

rL

∂V

∂x

��
�
�
�
right

− 2πa�x(im − ie) .

(6.9)

Dividing both sides of this equation by 2πa�x, we note that the right side
involves the term

1

2arL�x

��

a2 ∂V

∂x

��
�
�
�
right

−

�

a2 ∂V

∂x

��
�
�
�
left

�

→
∂

∂x

�
πa2

rL

∂V

∂x

�

. (6.10)

The arrow refers to the limit �x → 0, which we now take. We have moved
rL outside the derivative in this equation under the assumption that it is
not a function of position. However, the factor of a2 must remain inside
the integral unless it is independent of x. Substituting the result 6.10 into
6.9, we obtain the cable equation

cm
∂V

∂t
=

1

2arL

∂

∂x

�

a2 ∂V

∂x

�

− im + ie . (6.11)

To determine the membrane potential, equation (6.11) must be aug-
mented by appropriate boundary conditions. The boundary conditionsboundary

conditions on the
cable equation

specify what happens to the membrane potential when the neuronal ca-
ble branches or terminates. The point at which a cable branches or equiv-
alently where multiple cable segments join is called a node. At such a
branching node, the potential must be continuous, that is, the functions
V(x, t) defined along each of the segments must yield the same result
when evaluated at the x value corresponding to the node. In addition,
charge must be conserved, which means that the sum of the longitudi-
nal currents entering (or leaving) a node along all of its branches must be
zero. According to equation 6.8, the longitudinal current entering a node
is proportional to the square of the cable radius times the derivative of
the potential evaluated at that point, a2∂V/∂x. The sum of the longitudi-
nal currents entering the node, computed by evaluating these derivatives
along each cable segment at the point where they meet at the node, must
be zero.
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6.3 The Cable Equation 13

Several different boundary conditions can be imposed at the end of a ter-
minating cable segment. A reasonable condition is that no current should
flow out of the end of the cable. By equation 6.8, this means that the spatial
derivative of the potential must vanish at a termination point.

Due to the complexities of neuronal membrane currents and morpholo-
gies, the cable equation is most often solved numerically using multi-
compartmental techniques described later in this chapter. However, it is
useful to study analytic solutions of the cable equation in simple cases to
get a feel for how different morphological features such as long dendritic
cables, branching nodes, changes in cable radii, and cable ends affect the
membrane potential.

Linear Cable Theory

Before we can solve the cable equation by any method, the membrane cur-
rent im must be specified. We discussed models of various ion channel con-
tributions to the membrane current in chapter 5 and earlier in this chapter.
These models typically produce nonlinear expressions that are too com-
plex to allow analytic solution of the cable equation. The analytic solu-
tions we discuss use two rather drastic approximations; synaptic currents
are ignored, and the membrane current is written as a linear function of the
membrane potential. Eliminating synaptic currents requires us to examine
how a neuron responds to the electrode current ie. In some cases, electrode
current can mimic the effects of a synaptic conductance, although the two
are not equivalent. Nevertheless, studying responses to electrode current
allows us to investigate the effects of different morphologies on membrane
potentials.

Typically, a linear approximation for the membrane current is only valid
if the membrane potential stays within a limited range, for example close
to the resting potential of the cell. The resting potential is defined as the
potential where no net current flows across the membrane. Near this po-
tential, we approximate the membrane current per unit area as

im = (V − Vrest)/rm (6.12)

where Vrest is the resting potential, and the factor of rm follows from the
definition of the membrane resistance. It is convenient to define v as the
membrane potential relative to the resting potential, v = V − Vrest, so that
im = v/rm.

If the radii of the cable segments used to model a neuron are constant ex-
cept at branches and abrupt junctions, the factor a2 in equation 6.11 can be
taken out of the derivative and combined with the prefactor 1/2arL to pro-
duce a factor a/2rL that multiplies the second spatial derivative. With this
modification and use of the linear expression for the membrane current,
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14 Model Neurons II: Conductances and Morphology

the cable equation for v is

cm
∂v

∂t
=

a

2rL

∂2v

∂x2
−

v

rm
+ ie . (6.13)

It is convenient to multiply this equation by rm, turning the factor that
multiplies the time derivative on the left side into the membrane time con-
stant τm = rmcm. This also changes the expression multiplying the spatial
second derivative on the right side of equation 6.13 to arm/2rL. This factor
has the dimensions of length squared, and it defines a fundamental length
constant for a segment of cable of radius a, the electrotonic length,λ electrotonic

length

λ =

�
arm

2rL
. (6.14)

Using the values rm = 1 M�·mm2 and rL = 1 k�·mm, a cable of radius a =
2 µm has an electrotonic length of 1 mm. A segment of cable with radius
a and length λ has a membrane resitance that is equal to its longitudinal
resistance, as can be seen from equation 6.14,Rλ

Rλ =
rm

2πaλ
=

rLλ

πa2
. (6.15)

The resistance Rλ defined by this equation is a useful quantity that enters
into a number of calculations.

Expressed in terms of τm and λ, the cable equation becomes

τm
∂v

∂t
= λ2 ∂2v

∂x2
− v + rmie . (6.16)

Equation 6.16 is a linear equation for v similar to the diffusion equation,
and it can be solved by standard methods of mathematical analysis. The
constants τm and λ set the scale for temporal and spatial variations in the
membrane potential. For example, the membrane potential requires a time
of order τm to settle down after a transient, and deviations in the mem-
brane potential due to localized electrode currents decay back to zero over
a length of order λ.

The membrane potential is affected both by the form of the cable equation
and by the boundary conditions imposed at branching nodes and termi-
nations. To isolate these two effects, we consider two idealized cases: an
infinite cable that does not branch or terminate, and a single branching
node that joins three semi-infinite cables. Of course, real neuronal cables
are not infinitely long, but the solutions we find are applicable for long
cables far from their ends. We determine the potential for both of these
morphologies when current is injected at a single point. Because the equa-
tion we are studying is linear, the membrane potential for any other spatial
distribution of electrode current can be determined by summing solutions
corresponding to current injection at different points. The use of point
injection to build more general solutions is a standard method of linear
analysis. In this context, the solution for a point source of current injection
is called a Green’s function.Green’s function
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6.3 The Cable Equation 15

An Infinite Cable

In general, solutions to the linear cable equation are functions of both po-
sition and time. However, if the current being injected is held constant, the
membrane potential settles to a steady-state solution that is independent
of time. Solving for this time-independent solution is easier than solving
the full time-dependent equation, because the cable equation reduces to
an ordinary differential equation in the static case,

λ2 d2v

dx2
= v − rmie . (6.17)

For the localized current injection we wish to study, ie is zero everywhere
except within a small region of size �x around the injection site, which we
take to be x = 0. Eventually we will let �x → 0. Away from the injection
site, the linear cable equation is λ2d2v/dx2 = v, which has the general so-
lution v(x) = B1 exp(−x/λ) + B2 exp(x/λ) with as yet undetermined coef-
ficients B1 and B2. These constant coefficients are determined by imposing
boundary conditions appropriate to the particular morphology being con-
sidered. For an infinite cable, on physical grounds, we simply require that
the solution does not grow without bound when x → ±∞. This means
that we must choose the solution with B1 = 0 for the region x < 0 and the
solution with B2 = 0 for x > 0. Because the solution must be continuous at
x = 0, we must require B1 = B2 = B, and these two solutions can be com-
bined into a single expression v(x) = B exp(−|x|/λ). The remaining task
is to determine B, which we do by balancing the current injected with the
current that diffuses away from x = 0.

In the small region of size �x around x = 0 where the current is injected,
the full equation λ2d2v/dx2 = v − rmie must be solved. If the total amount
of current injected by the electrode is Ie, the current per unit area injected
into this region is Ie/2πa�x. This grows without bound as �x → 0. The
first derivative of the membrane potential v(x) = B exp(−|x|/λ) is discon-
tinuous at the point x = 0. For small �x, the derivative at one side of the
region we are discussing (at x = −�x/2) is approximately B/λ, while at
the other side (at x = +�x/2) it is −B/λ. In these expressions, we have
used the fact that �x is small to set exp(−|�x|/2λ) ≈ 1. For small �x, the
second derivative is approximately the difference between these two first
derivatives divided by �x, which is −2B/λ�x. We can ignore the term v in
the cable equation within this small region, because it is not proportional
to 1/�x. Substituting the expressions we have derived for the remaining
terms in the equation, we find that −2λ2B/λ�x = −rm Ie/2πa�x, which
means that B = IeRλ/2, using Rλ from equation 6.15. Thus, the membrane
potential for static current injection at the point x = 0 along an infinite
cable is

v(x) =
IeRλ

2
exp

�

−
|x|

λ

�

. (6.18)

According to this result, the membrane potential away from the site of
current injection (x = 0) decays exponentially with length constant λ (see
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Figure 6.7: The potential for current injection at the point x = 0 along an infinite
cable. A) Static solution for a constant electrode current. The potential decays
exponentially away from the site of current injection. B) Time-dependent solution
for a δ function pulse of current. The potential is described by a Gaussian function
centered at the site of current injection that broadens and shrinks in amplitude
over time.

figure 6.7A). The ratio of the membrane potential at the injection site to
the magnitude of the injected current is called the input resistance of the
cable. The value of the potential at x = 0 is IeRλ/2 indicating that the
infinite cable has an input resistance of Rλ/2. Each direction of the cable
acts like a resistance of Rλ and these two act in parallel to produce a total
resistance half as big. Note that each semi-infinite cable extending from
the point x = 0 has a resistance equal to a finite cable of length λ.

We now consider the membrane potential produced by an instantaneous
pulse of current injected at the point x = 0 at the time t = 0. Specifically,
we consider ie = Ieδ(x)δ(t)/2πa. We do not derive the solution for this
case (see Tuckwell, 1988, for example), but simply state the answer

v(x, t) =
IeRλ

�
4πλ2t/τm

exp

�

−
τmx2

4λ2t

�

exp

�

−
t

τm

�

. (6.19)

In this case, the spatial dependence of the potential is determined by a
Gaussian, rather than an exponential function. The Gaussian is always
centered around the injection site, so the potential is always largest at
x = 0. The width of the Gaussian curve around x = 0 is proportional to
λ
√

t/τm. As expected, λ sets the scale for this spatial variation, but the
width also grows as the square root of the time measured in units of τm.
The factor (4πλ2t/τm)−1/2 in equation 6.19 preserves the total area under
this Gaussian curve, but the additional exponential factor exp(−t/τm) re-
duces the integrated amplitude over time. As a result, the spatial depen-
dence of the membrane potential is described by a spreading Gaussian
function with an integral that decays exponentially (figure 6.7B).
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Figure 6.8: Time-dependence of the potential on an infinite cable in response to a
pulse of current injected at the point x = 0 at time t = 0. A) The potential is always
largest at the site of current injection. At any fixed point, it reaches its maximum
value as a function of time later for measurement sites located further away from
the current source. B) Movement of the temporal maximum of the potential. The
solid line shows the relationship between the measurement location x, and the time
tmax when the potential reaches its maximum value at that location. The dashed
line corresponds to a constant velocity 2λ/τm.

Figure 6.8 illustrates the properties of the solution 6.19 plotted at various
fixed positions as a function of time. Figure 6.8A shows that the membrane
potential measured further from the injection site reaches its maximum
value at later times. It is important to keep in mind that the membrane
potential spreads out from the region x = 0, it does not propagate like a
wave. Nevertheless, we can define a type of ‘velocity’ for this solution by
computing the time tmax when the maximum of the potential occurs at a
given spatial location. This is done by setting the time derivative of v(x, t)
in equation 6.19 to zero, giving

tmax =
τm

4

��
1 + 4(x/λ)2 − 1

�
. (6.20)

For large x, tmax ≈ xτm/2λ corresponding to a velocity of 2λ/τm. For
smaller x values, the location of the maximum moves faster than this ‘ve-
locity’ would imply (figure 6.8B).

An Isolated Branching Node

To illustrate the effects of branching on the membrane potential in re-
sponse to a point source of current injection, we consider a single isolated
junction of three semi-infinite cables as shown in the bottom panels of fig-
ure 6.9. For simplicity, we discuss the solution for static current injection
at a point, but the results generalize directly to the case of time-dependent
currents. We label the potentials along the three segments by v1, v2, and
v3, and label the distance outward from the junction point along any given
segment by the coordinate x. The electrode injection site is located a dis-
tance y away from the junction along segment 2. The solution for the three
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segments is then

v1(x) = p1 IeRλ1
exp(−x/λ1 − y/λ2)

v2(x) =
IeRλ2

2

�
exp(−|y − x|/λ2) + (2p2 − 1)exp(−(y + x)/λ2)

�

v3(x) = p3 IeRλ3
exp(−x/λ3 − y/λ2) , (6.21)

where, for i = 1, 2, and 3,

pi =
a

3/2
i

a
3/2
1 + a

3/2
2 + a

3/2
3

, λi =

�
rmai

2rL
, and Rλi

=
rLλi

πa2
i

. (6.22)

Note that the distances x and y appearing in the exponential functions are
divided by the electrotonic length of the segment along which the poten-
tial is measured or the current is injected. This solution satisfies the ca-
ble equation, because it is constructed by combining solutions of the form
6.18. The only term that has a discontinuous first derivative within the
range being considered is the first term in the expression for v2, and this
solves the cable equation at the current injection site because it is identical
to 6.18. We leave it to the reader to verify that this solution satisfies the
boundary conditions v1(0) = v2(0) = v3(0) and

�
a2

i ∂vi/∂x = 0.

Figure 6.9 shows the potential near a junction where a cable of radius 2 µ

breaks into two thinner cables of radius 1 µ. In figure 6.9A, current is in-
jected along the thicker cable, while in figure 6.9B it is injected along one
of the thinner branches. In both cases, the site of current injection is one
electrotonic length constant away from the junction. The two daughter
branches have little effect on the fall-off of the potential away from the
electrode site in figure 6.9A. This is because the thin branches do not rep-
resent a large current sink. The thick branch has a bigger effect on the
attenuation of the potential along the thin branch receiving the electrode
current in figure 6.9B. This can be seen as an asymmetry in the fall-off of
the potential on either side of the electrode. Loading by the thick cable
segment contributes to a quite severe attenuation between the two thin
branches in figure 6.9B. Comparison of figures 6.9A and B reveals a gen-
eral feature of static attenuation in a passive cable. Attenuation near the
soma due to potentials arising in the periphery is typically greater than
attenuation in the periphery due to potentials arising near the soma.

The Rall Model

The infinite and semi-infinite cables we have considered are clearly math-
ematical idealizations. We now turn to a model neuron introduced by Rall
(1959, 1977) that, while still highly simplified, captures some of the im-
portant elements that affect the responses of real neurons. Most neurons
receive their synaptic inputs over complex dendritic trees. The integrated
effect of these inputs is usually measured from the soma, and the spike-
initiation region of the axon that determines whether the neuron fires an

Peter Dayan and L.F. Abbott Draft: December 17, 2000



6.3 The Cable Equation 19

Ie
Ie

1.0

0.8

0.6

0.4

0.2

0.0

2.01.51.00.50.0-0.5-1.0

x  (mm)

1.0

0.8

0.6

0.4

0.2

0.0

v 
/

v
m

a
x

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

x  (mm)

A B

Figure 6.9: The potentials along the three branches of an isolated junction for a
current injection site one electrotonic length constant away from the junction. The
potential v is plotted relative to vmax, which is v at the site of the electrode. The thick
branch has a radius of 2 µ and an electrotonic length constant λ = 1 mm, and the
two thin branches have radii of 1 µ and λ = 2−1/2 mm. A) Current injection along
the thick branch. The potentials along both of the thin branches, shown by the
solid curve over the range x > 0, are identical. The solid curve over the range x < 0
shows the potential on the thick branch where current is being injected. B) Current
injection along one of the thin branches. The dashed line shows the potential along
the thin branch where current injection does not occur. The solid line shows the
potential along the thick branch for x < 0 and along the thin branch receiving the
injected current for x > 0.

action potential is typically located near the soma. In Rall’s model, a com-
pact soma region (represented by one compartment) is connected to a sin-
gle equivalent cylindrical cable that replaces the entire dendritic region of
the neuron (see the schematics in figures 6.10 and 6.12). The critical feature
of the model is the choice of the radius and length for the equivalent cable
to best match the properties of the dendritic structure being approximated.

The radius a and length L of the equivalent cable are determined by match-
ing two important elements of the full dendritic tree. These are its average
length in electrotonic units, which determines the amount of attenuation,
and the total surface area, which determines the total membrane resistance
and capacitance. The average electrotonic length of a dendrite is deter-
mined by considering direct paths from the soma to the terminals of the
dendrite. The electrotonic lengths for these paths are constructed by mea-
suring the distance traveled along each of the cable segments traversed
in units of the electrotonic length constant for that segment. In general,
the total electrotonic length measured by summing these electrotonic seg-
ment lengths depends on which terminal of the tree is used as the end
point. However, an average value can be used to define an electrotonic
length for the full dendritic structure. The length L of the equivalent ca-
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ble is then chosen so that L/λ is equal to this average electrotonic length,
where λ is the length constant for the equivalent cable. The radius of the
equivalent cable, which is needed to compute λ, is determined by setting
the surface area of the equivalent cable, 2πaL, equal to the surface area of
the full dendritic tree.

Under some restrictive circumstances the equivalent cable reproduces the
effects of a full tree exactly. Among these conditions is the requirement

a
3/2
1 = a

3/2
2 + a

3/2
3 on the radii of any three segments being joined at a nodes

within the tree. Note from equation 6.22 that this conditions makes p1 =
p2 + p3 = 1/2. However, even when the so-called 3/2 law is not exact,
the equivalent cable is an extremely useful and often reasonably accurate
simplification.

Figures 6.10 and 6.12 depict static solutions of the Rall model for two dif-
ferent recording configurations expressed in the form of equivalent cir-
cuits. The equivalent circuits are an intuitive way of describing the so-
lution of the cable equation. In figure 6.10, constant current is injected
into the soma. The circuit diagram shows an arrangement of resistors
that replicates the results of solving the time-independent cable equation
(equation 6.17) for the purposes of voltage measurements at the soma,
vsoma, and at a distance x along the equivalent cable, v(x). The values
for these resistances (and similarly the values of R3 and R4 given below)
are set so that the equivalent circuit reconstructs the solution of the ca-
ble equation obtained using standard methods (see for example Tuckwell,
1988). Rsoma is the membrane resistance of the soma, and

R1 =
Rλ (cosh (L/λ) − cosh ((L − x)/λ))

sinh (L/λ)
(6.23)

R2 =
Rλ cosh ((L − x)/λ)

sinh (L/λ)
. (6.24)

Expressions for vsoma and v(x), arising directly from the equivalent circuit
using standard rules of circuit analysis (see the Mathematical Appendix),
are given at the right side of figure 6.10.

The input resistance of the Rall model neuron, as measured from the soma,
is determined by the somatic resistance Rsoma acting in parallel with the
effective resistance of the cable and is (R1 + R2)Rsoma/(R1 + R2 + Rsoma).
The effective resistance of the cable, R1 + R2 = Rλ/ tanh(L), approaches
the value Rλ when L � λ. The effect of lengthening a cable saturates when
it gets much longer than its electrotonic length. The voltage attenuation
caused by the cable is defined as the ratio of the dendritic to somatic po-
tentials, and it is given in this case by

v(x)

vsoma
=

R2

R1 + R2
=

cosh ((L − x)/λ)

cosh (L/λ)
. (6.25)

This result is plotted in figure 6.11.

Peter Dayan and L.F. Abbott Draft: December 17, 2000



6.3 The Cable Equation 21

v(x)

R2

R1

Rsoma

Ie

Ie

x

v

vsoma =
Ie(R1 + R2)Rsoma

R1 + R2 + Rsomavsoma

L

vsoma

v(x)  =
IeR2Rsoma

R1 + R2 + Rsoma

v

Figure 6.10: The Rall model with static current injected into the soma. The
schematic at left shows the recording set up. The potential is measured at the
soma and at a distance x along the equivalent cable. The central diagram is the
equivalent circuit for this case, and the corresponding formulas for the somatic
and dendritic voltages are given at the right. The symbols at the bottom of the re-
sistances Rsoma and R2 indicate that these points are held at zero potential. Rsoma

is the membrane resistance of the soma, and R1 and R2 are the resistances given in
equations 6.23 and 6.24.
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Figure 6.11: Voltage and current attenuation for the Rall model. The attenuation
plotted is the ratio of the dendritic to somatic voltages for the recording setup
of figure 6.10, or the ratio of the somatic current to the electrode current for the
arrangement in figure 6.12. Attenuation is plotted as a function of x/λ for different
equivalent cable lengths.

Figure 6.12 shows the equivalent circuit for the Rall model when current
is injected at a location x along the dendritic tree and the soma is clamped
at vsoma = 0 (or equivalently V = Vrest). The equivalent circuit can be used
to determine the current entering the soma and the voltage at the site of
current injection. In this case, the somatic resistance is irrelevant because
the soma is clamped at its resting potential. The other resistances are

R3 = Rλ sinh (x/λ) (6.26)

and

R4 =
Rλ sinh (x/λ) cosh ((L − x)/λ)

cosh (L/λ) − cosh ((L − x)/λ)
. (6.27)

The input resistance for this configuration, as measured from the dendrite,
is determined by R3 and R4 acting in parallel and is R3R4/(R3 + R4) =
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Figure 6.12: The Rall model with static current injected a distance x along the
equivalent cable while the soma is clamped at its resting potential. The schematic
at left shows the recording set up. The potential at the site of the current injection
and the current entering the soma are measured. The central diagram is the equiv-
alent circuit for this case, and the corresponding formulas for the somatic current
and dendritic voltage are given at the right. Rsoma is the membrane resistance of
the soma, and R3 and R4 are the resistances given in equations 6.26 and 6.27.

Rλ sinh(x/λ) cosh((L − x)/λ)/ cosh(L/λ). When L and x are both much
larger than λ, this approaches the limiting value Rλ. The current attenua-
tion is defined as the ratio of the somatic to electrode currents and is given
by

Isoma

Ie
=

R4

R3 + R4
=

cosh ((L − x)/λ)

cosh (L/λ)
. (6.28)

The inward current attenuation (plotted in figure 6.11) for the recording
configuration of figure 6.12 is identical to the outward voltage attenuation
for figure 6.10 given by equation 6.25. Equality of the voltage attenuation
measured in one direction and the current attenuation measured in the
opposite direction is a general feature of linear cable theory.

The Morphoelectrotonic Transform

The membrane potential for a neuron of complex morphology is obviously
much more difficult to compute than the simple cases we have considered.
Fortunately, efficient numerical schemes (discussed later in this chapter)
exist for generating solutions for complex cable structures. However, even
when the solution is known, it is still difficult to visualize the effects of
a complex morphology on the potential. Zador, Agmon-Snir, and Segev
(1995; see also Tsai et al., 1994) devised a scheme for depicting the attenua-
tion and delay of the membrane potential for complex morphologies. The
voltage attenuation, as plotted in figure 6.11, is not an appropriate quan-
tity to represent geometrically because it is not additive. Consider three
points along a cable satisfying x1 > x2 > x3. The attenuation between x1

and x3 is the product of the attenuation from x1 to x2 and from x2 to x3,
v(x1)/v(x3) = (v(x1)/v(x2))(v(x2)/v(x3)). An additive quantity can be
obtained by taking the logarithm of the attenuation, due to the identity
ln(v(x1)/v(x3)) = ln(v(x1)/v(x2)) + ln(v(x2)/v(x3)). The morphoelectro-
tonic transform is a diagram of a neuron in which the distance betweenmorphoelectrotonic

transform
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