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Preface

Historically, much of theoretical neuroscience research concerned neuronal circuits and
synaptic organization. The neurons were divided into excitatory and inhibitory types,
but their electrophysiological properties were largely neglected or taken to be identical
to those of Hodgkin-Huxley’s squid axon. The present awareness of the importance of
the electrophysiology of individual neurons is best summarized by David McCormick
in the fifth edition of Gordon Shepherd’s book The Synaptic Organization of the Brain:

Information-processing depends not only on the anatomical substrates of synap-
tic circuits but also on the electrophysiological properties of neurons... Even if
two neurons in different regions of the nervous system possess identical morpho-
logical features, they may respond to the same synaptic input in very different
manners because of each cell’s intrinsic properties.

McCormick (2004)

Much of present neuroscience research concerns voltage- and second-messenger-
gated currents in individual cells, with the goal of understanding the cell’s intrinsic
neurocomputational properties. It is widely accepted that knowing the currents suffices
to determine what the cell is doing and why it is doing it. This, however, contradicts a
half-century–old observation that cells having similar currents can nevertheless exhibit
quite different dynamics. Indeed, studying isolated axons having presumably similar
electrophysiology (all are from the crustacean Carcinus maenas), Hodgkin (1948) in-
jected a DC-current of varying amplitude, and discovered that some preparations could
exhibit repetitive spiking with arbitrarily low frequencies, while the others discharged
in a narrow frequency band. This observation was largely ignored by the neuroscience
community until the seminal paper by Rinzel and Ermentrout (1989), who showed that
the difference in behavior is due to different bifurcation mechanisms of excitability.

Let us treat the amplitude of the injected current in Hodgkin’s experiments as a
bifurcation parameter: When the amplitude is small, the cell is quiescent; when the
amplitude is large, the cell fires repetitive spikes. When we change the amplitude of the
injected current, the cell undergoes a transition from quiescence to repetitive spiking.
From the dynamical systems point of view, the transition corresponds to a bifurcation
from equilibrium to a limit cycle attractor. The type of bifurcation determines the most
fundamental computational properties of neurons, such as the class of excitability, the
existence or nonexistence of threshold, all-or-none spikes, subthreshold oscillations,
the ability to generate postinhibitory rebound spikes, bistability of resting and spiking
states, whether the neuron is an integrator or a resonator, and so on.

This book is devoted to a systematic study of the relationship between electrophysi-
ology, bifurcations, and computational properties of neurons. The reader will learn why
cells having nearly identical currents may undergo distinct bifurcations, and hence they
will have fundamentally different neurocomputational properties. (Conversely, cells

xv
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having quite different currents may undergo identical bifurcations, and hence they will
have similar neurocomputational properties.) The major message of the book can be
summarized as follows (compare with the McCormick statement above):

Information-processing depends not only on the electrophysiological properties
of neurons but also on their dynamical properties. Even if two neurons in the
same region of the nervous system possess similar electrophysiological features,
they may respond to the same synaptic input in very different manners because
of each cell’s bifurcation dynamics.

Nonlinear dynamical system theory is a core of computational neuroscience research,
but it is not a standard part of the graduate neuroscience curriculum. Neither is it
taught in most math/physics departments in a form suitable for a general biological
audience. As a result, many neuroscientists fail to grasp such fundamental concepts as
equilibrium, stability, limit cycle attractor, and bifurcations, even though neuroscien-
tists constantly encounter these nonlinear phenomena.

This book introduces dynamical systems starting with simple one- and two-dimen-
sional spiking models and continuing all the way to bursting systems. Each chapter
is organized from simple to complex, so everybody can start reading the book; only
the reader’s background will determine where he or she stops. The book emphasizes
the geometrical approach, so there are few equations but a lot of figures. Half of them
are simulations of various neural models, so there are hundreds of possible exercises
such as “Use MATLAB (GENESIS, NEURON, XPPAUT, etc.) and parameters in the
caption of figure X to simulate the figure.” Additional problems are provided at the
end of each chapter; the reader is encouraged to solve at least some of them and to
look at the solutions of the others at the end of the book. Problems marked [M.S.] or
[Ph.D.] are suggested thesis topics.

Acknowledgments. I thank the scientists who reviewed the first draft of the
book: Pablo Achard, Jose M. Amigo, Vlatko Becanovic, Brent Doiron, George Bard
Ermentrout, Richard FitzHugh, David Golomb, Andrei Iacob, Paul Kulchenko, Maciej
Lazarewicz, Georgi Medvedev, John Rinzel, Anil K. Seth, Gautam C Sethia, Arthur
Sherman, Klaus M. Stiefel, and Takashi Tateno. I also thank the anonymous refer-
ees who peer-reviewed the book and made quite a few valuable suggestions instead
of just rejecting it. Special thanks go to Niraj S. Desai, who made most of the in
vitro recordings used in the book (the data are available on the author’s Web page
www.izhikevich.com), and to Bruno van Swinderen, who drew the cartoons. I en-
joyed the hospitality of The Neurosciences Institute – a monastery of interdisciplinary
science – and I benefited greatly from the expertise and support of its fellows.

Finally, I thank my wife, Tatyana, and my wonderful daughters, Elizabeth and
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San Diego, California December 19, 2005



Chapter 1

Introduction

This chapter highlights some of the most important concepts developed in the book.
First, we discuss several common misconceptions regarding the spike generation mech-
anism of neurons. Our goal is to motivate the reader to think of a neuron not only
in terms of ions and channels, as many biologists do, and not only in terms of an in-
put/output relationship, as many theoreticians do, but also as a nonlinear dynamical
system that looks at the input through the prism of its own intrinsic dynamics. We
ask such questions as “What makes a neuron fire?” or “Where is the threshold?”, and
then outline the answers, using the geometrical theory of dynamical systems.

From a dynamical systems point of view, neurons are excitable because they are
near a transition, called bifurcation, from resting to sustained spiking activity. While
there is a huge number of possible ionic mechanisms of excitability and spike genera-
tion, there are only four bifurcation mechanisms that can result in such a transition.
Considering the geometry of phase portraits at these bifurcations, we can understand
many computational properties of neurons, such as the nature of threshold and all-or-
none spiking, the coexistence of resting and spiking states, the origin of spike latencies,
postinhibitory spikes, and the mechanism of integration and resonance. Moreover, we
can understand how these properties are interrelated, why some are equivalent, and
why some are mutually exclusive.

1.1 Neurons

If somebody were to put a gun to the head of the author of this book and ask him to
name the single most important concept in brain science, he would say it is the concept
of a neuron. There are only 1011 or so neurons in the human brain, much fewer than
the number of non-neural cells such as glia. Yet neurons are unique in the sense that
only they can transmit electrical signals over long distances. From the neuronal level
we can go down to cell biophysics and to the molecular biology of gene regulation.
From the neuronal level we can go up to neuronal circuits, to cortical structures, to
the whole brain, and finally to the behavior of the organism. So let us see how much
we understand of what is going on at the level of individual neurons.

1
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Figure 1.1: Two interconnected cortical pyramidal neurons (hand drawing) and in vitro
recorded spike.

1.1.1 What Is a Spike?

A typical neuron receives inputs from more than 10, 000 other neurons through the con-
tacts on its dendritic tree called synapses; see Fig.1.1. The inputs produce electrical
transmembrane currents that change the membrane potential of the neuron. Synaptic
currents produce changes, called postsynaptic potentials (PSPs). Small currents pro-
duce small PSPs; larger currents produce significant PSPs that can be amplified by the
voltage-sensitive channels embedded in the neuronal membrane and lead to the gen-
eration of an action potential or spike – an abrupt and transient change of membrane
voltage that propagates to other neurons via a long protrusion called an axon.

Such spikes are the main means of communication between neurons. In general,
neurons do not fire on their own; they fire as a result of incoming spikes from other
neurons. One of the most fundamental questions of neuroscience is What, exactly,
makes neurons fire? What is it in the incoming pulses that elicits a response in one
neuron but not in another? Why can two neurons have different responses to exactly
the same input and identical responses to completely different inputs? To answer these
questions, we need to understand the dynamics of spike generation mechanisms of
neurons.

Most introductory neuroscience books describe neurons as integrators with a thresh-
old: neurons sum incoming PSPs and “compare” the integrated PSP with a certain
voltage value, called the firing threshold. If it is below the threshold, the neuron re-
mains quiescent; when it is above the threshold, the neuron fires an all-or-none spike,
as in Fig.1.3, and resets its membrane potential. To add theoretical plausibility to this
argument, the books refer to the Hodgkin-Huxley model of spike generation in squid
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Figure 1.2: What makes a neuron fire?

giant axons, which we study in chapter 2. The irony is that the Hodgkin-Huxley model
does not have a well-defined threshold; it does not fire all-or-none spikes; and it is not
an integrator, but a resonator (i.e., it prefers inputs having certain frequencies that
resonate with the frequency of subthreshold oscillations of the neuron). We consider
these and other properties in detail in this book.

1.1.2 Where Is the Threshold?

Much effort has been spent trying to experimentally determine the firing thresholds
of neurons. Here, we challenge the classical view of a threshold. Let us consider two
typical experiments, depicted in Fig.1.4, that are designed to measure the threshold.
in Fig.1.4a, we shock a cortical neuron (i.e., we inject brief but strong pulses of current
of various amplitudes to depolarize the membrane potential to various values). Is there
a clear-cut voltage value, as in Fig.1.3, above which the neuron fires but below which
no spikes occur? If you find one, let the author know! In Fig.1.4b we inject long but
weak pulses of current of various amplitudes, which results in slow depolarization and
a spike. The firing threshold, if it exists, must be somewhere in the shaded region, but
where? Where does the slow depolarization end and the spike start? Is it meaningful
to talk about firing thresholds at all?

resting

threshold

all-or-none
spikes

no spike
Figure 1.3: The concept of a firing threshold.
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Figure 1.4: Where is the firing threshold? Shown are in vitro recordings of two layer 5
rat pyramidal neurons. Notice the differences of voltage and time scales.
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Figure 1.5: Where is the rheobase (i.e., the minimal current that fires the cell)? (a)
in vitro recordings of the pyramidal neuron of layer 2/3 of a rat’s visual cortex show
increasing latencies as the amplitude of the injected current decreases. (b) Simulation
of the INa,p+IK –model (pronounced: persistent sodium plus potassium model) shows
spikes of graded amplitude.

Perhaps, we should measure current thresholds instead of voltage thresholds. The
current threshold (i.e., the minimal amplitude of injected current of infinite duration
needed to fire a neuron) is called the rheobase. In Fig.1.5 we decrease the amplitudes
of injected pulses of current to find the minimal one that still elicits a spike or the
maximal one that does not. In Fig.1.5a, progressively weaker pulses result in longer
latencies to the first spike. Eventually the neuron does not fire because the latency is
longer than the duration of the pulse, which is 1 second in the figure. Did we really
measure the neuronal rheobase? What if we waited a bit longer? How long is long
enough? In Fig.1.5b the latencies do not grow, but the spike amplitudes decrease until
the spikes do not look like spikes at all. To determine the current threshold, we need
to draw the line and separate spike responses from “subthreshold” ones. How can we
do that if the spikes are not all-or-none? Is the response denoted by the dashed line a
spike?

Risking adding more confusion to the notion of a threshold, consider the follow-
ing. If excitatory inputs depolarize the membrane potential (i.e., bring it closer to
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Figure 1.6: In vitro recording of rebound spikes
of a rat’s brainstem mesV neuron in response to a
brief hyperpolarizing pulse of current.
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Figure 1.7: Resonant response of the mesencephalic V neuron of a rat’s brainstem to
pulses of injected current having a 10 ms period (in vitro).

the “firing threshold”), and inhibitory inputs hyperpolarize the potential and move it
away from the threshold, then how can the neuron in Fig.1.6 fire in response to the
inhibitory input? This phenomenon, also observed in the Hodgkin-Huxley model, is
called anodal break excitation, rebound spike, or postinhibitory spike. Many biolo-
gists say that rebound responses are due to the activation and inactivation of certain
slow currents, which bring the membrane potential over the threshold or, equivalently,
lower the threshold upon release from the hyperpolarization – a phenomenon called a
low-threshold spike in thalamocortical neurons. The problem with this explanation is
that neither the Hodgkin-Huxley model nor the neuron in Fig.1.6 has these currents,
and even if they did, the hyperpolarization is too short and too weak to affect the
currents.

Another interesting phenomenon is depicted in Fig.1.7. The neuron is stimulated
with brief pulses of current mimicking an incoming burst of three spikes. When the
stimulation frequency is high (5 ms period), presumably reflecting a strong input,
the neuron does not fire at all. However, stimulation with a lower frequency (10
ms period) that resonates with the frequency of subthreshold oscillation of the neuron
evokes a spike response, regardless of whether the stimulation is excitatory or inhibitory.
Stimulation with even lower frequency (15 ms period) cannot elicit spike response again.
Thus, the neuron is sensitive only to the inputs having resonant frequency. The same
pulses applied to a cortical pyramidal neuron evoke a response only in the first case
(small period), but not in the other cases.
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1.1.3 Why Are Neurons Different, and Why Do We Care?

Why would two neurons respond completely differently to the same input? A biologist
would say that the response of a neuron depends on many factors, such as the type
of voltage- and Ca2+-gated channels expressed by the neuron, the morphology of its
dendritic tree, the location of the input, and other factors. These factors are indeed
important, but they do not determine the neuronal response per se. Rather they
determine the rules that govern dynamics of the neuron. Different conductances and
currents can result in the same rules, and hence in the same responses; conversely,
similar currents can result in different rules and in different responses. The currents
define what kind of dynamical system the neuron is.

We study ionic transmembrane currents in chapter 2. In subsequent chapters we
investigate how the types of currents determine neuronal dynamics. We divide all cur-
rents into two major classes: amplifying and resonant, with the persistent Na+ current
INa,p and the persistent K+ current IK being the typical examples of the former and
the latter, respectively. Since there are tens of known currents, purely combinatorial
argument implies that there are millions of different electrophysiological mechanisms
of spike generation. We will show later that any such mechanism must have at least
one amplifying and one resonant current. Some mechanisms, called minimal in this
book, have one resonant and one amplifying current. They provide an invaluable tool
in classifying and understanding the electrophysiology of spike generation.

Many illustrations in this book are based on simulations of the reduced INa,p + IK-
model (pronounced persistent sodium plus potassium model), which consists of a fast
persistent Na+ (amplifying) current and a slower persistent K+ (resonant) current. It
is equivalent to the famous and widely used Morris-Lecar ICa+IK-model (Morris and
Lecar 1981). We show that the model exhibits quite different dynamics, depending on
the values of the parameters, e.g., the half-activation voltage of the K+ current: in one
case, it can fire in a narrow frequency range, it can exhibit coexistence of resting and
spiking states, and it has damped subthreshold oscillations of membrane potential. In
another case, it can fire in a wide frequency range and show no coexistence of resting
and spiking and no subthreshold oscillations. Thus, seemingly inessential differences
in parameter values could result in drastically distinct behaviors.

1.1.4 Building Models

To build a good model of a neuron, electrophysiologists apply different pharmacologi-
cal blockers to tease out the currents that the neuron has. Then they apply different
stimulation protocols to measure the kinetic parameters of the currents, such as the
Boltzmann activation function, time constants, and maximal conductances. We con-
sider all these functions in chapter 2. Next, they create a Hodgkin-Huxley-type model
and simulate it using the NEURON, GENESIS, or XPP environment or MATLAB (the
first two are invaluable tools for simulating realistic dendritic structures).

The problem is that the parameters are measured in different neurons and then put
together into a single model. As an illustration, consider two neurons having the same
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Figure 1.8: Neurons are dynamical systems.

currents, say INa,p and IK, and exhibiting excitable behavior; that is, both neurons are
quiescent but can fire a spike in response to a stimulation. Suppose the second neuron
has stronger INa,p, which is balanced by stronger IK. If we measure Na+ conductance
using the first neuron and K+ conductance using the second neuron, the resulting
INa,p + IK-model will have an excess of K+ current and probably will not be able to fire
spikes at all. Conversely, if we measure Na+ and K+ conductances using the second
neuron and then the first neuron, respectively, the model would have too much Na+

current and probably would exhibit sustained pacemaking activity. In any case, the
model fails to reproduce the excitable behavior of the neurons whose parameters we
measured.

Some of the parameters cannot be measured at all, so many arbitrary choices are
made via a process called “fine-tuning”. Navigating in the dark, possibly with the help
of some biological intuition, the researcher modifies parameters, compares simulations
with experiment, and repeats this trial-and-error procedure until he or she is satisfied
with the results. Since seemingly similar values of parameters can result in drastically
different behaviors, and quite different parameters can result in seemingly similar be-
haviors, how do we know that the resulting model is correct? How do we know that its
behavior is equivalent to that of the neuron we want to study? And what is equivalent
in this case? Now, you are primed to consider dynamical systems. If not, see Fig.1.8.
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1.2 Dynamical Systems

In chapter 2 we introduce the Hodgkin-Huxley formalism to describe neuronal dynamics
in terms of activation and inactivation of voltage-gated conductances. An important
result of the Hodgkin-Huxley studies is that neurons are dynamical systems, so they
should be studied as such. Below we mention some of the important concepts of
dynamical systems theory. The reader does not have to follow all the details of this
section because the concepts are explained in greater detail in subsequent chapters.

A dynamical system consists of a set of variables that describe its state and a
law that describes the evolution of the state variables with time (i.e., how the state
of the system in the next moment of time depends on the input and its state in the
previous moment of time). The Hodgkin-Huxley model is a four-dimensional dynamical
system because its state is uniquely determined by the membrane potential, V , and so-
called gating variables n,m, and h for persistent K+ and transient Na+ currents. The
evolution law is given by a four-dimensional system of ordinary differential equations.

Typically, all variables describing neuronal dynamics can be classified into four
classes, according to their function and the time scale.

1. Membrane potential.

2. Excitation variables, such as activation of a Na+ current. These variables are
responsible for the upstroke of the spike.

3. Recovery variables, such as inactivation of a Na+ current and activation of a fast
K+ current. These variables are responsible for the repolarization (downstroke)
of the spike.

4. Adaptation variables, such as activation of slow voltage- or Ca2+-dependent cur-
rents. These variables build up during prolonged spiking and can affect excitabil-
ity in the long run.

The Hodgkin-Huxley model does not have variables of the fourth type, but many
neuronal models do, especially those exhibiting bursting dynamics.

1.2.1 Phase Portraits

The power of the dynamical systems approach to neuroscience, as well as to many
other sciences, is that we can tell something, or many things, about a system without
knowing all the details that govern the system evolution. We do not even use equations
to do that! Some may even wonder why we call it a mathematical theory.

As a start, let us consider a quiescent neuron whose membrane potential is rest-
ing. From the dynamical systems point of view, there are no changes of the state
variables of such a neuron; hence it is at an equilibrium point. All the inward currents
that depolarize the neuron are balanced, or equilibrated, by the outward currents that
hyperpolarize it. If the neuron remains quiescent despite small disturbances and mem-
brane noise, as in Fig.1.9a (top), then we conclude that the equilibrium is stable. Isn’t
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Figure 1.9: Resting, excitable, and periodic spiking activity correspond to a stable
equilibrium (a and b) or limit cycle (c), respectively.

it amazing that we can reach such a conclusion without knowing the equations that
describe the neuron’s dynamics? We do not even know the number of variables needed
to describe the neuron; it could be infinite, for all we care.

In this book we introduce the notions of equilibria, stability, threshold, and attrac-
tion domains using one- and two-dimensional dynamical systems, e.g., the INa,p+IK-
model with instantaneous Na+ kinetics. The state of this model is described by the
membrane potential, V , and the activation variable, n, of the persistent K+ current, so
it is a two-dimensional vector (V, n). Instantaneous activation of the Na+ current is a
function of V , so it does not result in a separate variable of the model. The evolution
of the model is a trajectory (V (t), n(t)) on the V ×n – plane. Depending on the initial
point, the system can have many trajectories, such as those depicted in Fig.1.9a (bot-
tom). Time is not explicitly present in the figure, but units of time may be thought
of as plotted along each trajectory. All of the trajectories in the figure are attracted
to the stable equilibrium denoted by the black dot, called an attractor. The overall
qualitative description of dynamics can be obtained through the study of the phase
portrait of the system, which depicts certain special trajectories (equilibria, separatri-
ces, limit cycles) that determine the topological behavior of all the other trajectories in
the phase space. Probably 50 percent of illustrations in this book are phase portraits.

A fundamental property of neurons is excitability, illustrated in Fig.1.9b. The neu-
ron is resting, i.e., its phase portrait has a stable equilibrium. Small perturbations,
such as A, result in small excursions from the equilibrium, denoted as PSP (postsynap-
tic potential). Larger perturbations, such as B, are amplified by the neuron’s intrinsic
dynamics and result in the spike response. To understand the dynamic mechanism of
such amplification, we need to consider the geometry of the phase portrait near the
resting equilibrium, i.e., in the region where the decision to fire or not to fire is made.
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Figure 1.10: Rhythmic transitions between resting and spiking modes result in bursting
behavior.
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Figure 1.11: As the magnitude of the injected current slowly increases, the neurons
bifurcate from resting (equilibrium) mode to tonic spiking (limit cycle) mode.

If we inject a sufficiently strong current into the neuron, we bring it to a pacemaking
mode, so that it exhibits periodic spiking activity, as in Fig.1.9c. From the dynamical
systems point of view, the state of such a neuron has a stable limit cycle, also known as
a stable periodic orbit. The electrophysiological details of the neuron (i.e., the number
and the type of currents it has, their kinetics, etc.) determine only the location, the
shape, and the period of the limit cycle. As long as the limit cycle exists, the neuron
can have periodic spiking activity. Of course, equilibria and limit cycles can coexist,
so a neuron can be switched from one mode to another by a transient input. The
famous example is the permanent extinguishing of ongoing spiking activity in the squid
giant axon by a brief transient depolarizing pulse of current applied at a proper phase
(Guttman et al. 1980) – a phenomenon predicted by John Rinzel (1978) purely on
the basis of theoretical analysis of the Hodgkin-Huxley model. The transition between
resting and spiking modes could be triggered by intrinsic slow conductances, resulting
in the bursting behavior in Fig.1.10.
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1.2.2 Bifurcations

Now suppose that the magnitude of the injected current is a parameter that we can
control, e.g., we can ramp it up, as in Fig.1.11. Each cell in the figure is quiescent
at the beginning of the ramps, so its phase portrait has a stable equilibrium and it
may look like the one in Fig.1.9a or Fig.1.9b. Then it starts to fire tonic spikes, so
its phase portrait has a limit cycle attractor and it may look like the one in Fig.1.9c,
with a white circle denoting an unstable resting equilibrium. Apparently there is some
intermediate level of injected current that corresponds to the transition from resting
to sustained spiking, i.e., from the phase portrait in Fig.1.9b to Fig.1.9c. What does
the transition look like?

From the dynamical systems point of view, the transition corresponds to a bifurca-
tion of neuron dynamics, i.e., a qualitative change of phase portrait of the system. For
example, there is no bifurcation going from the phase portrait in Fig.1.9a to that in
Fig.1.9b, since both have one globally stable equilibrium; the difference in behavior is
quantitative but not qualitative. In contrast, there is a bifurcation going from Fig.1.9b
to Fig.1.9c, since the equilibrium is no longer stable and another attractor, limit cycle,
has appeared. The neuron is not excitable in Fig.1.9a but it is in Fig.1.9b, simply
because the former phase portrait is far from the bifurcation and the latter is near.

In general, neurons are excitable because they are near bifurcations from resting
to spiking activity, so the type of the bifurcation determines the excitable properties
of the neuron. Of course, the type depends on the neuron’s electrophysiology. An
amazing observation is that there could be millions of different electrophysiological
mechanisms of excitability and spiking, but there are only four – yes, four – different
types of bifurcations of equilibrium that a system can undergo without any additional
constraints, such as symmetry. Thus, considering these four bifurcations in a general
setup, we can understand excitable properties of many models, even those that have not
been invented yet. What is even more amazing, we can understand excitable properties
of neurons whose currents are not measured and whose models are not known, provided
we can experimentally identify which of the four bifurcations the resting state of the
neuron undergoes.

The four bifurcations are summarized in Fig.1.12, which plots the phase portrait
before (left), at (center), and after (right) a particular bifurcation occurs. Mathemati-
cians refer to these bifurcations as being of codimension-1 because we need to vary only
one parameter, e.g., the magnitude of the injected DC current I, to observe the bifur-
cations reliably in simulations or experiments. There are many more codimension-2, 3,
(etc.), bifurcations, but they need special conditions to be observed. We discuss these
in chapter 6.

Let us consider the four bifurcations and their phase portraits in Fig.1.12. The
horizontal and vertical axes are the membrane potential with instantaneous activation
variable and a recovery variable, respectively. At this stage, the reader is not required
to fully understand the intricacies of the phase portraits in the figure, since they will
be explained systematically in later chapters.
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Figure 1.12: Four generic (codimension-1) bifurcations of an equilibrium state leading
to the transition from resting to periodic spiking behavior in neurons.
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• Saddle-node bifurcation. As the magnitude of the injected current or any other
bifurcation parameter changes, a stable equilibrium corresponding to the resting
state (black circle marked “node” in Fig.1.12a) is approached by an unstable
equilibrium (white circle marked “saddle”); they coalesce and annihilate each
other, as in Fig.1.12a (middle). Since the resting state no longer exists, the tra-
jectory describing the evolution of the system jumps to the limit cycle attractor,
indicating that the neuron starts to fire tonic spikes. Notice that the limit cy-
cle, or some other attractor, must coexist with the resting state in order for the
transition resting → spiking to occur.

• Saddle-node on invariant circle bifurcation is similar to the saddle-node bifurca-
tion except that there is an invariant circle at the moment of bifurcation, which
then becomes a limit cycle attractor, as in Fig.1.12b.

• Subcritical Andronov-Hopf bifurcation. A small unstable limit cycle shrinks to
a stable equilibrium and makes it lose stability, as in Fig.1.12c. Because of
instabilities, the trajectory diverges from the equilibrium and approaches a large-
amplitude spiking limit cycle or some other attractor.

• Supercritical Andronov-Hopf bifurcation. The stable equilibrium loses stability
and gives birth to a small-amplitude limit cycle attractor, as in Fig.1.12d. As
the magnitude of the injected current increases, the amplitude of the limit cycle
increases and it becomes a full-size spiking limit cycle.

Notice that there is a coexistence of resting and spiking states in the case of saddle-
node and subcritical Andronov-Hopf bifurcations, but not in the other two cases. Such
a coexistence reveals itself via a hysteresis behavior when the injected current slowly
increases and then decreases past the bifurcation value, because the transitions “resting
→ spiking” and “spiking→ resting” occur at different values of the current. In addition,
brief stimuli applied at the appropriate times can switch the activity from spiking to
resting and back. There are also spontaneous noise-induced transitions between the
two modes that result in the stuttering spiking that, for instance, is exhibited by
the so-called fast spiking (FS) cortical interneurons when they are kept close to the
bifurcation (Tateno et al. 2004). Some bistable neurons have a slow adaptation current
that activates during the spiking mode and impedes spiking, often resulting in bursting
activity.

Systems undergoing Andronov-Hopf bifurcations, whether subcritical or supercrit-
ical, exhibit damped oscillations of membrane potential, whereas systems near saddle-
node bifurcations, whether on or off an invariant circle, do not. The existence of
small amplitude oscillations creates the possibility of resonance to the frequency of the
incoming pulses, as in Fig.1.7, and other interesting features.

We refer to neurons with damped subthreshold oscillations as resonators and to
those that do not have this property as integrators. We refer to the neurons that ex-
hibit the coexistence of resting and spiking states, at least near the transition from
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Figure 1.13: Classification of neurons into
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Figure 1.14: Frequency-current (F-I) curves of cortical pyramidal neuron and brainstem
mesV neuron from Fig.7.3. These are the same neurons used in the ramp experiment
in Fig.1.11.

resting to spiking, as bistable, and to those that do not, monostable. The four bifur-
cations in Fig.1.12 are uniquely defined by these two features. For example, a bistable
resonator is a neuron undergoing subcritical Andronov-Hopf bifurcation, and a monos-
table integrator is a neuron undergoing saddle-node on invariant circle bifurcation (see
Fig.1.13). Cortical fast spiking (FS) and regular spiking (RS) neurons, studied in
chapter 8, are typical examples of the former and the latter, respectively.

1.2.3 Hodgkin Classification

Hodgkin (1948) was the first to study bifurcations in neuronal dynamics, years before
the mathematical theory of bifurcations was developed. He stimulated squid axons
with pulses of various amplitudes and identified three classes of responses:

• Class 1 neural excitability. Action potentials can be generated with arbitrarily
low frequency, depending on the strength of the applied current.

• Class 2 neural excitability. Action potentials are generated in a certain frequency
band that is relatively insensitive to changes in the strength of the applied current.
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• Class 3 neural excitability. A single action potential is generated in response to a
pulse of current. Repetitive (tonic) spiking can be generated only for extremely
strong injected currents or not at all.

The qualitative distinction between the classes is that the frequency-current relation
(the F-I curve in Fig.1.14) starts from zero and continuously increases for Class 1
neurons, is discontinuous for Class 2 neurons, and is not defined at all for Class 3
neurons.

Obviously, neurons belonging to different classes have different neurocomputational
properties. Class 1 neurons, which include cortical excitatory pyramidal neurons,
can smoothly encode the strength of the input into the output firing frequency, as
in Fig.1.11 (left). In contrast, Class 2 neurons, such as fast-spiking (FS) cortical in-
hibitory interneurons, cannot do that; instead, they fire in a relatively narrow frequency
band, as in Fig.1.11 (right). Class 3 neurons cannot exhibit sustained spiking activ-
ity, so Hodgkin regarded them as “sick” or “unhealthy”. There are other distinctions
between the classes, which we discuss later.

Different classes of excitability occur because neurons have different bifurcations
of resting and spiking states – a phenomenon first explained by Rinzel and Ermen-
trout (1989). If ramps of current are injected to measure the F-I curves, then Class
1 excitability occurs when the neuron undergoes the saddle-node bifurcation on an
invariant circle depicted in Fig.1.12b. Indeed, the period of the limit cycle attractor
is infinite at the bifurcation point, and then it decreases as the bifurcation parameter
– say, the magnitude of the injected current – increases. The other three bifurcations
result in Class 2 excitability. Indeed, the limit cycle attractor exists and has a finite
period when the resting state in Fig.1.12 undergoes a subcritical Andronov-Hopf bi-
furcation, so emerging spiking has a nonzero frequency. The period of the small limit
cycle attractor appearing via supercritical Andronov-Hopf bifurcation is also finite, so
the frequency of oscillations is nonzero, but their amplitudes are small. In contrast
to the common and erroneous folklore, the saddle-node bifurcation (off-limit cycle)
also results in Class 2 excitability because the limit cycle has a finite period at the
bifurcation. There is a considerable latency (delay) to the first spike in this case,
but the subsequent spiking has nonzero frequency. Thus, the simple scheme “Class 1
= saddle-node, Class 2 = Hopf” that permeates many publications is unfortunately
incorrect.

When pulses of current are used to measure the F-I curve, as in Hodgkin’s exper-
iments, the firing frequency depends on factors besides the type of the bifurcation of
the resting state. In particular, low-frequency firing can be observed in systems near
Andronov-Hopf bifurcations, as we show in chapter 7. To avoid possible confusion, we
define the class of excitability only on the basis of slow ramp experiments.

Hodgkin’s classification has an important historical value, but it is of little use for
the dynamic description of a neuron, since naming a class of excitability of a neuron
does not tell much about the bifurcations of the resting state. Indeed, it says only
that saddle-node on invariant circle bifurcation (Class 1) is different from the other
three bifurcations (Class 2), and only when ramps are injected. Dividing neurons into
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integrators and resonators with bistable or monostable activity is more informative,
so we adopt the classification in Fig.1.13 in this book. In this classification, a Class 1
neuron is a monostable integrator, whereas a Class 2 neuron can be a bistable integrator
or a resonator.

1.2.4 Neurocomputational properties

Using the same arrangement as in Fig.1.13, we depict typical geometry of phase
portraits near the four bifurcations in Fig.1.15. Let us use the portraits to explain
what happens “near the threshold”, i.e., near the place where the decision to fire or
not to fire is made. To simplify our geometrical analysis, we assume here that neurons
receive shock inputs, i.e., brief but strong pulses of current that do not change the
phase portraits, but only push or reset the state of the neuron into various regions of
the phase space. We consider these and other cases in detail in chapter 7.

The horizontal axis in each plot in Fig.1.15 corresponds to the membrane potential
V with instantaneous Na+ current, and the vertical axis corresponds to a recovery vari-
able, say activation of K+ current. Black circles denote stable equilibria corresponding
to the neuronal resting state. Spiking limit cycle attractors correspond to sustained
spiking states, which exist in the two cases depicted in the left half of the figure corre-
sponding to the bistable dynamics. The limit cycles are surrounded by shaded regions
– their attraction domains. The white region is the attraction domain of the equilib-
rium. To initiate spiking, the external input should push the state of the system into
the shaded region, and to extinguish spiking, the input should push the state back into
the white region.

There are no limit cycles in the two cases depicted in the right half of the figure,
so the entire phase space is the attraction domain of the stable equilibrium, and the
dynamics are monostable. However, if the trajectory starts in the shaded region, it
makes a large-amplitude rotation before returning to the equilibrium – a transient
spike. Apparently, to elicit such a spike, the input should push the state of the system
into the shaded region.

Now let us contrast the upper and lower halves of the figure, corresponding to
integrators and resonators, respectively. We distinguish these two modes of operation
on the basis of the existence of subthreshold oscillations near the equilibrium.

First, let us show that inhibition impedes spiking in integrators, but can promote it
in resonators. In the integrator, the shaded region is in the depolarized voltage range,
i.e., to the right of the equilibrium. Excitatory inputs push the state of the system
toward the shaded region, while inhibitory inputs push it away. In resonators, both
excitation and inhibition push the state toward the shaded region, because the region
wraps around the equilibrium and can be reached along any direction. This explains
the rebound spiking phenomenon depicted in Fig.1.6.

Integrators have all-or-none spikes; resonators may not. Indeed, any trajectory
starting in the shaded region in the upper half of Fig.1.15 has to rotate around the
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Figure 1.15: The geometry of phase portraits of excitable systems near four bifurcations
can explain many neurocomputational properties (see section 1.2.4 for details).

white circle at the top that corresponds to an unstable equilibrium. Moreover, the
state of the system is quickly attracted to the spiking trajectory and moves along that
trajectory, thereby generating a stereotypical spike. A resonator neuron also can fire
large amplitude spikes when its state is pushed to or beyond the trajectory denoted
“spike”. Such neurons generate subthreshold responses when the state slides along
the smaller trajectory denoted PSP; they also can generate spikes of an intermediate
amplitude when the state is pushed between the PSP and “spike” trajectories, which
explains the partial-amplitude spiking in Fig.1.5b or in the squid axon in Fig.7.26. The
set of initial conditions corresponding to such spiking is quite small, so typical spikes
have large amplitudes and partial spikes are rare.

Integrators have well-defined thresholds; resonators may not. The white circles near
the resting states of integrators in Fig.1.15 are called saddles. They are stable along the
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vertical direction and unstable along the horizontal direction. The two trajectories
that lead to the saddle along the vertical direction are called separatrices because
they separate the phase space into two regions – in this case, white and shaded. The
separatrices play the role of thresholds since only those perturbations that push the
state of the system beyond them result in a spike. The closer the state of the system
is to the separatrices, the longer it takes to converge and then diverge from the saddle,
resulting in a long latency to the spike. Notice that the threshold is not a point, but
a tilted curve that spans a range of voltage values.

Resonators have a well-defined threshold in the case of subcritical Andronov-Hopf
bifurcation: it is the small unstable limit cycle that separates the attraction domains
of stable equilibrium and spiking limit cycle. Trajectories inside the small cycle spi-
ral toward the stable equilibrium, whereas trajectories outside the cycle spiral away
from it and eventually lead to sustained spiking activity. When a neuronal model is
far from the subcritical Andronov-Hopf bifurcation, its phase portrait may look sim-
ilar to the one corresponding to the supercritical Andronov-Hopf bifurcation. The
narrow shaded band in the figure is not a threshold manifold but a fuzzy thresh-
old set called “quasi-threshold” by FitzHugh (1955). Many resonators, including the
Hodgkin-Huxley model, have quasi-thresholds instead of thresholds. The width of the
quasi-threshold in the Hodgkin-Huxley model is so narrow that for all practical reasons
it may be assumed to be just a curve.

Integrators integrate, resonators resonate. Now consider inputs consisting of multi-
ple pulses, e.g., a burst of spikes. Integrators prefer high-frequency inputs; the higher
the frequency, the sooner they fire. Indeed, the first spike of such an input, marked
“1” in the top-right phase portrait in Fig.1.15, increases the membrane potential and
shifts the state to the right, toward the threshold. Since the state of the system is
still in the white area, it slowly converges back to the stable equilibrium. To cross
the threshold manifold, the second pulse must arrive shortly after the first one. The
reaction of a resonator to a pair of pulses is quite different. The first pulse initiates a
damped subthreshold oscillation of the membrane potential, which looks like a spiral
in the bottom-right phase portrait in Fig.1.15. The effect of the second pulse depends
on its timing. If it arrives after the trajectory makes half a rotation, marked “2” in the
figure, it cancels the effect of the first pulse. If it arrives after the trajectory makes a
full rotation, marked “3” in the figure, it adds to the first pulse and either increases the
amplitude of subthreshold oscillation or evokes a spike response. Thus, the response
of the resonator neuron depends on the frequency content of the input, as in Fig.1.7.

Integrators and resonators constitute two major modes of activity of neurons. Most
cortical pyramidal neurons, including the regular spiking (RS), intrinsically bursting
(IB), and chattering (CH) types considered in Chap. 8, are integrators. So are thalam-
ocortical neurons in the relay mode of firing, and neostriatal spiny projection neurons.
Most cortical inhibitory interneurons, including the FS type, are resonators. So are
brainstem mesencephalic V neurons and stellate neurons of the entorhinal cortex. Some
cortical pyramidal neurons and low-threshold spiking (LTS) interneurons can be at the
border of transition between integrator and resonator modes. Such a transition corre-
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spike

Figure 1.16: Phase portrait of a system near a
Bogdanov-Takens bifurcation that corresponds to
the transition from integrator to resonator mode.

sponds to another bifurcation, which has codimension-2, and hence it is less likely to
be encountered experimentally. We consider this and other uncommon bifurcations in
detail later. The phase portrait near the bifurcation is depicted in Fig.1.16, and it is a
good exercise for the reader to explain why such a system has damped oscillations and
postinhibitory responses, yet a well-defined threshold, all-or-none spikes, and possibly
long latencies.

Of course, figures 1.15 and 1.16 cannot encompass all the richness of neuronal behav-
ior, otherwise this book would be only 19pages long (this book is actually quite short;
most of the space is taken by figures, exercises, and solutions). Many aspects of neu-
ronal dynamics depend on other bifurcations, e.g., those corresponding to appearance
and disappearance of spiking limit cycles. These bifurcations describe the transitions
from spiking to resting, and they are especially important when we consider bursting
activity. In addition, we need to take into account the relative geometry of equilibria,
limit cycles, and other relevant trajectories, and how they depend on the parameters of
the system, such as maximal conductances, and activation time constants. We explore
all these issues systematically in subsequent chapters.

In chapter 2 we review some of the most fundamental concepts of neuron elec-
trophysiology, culminating with the Hodgkin-Huxley model. This chapter is aimed
at mathematicians learning neuroscience. In chapters 3 and 4 we use one- and two-
dimensional neuronal models, respectively, to review some of the most fundamental
concepts of dynamical systems, such as equilibria, limit cycles, stability, attraction
domain, nullclines, phase portrait, and bifurcation. The material in these chapters,
aimed at biologists learning the language of dynamical systems, is presented with the
emphasis on geometrical rather than mathematical intuition. In fact, the spirit of
the entire book is to explain concepts by using pictures, not equations. Chapter 5
explores phase portraits of various conductance-based models and the relations be-
tween ionic currents and dynamic behavior. In Chapter 6 we use the INa,p+IK-model
to systematically introduce the geometric bifurcation theory. Chapter 7, probably the
most important chapter of the book, applies the theory to explain many computational
properties of neurons. In fact, all the material in the previous chapters is given so that
the reader can understand this chapter. In chapter 8 we use a simple phenomenological
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model to simulate many cortical, hippocampal, and thalamic neurons. This chapter
contains probably the most comprehensive up-to-date review of various firing patterns
exhibited by mammalian neurons. In chapter 9 we introduce the electrophysiological
and topological classification of bursting dynamics, as well as some useful methods to
study the bursters. Finally, the last and the most mathematically advanced chapter
of the book, Chap. 10, deals with coupled neurons. There we show how the details of
the spike generation mechanism of neurons affect neurons’ collective properties, such
as synchronization.

1.2.5 Building Models (Revisited)

To have a good model of a neuron, it is not enough to put the right kind of currents
together and tune the parameters so that the model can fire spikes. It is not even
enough to reproduce the right input resistance, rheobase, and firing frequencies. The
model has to reproduce all the neurocomputational features of the neuron, starting with
the coexistence of resting and spiking states, spike latencies, subthreshold oscillations,
and rebound spikes, among others.

A good way to start is to determine what kind of bifurcations the neuron under
consideration undergoes and how the bifurcations depend on neuromodulators and
pharmacological blockers. Instead of or in addition to measuring neuronal responses
to get the kinetic parameters, we need to measure them to get the right bifurcation
behavior. Only in this case we can be sure that the behavior of the model is equivalent
to that of the neuron, even if we omitted a current or guessed some of the parameters
incorrectly.

Implementation of this research program is still a pipe dream. The people who
understand the mathematical aspects of neuron dynamics – those who see beyond
conductances and currents – usually do not have the opportunity to do experiments.
Conversely, those who study neurons in vitro or in vivo on a daily basis – those who see
spiking, bursting, and oscillations; those who can manipulate the experimental setup
to test practically any aspect of neuronal activity – do not usually see the value of
studying phase portraits, bifurcations, and nonlinear dynamics in general. One of the
goals of this book is to change this state and bring these two groups of people closer
together.
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Review of Important Concepts

• Neurons are dynamical systems.

• The resting state of neurons corresponds to a stable equilibrium; the
tonic spiking state corresponds to a limit cycle attractor.

• Neurons are excitable because the equilibrium is near a bifurcation.

• There are many ionic mechanisms of spike generation, but only four
generic bifurcations of equilibria.

• These bifurcations divide neurons into four categories: integrators
or resonators, monostable or bistable.

• Analyses of phase portraits at bifurcations explain why some neu-
rons have well-defined thresholds, all-or-none spikes, postinhibitory
spikes, frequency preference, hysteresis, and so on, while others do
not.

• These features, and not ionic currents per se, determine the neuronal
responses, i.e., the kind of computations neurons do.

• A good neuronal model must reproduce not only electrophysiology
but also the bifurcation dynamics of neurons.

Bibliographical Notes

Richard FitzHugh at the National Institutes of Health (NIH) pioneered the phase plane
analysis of neuronal models with the view to understanding their neurocomputational
properties. He was the first to analyze the Hodgkin-Huxley model (FitzHugh 1955;
years before they received the Nobel Prize) and to prove that it has neither threshold
nor all-or-none spikes. FitzHugh (1961) introduced the simplified model of excitability
(see Fig.1.18) and showed that one can get the right kind of neuronal dynamics in mod-
els lacking conductances and currents. Nagumo et al. (1962) designed a corresponding
tunnel diode circuit, so the model is called the FitzHugh-Nagumo oscillator. Chapter 8
deals with such simplified models. The history of the development of FitzHugh-Nagumo
model is reviewed by Izhikevich and FitzHugh (2006).

FitzHugh’s research program was further developed by John Rinzel and G. Bard
Ermentrout (see Fig.1.19 and Fig.1.20). In their 1989 seminal paper, Rinzel and Er-
mentrout revived Hodgkin’s classification of excitability and pointed out the connection
between the behavior of neuronal models and the bifurcations they exhibit. (They also
referred to the excitability as “type I” or “type II”). Unfortunately, many people treat
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Figure 1.17: Richard FitzHugh in 1984.
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Figure 1.18: Phase portrait and physiological state diagram of FitzHugh-Nagumo
model V̇ = V − V 3/3 −W + I, Ẇ = 0.08(V + 0.7 − 0.8W ). The meaning of curves
and trajectories is explained in chapter 4. (Reproduced from Izhikevich and FitzHugh
(2006) with permission.)
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Figure 1.19: John Rinzel in 2004. Depicted on his T-shirt is the cover of the first issue
of Journal of Computational Neuroscience, in which the Pinsky-Rinzel (1994) model
appeared.

Figure 1.20: G. Bard Ermentrout (G. stands for George) with his parrot, Junior, in
1983.
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the connection in a simpleminded fashion and incorrectly identify “type I = saddle-
node, type II = Hopf”. If only life were so simple!

The geometrical analysis of neuronal models was further developed by, among oth-
ers, Izhikevich (2000a), who stressed the integrator and resonator modes of operation
and made connections to other neurocomputational properties.

The neuroscience and mathematics parts of this book are standard, though many
connections are new. The literature sources are listed at the end of each chapter.
Among many outstanding books on computational neuroscience, the author especially
recommends Spikes, Decisions, and Actions by Wilson (1999), Biophysics of Com-
putation by Koch (1999), Theoretical Neuroscience by Dayan and Abbott (2001), and
Foundations of Cellular Neurophysiology by Johnston and Wu (1995). The present vol-
ume complements these excellent books in the sense that it is more ambitious, focused,
and thorough in dealing with neurons as dynamical systems. Though its views may
be biased by the author’s philosophy and taste, the payoffs in understanding neuronal
dynamics are immense, provided the reader has enough patience and perseverance to
follow the author’s line of thought.

The NEURON simulation environment is described by Hines (1989) and Carnevale
and Hines (2006) (http://www.neuron.yale.edu); the GENESIS environment, by
Bower and Beeman (1995) (http://www.genesis-sim.org); the XPP environment,
by Ermentrout (2002). The author of this book uses MATLAB, which has become a
standard computational tool in science and engineering. MATLAB is the registered
trademark of The MathWorks, Inc. (http://www.mathworks.com).
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afterhyperpolarization, 41, 260, 296
AHP, see afterhyperpolarization
amplifying gate, 129
Andronov-Hopf bifurcation, see bifurcation
anodal break excitation, see postinhibitory

spike, see postinhibitory
Arnold tongue, 456
attraction domain, 16, 62, 108
attractor, 9, 60

coexistence, 13, 66
ghost, 75, 478
global, 63
limit cycle, 10, 97

autonomous dynamical system, 58
averaging, 339

basal ganglia, 311
basin of attraction, see attraction domain
Bendixson’s criterion, 126
bifurcation, 11, 70, 216

Andronov-Hopf, 13, 116, 168, 181, 199,
286

Bautin, 200, 362
big saddle homoclinic, 189
blue-sky, 192
Bogdanov-Takens, 194, 251, 284
circle, 348
codimension, 75, 163, 169, 192
cusp, 192

diagram, 77
equilibrium, 159
flip, 190, 454
fold, 454
fold limit cycle, 181
fold limit cycle on homoclinic torus,

192
fold-Hopf, 194
homoclinic, see saddle homoclinic
limit cycle, 178
Neimark-Sacker, 192
pitchfork, 194
saddle homoclinic orbit, 279, 482, 496
saddle-focus homoclinic, 190
saddle-node, 11, 74, 78, 113, 162, 271
saddle-node homoclinic orbit, 201, 483
saddle-node on invariant circle, 13, 164,

180, 272, 279, 284, 306, 477
subcritical, 209
subHopf, 348
supercritical, 209
to bursting, 344
transcritical, 209

bistability, 14, 66, 72, 82, 108, 226, 248,
286, 299, 316, 328, 368

black hole, 451
blue-sky catastrophe, 192
Boltzmann function, 38, 45
Bonhoeffer–van der Pol, see model
brainstem, 313
bursting, 288, 296, 325

m+k type, 336
autonomous, 328
circle/circle, 354
classification, 347
conditional, 328
dissection, 336
excitability, 328, 343
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fast-slow, 335
fold/circle, 366
fold/fold cycle, 364
fold/homoclinic, 350
fold/Hopf, 365
forced, 327
hedgehog, 377
Hopf/Hopf, 380
hysteresis loop, 343, 352, 359, 363
intrinsic, 328
minimal model, 332
oscillation, 486
planar, 348
point-cycle, 348
point-point, 382
slow-wave, 344, 356
subHopf/fold cycle, 299, 359
synchronization, 373, 487

cable equation, 42
canard, 199, 241, 497
central pattern generator (CPG), 334, 472
CH (chattering), see neuron
chain of oscillators, 471
channels, 25
cobweb diagram, 452
coherent state, 474
coincidence detection, 233
complex spike, 343
compression function, 486
conductance, 27, 32
conductance-based, see model
cortex, 281
coupled bursters, 486
coupled oscillators, 465
coupled relaxation oscillators, 470, 484
coupling

delayed, 480
gap-junction, 479
pulsed, 444, 477
synaptic, 481
weak, 480

current, 27
K+, 46
Na+, 45
amplifying, 55, 129, 147

cation, 47
hyperpolarization-activated, 47
Ohmic, 28, 53
persistent, 33, 45
ramp, 221
resonant, 55, 130, 147, 270, 330
rheobase, 155, 242
transient, 33, 35, 45
zap, 232

current threshold, see rheobase
current-voltage relation, see I-V
cycle slipping, 457, 470

DAP, see afterdepolarization
deactivation, 33
deinactivation, 33
delay, 480
delay loss of stability, see stability
dendrite, 43, 292
dendritic compartment, 43, 292
dendritic-somatic ping pong, 290
depolarization, 29, 41
desynchronization, 374
determinant, 103
Dirac delta function, 444
direction field, see vector field
dissection of bursting, 336
down-state, 316
drifting, 470
dynamic clamp, 288
dynamical system, 8, 57

eigenvalue, 61, 102
eigenvector, 102
elliptic bursting, see bursting, subHopf/fold

cycle
energy function, 474
entorhinal cortex, 314
entrainment, 467
equilibrium, 60, 99

classification, 103
focus, 104
hyperbolic, 69, 103
node, 103
saddle, 104
stable, 60, 100, 161
unstable, 61
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equivalent circuit, 28
equivalent voltage, 151, 341
Euler method, 58
excitability, 9, 11, 81, 215

Class 1/2, 221, 228
Class 3, 222
class of, 218, 449
Hodgkin’s classification, 14, 218

excitation block, 118
excitation variable, 8
exponential integrate-and-fire, see model

F-I curve, 15, 188, 218, 227, 255, 321
fast threshold modulation (FTM), 484
fast-slow dynamics, 329, 335
firing threshold, 3
FitzHugh-Nagumo model, see model
fixed point, 453
Floquet multiplier, 454
focus, see equilibrium
FRB (fast rhythmic bursting), see neuron,

CH
French duck, see canard
frequency

acceleration, 255
adaptation, 255
mismatch, 470
plateaus, 472
preference, 232, 237, 265

frequency-current curve, see F-I
frequency-locking, 467
FS (fast spiking), see neuron

gap-junction, 44, 467, 479
Gaussian function, 38
GENESIS, 6, 24, 44
geometrical analysis, 59
ghost

seeattractor, 478
gradient system, 474

half-center oscillator, 334
hard loss, see stability
Hartman-Grobman, see theorem
hedgehog burster, 377
heteroclinic trajectory, see trajectory
Hindmarsh-Rose, see model

hippocampus, 308
Hodgkin-Frankenhaeuser layer, 331
Hodgkin-Huxley, see model
homoclinic trajectory, see trajectory
Hopf bifurcation, see bifurcation, Andronov-

Hopf
hyperbolic equilibrium, see equilibrium, 103
hyperpolarization, 29
hyperpolarization-activated channels, 36, 131,

136
hysteresis, 13, 67, 259, 342, 382

I-V relation, 30, 54, 77, 151, 155, 161, 256,
316

instantaneous, 31, 152
multiple scales, 257
steady-state, 31, 34, 59, 99, 152, 162

IB (intrinsically bursting), see neuron
impedance, 233
in vivo, 287
inactivation, 33, 35
incoherent state, 474
infinitesimal PRC, 459
inhibition-induced spiking, 244
input conductance, 29
input resistance, 29, 155
instantaneous voltage threshold, 282
integrate-and-fire, see model
integrator, 13, 55, 81, 119, 229, 240, 269,

272, 284, 316, 368
interneuron, see neuron
intra-burst, see interspike
ions, 25
isochron, 445

Jacobian matrix, 102, 473

Kirchhoff’s law, 28
Kuramoto phase model, see model
Kuramoto synchronization index, 474

Landau o(ε), 458
latency, see spike
Liapunov coefficient, 200
limit cycle, 10, 96

Bendixson’s criterion, 126
linear analysis, 101
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low-threshold, see spike
LS (late spiking), see neuron
LTS (low-threshold spiking), see neuron

manifold
stable, 109, 445
threshold, 240
unstable, 109

MATLAB, 6, 24, 51, 58, 274, 322, 367, 446,
448, 462, 494, 498, 501

mean-field approximation, 474
membrane potentia, see potential
membrane voltage, see potential
mesencephalic V, see neuron
minimal model, see model
mitral, see neuron
model

IA, 142
ICa+IK, 6
ICl+IK, 158
IK+IKir, 140
INa,p+ENa([Na+]in/out), 158
INa,p+IK, 6, 9, 89, 128, 132, 163, 172,

182, 201, 225, 257, 327
INa,p+IK+IK(M), 253, 327
INa,p+Ih, 136
INa,t, 129, 133
INa+IK, 452
Ih+IKir, 138
Bonhoeffer–van der Pol, 123, 381
canonical, 278, 353, 357, 363
conductance-based, 43
Emrentrout-Kopell, 357
exponential integrate-and-fire, 81
FitzHugh-Nagumo, 21, 106, 223
Hindmarsh-Rose, 123
Hodgkin-Huxley, 37, 128, 147, 334
integrate-and-fire, 268, 275, 493
irreducible, see minimal
Kuramoto, 467, 474
minimal, 127

Ca2+-gated, 147
minimal for bursting, 332
Morris-Lecar, 6, 89, 132
phase, 279
planar, 89

quadratic integrate-and-fire, 80, 203,
270, 279, 353, 477, 483, 494

reduction, 147
resonate-and-fire, 269
simple, 153, 272
theta, 320, 322
van der Pol, 123

modulation
slow, 252

monostable dynamics, 14
Morris-Lecar, see model
multistability, see bistability

neocortex, 281
neostriatum, 311
Nernst, see potential
neurocomputational property, 367
NEURON, 6, 24, 44
neuron, 1

basal ganglia, 311
BSNP, 297
CH, 281, 294, 351
FS, 281, 298
hippocampal, 308, 328
IB, 281, 288, 351
inhibitory, 301
LS, 282, 300
LTS, 281, 296
mesencephalic V, 313
mitral, 248, 316
neostriatal, 311
Purkinje, 319
RS, 281, 282
RSNP, 296
RTN, 306
stellate, 314
TC, 305
theta, 320

node, see equilibrium
noise, 177
normal form, 75, 170, 271
nullcline, 92

olfactory bulb, 316
orbit, see trajectory
order parameter, 474
oscillation, 177
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homoclinic, 482
interburst, 329
intraburst, 329
multifrequency, 468
phase, 444
quasi-periodic, 468
slow, 232
SNIC, 477
subthreshold, 13, 177, 230, 286, 298,

316
slow, 258

oscillator, 385
Andronov-Hopf, 451, 492
half-center, 334
relaxation, 98, 107, 198, 470

oscillator death, 492

pacemaker, 9
parabolic bursting, see bursting, circle/circle
partial synchronization, 474
period, 97, 445
periodic orbit, 10
persistent current, see current
phase, see oscillation
phase deviation, 466
phase drifting, 468
phase lag, 468
phase lead, 468
phase line, 58
phase model, see model

coupled oscillators, 465
Kuramoto reduction, 460, 476
linear response, 459
Malkin reduction, 461, 476
Winfree reduction, 459, 476

phase oscillator, 475
phase portrait, 9, 67, 108

geometrical analysis, 59
local equivalence, 69
topological equivalence, 68

phase space, 58
phase transition curve, see PTC
phase trapping, 468
phase walk-through, 470
phase-locking, 456
phase-resetting curve, see PRC

phaseless set, 451
ping-pong, 262, 290
Poincare phase map, 452
postinhibitory

depression, 260
facilitation, 243, 260
spike, 5, 242, 252, 259, 314

postsynaptic potential, 2
potential

equivalent, 151, 341
Nernst, 26, 32
resting, 29
reverse, 32

PRC, 446, 459, 462
PSP, see postsynaptic potential
PTC, 450
Purkinje neuron, 248

quadratic integrate-and-fire, see model
quasi-threshold, 241

radial isochron clock, 446
Rall’s branching law, 43
ramp input, 224
rebound, see postinhibitory
recovery variable, 8
refractory period, 41, 269
regular point, 73
relaxation oscillator, see oscillator, 484
repeller, 62, 97
repolarization, 41
resonance, 5, 232
resonant gate, 130
resonator, 13, 55, 119, 229, 241, 313, 316,

368, 372
rest point, see equilibrium
resting potential, see potential
reverse potential, see potential
rheobase, 4, 155, 242
rotation number, 467
RS (regular spiking), see neuron
RTN (reticular thalamic nucleus), see neu-

ron

saddle, 18, see equilibrium
saddle quantity, 185
saddle-node bifurcation, see bifurcation
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saddle-node equilibrium, 104
saddle-node of periodics, see bifurcation,

fold limit cycle
saddle-node on invariant circle bifurcation,

see bifurcation
sag, see voltage
self-ignition, 492
separatrix, 18, 109, 240
shock input, 224
simple model, see model
slow modulation, 252
slow passage effect, 175, 361
slow subthreshold oscillation, 258
slow transition, 75
slow-wave bursting, see bursting
SNIC, see bifurcation, saddle-node on in-

variant circle
SNLC, see bifurcation, saddle-node on in-

variant circle
soft loss, see stability
somatic-dendritic ping-pong, 262
spike, 2, 41, 63

all-or-none, 4, 95, 268
complex, 343
dendritic, 43, 261, 292
doublet, 236
frequency modulation, 255
inhibition-induced, 244
latency, 4, 18, 75, 242, 246, 284, 312
low-threshold, 5, 306
postinhibitory, 298
potassium, 140
propagation, 42
rebound, see postinhibitory
synchronization, 374, 486
upside-down, 145
upstroke, 41

spike time response curve, see PRC
square-wave bursting, see bursting, fold/homo-

clinic
squid axon, 14
stability, 60

asymptotic, 60, 97, 100, 453
delay loss, 175, 361
exponential, 100, 103
loss, hard/soft, 204

neutral, 100
stable manifold, see manifold
state line, see phase line
state space, see phase space
stellate cell, see neuron
step input, 224
striatum, 311
stroboscopic map, 452
stutter, 227, 301, 316
subcritical Andronov-Hopf, see bifurcation
subthreshold, 63
subthreshold oscillation, see oscillation
supercritical Andronov-Hopf, see bifurca-

tion
superthreshold, 63
suprathreshold, see superthreshold
synapse, 2
synaptic coupling, 481
synchronization, 385, 443, 454, 467

anti-phase, 454
in-phase, 454
of bursts, 373, 487
of spikes, 486
out-of-phase, 454

TC (thalamocortical), see neuron
thalamic

relay neuron, 305
thalamic burst mode, 306
thalamic interneuron, 308
thalamic relay mode, 305
thalamus, 304
theorem

averaging, 340
Ermentrout, 473
Hartman-Grobman, 69, 103
Malkin, 462
Pontryagin–Rodygin, 341

theta-neuron, see model
threshold, 3, 63, 95, 111, 238, 268

current threshold, see rheobase
firing, 3
manifold, 240
quasi-, 241

time crystal, 451
topological equivalence, 68
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topological normal form, see normal form
torus knot, 467
trace, 103
trajectory, 94

canard, 199
heteroclinic, 111
homoclinic, 111
periodic, 96

transient current, see current
transmembrane potential, see potential
traveling wave, 471
type of excitability, see excitability

unstable equilibrium, 62
unstable manifold, see manifold
up-state, 316

van der Pol, see model
vector field

planar, 89
velocity field, see vector field
voltage sag, 259, 284, 314
voltage-clamp, 30
voltage-gated channels, 33

wave, 471
weak coupling, 458

XPP, 6, 24





Chapter 10

Synchronization
(www.izhikevich.com)

This chapter is available at www.izhikevich.com. It supplements the book
by Izhikevich E. M. (2007) Dynamical Systems in Neuroscience: The Ge-
ometry of Excitability and Bursting, Cambridge, Mass: MIT Press. The
author’s Web site also contains MATLAB programs and in vitro data used
in the book. To cite this chapter, write (Izhikevich 2007, Chapter 10) in
your papers (i.e., as if it were a printed part of the book).

In this chapter we consider networks of tonically spiking neurons. Like any other
kind of physical, chemical, or biological oscillators, such neurons can synchronize and
exhibit collective behavior that is not intrinsic to any individual neuron. For example,
partial synchrony in cortical networks is believed to generate various brain oscilla-
tions, such as the alpha and gamma EEG rhythms. Increased synchrony may result in
pathological types of activity, such as epilepsy. Coordinated synchrony is needed for
locomotion and swim pattern generation in fish. There is an ongoing debate on the role
of synchrony in neural computation, see e.g., the special issue of Neuron (September
1999) devoted to the binding problem.

Depending on the circumstances, synchrony can be good or bad, and it is important
to know what factors contribute to synchrony and how to control it. This is the subject
of the present chapter – the most advanced chapter of the book. It provides a nice
application of the theory developed earlier and hopefully gives some insight into why
the previous chapters may be worth mastering.

Our goal is to understand how the behavior of two coupled neurons depends on their
intrinsic dynamics. First, we introduce the method of description of an oscillation by
its phase. Then, we describe various methods of reduction of coupled oscillators to
simple phase models. The reduction method and the exact form of the phase model
depend on the type of coupling (i.e., whether it is pulsed, weak, or slow) and on the
type of bifurcation of the limit cycle attractor generating tonic spiking. Finally, we
show how to use phase models to understand the collective dynamics of many coupled
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Figure 10.1: Definition of a phase of oscillation, ϑ, in the INa + IK-model with param-
eters as in Fig.4.1a and I = 10.

oscillators.

10.1 Pulsed Coupling

In this section we consider oscillators of the form

ẋ = f(x) + Aδ(t− ts) , x ∈ Rm, (10.1)

having exponentially stable limit cycles and experiencing pulsed stimulation at times
ts that instantaneously increases the state variable by the constant A. The Dirac
delta function δ(t) is a mathematical shorthand notation for resetting x by A. The
strength of pulsed stimulation, A, is not assumed to be small. Most of the results of
this section can also be applied to the case in which the action of the input pulse is not
instantaneous, but smeared over an interval of time, typically shorter than the period
of oscillation.

10.1.1 Phase of Oscillation

Many types of physical, chemical, and biological oscillators share an astonishing feature:
they can be described by a single phase variable ϑ. In the context of tonic spiking, the
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phase is usually taken to be the time since the last spike, as in Fig.10.1a.

We say that a function x(t) is periodic if there is a constant T > 0 such that
x(t + T ) = x(t) for any t. The minimal value of the constant is the period of x(t).
Periodic functions appear in dynamical systems having limit cycle attractors.

The notion of the phase of oscillation is related to the notion of parametrization
of a limit cycle attractor, as in Fig.10.1b. Take a point x0 on the attractor and plot
the trajectory x(t) with x(0) = x0. Then the phase of x(t) is ϑ = t. As t increases
past the period T , then 2T , an so on, the phase variable ϑ wraps around the interval
[0, T ], jumping from T to 0; see Fig.10.1c. Gluing together the points 0 and T , as in
Fig.10.1d, we can treat the interval [0, T ] as a circle, denoted as S1, with circumference
T . The parametrization is the mapping of S1 in Fig.10.1d into the phase space R2 in
Fig.10.1b, given by ϑ 7→ x(ϑ).

We could put the initial point x0 corresponding to the zero phase anywhere else on
the limit cycle, and not necessarily at the peak of the spike. The choice of the initial
point introduces an ambiguity in parameterizing the phase of oscillation. Different
parametrizations, however, are equivalent up to a constant phase shift (i.e., translation
in time). In the rest of the chapter, ϑ always denotes the phase of oscillation, the
parameter T denotes the period of oscillation, and ϑ = 0 corresponds to the peak of
the spike unless stated otherwise. If the system has two or more coexisting limit cycle
attractors, then a separate phase variable needs to be defined for each attractor.

10.1.2 Isochrons

The phase of oscillation can also be introduced outside the limit cycle. Consider, for
example, point y0 in Fig.10.2 (top). Since the trajectory y(t) is not on a limit cycle,
it is not periodic. However, it approaches the cycle as t → +∞. Hence, there is some
point x0 on the limit cycle, not necessarily the closest to y0, such that

y(t) → x(t) as t → +∞ . (10.2)

Now take the phase of the nonperiodic solution y(t) to be the phase of its periodic
proxy x(t).

Alternatively, we can consider a point on the limit cycle x0 and find all the other
points y0 that satisfy (10.2). The set of all such points is called the stable manifold
of x0. Since any solution starting on the stable manifold has an asymptotic behavior
indistinguishable from that of x(t), its phase is the same as that of x(t). For this
reason, the manifold represents solutions having equal phases, and it is often referred
to as being the isochron of x0 (iso, equal; chronos, time, in Greek), a notion going back
to Bernoulli and Leibniz.

Every point on the plane in Fig.10.2, except the unstable equilibrium, gives rise to
a trajectory that approaches the limit cycle. Therefore, every point has some phase.
Let ϑ(x) denote the phase of the point x. Then, isochrons are level contours of the
function ϑ(x), since the function is constant on each isochron.
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Figure 10.2: Top. An
isochron, or a stable man-
ifold, of a point x0 on the
limit cycle attractor is the
set of all initial conditions
y0 such that y(t) → x(t)
as t → +∞. Bottom.
Isochrons of the limit cy-
cle attractor in Fig.10.1
corresponding to 40 evenly
distributed phases nT/40,
n = 1, . . . , 40.

The entire plane is foliated by isochrons. We depict only 40 representative ones
in Fig.10.2. In this chapter we consider neighborhoods of exponentially stable limit
cycles, where the foliation is continuous and invariant (Guckenheimer 1975):

• Continuity. The function ϑ(x) is continuous so that nearby points have nearby
phases.

• Invariance. If ϑ(x(0)) = ϑ(y(0)), then ϑ(x(t)) = ϑ(y(t)) for all t. Isochrons are
mapped to isochrons by the flow of the vector field.

Fig.10.3 shows the geometry of isochrons of various oscillators. The Andronov-Hopf
oscillator in the figure is often called a radial isochron clock for the obvious reason. It
is simple enough to be solved explicitly (see exercise 1). In general, finding isochrons
is a daunting mathematical task. In exercise 3 we present a MATLAB program that
finds isochrons numerically.

10.1.3 PRC

Consider a periodically spiking neuron (10.1) receiving a single brief pulse of current
that increases the membrane potential by A = 1 mV, as in Fig.10.4 (left). Such a
perturbation may not elicit an immediate spike, but it can change the timing, that is,



Synchronization 447

-80 -60 -40 -20 0 20

0

0.1

0.2

0.3

0.4

0.5

0.6

-80 -60 -40 -20 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Andronov-Hopf oscillator van der Pol oscillator

INa+IK-model (Class 1) INa+IK-model (Class 2)

Re z

Im
 z

x

y

V

n

V

n

Figure 10.3: Isochrons of various oscillators. Andronov-Hopf oscillator: ż = (1 + i)z −
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corresponding to phases nT/20, n = 1, . . . , 20, are shown.

the phase, of the following spikes. For example, the perturbed trajectory (solid line in
Fig.10.4, left) fires earlier than the free-running unperturbed trajectory (dashed line).
That is, right after the perturbation, the phase, ϑnew, is greater than the old phase,
ϑ. The magnitude of the phase shift of the spike train depends on the exact timing of
the stimulus relative to the phase of oscillation ϑ. Stimulating the neuron at different
phases, we can measure the phase response curve (also called phase-resetting curve
PRC, or spike time response curve STRC)

PRC (ϑ) = {ϑnew − ϑ} (shift = new phase – old phase) ,

depicted in Fig.10.4, right. Positive (negative) values of the function correspond to
phase advances (delays) in the sense that they advance (delay) the timing of the next
spike.
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In contrast to the common folklore, the function PRC (ϑ) can be measured for an
arbitrary stimulus, not necessarily weak or brief. The only caveat is that to measure
the new phase of oscillation perturbed by a stimulus, we must wait long enough for
transients to subside. This becomes a limiting factor when PRCs are used to study
synchronization of oscillators to periodic pulses, as we do in section 10.1.5.

There is a simple geometrical relationship between the structure of isochrons of an
oscillator and its PRC, illustrated in Fig.10.5 (see also exercise 6). Let us stimulate
the oscillator at phase ϑ with a pulse, which moves the trajectory from point x lying
on the intersection of isochron ϑ and the limit cycle attractor to a point y lying on
some isochron ϑnew. From the definition of PRC, it follows that ϑnew = ϑ+PRC(ϑ).

In general, one uses simulations to determine PRCs, as we do in Fig.10.4. Using
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Figure 10.5: The geometrical relationship between isochrons and the phase response
curve (PRC) of the INa + IK-oscillator in Fig.10.1.
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Andnronov-Hopf, van der Pol, Class 1 and Class 2 oscillators, respectively. PRC2(ϑ):
Vertical pulses (along the second variable) with amplitudes 0.2, 0.2, 0.02, 0.002, respec-
tively. An example of oscillation is plotted as a dotted curve in each subplot (not to
scale).

the MATLAB program presented in exercise 5, we can determine PRCs of all four
oscillators in Fig.10.3 and plot them in Fig.10.6. It is a good exercise to explain the
shape of each PRC in the figure, or at least its sign, using the geometry of isochrons
of corresponding oscillators. In section 10.2.4 we discuss pitfalls of using the straight-
forward method in Fig.10.4 to measure PRCs in biological neurons, and we present a
better technique.

Note that the PRC of the INa + IK-model in Fig.10.6 is mainly positive in the
Class 1 regime, that is, when the oscillations appear via saddle-node on invariant circle
bifurcation, but changes sign in the Class 2 regime, corresponding in this case to the
supercritical Andronov-Hopf bifurcation. In section 10.4 we find PRCs analytically
in the case of weak coupling, and show that the PRC of a Class 1 oscillator has the
shape sin2 ϑ (period T = π) or 1 − cos ϑ (period T = 2π), whereas that of a Class
2 oscillator has the shape sin ϑ (period T = 2π). We show in section 10.1.7 how the
synchronization properties of an oscillator depend on the shape of its PRC.
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10.1.4 Type 0 and Type 1 Phase Response

Instead of phase-resetting curves, many researchers in the field of circadian rhythms
consider phase transition curves (Winfree 1980)

ϑnew = PTC(ϑold).

Since

PTC (ϑ) = {ϑ + PRC(ϑ)} mod T,

the two approaches are equivalent. PRCs are convenient when the phase shifts are
small, so that they can be magnified and seen clearly. PTCs are convenient when the
phase shifts are large and comparable with the period of oscillation. We present PTCs
in this section solely for the sake of review, and we use PRCs throughout the rest of
the chapter.
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Figure 10.8: Time crystal (left) and its contour plot (right). Shown is the PTC (ϑ,A)
of the Andronov-Hopf oscillator (see exercise 4).

In Fig.10.7 (top) we depict phase portraits of the Andronov-Hopf oscillator having
radial isochrons and receiving pulses of magnitude A = 0.5 (left) and A = 1.5 (right).
Note the drastic difference between the corresponding PRCs or PTCs. Winfree (1980)
distinguishes two cases:

• Type 1 (weak) resetting results in continuous PRCs and PTCs with mean slope
1.

• Type 0 (strong) resetting results in discontinuous PRCs and PTCs with mean
slope 0.

(Do not confuse these classes with Class 1, 2, or 3 excitability.) The discontinuity
of the Type 0 PRC in Fig.10.7 is a topological property that cannot be removed by
reallocating the initial point x0 that corresponds to zero phase. As an exercise, prove
that the discontinuity stems from the fact that the shifted image of the limit cycle
(dashed circle) goes beyond the central equilibrium at which the phase is not defined.

If we vary not only the phase ϑ of the applied stimulus, but also its amplitude
A, then we obtain parameterized PRC and PTC. In Fig.10.8 we plot PTC (ϑ,A) of
the Andronov-Hopf oscillator (the corresponding PRC is derived in exercise 4). The
surface is called time crystal and it can take quite amazing shapes (Winfree 1980). The
contour plot of PTC (ϑ,A) in the figure contains the singularity point (black hole) that
corresponds to the phaseless equilibrium of the Andronov-Hopf oscillator. Stimulation
at phase ϑ = π with magnitude A = 1 pushes the trajectory into the equilibrium and
stalls the oscillation.
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10.1.5 Poincare Phase Map

The phase-resetting curve (PRC) describes the response of an oscillator to a single
pulse, but it can also be used to study its response to a periodic pulse train using the
following “stroboscopic” approach. Let ϑn denote the phase of oscillation at the time
the nth input pulse arrives. Such a pulse resets the phase by PRC (ϑn), so that the new
phase right after the pulse is ϑn+PRC(ϑn) (see Fig.10.9). Let Ts denote the period of
pulsed stimulation. Then the phase of oscillation before the next, (n + 1)th, pulse is
ϑn+PRC(ϑn) + Ts. Thus, we have a stroboscopic mapping of a circle to itself,

ϑn+1 = (ϑn + PRC(ϑn) + Ts) mod T, (10.3)

called the Poincare phase map (two pulse-coupled oscillators are considered in exer-
cise 11). Knowing the initial phase of oscillation ϑ1 at the first pulse, we can determine
ϑ2, then ϑ3, and so on. The sequence {ϑn} with n = 1, 2, . . . , is called the orbit of the
map, and it is quite easy to find numerically.

Let us illustrate this concept using the INa + IK-oscillator with PRC shown in
Fig.10.4. Its free-running period is T ≈ 21.37 ms, and the period of stimulation
in Fig.10.10a is Ts = 18.37, which results in the Poincare phase map depicted in
Fig.10.10d. The cobweb in the figure is the orbit going from ϑ1 to ϑ2 to ϑ3, and so
on. Note that the phase ϑ3 cannot be measured directly from the voltage trace in
Fig.10.10a because pulse 2 changes the phase, so it is not the time since the last spike
when pulse 3 arrives. The Poincare phase map (10.3) takes into account such multiple
pulses. The orbit approaches a point (called a fixed point; see below) that corresponds
to a synchronized or phase-locked state.

A word of caution is in order. Recall that PRCs are measured on the limit cycle
attractor. However, each pulse displaces the trajectory away from the attractor, as
in Fig.10.5. To use the PRC formalism to describe the effect of the next pulse, the
oscillator must be given enough time to relax back to the limit cycle attractor. Thus,
if the period of stimulation Ts is too small, or the attraction to the limit cycle is too
slow, or the stimulus amplitude is too large, the Poincare phase map may be not an
appropriate tool to describe the phase dynamics.
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Figure 10.10: Description of synchronization of INa + IK-oscillator in Fig.10.4, using
Poincare phase map.

10.1.6 Fixed points

To understand the structure of orbits of the Poincare phase map (10.3), or any other
map

ϑn+1 = f(ϑn) , (10.4)

we need to find its fixed points

ϑ = f(ϑ) (ϑ is a fixed point),

which are analogues of equilibria of continuous dynamical systems. Geometrically, a
fixed point is the intersection of the graph of f(ϑ) with the diagonal line ϑn+1 = ϑn

(see Fig.10.10d or Fig.10.11). At such a point, the orbit ϑn+1 = f(ϑn) = ϑn is fixed.
A fixed point ϑ is asymptotically stable if it attracts all nearby orbits, i.e., if ϑ1 is in
a sufficiently small neighborhood of ϑ, then ϑn → ϑ as n → ∞, as in Fig.10.11, left.
The fixed point is unstable if any small neighborhood of the point contains an orbit
diverging from it, as in Fig.10.11 (right).

The stability of the fixed point is determined by the slope

m = f ′(ϑ)



454 Synchronization

n

n+1

n

n+1

n

n+1

n

n+1

n

n

n

n

n

n

n

n

f

f

f

f

stable fixed points unstable fixed points

Figure 10.11: The stability of fixed points of the mapping (10.4) depends on the slope
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of the graph of f at the point, which is called the Floquet multiplier of the mapping.
It plays the same role as the eigenvalue λ of an equilibrium of a continuous dynamical
system. Mnemonically, the relationship between them is µ = eλ, to which the fixed
point is stable when |m| < 1 (λ < 0) and unstable when |m| > 1 (λ > 0). Fixed
points bifurcate when |m| = 1 (λ is zero or purely imaginary). They lose stability
via flip bifurcation (a discrete analogue of Andronov-Hopf bifurcation) when m = −1
and disappear via fold bifurcation (a discrete analogue of saddle-node bifurcation)
when m = 1. The former plays an important role in the period-doubling phenomenon
illustrated in Fig.10.14 (bottom trace). The latter plays an important role in the
cycle-slipping phenomenon illustrated in Fig.10.16.

10.1.7 Synchronization

We say that two periodic pulse trains are synchronous when the pulses occur at the
same time or with a constant phase shift, as in Fig.10.12a. Each subplot in the figure
contains an input pulse train (bottom) and an output spike train (top), assuming
that spikes are fired at zero crossings of the phase variable, as in Fig.10.1. Such
a synchronized state corresponds to a stable fixed point of the Poincare phase map
(10.3). The in-phase, anti-phase, or out-of-phase synchronization corresponds to the
phase shift ϑ = 0, ϑ = T/2, or some other value, respectively. Many scientists refer
to the in-phase synchronization simply as “synchronization”, and use the adjectives
anti-phase and out-of-phase to denote the other types of synchronization.
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When the period of stimulation, Ts, is near the free-running period of tonic spiking,
T , the fixed point of (10.3) satisfies

PRC (ϑ) = T − Ts ,

that is, it is the intersection of the PRC and the horizontal line, as in Fig.10.13. Thus,
synchronization occurs with a phase shift ϑ that compensates for the input period
mismatch T − Ts. The maxima and the minima of the PRC determine the oscillator’s
tolerance of the mismatch. As an exercise, check that stable fixed points lie on the side
of the graph with the slope

−2 < PRC ′(ϑ) < 0 (stability region)

marked by the bold curves in Fig.10.13.
Now consider the Class 1 and Class 2 INa + IK-oscillators shown in Fig.10.6. The

PRC in the Class 1 regime is mostly positive, implying that such an oscillator can
easily synchronize with faster inputs (T − Ts > 0) but cannot synchronize with slower
inputs. Indeed, the oscillator can advance its phase to catch up with faster pulse trains,
but it cannot delay the phase to wait for the slower input. Synchronization with the
input having Ts ≈ T is only marginal. In contrast, the Class 2 INa + IK-oscillator does
not have this problem because its PRC has well-defined positive and negative regions.
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10.1.8 Phase-Locking

The phenomenon of p:q-phase-locking occurs when the oscillator fires p spikes for every
q input pulses, such as the 3:2-phase-locking in Fig.10.12b or the 2:2 phase-locking in
Fig.10.14, which typically occurs when pT ≈ qTs. The integers p and q need not be
relatively prime in the case of pulsed-coupled oscillators. Synchronization, that is, 1:1
phase-locking, as well as p:1 phase-locking corresponds to a fixed point of the Poincare
phase map (10.3) with p fired spikes per single input pulse. Indeed, the map tells the
phase of the oscillator at each pulse, but not the number of oscillations between the
pulses.

Each p:q-locked solution corresponds to a stable periodic orbit of the Poincare
phase map with the period q (so that ϑn = ϑn+q for any n). Such orbits in maps (10.4)
correspond to stable equilibria in the iterates ϑk+1 = f q(ϑk), where f q = f ◦ f ◦ · · · ◦ f
is the composition of f with itself q times. Geometrically, studying such maps is like
considering every qth input pulse in Fig.10.12b and ignoring all the intermediate pulses.

Since maps can have coexistence of stable fixed points and periodic orbits, various
synchronized and phase-locking states can coexist in response to the same input pulse
train, as in Fig.10.14. The oscillator converges to one of the states, depending on the
initial phase of oscillation, but can be switched between states by a transient input.

10.1.9 Arnold Tongues

To synchronize an oscillator, the input pulse train must have a period Ts sufficiently
near the oscillator’s free-running period T so that the graph of the PRC and the hori-
zontal line in Fig.10.13 intersect. The amplitude of the function |PRC(ϑ,A)| decreases
as the strength of the pulse A decreases, because weaker pulses produce weaker phase
shifts. Hence the region of existence of a synchronized state shrinks as A → 0, and it
looks like a horn or a tongue on the (Ts, A)-plane depicted in Fig.10.15, called Arnold
tongue. Each p:q-phase-locked state has its own region of existence (p:q-tongue in the
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figure), which also shrinks to a point pT/q on the Ts-axis. The larger the order of
locking, p + q, the narrower the tongue and the more difficult it is to observe such a
phase-locked state numerically, let alone experimentally.

The tongues can overlap, leading to the coexistence of phase-locked states, as in
Fig.10.14. If A is sufficiently large, the Poincare phase map (10.3) becomes nonin-
vertible, that is, it has a region of negative slope, and there is a possibility of chaotic
dynamics (Glass and Mackey 1988).

In Fig.10.16 we illustrate the cycle slipping phenomenon that occurs when the input
period Ts drifts away from the 1:1 Arnold tongue. The fixed point of the Poincare
phase map corresponding to the synchronized state undergoes a fold bifurcation and
disappears. In a way similar to the case of saddle-node on invariant circle bifurcation,
the fold fixed point becomes a ghost attractor that traps orbits and keeps them near
the synchronized state for a long period of time. Eventually the orbit escapes, the
synchronized state is briefly lost, and then the orbit returns to the ghost attractor to
be trapped again. Such an intermittently synchronized orbit typically corresponds to
a p:q-phase-locked state with a high order of locking p + q.
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Figure 10.17: Arthur Winfree in 2001.
(Photo provided by Martin Homer,
University of Bristol.)

10.2 Weak Coupling

In this section we consider dynamical systems of the form

ẋ = f(x) + εp(t) , (10.5)

describing periodic oscillators, ẋ = f(x), forced by a time-depended input εp(t), for
instance, from other oscillators in a network. The positive parameter ε measures the
overall strength of the input, and it is assumed to be sufficiently small, denoted as
ε ¿ 1. We do not assume ε → 0 here. In fact, most of the results in this section can
be cast in the form “there is an ε0 such that for all ε < ε0, the following holds. . .”
(Hoppensteadt and Izhikevich 1997), with ε0 depending on the function f(x) in (10.5)
and sometimes taking not so small values, such as, ε0 = 1.

Note that if ε = 0 in (10.5), we can transform ẋ = f(x), to ϑ̇ = 1 using the theory
presented in section 10.1. What happens when we apply the same transformation to
(10.5) with ε 6= 0? In this section we present three different but equivalent approaches
that transform (10.5) into the phase model

ϑ̇ = 1 + εPRC (ϑ)p(t) + o(ε) .

Here, Landau’s “little oh” function o(ε) denotes the error terms smaller than ε so that
o(ε)/ε → 0 if ε → 0. For the sake of clarity of notation, we omit o(ε) throughout the
book, and implicitly assume that all equalities are valid up to the terms of order o(ε).

Since we do not impose restrictions on the form of p(t), the three methods are
readily applicable to the case

p(t) =
∑

s

gs(x(t), xs(t)) ,

where the set {xs(t)} denotes oscillators in the network connected to x, and p(t) is the
postsynaptic current.
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10.2.1 Winfree’s Approach

A sufficiently small neighborhood of the limit cycle attractor of the unperturbed
(ε = 0) oscillator (10.5), magnified in Fig.10.18, has nearly collinear uniformly spaced
isochrons. Collinearity implies that a point x on the limit cycle in Fig.10.18 has the
same phase-resetting as any other point y on the isochron of x near the cycle. Uniform
density of isochrons implies that the phase-resetting scales linearly with the strength
of the pulse, that is, a half-pulse at point z in Fig.10.18 produces a half-resetting of
the phase.

Linear scaling of PRC with respect to the strength of the pulse motivates the
substitution

PRC (ϑ,A) ≈ Z(ϑ)A ,

where Z(ϑ) = ∂ PRC(ϑ,A)/∂A at A = 0 is the linear response or sensitivity function
(Winfree 1967) describing the slight alteration of rate, or of instantaneous frequency of
oscillation, accompanying application of a small stimulus. Some call it the infinitesimal
PRC.

Now suppose ε 6= 0 but is sufficiently small that the trajectory of the weakly per-
turbed oscillator (10.5) remains near the limit cycle attractor all the time. Let us re-
place the continuous input function εp(t) with the equivalent train of pulses of strength
A = εp(tn)h, where h is a small interpulse interval (denoted as Ts in section 10.1), and
tn = nh is the timing of the nth pulse, see Fig.10.19. We rewrite the corresponding
Poincare phase map (10.3)

ϑ(tn+1) = {ϑ(tn) +

PRC︷ ︸︸ ︷
Z(ϑ(tn)) εp(tn)h︸ ︷︷ ︸

A

+h} mod T
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Figure 10.20: Yoshiki Kuramoto in
1988, while he was visiting Jim Mur-
ray’s institute at Oxford University.
(Picture provided by Dr. Y. Ku-
ramoto.)

in the form
ϑ(tn + h)− ϑ(tn)

h
= Z(ϑ(tn))εp(tn) + 1 ,

which is a discrete version of

ϑ̇ = 1 + εZ(ϑ) · p(t), (10.6)

in the limit h → 0.
To be consistent with all the examples in section 10.1, we implicitly assume here

that p(t) perturbs only the first, voltage-like variable x1 of the state vector x =
(x1, . . . , xm) ∈ Rm and that Z(ϑ) is the corresponding sensitivity function. However,
the phase model (10.6) is also valid for an arbitrary input p(t) = (p1(t), . . . , pm(t)).
Indeed, let Zi describe the linear response to perturbations of the ith state variable
xi, and Z(ϑ) = (Z1(ϑ), . . . , Zm(ϑ)) denote the corresponding linear response vector-
function. Then the combined phase shift Z1p1 + · · ·+ Zmpm is the dot product Z · p in
(10.6).

10.2.2 Kuramoto’s Approach

Consider the unperturbed (ε = 0) oscillator (10.5), and let the function ϑ(x) denote
the phases of points near its limit cycle attractor. Obviously, isochrons are the level
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contours of ϑ(x) since the function is constant on each isochron. Differentiating the
function using the chain rule yields

dϑ(x)

dt
= gradϑ · dx

dt
= gradϑ · f(x) ,

where gradϑ = (ϑx1(x), . . . , ϑxm(x)) is the gradient of ϑ(x) with respect to the state
vector x = (x1, . . . , xm) ∈ Rm. However,

dϑ(x)

dt
= 1

near the limit cycle because isochrons are mapped to isochrons by the flow of the vector
field f(x). Therefore, we obtain a useful equality,

gradϑ · f(x) = 1 . (10.7)

Figure 10.21 shows a geometrical interpretation of grad ϑ(x): it is the vector based at
point x, normal to the isochron of x and with a length equal to the number density of
isochrons at x. Its length can also be found from (10.7).

Kuramoto (1984) applied the chain rule to the perturbed system (10.5),

dϑ(x)

dt
= gradϑ · dx

dt
= gradϑ · {f(x) + εp(t)} = gradϑ · f(x) + ε gradϑ · p(t) ,

and, using (10.7), obtained the phase model

ϑ̇ = 1 + ε grad ϑ · p(t) , (10.8)

which has the same form as (10.6). Subtracting (10.8) from (10.6) yields (Z(ϑ) −
gradϑ) · p(t) = 0. Since this is valid for any p(t), we conclude that Z(ϑ) = gradϑ
(see also exercise 6). Thus, Kuramoto’s phase model (10.8) is indeed equivalent to
Winfree’s model (10.8).

10.2.3 Malkin’s Approach

Yet another equivalent method of reduction of weakly perturbed oscillators to their
phase models follows from Malkin’s theorem (1949, 1956), which we state in the sim-
plest form below. The most abstract form and its proof are provided by Hoppensteadt
and Izhikevich (1997).
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Figure 10.22: Ioel Gil’evich Malkin (Io�l~
Gil~eviq Malkin, 1907–1958).

Malkin’s theorem. Suppose the unperturbed (ε = 0) oscillator in (10.5) has an
exponentially stable limit cycle of period T . Then its phase is described by the equation

ϑ̇ = 1 + εQ(ϑ) · p(t) , (10.9)

where the T -periodic function Q is the solution to the linear “adjoint” equation

Q̇ = −{Df(x(t))}>Q , with Q(0) · f(x(0)) = 1 , (10.10)

where Df(x(t))> is the transposed Jacobian of f (matrix of partial derivatives) at
the point x(t) on the limit cycle, and the normalization condition can be replaced by
Q(t) ·f(x(t)) = 1 for any, and hence all, t. Here Q ·f is the dot product of two vectors,
which is the same as Q>f .

Though this theorem looks less intuitive than the methods of Winfree and Ku-
ramoto, it is actually more useful because (10.10) can be solved numerically quite eas-
ily. Applying the MATLAB procedure in exercise 12 to the four oscillators in Fig.10.3,
we plot their functions Q in Fig.10.23. It is not a coincidence that each component of Q
looks like PRC along the first or second state variable, shown in Fig.10.6. Subtracting
(10.9) from (10.8) or from (10.6), we conclude that

Z(ϑ) = gradϑ(x) = Q(ϑ) ,

(see also exercise 7), so that we can determine the linear response function of the phase
model using any of the three alternative methods: via PRCs, via isochrons, or solving
the adjoint equation (10.10). This justifies the reason why many refer to the function
simply as PRC, implicitly assuming that it is measured to the infinitesimal stimuli and
then normalized by the stimulus amplitude.

10.2.4 Measuring PRCs Experimentally

In Fig.10.24 we exploit the relationship (10.9) and measure the infinitesimal PRCs of a
layer 5 pyramidal neuron of mouse visual cortex. First, we stimulate the neuron with
40 pA DC current to elicit periodic spiking. Initially, the firing period starts at 50 ms,
and then relaxes to the averaged value of 110 ms (Fig.10.24a). The standard method of
finding PRCs consists in stimulating the neuron with brief pulses of current at different
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Figure 10.23: Solutions Q = (Q1, Q2) to adjoint problem (10.10) for oscillators in
Fig.10.3.

phases of the cycle and measuring the induced phase shift, which can be approximated
by the difference between two successive periods of oscillation. The method works well
in models (see exercise 5), but should be used with caution in real neurons because
their firing is too noisy, as we demonstrate in Fig.10.24b. Thus, one needs to apply
hundreds, if not thousands, of pulses and then average the resulting phase deviations
(Reyes and Fetz 1993).

Starting with time 10 sec, we inject a relatively weak noisy current εp(t) that
continuously perturbs the membrane potential (Fig.10.24c) and, hence, the phase of
oscillation (the choice of p(t) is important; its Fourier spectrum must span a range of
frequencies that depends on the frequency of firing of the neuron). Knowing εp(t), the
moments of firing of the neuron, which are zero crossings ϑ(t) = 0, and the relationship

ϑ̇ = 1 + PRC(ϑ)εp(t) ,

we solve the inverse problem for the infinitesimal PRC (ϑ) and plot the solution in
Fig.10.24d. As one expects, the PRC is mostly positive, maximal just before the spike
and almost zero during the spike. It would resemble the PRC in Fig.10.23 (Q1(ϑ) in
Class 1) if not for the dip in the middle, for which we have no explanation (probably it
is due to overfitting). The advantage of this method is that it is more immune to noise,
because intrinsic fluctuations are spread over the entire p(t) and not concentrated at
the moments of pulses – unless, of course p(t), consists of random pulses, in which case
this method is equivalent to the standard one. The drawback is that we need to solve
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the equation above, which we do in exercise 13, using an optimization technique.

10.2.5 Phase Model for Coupled Oscillators

Now consider n weakly coupled oscillators of the form

ẋi = fi(xi) + ε

pi(t)︷ ︸︸ ︷
n∑

j=1

gij(xi, xj) , xi ∈ Rm , (10.11)

and assume that the oscillators, when uncoupled (ε = 0), have equal free-running
periods T1 = · · · = Tn = T . Applying any of the three methods above to such a weakly
perturbed system, we obtain the corresponding phase model

ϑ̇i = 1 + εQi(ϑi) ·

pi(t)︷ ︸︸ ︷
n∑

j=1

gij(xi(ϑi), xj(ϑj)) , (10.12)

where each xi(ϑi) is the point on the limit cycle having phase ϑi. Note that (10.11) is
defined in Rnm, whereas the phase model (10.12) is defined on the n-torus, denoted as
Tn.
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To study collective properties of the network, such as synchronization, it is conve-
nient to represent each ϑi(t) as

ϑi(t) = t + ϕi , (10.13)

with the first term capturing the fast free-running natural oscillation ϑ̇i = 1, and the
second term capturing the slow network-induced build-up of phase deviation from the
natural oscillation. The relationship between xi(t), ϑi(t) and ϕi(t) is illustrated in
Fig.10.25.

Substituting (10.13) into (10.12) results in

ϕ̇i = εQi(t + ϕi) ·
n∑

j=1

gij(xi(t + ϕi), xj(t + ϕj)) . (10.14)

Note that the right-hand side is of order ε, reflecting the slow dynamics of phase devia-
tions ϕi seen in Fig.10.25. Thus, it contains two time scales: fast oscillations (variable
t) and slow phase modulation (variables ϕ). The classical method of averaging, re-
viewed by Hoppensteadt and Izhikevich (1997, Chap. 9), consists in a near-identity
change of variables that transforms the system into the form

ϕ̇i = εωi + ε

n∑

j 6=i

Hij(ϕj − ϕi) , (10.15)

where

Hij(ϕj − ϕi) =
1

T

∫ T

0

Qi(t) · gij(xi(t), xj(t + ϕj − ϕi)) dt , (10.16)

and each ωi = Hii(ϕi − ϕi) = Hii(0) describes a constant frequency deviation from
the free-running oscillation. Figure 10.26 depicts the functions Hij corresponding to

Andronov-Hopf oscillator van der Pol oscillator

INa+IK-model (Class 1) INa+IK-model (Class 2)
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gap-junction (i.e., electrical; see section 2.3.4) coupling of oscillators in Fig.10.3. Prove
that H(χ) = Q(χ) · A/T in the case of pulse-coupling (10.1), so that H(χ) is just
re-scaled PRC.

A special case of (10.15) occurs when H is replaced by its first Fourier term, sin.
The resulting system, written in the slow time τ = εt,

ϕ′i = ωi +
n∑

j=1

cij sin(ϕj − ϕi + ψij),

is called the Kuramoto phase model (Kuramoto 1975). Here, the frequency deviations
ωi are interpreted as intrinsic frequencies of oscillators. The strengths of connections
cij are often assumed to be equal to K/n for some constant K, so that the model can
be studied in the limit n → ∞. The phase deviations ψij are often neglected for the
sake of simplicity.

To summarize, we transformed the weakly coupled system (10.11) into the phase
model (10.15) with H given by (10.16) and each Q being the solution to the adjoint
problem (10.10). This constitutes the Malkin theorem for weakly coupled oscillators
(Hoppensteadt and Izhikevich 1997, theorem 9.2).

10.3 Synchronization

Consider two coupled phase variables (10.12) in a general form

ϑ̇1 = h1(ϑ1, ϑ2) ,

ϑ̇2 = h2(ϑ1, ϑ2) ,

with some positive functions h1 and h2. Since each phase variable is defined on the
circle S1, the state space of this system is the 2-torus T2 = S1×S1 depicted in Fig.10.27,
with ϑ1 and ϑ2 being the longitude and the latitude, respectively. The torus can be
represented as a square with vertical and horizontal sides identified, so that a solution
disappearing at the right side of the square appears at the left side.

The coupled oscillators above are said to be frequency-locked when there is a periodic
trajectory on the 2-torus, which is called a torus knot. It is said to be of type (p, q)
if ϑ1 makes p rotations while ϑ2 makes q rotations, and p and q are relatively prime
integers, that is, they do not have a common divisor greater than 1. Torus knots of
type (p, q) produce p:q frequency-locking, e.g., the 2:3 frequency-locking in Fig.10.27.
A 1:1 frequency-locking is called entrainment. There can be many periodic orbits
on the torus, with stable orbits between unstable ones. Since the orbits on the 2-
torus cannot intersect, they are all knots of the same type, resulting in the same p:q
frequency-locking.

Let us follow a trajectory on the torus and count the number of rotations of the
phase variables. The limit of the ratio of rotations as t → ∞ is independent of the
trajectory we follow, and it is called the rotation number of the torus flow. It is rational
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Figure 10.27: Torus knot of type (2, 3) (a) and its representation on the square (b).
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Figure 10.28: Various degrees of locking of oscillators.

if and only if there is a (p, q) periodic orbit, in which case the rotation number is p/q.
An irrational rotation number implies there are no periodic orbits, and it corresponds to
a quasi-periodic or multifrequency torus flow. Oscillators exhibit phase drifting in this
case. Denjoy (1932) proved that such coupled oscillators are topologically equivalent
to the uncoupled system ϑ̇1 = r, ϑ̇2 = 1 with irrational r.

Suppose the oscillators are frequency-locked; that is, there is a p:q limit cycle at-
tractor on the torus. We say that the oscillators are p:q phase-locked if

qϑ1(t)− pϑ2(t) = const

on the cycle. The value of the constant determines whether the locking is in-phase
(const= 0), anti-phase (const= T/2; half-period), or out-of-phase. Frequency-locking
does not necessarily imply phase-locking: the (2, 3) torus knot in Fig.10.27b corre-
sponds to phase-locking, whereas that in Fig.10.27c does not. Frequency-locking with-
out phase-locking is called phase trapping. Finally, synchronization is a 1:1 phase-
locking. The phase difference ϑ2 − ϑ1 is also called phase lag or phase lead. The
relationships between all these definitions are shown in Fig.10.28.

Frequency-locking, phase-locking, entrainment, and synchronization of a network
of n > 2 oscillators are the same as pairwise locking, entrainment, and synchronization
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Figure 10.29: A major part of computational neuroscience concerns coupled oscillators.

of the oscillators comprising the network. In addition, a network can exhibit partial
synchronization when only a subset of oscillators is synchronized.

Synchronization of oscillators with nearly identical frequencies is described by the
phase model (10.15). Existence of one equilibrium of (10.15) implies the existence of
the entire circular family of equilibria, since translation of all ϕi by a constant phase
shift does not change the phase differences ϕj − ϕi, and hence the form of (10.15).
This family corresponds to a limit cycle of (10.11), on which all oscillators, xi(t + ϕi),
have equal frequencies and constant phase shifts (i.e., they are synchronized, possibly
out-of-phase).

10.3.1 Two Oscillators

Consider (10.11) with n = 2, describing two coupled oscillators, as in Fig.10.29. Let us
introduce the “slow” time τ = εt and rewrite the corresponding phase model (10.15)
in the form

ϕ′1 = ω1 + H1(ϕ2 − ϕ1) ,

ϕ′2 = ω2 + H2(ϕ1 − ϕ2) ,

where ′ = d/dτ is the derivative with respect to slow time. Let χ = ϕ2 − ϕ1 denote
the phase difference between the oscillators. Then the two-dimensional system above
becomes the one-dimensional

χ′ = ω + G(χ) , (10.17)
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Figure 10.30: Geometrical interpretation of equilibria of the phase model (10.17) for
gap-junction-coupled Class 2 INa + IK-oscillators (see Fig.10.26).

where
ω = ω2 − ω1 and G(χ) = H2(−χ)−H1(χ)

are the frequency mismatch and the anti-symmetric part of the coupling, respectively
(illustrated in Fig.10.26, dashed curves). A stable equilibrium of (10.17) corresponds
to a stable limit cycle of the phase model.

All equilibria of (10.17) are solutions to G(χ) = −ω, and they are intersections
of the horizontal line −ω with the graph of G, as illustrated in Fig.10.30a. They are
stable if the slope of the graph is negative at the intersection. If the oscillators are
identical, then G(χ) = H(−χ)−H(χ) is an odd function (i.e., G(−χ) = −G(χ)), and
χ = 0 and χ = T/2 are always equilibria (possibly unstable) corresponding to the
in-phase and anti-phase synchronized solutions. The stability condition of the in-phase
synchronized state is

G′(0) = −2H ′(0) < 0 (stability of in-phase synchronization)

The in-phase synchronization of electrically (gap-junction) coupled oscillators in Fig.10.26
is stable because the slope of G (dashed curves) is negative at χ = 0. Simulation of two
coupled INa +IK-oscillators in Fig.10.25 confirms that. Coupled oscillators in the Class
2 regime also have a stable anti-phase solution, since G′ < 0 at χ = T/2 in Fig.10.30a.

The max and min values of the function G determine the tolerance of the network
for the frequency mismatch ω, since there are no equilibria outside this range. Ge-
ometrically, as ω increases (the second oscillator speeds up), the horizontal line −ω
in Fig.10.30a slides downward, and the phase difference χ = ϕ2 − ϕ1 increases, com-
pensating for the frequency mismatch ω. When ω > − min G, the second oscillator
becomes too fast, and the synchronized state is lost via saddle-node on invariant circle
bifurcation (see Fig.10.30b). This bifurcation corresponds to the annihilation of stable
and unstable limit cycles of the weakly coupled network, and the resulting activity is
called drifting, cycle slipping, or phase walk-through. The variable χ slowly passes
the ghost of the saddle-node point, where G(χ) ≈ 0, then increases past T , appears
at 0, and approaches the ghost again, thereby slipping a cycle and walking through
all the phase values [0, T ]. The frequency of such slipping scales as

√
ω + minG; see

section 6.1.2.
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Figure 10.31: Functions G(χ) for weakly coupled oscillators of non-relaxation (smooth)
and relaxation types. The frequency mismatch ω creates a phase difference in the
smooth case, but not in the relaxation case.

In Fig.10.31 we contrast synchronization properties of weakly coupled oscillators of
relaxation and non-relaxation type. The function G(χ) of the former has a negative
discontinuity at χ = 0 (section 10.4.4). An immediate consequence is that the in-phase
synchronization is rapid and persistent in the presence of the frequency mismatch
ω. Indeed, if G is smooth, then χ slows down while it approaches the equilibrium
χ = 0. As a result, complete synchronization is an asymptotic process that requires
an infinite period of time to attain. In contrast, when G is discontinuous at 0, the
variable χ does not slow down, and it takes a finite period of time to lock. Changing
the frequency mismatch ω shifts the root of −ω = G(χ) in the continuous case, but
not in the discontinuous case. Hence, the in-phase synchronized state χ = 0 of coupled
relaxation oscillators exists and is stable in a wide range of ω.

10.3.2 Chains

Understanding the synchronization properties of two coupled oscillators helps one in
studying the dynamics of chains of n > 2 oscillators

ϕ′i = ωi + H+(ϕi+1 − ϕi) + H−(ϕi−1 − ϕi) , (10.18)

where the functions H+ and H− describe the coupling in the ascending and descending
directions of the chain, as in Fig.10.32. Any phase-locked solution of (10.18) has the
form ϕi(τ) = ω0τ + φi, where ω0 is the common frequency of oscillation and φi are
constants. These satisfy n conditions

ω0 = ω1 + H+(φ2 − φ1) ,

ω0 = ωi + H+(φi+1 − φi) + H−(φi−1 − φi) , i = 2, . . . , n− 1 ,

ω0 = ωn + H−(φn−1 − φn) .

A solution with φ1 < φ2 < · · · < φn or with φ1 > φ2 > · · · > φn (as in Fig.10.32)
is called a traveling wave. Indeed, the oscillators oscillate with a common frequency
ω0 but with different phases that increase or decrease monotonically along the chain.
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Figure 10.32: Traveling wave solutions in chains of oscillators (10.18) describe undula-
tory locomotion and central pattern generation.

Such a behavior is believed to correspond to central pattern generation (CPG) in
crayfish, undulatory locomotion in lampreys and dogfish, and peristalsis in vascular and
intestinal smooth muscles. Below we consider two fundamentally different mechanisms
of generation of traveling waves.

Frequency Differences

Suppose the connections in (10.18) look qualitatively similar to those in Fig.10.26, in
particular, H+(0) = H−(0) = 0. If the frequencies are all equal, then the in-phase
synchronized solution ϕ1 = · · · = ϕn exists and is stable. A traveling wave exists when
the frequencies are not all equal.

Let us seek the conditions for the existence of a traveling wave with a constant
phase shift, say χ = φi+1 − φi, along the chain. Subtracting each equation from the
second one, we find that

0 = ω2 − ω1 + H−(−χ) , 0 = ω2 − ωi , 0 = ω2 − ωn + H+(χ) ,

and ω0 = ω1+ωn−2ω2. In particular, if ω1 ≤ ω2 = · · · = ωn−1 ≤ ωn, which corresponds
to the first oscillator being tuned up and the last oscillator being tuned down, then
χ < 0 and the traveling wave moves upward, as in Fig.10.32, that is, from the fastest to
the slowest oscillator. Interestingly, such an ascending wave exists even when H− = 0,
that is, even when the coupling is only in the opposite, descending direction.

When there is a linear gradient of frequencies (ω1 > ω2 > · · · > ωn or vice versa),
as in the cases of the smooth muscle of intestines or leech CPG for swimming, one may
still observe a traveling wave, but with a non-constant phase difference along the chain.
When the gradient is large enough, the synchronized solution corresponding to a single
traveling wave disappears, and frequency plateaus may appear (Ermentrout and Kopell
1984). That is, solutions occur in which the first k < n oscillators are phase-locked
and the last n− k oscillators are phase-locked as well, but the two pools, forming two
clusters, oscillate with different frequencies. There may be many frequency plateaus.
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Coupling Functions

A traveling wave solution may exist even when all the frequencies are equal, if either
H+(0) 6= 0 or H−(0) 6= 0. As an example, consider the case of descending coupling
(H− = 0)

ϕ′i = ω + H+(ϕi+1 − ϕi) , i = 1, . . . , n− 1 .

From ϕ′n = ω we find that ω0 = ω, that is, the common frequency is the frequency
of the free oscillation of the last, uncoupled oscillator. The phase lag along the chain,
χ = ϕi+1−ϕi, satisfies n− 1 identical conditions 0 = H+(χ). Thus, the traveling wave
with a constant phase shift exists when H+ has a zero crossing with positive slope, in
contrast to Fig.10.26. The sign of χ, and not the direction of coupling, determines the
direction of wave propagation.

10.3.3 Networks

Now let us consider weakly connected networks (10.11) with arbitrary, possibly all-
to-all coupling. To study synchronized states of the network, we need to determine
whether the corresponding phase model (10.15) has equilibria and to examine their
stability properties. A vector φ = (φ1, . . . , φn) is an equilibrium of (10.15) when

0 = ωi +
n∑

j 6=1

Hij(φj − φi) for all i . (10.19)

It is stable when all eigenvalues of the linearization matrix (Jacobian) at φ have nega-
tive real parts, except one zero eigenvalue corresponding to the eigenvector along the
circular family of equilibria (φ plus a phase shift is a solution of (10.19), too, since the
phase differences φj − φi are not affected).

In general, determining the stability of equilibria is a difficult problem. Ermentrout
(1992) found a simple sufficient condition. Namely, if

• aij = H ′
ij(φj − φi) ≥ 0, and

• the directed graph defined by the matrix a = (aij) is connected (i.e., each oscil-
lator is influenced, possibly indirectly, by every other oscillator),

then the equilibrium φ is neutrally stable, and the corresponding limit cycle x(t + φ)
of (10.11) is asymptotically stable.

Another sufficient condition was found by Hoppensteadt and Izhikevich (1997). It
states that if system (10.15) satisfies

• ω1 = · · · = ωn = ω (identical frequencies) and

• Hij(−χ) = −Hji(χ) (pairwise odd coupling)
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for all i and j, then the network dynamics converge to a limit cycle. On the cycle, all
oscillators have equal frequencies 1 + εω and constant phase deviations.

The proof follows from the observation that (10.15) is a gradient system in the
rotating coordinates ϕ = ωτ + φ, with the energy function

E(φ) =
1

2

n∑
i=1

n∑
j=1

Rij(φj − φi) , where Rij(χ) =

∫ χ

0

Hij(s) ds .

One can check that dE(φ)/dτ = −∑
(φ′i)

2 ≤ 0 along the trajectories of (10.15), with
equality only at equilibria.

10.3.4 Mean-Field Approximations

Synchronization of the phase model (10.15) with randomly distributed frequency de-
viations ωi can be analyzed in the limit n →∞, often called the thermodynamic limit
by physicists. We illustrate the theory using the special case H(χ) = sin χ (Kuramoto
1975)

ϕ′i = ωi +
K

n

n∑
j=1

sin(ϕj − ϕi) , ϕi ∈ [0, 2π] , (10.20)

where K > 0 is the coupling strength and the factor 1/n ensures that the model
behaves well as n →∞. The complex-valued sum of all phases,

reiψ =
1

n

n∑
j=1

eiϕj (Kuramoto synchronization index), (10.21)

describes the degree of synchronization in the network. The parameter r is often
called the order parameter by physicists. Apparently, the in-phase synchronized state
ϕ1 = · · · = ϕn corresponds to r = 1, with ψ being the population phase. In contrast,
the incoherent state, with all ϕi having different values randomly distributed on the
unit circle, corresponds to r ≈ 0. (The case r ≈ 0 can also correspond to two or more
clusters of synchronized neurons, oscillating anti-phase or out-of-phase and canceling
each other.) Intermediate values of r correspond to a partially synchronized or coherent
state, depicted in Fig.10.33. Some phases are synchronized in a cluster, while others
roam around the circle.

Multiplying both sides of (10.21) by e−iϕi and considering only the imaginary parts,
we can rewrite (10.20) in the equivalent form

ϕ′i = ωi + Kr sin(ψ − ϕi) ,

which emphasizes the mean-filed character of interactions between the oscillators: they
are all pulled into the synchronized cluster (ϕi → ψ) with the effective strength pro-
portional to the cluster size r. This pull is offset by the random frequency deviations
ωi, which pull away from the cluster.
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reir

Figure 10.33: The Kuramoto synchronization in-
dex (10.21) describes the degree of coherence in
the network (10.20).

Let us assume that the frequencies ωi are distributed randomly around 0 with a
symmetric probability density function g(ω) (e.g., Gaussian). Kuramoto (1975) has
shown that in the limit n →∞, the cluster size r obeys the self-consistency equation

r = rK

∫ +π/2

−π/2

g(rK sin ϕ) cos2 ϕdϕ (10.22)

derived in exercise 21. Note that r = 0, corresponding to the incoherent state, is always
a solution of this equation. When the coupling strength K is greater than a certain
critical value,

Kc =
2

πg(0)
,

an additional, nontrivial solution r > 0 appears, which corresponds to a partially
synchronized state. It scales as r =

√
16(K −Kc)/(−g′′(0)πK4

c ), as the reader can
prove by expanding g in a Taylor series. Thus, the stronger the coupling K relative
to the random distribution of frequencies, the more oscillators synchronize into a co-
herent cluster. The issue of stability of incoherent and partially synchronized states is
discussed by Strogatz (2000).

10.4 Examples

Below we consider simple examples of oscillators to illustrate the theory developed in
this chapter. Our goal is to understand which details of oscillators are important in
shaping the PRC, the form of the function H in the phase deviation model, and, hence,
the existence and stability of synchronized states.

10.4.1 Phase Oscillators

Let us consider the simplest possible kind of a nonlinear oscillator, known as the phase
oscillator:

ẋ = f(x) + εp(t) , x ∈ S1 , (10.23)

where f(x) > 0 is a periodic function, for example, f(x) = a + sin x with a > 1.
Note that this kind of oscillator is quite different from the two- or high-dimensional
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conductance-based models with limit cycle attractors that we considered in the earlier
chapters. Here, the state variable x is one-dimensional, defined on a circle S1. It may be
interpreted as a measure of distance along a limit cycle attractor of a multi-dimensional
system.

Consider the unperturbed (ε = 0) phase oscillator ẋ = f(x), and let x(t) be its
solution with some period T > 0. Following Kuramoto’s idea, we substitute x(ϑ) into
(10.23) and use the chain rule,

f(x(ϑ)) + εp(t) = {x(ϑ)}′ = x′(ϑ) ϑ′ = f(x(ϑ))ϑ′ ,

to get the new phase equation

ϑ̇ = 1 + εp(t)/f(x(ϑ)) , (10.24)

which is equivalent to (10.23) for any, not necessarily small, ε.
We can also obtain (10.24) by using any of the three methods of reduction of

oscillators to phase models:

• Malkin’s method is the easiest one. We do not even have to solve the one-
dimensional adjoint equation (10.10) having the form Q̇ = −f ′(x(t)) Q, because
we can obtain the solution Q(t) = 1/f(x(t)) directly from the normalization
condition Q(t)f(x(t)) = 1.

• Kuramoto’s method relies on the function ϑ(x), which we can find implicitly.
Since the phase at a point x(t) on the limit cycle is t, x(ϑ) is the inverse of ϑ(x).
Using the rule for differentiating of inverse functions, ϑ′(x) = 1/x′(ϑ), we find
gradϑ = 1/f(x(ϑ)).

• Winfree’s method relies on PRC (ϑ), which we find using the following procedure:
A pulsed perturbation at phase ϑ moves the solution from x(ϑ) to x(ϑ) + A,
which is x(ϑ + PRC(ϑ,A)) ≈ x(ϑ) + x′(ϑ)PRC (ϑ,A) when A is small. Hence,
PRC (ϑ,A) ≈ A/x′(ϑ) = A/f(x(ϑ)), and the linear response is Z(ϑ) = 1/f(x(ϑ))
when A → 0.

Two coupled identical oscillators

ẋ1 = f(x1) + εg(x2)

ẋ2 = f(x2) + εg(x1)

can be reduced to the phase model (10.17) with G(χ) = H(−χ)−H(χ), where

H(χ) =
1

T

∫ T

0

Q(t) g(x(t + χ)) dt =
1

T

∫ T

0

g(x(t + χ))

f(x(t))
dt .

The condition for exponential stability of the in-phase synchronized state, χ = 0, can
be expressed in the following three equivalent forms

∫ T

0

g′(x(t)) dt > 0 or

∫

S1
g′(x)

f(x)
dx > 0 or

∫

S1
f ′(x)

f 2(x)
g(x) dx > 0 , (10.25)

as we prove in exercise 24.
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10.4.2 SNIC Oscillators

Let us go through all the steps of derivation of the phase equation using a neuron
model exhibiting low-frequency periodic spiking. Such a model is near the saddle-node
on invariant circle (SNIC) bifurcation studied in section 6.1.2. Appropriate rescaling
of the membrane potential and time converts the model into the normal form

x′ = 1 + x2 , x ∈ R .

Because of the quadratic term, x escapes to infinity in a finite time, producing a spike
depicted in Fig.10.34. If we identify −∞ and +∞, then x exhibits periodic spiking of
infinite amplitude. Such a spiking model is called a quadratic integrate-and-fire (QIF)
neuron (see also section 8.1.3 for some generalizations of the model).

Strong Pulse

The solution of this system, starting at the spike, that is, at x(0) = ±∞, is

x(t) = − cot t ,

as the reader can check by differentiating. It is a periodic function with T = π;
hence, we can introduce the phase of oscillation via the relation x = − cot ϑ. The
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corresponding PRC can be found explicitly (see exercise 9) and it has the form

PRC (ϑ,A) = π/2 + atan (A− cot ϑ)− ϑ ,

depicted in Fig.10.35, where A is the magnitude of the pulse. Note that the PRC tilts
to the left as A increases. Indeed, the density of isochrons, denoted by black points on
the x-axis in the figure, is maximal at the ghost of the saddle-node point x = 0, where
the parabola 1+x2 has the knee. This corresponds to the inflection point of the graph
of x(t) in Fig.10.34, where the dynamics of x(t) is the slowest. The effect of a pulse
is maximal just before the ghost because x can jump over the ghost and skip the slow
region. The stronger the pulse, the earlier it should arrive; hence the tilt.

Weak Coupling

The PRC behaves as A sin2 ϑ, with ϑ ∈ [0, π], when A is small, as the reader can
see in Fig.10.35 or prove by differentiating the function PRC (ϑ,A) with respect to A.
Therefore, Z(ϑ) = sin2 ϑ, and we can use Winfree’s approach to transform the weakly
perturbed quadratic integrate-and-fire (QIF) oscillator

x′ = 1 + x2 + εp(t)

into its phase model

x′ = 1 + ε(sin2 ϑ)p(t) , ϑ ∈ [0, π] .

The results of the previous section, Q(ϑ) = 1/f(x(ϑ)) = 1/(1+cot2 ϑ) = sin2 ϑ, confirm
the phase model. In fact, any neuronal model CV̇ = I − I∞(V ) near saddle-node on
invariant circle bifurcation point (Isn, Vsn) has infinitesimal PRC:

PRC (ϑ) =
C

I − Isn

sin2 ϑ , ϑ ∈ [0, π] ,

as the reader can prove as an exercise. The function sin2 ϑ has the same form as
(1 − cos θ) if we change variables θ = 2ϑ (notice the font difference). The change of
variables scales the period from π to 2π.

In Fig.10.36a we compare the function with numerically obtained PRCs for the
INa + IK-model in the Class 1 regime. Since the ghost of the saddle-node point,
revealing itself as an inflection of the voltage trace in Fig.10.36b, moves to the right as
I increases away from the bifurcation value I = 4.51, so does the peak of the PRC.

Figure 10.36a emphasizes the common features of all systems undergoing saddle-
node on invariant circle bifurcation: they are insensitive to the inputs arriving during
the spike, since PRC≈ 0 when ϑ ≈ 0, T . The oscillators are most sensitive to the input
when they are just entering the ghost of the resting state, where PRC is maximal.
The location of the maximum tilts to the left as the strength of the input increases,
and may tilt to the right as the distance to the bifurcation increases. Finally, PRCs
are non-negative, so positive (negative) inputs can only advance (delay) the phase of
oscillation.



Synchronization 479

0
-80

-60

-40

-20

0

20

0

0

0.2

0.4

0.6

0.8

1

TT phase of oscillation, phase of oscillation, 

m
em

br
an

e 
po

te
nt

ia
l, 

(m
V

)

inflection
points

I=10

I=5

I=4.7
I=4.6

I=4.55

I=4.52

sin2

no
rm

al
iz

ed
 P

R
C

  (
Q

1(
))

(a) (b)

Figure 10.36: (a) Numerically found PRCs of the INa + IK-oscillator in Class 1 regime
(parameters as in Fig.4.1a) and various I using the MATLAB program in exercise 12.
(b) Corresponding voltage traces show that the inflection point (slowest increase) of V
moves right as I increases.

Gap Junctions

Now consider two oscillators coupled via gap junctions (discussed in section 2.3.4):

x′1 = 1 + x2
1 + ε(x2 − x1) ,

x′2 = 1 + x2
2 + ε(x1 − x2) .

Let us determine the stability of the in-phase synchronized state x1 = x2. The corre-
sponding phase model (10.12) has the form

ϑ′1 = 1 + ε(sin2 ϑ1)(cot ϑ1 − cot ϑ2) ,

ϑ′2 = 1 + ε(sin2 ϑ2)(cot ϑ2 − cot ϑ1) .

The function (10.16) can be found analytically:

H(χ) =
1

π

∫ π

0

sin2 t (cot t− cot(t + χ)) dt =
1

2
sin 2χ ,

so that the model in the phase deviation coordinates, ϑ(t) = t + ϕ, has the form

ϕ′1 = (ε/2) sin{2(ϕ2 − ϕ1)} ,

ϕ′2 = (ε/2) sin{2(ϕ1 − ϕ2)} .

The phase difference, χ = ϕ2 − ϕ1, satisfies the equation (compare with Fig.10.26)

χ′ = −ε sin 2χ ,

and, apparently, the in-phase synchronized state, χ = 0, is always stable while the
anti-phase state χ = π/2 is not.



480 Synchronization

Weak Pulses

Now consider two weakly pulse-coupled oscillators

x′1 = 1 + x2
1 + ε1δ(t− t2) ,

x′2 = 1 + x2
2 + ε2δ(t− t1) ,

where t1 and t2 are the moments of firing (x(t) = ∞) of the first and the second
oscillator, respectively, and ε1 and ε2 are the strengths of synaptic connections. The
corresponding phase model (10.12) has the form

ϑ′1 = 1 + ε1(sin
2 ϑ1)δ(t− t2)

ϑ′2 = 1 + ε2(sin
2 ϑ2)δ(t− t1) .

Since

H(χ) =
1

π

∫ π

0

sin2 t δ(t + χ) dt =
1

π
sin2 χ ,

the corresponding phase deviation model (10.15) is

ϕ′1 =
ε1

π
sin2(ϕ2 − ϕ1) ,

ϕ′2 =
ε2

π
sin2(ϕ1 − ϕ2) .

The phase difference χ = ϕ2 − ϕ1 satisfies the equation

χ′ =
ε2 − ε1

π
sin2 χ,

which becomes χ′ = 0 when the coupling is symmetric. In this case, the oscillators pre-
serve (on average) the initial phase difference. When ε1 6= ε2, the in-phase synchronized
state χ = 0 is only neutrally stable. Interestingly, it becomes exponentially unstable
in a network of three or more pulse-coupled Class 1 oscillators (see exercise 23).

Weak Pulses with Delays

The synchronization properties of weakly pulse-coupled oscillators can change signifi-
cantly when explicit axonal conduction delays are introduced. As an example, consider
the system

x′1 = 1 + x2
1 + εδ(t− t2 − d) ,

x′2 = 1 + x2
2 + εδ(t− t1 − d) ,

where d ≥ 0 is the delay. exercise 18 shows that delays introduce simple phase shifts,
so that the phase model has the form

ϕ′1 =
ε

π
sin2(ϕ2 − ϕ1 − d) ,

ϕ′2 =
ε

π
sin2(ϕ1 − ϕ2 − d) ,
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The phase difference χ = ϕ2 − ϕ1 satisfies

χ′ =
ε

π

(
sin2(χ + d)− sin2(χ− d)

)
=

ε sin 2d

π
sin 2χ .

The stability of synchronized states is determined by the sign of the function sin 2d.
The in-phase state χ = 0 is unstable when sin 2d > 0, that is, when the delay is shorter
than the half-period π/2, stable when the delay is longer than the half-period but
shorter than one period π, unstable for even longer delays, and so on. The stability of
the anti-phase state χ = π/2 is reversed, that is, it is stable for short delays, unstable
for longer delays, then stable again for even longer delays, and so on. Finally, when the
pulses are inhibitory (ε < 0), the (in)stability character is flipped so that the in-phase
state becomes stable for short delays.

Weak Synapses

Now suppose that each pulse is not a delta function, but is smeared in time (i.e., it
has a time course p(t − ti) with p(0) = p(π) = 0). That is, the synaptic transmission
starts right after the spike of the presynaptic neuron and ends before the onset of
the next spike. The function p has a typical unimodal shape with fast rise and slow
decay, depicted in Fig.10.37. The discussion below is equally applicable to the case of
p(t, x) = g(t)(E − x) with g > 0 being the synaptic conductance with the shape in
the figure and E being the synaptic reverse potential, positive (negative) for excitatory
(inhibitory) synapses.

Two weakly synaptically coupled SNIC (Class 1) oscillators

x′1 = 1 + x2
1 + εp(t− t2) ,

x′2 = 1 + x2
2 + εp(t− t1)

can be converted into a general phase model with the connection function (10.16) in
the form

H(χ) =
1

π

∫ π

0

sin2 t p(t + χ) dt ,
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Spiking in the corresponding quadratic integrate-and-fire model.

and it can be computed explicitly for some simple p(t).
The in-phase synchronized solution, χ = 0, is stable when

H ′(0) =
1

π

∫ π

0

sin2 t p′(t) dt > 0 .

Since the function sin2 t depicted in Fig.10.37 is small at the ends of the interval and
large in the middle, the integral is dominated by the sign of p′ in the middle. Fast-rising
and slowly decaying excitatory (p > 0) synaptic transmission has p′ < 0 in the middle
(as in the figure), so the integral is negative and the in-phase solution is unstable. In
contrast, fast-rising slowly decaying inhibitory (p < 0) synaptic transmission has p′ > 0
in the middle, so the integral is positive and the in-phase solution is stable. Another
way to see this is to integrate the equation by parts, reduce it to − ∫

p(t) sin 2t dt,
and note that p(t) is concentrated in the first (left) half of the period, where sin 2t
is positive. Hence, positive (excitatory) p results in H ′(0) < 0, and vice versa. Both
approaches confirm the theoretical results independently obtained by van Vreeswijk
et al. (1994) and Hansel et al. (1995) that inhibition, not excitation, synchronizes
Class 1 (SNIC) oscillators. The relationship is inverted for the anti-phase solution
χ = π/2 (the reader should prove this), and no relationships are known for other types
of oscillators.

10.4.3 Homoclinic Oscillators

Besides the SNIC bifurcation considered above, low-frequency oscillations may also
indicate the proximity of the system to a saddle homoclinic orbit bifurcation, as in
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significant phase delay (pulse A) or advance (pulse B) not captured by the quadratic
integrate-and-fire model.

Fig.10.38 (top). The spiking trajectory in the figure quickly approaches a small shaded
neighborhood of the saddle along the stable direction, and then slowly diverges from
the saddle along the unstable direction, thereby resulting in a large-period oscillation.
As often the case in neuronal models, the saddle equilibrium is near a stable node
equilibrium corresponding to the resting state, and the system is near the codimension-
2 saddle-node homoclinic orbit bifurcation studied in section 6.3.6. As a result, there
is a drastic difference between the attraction and divergence rates to the saddle, so
that the dynamics in the shaded neighborhood of the saddle-node in the figure can be
reduced to the one-dimensional V -equation, which in turn can be transformed into the
“quadratic integrate-and-fire” form

x′ = −1 + x2 , if x = +∞, then x ← xreset ,

with solutions depicted in Fig.10.38 (bottom). The saddle and the node correspond
to x = +1 and x = −1, respectively. One can check by differentiating that the
solution of the model with x(0) = xreset > 1 is x(t) = − coth(t − T ), where coth(s) =
(es + e−s)/(es− e−s) is the hyperbolic cotangent and T = acoth (xreset) is the period of
oscillation, which becomes infinite as xreset → 1.

Using the results of section 10.4.1, we find the function

Q(ϑ) = 1/(−1 + coth2(ϑ− T )) = sinh2(ϑ− T )

whose graph is shown in Fig.10.39a. For comparison, we plotted the numerically found
PRC for the INa + IK-oscillator to illustrate the disagreement between the theoretical
and numerical curves in the region ϑ < 0.1T corresponding to the downstroke of
the spike. Such a disagreement is somewhat expected, since the quadratic integrate-
and-fire model ignores spike downstroke. If a pulse arriving during the downstroke
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displaces the trajectory to the exterior of the limit cycle (as in Fig.10.39b, pulse A),
then the trajectory becomes closer to the saddle equilibrium when it reenters a small
neighborhood of the saddle, thereby leading to a significant phase delay. Displacements
to the interior of the cycle (as in Fig.10.39b, pulse B) push away from the saddle
and lead to phase advances. The direction and the magnitude of displacements are
determined by the derivative of the slow variable n′ along the limit cycle.

The region of disagreement between theoretical and numerical PRCs becomes in-
finitesimal relative to T → ∞ near the bifurcation. Theoretical PRC can be used to
study anti-phase and out-of-phase synchronization of pulse-coupled oscillators, but not
of in-phase synchronization, because the region of breakdown is the only important
region in this case. Finally, note that as T →∞, the spiking limit cycle fails to be ex-
ponentially stable, and the theory of weakly coupled oscillators is no longer applicable
to it.

Though the PRC in Fig.10.39 is quite different from the one corresponding to
SNIC oscillators in Fig.10.36, there is an interesting similarity between these two cases:
both can be reduced to quadratic integrate-and-fire neurons, and both have cotangent-
shaped periodic spiking solutions and sine-squared-shape PRCs, except that they are
“regular” in the SNIC case and hyperbolic in the homoclinic case (see also exercise 26).

10.4.4 Relaxation Oscillators and FTM

Consider two relaxation oscillators having weak fast → fast connections

µẋi = f(xi, yi) + εpi(xi, xk) ,
ẏi = g(xi, yi) ,

(10.26)

where i = 1, 2 and k = 2, 1. This system can be converted to a phase model in the
relaxation limit ε ¿ µ → 0 (Izhikevich 2000b). The connection functions Hi(χ) have a
positive discontinuity at χ = 0, which occurs because the x-coordinate of the relaxation
limit cycle is discontinuous at the jump points. Hence, the phase difference function
G(χ) = H2(−χ)−H1(χ) has a negative discontinuity at χ = 0 (depicted in Fig.10.31).
This reflects the profound difference between behaviors of weakly coupled oscillators
of the relaxation and non-relaxation types, discussed in section 10.3.1: The in-phase
synchronized solution, χ = 0, in the relaxation limit µ → 0 is stable and persistent
in the presence of the frequency mismatch ω, and it has a rapid rate of convergence.
The reduction to a phase model breaks down when ε À µ → 0, that is, when the
connections are relatively strong. One can still analyze such oscillators in the special
case considered below.

Fast Threshold Modulation

Consider (10.26) and suppose that p1 = p2 = p is a piecewise constant function: p = 1
when the presynaptic oscillator, xk, is on the right branch of the cubic x-nullcline
corresponding to an active state, and p = 0 otherwise (see Fig.10.40a). Somers and
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Figure 10.40: Fast threshold modulation of relaxation oscillation. (a) The Heaviside
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the x-nullcline. (b) In the relaxation limit µ = 0, the synchronized limit cycle consists
of the left branch of the nullcline f(x, y) = 0 and the right branch of the nullcline
f(x, y) + ε = 0. When oscillator 1 is ahead of oscillator 2 (c), the phase difference
between them decreases after the jump (d).

Kopell (1993, 1995) referred to such a coupling in the relaxation limit µ → 0 as fast
threshold modulation (FTM), and found a simple criterion of stability of synchronized
state that works even for strong coupling.

Since the oscillators are identical, the in-phase synchronized state exists, during
which the variables x1 and x2 follow the left branch of the x-nullcline defined by
f(x, y) = 0 (see Fig.10.40b) until they reach the jumping point a. During the in-
stantaneous jump, they turn on the mutual coupling ε, and land at some point b′ on
the perturbed x-nullcline defined by f(x, y) + ε = 0. They follow the new nullcline to
the right (upper) knee, and then jump back to the left branch.

To determine the stability of the in-phase synchronization, we consider the case
when oscillator 1 is slightly ahead of oscillator 2, as in Fig.10.40c. We assume that the
phase difference between the oscillators is so small – or alternatively, the strength of
coupling is so large – that when oscillator 1 jumps and turns on its input to oscillator
2, the latter, being at point d in Fig.10.40d, is below the left knee of the perturbed
x-nullcline f(x, y) + ε = 0 and therefore jumps, too. As a result, both oscillators jump
to the perturbed x-nullcline and reverse their order. Although the apparent distance
between the oscillators, measured by the difference of their y-coordinates, is preserved
during such a jump, the phase difference between them usually is not.

The phase difference between two points on a limit cycle is the time needed to
travel from one point to the other. Let τ0(d) be the time needed to slide from point
d to point a along the x-nullcline in Fig.10.40d (i.e., the phase difference just before
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the jump). Let τ1(d) be the time needed to slide from point b′ to point d′ (i.e., the
phase difference after the jump). The phase difference between the oscillators during
the jump changes by the factor C(d) = τ1(d)/τ0(d), called the compression function.
The difference decreases when the compression function C(d) < 1 uniformly for all d
near the left knee a. This condition has a simple geometrical meaning: the rate of
change of y(t) is slower before the jump than after it, so that y(t) has a “scalloped”
shape, as in Fig.10.40c. As an exercise, prove that C(d) → |g(a)|/|g(b′)| as d → a.

If the compression function at the right (upper) knee is also less than 1, then the
in-phase synchronization is stable. Indeed, the phase difference does not change while
the oscillators slide along the nullclines, and it decreases geometrically with each jump.
In fact, it suffices to require that the product of compression factors at the two knees
be less than 1, so that any expansion at one knee is compensated for by even stronger
compression at the other knee.

10.4.5 Bursting Oscillators

Let us consider bursting neurons coupled weakly through their fast variables:

ẋi = f(xi, yi) + εp(xi, xj) , (10.27)

ẏi = µg(xi, yi) , (10.28)

i = 1, 2 and j = 2, 1. Since bursting involves two time scales, fast spiking and slow
transition between spiking and resting, there are two synchronization regimes: spike
synchronization and burst synchronization, illustrated in Fig.9.51 and discussed in
section 9.4. Below, we outline some useful ideas and methods of studying both regimes.
Our exposition is not complete, but it lays the foundation for a more detailed research
program.

Spike Synchronization

To study synchronization of individual spikes within the burst, we let µ = 0 in order to
freeze the slow subsystem (10.28), and consider the fast subsystem (10.27) describing
weakly coupled oscillators. When yi ≈ yj, the fast variables oscillate with approxi-
mately equal periods, so (10.27) can be reduced to the phase model

ϕ̇i = εH(ϕj − ϕi, yi) ,

where yi = const parameterize the form of the connection function. For example,
during the “circle/Hopf” burst, the function is transformed from H(χ) = sin2 χ or
1 − cos χ at the beginning of the burst (saddle-node on invariant circle bifurcation)
to H(χ) = sin χ at the end of the burst (supercritical Andronov-Hopf bifurcation).
Changing yi slowly, one can study when spike synchronization appears and when it
disappears during the burst. When the slow variables yi have different values, fast
variables typically oscillate with different frequencies, so one needs to look at low-order
resonances to study the possibility of spike synchronization.
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Figure 10.41: Reduction of the INa,p+IK+IK(M)-burster to a relaxation oscillator. The
slow variable exhibits “scalloped” oscillations needed for stability of in-phase burst
synchronization. C1 and C2 are compression functions at the two jumps.

Burst synchronization

In chapter 9 we presented two methods, averaging and equivalent voltage, that remove
fast oscillations and reduce bursters to slow relaxation oscillators. Burst synchroniza-
tion is then reduced to synchronization of such oscillators, and it can be studied using
phase reduction or fast threshold modulation (FTM) approaches.

To apply FTM, we assume that the coupling in (10.27) is piecewise constant, that
is, p(xi, xj) = 0 when the presynaptic burster xj is resting, and p(xi, xj) = 1 (or any
function of xi) when the presynaptic burster is spiking. We also assume that the slow
subsystem (10.28) is one-dimensional, so that we can use the equivalent voltage method
(section 9.2.4) and reduce the coupled system to

0 = Xequiv(yi, εp)− xi ,

y′i = g(xi, yi) .

When the burster is of the hysteresis loop type (i.e., the resting and spiking states
coexist), the function x = Xequiv(y, εp) often, but not always, has a Z-shape on the
slow/fast plane, as in Fig.9.16, so that the system corresponds to a relaxation oscilla-
tor with nullclines as in Fig.10.41. Fast threshold modulation occurs via the constant
εp, which shifts the fast nullcline up or down. The compression criterion for stability
of the in-phase burst synchronization, presented in the previous section, has a simple
geometrical illustration in the figure. The slow nullcline has to be sufficiently close
to the jumping points that y(t) slows before each jump and produces the “scalloped”
curve. Many hysteresis loop fast/slow bursters do generate such a shape. In partic-
ular, “fold/*” bursters exhibit robust in-phase burst synchronization when they are
near the bifurcation from quiescence to bursting, since the slow nullcline is so close to
the left knee that the compression during the resting → spiking jump (C1 in Fig.10.41)
dominates the expansion, if any, during the spiking → resting jump.



488 Synchronization

Review of Important Concepts

• Oscillations are described by their phase variables ϑ rotating on a circle
S1. We define ϑ as the time since the last spike.

• The phase response curve, PRC (ϑ), describes the magnitude of the phase
shift of an oscillator caused by a strong pulsed input arriving at phase ϑ.

• PRC depends on the bifurcations of the spiking limit cycle, and it defines
synchronization properties of an oscillator.

• Two oscillators are synchronized in-phase, anti-phase, or out-of-phase
when their phase difference, ϑ2−ϑ1, equals 0, half-period, or some other
value, respectively; see Fig.10.42.

• Synchronized states of pulse-coupled oscillators are fixed points of the
corresponding Poincare phase map.

• Weakly coupled oscillators

ẋi = f(xi) + ε
∑

gij(xj)

can be reduced to phase models

ϑ̇i = 1 + εQ(ϑi)
∑

gij(xj(ϑj)) ,

where Q(ϑ) is the infinitesimal PRC defined by (10.10).

• Weak coupling induces a slow phase deviation of the natural oscillation,
ϑi(t) = t + ϕi, described by the averaged model

ϕ̇i = ε
(
ωi +

∑
Hij(ϕj − ϕi)

)
,

where ωi denote the frequency deviations, and

Hij(ϕj − ϕi) =
1

T

∫ T

0

Q(t) gij(xj(t + ϕj − ϕi)) dt

describes the interactions between the phases.

• Synchronization of two coupled oscillators corresponds to equilibria of
the one-dimensional system

χ̇ = ε(ω + G(χ)) , χ = ϕ2 − ϕ1 ,

where G(χ) = H21(−χ) − H12(χ) describes how the phase difference χ
compensates for the frequency mismatch ω = ω2 − ω1.
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in-phase anti-phase out-of-phase

Figure 10.42: Different types of synchronization.

Bibliographical Notes

Surprisingly, this chapter turned out to be quite different from chapter 9 (“Weakly
Connected Oscillators”) of the book Weakly Connected Neural Networks by Hoppen-
steadt and Izhikevich (1997) and from the book Synchronization: A Universal Concept
in Nonlinear Sciences by Pikovsky, Rosenblum, and Kurths (2001). All three texts,
though devoted to the same subject, do not repeat, but rather complement, each other.
The last provides an excellent historical overview of synchronization, starting with the
work of the famous Dutch mathematician, astronomer, and physicist Christiaan Huy-
gens (1629–1695), who was the first to describe synchronization of two pendulum clocks
hanging from a common support (which was, incidentally, anti-phase). While providing
many examples of synchronization of biological, chemical, and physical systems, the
book by Pikovsky et al. also discusses the definition of a phase and synchronization of
nonperiodic, e.g., chaotic, oscillators, a topic not covered here. A major part of Spiking
Neuron Models by Gerstner and Kistler (2002) is devoted to synchronization of spik-
ing neurons, with the emphasis on the integrate-and-fire model and the spike-response
method.

The formalism of the phase response curve (PRC) was introduced by Hastings
and Sweeney (1958), and it has been used extensively in the context of resetting the
circadian rhythms. “Forty Years of PRC – What Have We Learned?” by Johnson
(1999) gives a historical overview of this idea and some recent developments. John
Guckenheimer (1975) used the theory of normally hyperbolic invariant manifolds to
provide a mathematical foundation for the existence of isochrons, and their geometrical
properties. An encyclopedic exposition on isochrons and phase-resettings in nature, as
well as numerous anecdotes, can be found in Arthur Winfree’s remarkable book The
Geometry of Biological Time (1980, 2nd ed., 2001). In particular, Winfree describes
the work of George R. Mines (1914), who was doing phase-resetting experiments by
shocking rabbits at various phases of their heartbeat. He found the phase and shock
that could stop a rabbit’s heart (black hole in Fig.10.8), and then applied it to himself.
He died.

Glass and Mackey (1988) provide a detailed exposition of circle phase maps. Al-
though the structure of phase-locking regions in Fig.10.15 was discovered by Cartwright
and Littlewood (1945), it is better known today as Arnold tongues (Arnold 1965). Gue-
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Figure 10.43: Frank Hoppensteadt,
the author’s adviser and mentor, circa
1989.

vara and Glass (1982) found this structure analytically for the Andronov-Hopf oscillator
in Fig.10.3 (radial isochron clock). Hoppensteadt (1997, 2000) provides many examples
of oscillatory systems arising in biology and neuroscience (see also Hoppensteadt and
Peskin 2002).

Malkin’s method of reduction of coupled oscillators to phase equations has been
known, at least to Russian scientists, since the early 1950s (Malkin 1949, 1956; Blech-
man 1971). For example, Melnikov (1963) applied Malkin’s theorem to a homoclinic
orbit of infinite period to obtain the transversality condition for the saddle homoclinic
orbit bifurcation (Kuznetsov 1995).

Malkin’s method was rediscovered in the West by Neu (1979), and hoorayed by
Winfree (1980), who finally saw a mathematical justification for his usage of phase
variables. Since then, the field of phase equations has been largely dominated by Bard
Ermentrout and Nancy Kopell (Ermentrout 1981, 1986, 1992; Ermentrout and Kopell
1986a,b, 1990, 1991, 1994; Kopell and Ermentrout 1990; Kopell 1986; Kopell et al.
1991). In particular, they developed the theory of traveling wave solutions in chains
of oscillators, building on the seminal paper by Cohen et al. (1982). Incidentally, the
one-page proof of Malkin’s theorem provided by Hoppensteadt and Izhikevich (1997,
Sect. 9.6) is based on Ermentrout and Kopell’s idea of using the Fredholm alternative;
Malkin’s and Neu’s proofs are quite long, mostly because they reprove the alternative.

There are only a handful of examples in which the Malkin adjoint problem can be
solved analytically (i.e., without resort to simulations). The SNIC, homoclinic and
Andronov-Hopf cases are the most important, and have been considered in detail in
this chapter. Brown et al. (2004) also derive PRCs for oscillators with homoclinic
orbits to pure saddles (see exercise 25) and for Bautin oscillators.

Throughout this chapter we define the phase ϑ or ϕ on the interval [0, T ], where T
is the period of free oscillation, and do not normalize it to be on the interval [0, 2π].
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Figure 10.44: Nancy Kopell in her Boston University office in 1990 (photograph pro-
vided by Dr. Kopell).

As a result, we have avoided the annoying terms 2π/T and 2π/Ω in the formulas. The
only drawback is that some of the results may have an “unfamiliar look”, such as sin2 ϑ
with ϑ ∈ [0, π] for the PRC of Class 1 neurons, as opposed to 1− cos ϑ with ϑ ∈ [0, 2π]
used previously by many authors before.

Hansel, Mato, and Meunier (1995) were the first to note that the shape of the PRC
determines the synchronization properties of synaptically coupled oscillators. Ermen-
trout (1996) related this result to the classification of oscillators and proved that PRCs
of all Class 1 oscillators have the form of 1 − cos ϑ, though the proof can be found
in his earlier papers with Kopell (Ermentrout and Kopell 1986a, 1986b). Reyes and
Fetz (1993) measured the PRC of a cat neocortical neuron and largely confirmed the
theoretical predictions. The experimental method in section 10.2.4 is related to that
of Rosenblum and Pikovsky (2001). It needs to be developed further, for instance, by
incorporating the measurement uncertainty (error bars). In fact, most experimentally
obtained PRCs, including the one in Fig.10.24, are so noisy that nothing useful can be
derived from them. This issue is the subject of active research.

Our treatment of the FTM theory in this volume closely follows that of Somers and
Kopell (1993, 1995). Anti-phase synchronization of relaxation oscillators is analyzed
using phase models by Izhikevich (2000b), and FTM theory, by Kopell and Somers
(1995). Ermentrout (1994) and Izhikevich (1998) considered weakly coupled oscilla-
tors with axonal conduction delays and showed that delays result in mere phase shifts
(see exercise 18). Frankel and Kiemel (1993) observed that slow coupling can be re-
duced to weak coupling. Izhikevich and Hoppensteadt (2003) used Malkin’s theorem
to extend the results to slowly coupled networks, and to derive useful formulas for the
coupling functions and coefficients. Ermentrout (2003) showed that the result could
be generalized to synapses having fast-rising and slow-decaying conductances. Goel
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and Ermentrout (2002) and Katriel (2005) obtained interesting results on in-phase
synchronization of identical phase oscillators.

Interactions between resonant oscillators were considered by Ermentrout (1981),
Hoppensteadt and Izhikevich (1997), and Izhikevich (1999) in the context of quasi-
periodic (multi-frequency) oscillations. Baesens et al. (1991) undertook the heroic
task of studying resonances and toroidal chaos in a system of three coupled phase
oscillators. Mean-field approaches to the Kuramoto model are reviewed by Strogatz
(2000) and Acebron et al. (2005). Daido (1996) extended the theory to the general
coupling function H(χ). van Hemmen and Wreszinski (1993) were the first to find the
Lyapunov function for the Kuramoto model, which was generalized (independently) by
Hoppensteadt and Izhikevich (1997) to the arbitrary coupling function H(χ).

Ermentrout (1986), Aronson et al. (1990), and Hoppensteadt and Izhikevich (1996,
1997) studied weakly coupled Andronov-Hopf oscillators, and discussed the phenomena
of self-ignition (coupling-induced oscillations) and oscillator death (coupling-induced
cessation of oscillation). Collins and Stewart (1993, 1994) and Golubitsky and Stewart
(2002) applied group theory to the study of synchronization of coupled oscillators in
networks with symmetries.

In this chapter we have considered either strong pulsed coupling or weak continuous
coupling. These limitations are severe, but they allow us to derive model-independent
results. Studying synchronization in networks of strongly coupled neurons is an active
area of research, though, most such studies fall into two categories: (1) simulations
and (2) integrate-and-fire networks. In both cases, the results are model-dependent. If
the reader wants to pursue this line of research, he or she will definitely need to read
Mirollo and Strogatz (1990), van Vreeswijk et al. (1994), Chow and Kopell (2000),
Rubin and Terman (2000, 2002), Bressloff and Coombes (2000), van Vreeswijk (2000),
van Vreeswijk and Hansel (2001), Pfeuty et al. (2003), and Hansel and Mato (2003).

Exercises

1. Find the isochrons of the Andronov-Hopf oscillator

ż = (1 + i)z − z|z|2, z ∈ C,

in Fig.10.3.

2. Prove that the isochrons of the Andronov-Hopf oscillator in the form

ż = (1 + i)z + (−1 + di)z|z|2, z ∈ C,

are the curves

z(s) = s(−1+di) eχi , s > 0 ,

where χ is the phase of the isochron (see Fig.10.45).
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Figure 10.45: Isochrons of the Andronov-Hopf oscillator; see exercise 2.
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Figure 10.46: Pulsed stimulation of the
Andronov-Hopf oscillator in Fig.10.3;
see exercise 4.

3. [MATLAB] To determine isochrons of an oscillator ẋ = F (x), one can start with
many initial points near the limit cycle and integrate the system backwards, that
is, ẋ = −F (x). The images of the points at any time t lie on the same isochron.
Write a MATLAB program that implements this algorithm.

4. Prove that the phase response curve of the Andronov-Hopf oscillator in Fig.10.3
is

PRC (ϑ,A) =

{ −ψ when 0 ≤ ϑ ≤ π,
+ψ when π ≤ ϑ ≤ 2π,

(10.29)

where

ψ = arcos
1 + A cos ϑ√

1 + 2A cos ϑ + A2

and A is the magnitude of the horizontal displacement of z(t); see Fig.10.46.

5. [MATLAB] Write a program that stimulates an oscillator at different phases and
determines its phase response curve (PRC).

6. Show that Z(ϑ) = gradϑ, so that Winfree’s phase model (10.6) is equivalent to
Kuramoto’s phase model (10.8).

7. Show that Z(ϑ) = Q(ϑ), so that Winfree’s phase model (10.6) is equivalent to
Malkin’s phase model (10.9).
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8. Show that the PRC of the leaky integrate-and-fire neuron (section 8.1.1)

v̇ = b− v , if v ≥ 1 (threshold), then v ← 0 (reset)

with b > 1 has the form

PRC (ϑ) = min {ln(b/(b exp(−ϑ)− A)), T} − ϑ ,

where T = ln(b/(b− 1)) is the period of free oscillations and A is the amplitude
of the pulse.

9. Prove that the quadratic integrate-and-fire neuron

v̇ = 1 + v2 , if v = +∞ (peak of spike), then v ← −∞ (reset)

has PTC (ϑ) = π/2 + atan (A− cot ϑ).

10. Find the PRC of the quadratic integrate-and-fire neuron (section 8.1.3)

v̇ = b + v2 , if v ≥ 1 (peak of spike), then v ← vreset (reset)

with b > 0.

11. Consider two mutually pulsed coupled oscillators with periods T1 ≈ T2 and type
1 phase transition curves PTC1 and PTC2, respectively. Show that the locking
behavior of the system can be described by the Poincare phase map

χn+1 = T1 − PTC1(T2 − PTC2(χn)) ,

where χn is the phase difference between the oscillators, that is, the phase of
oscillator 2 when oscillator 1 fires a spike.

12. [MATLAB] Write a program that solves the adjoint equation (10.10) numerically.
(Hint: Integrate the equation backward to achieve stability.)

13. [MATLAB] Write a program that finds the infinitesimal PRC using the relation-
ship

ϑ̇ = 1 + PRC (ϑ) εp(t) ,

the moments of firings of a neuron (zero crossings of ϑ(t)), and the injected
current εp(t); see section 10.2.4 and Fig.10.24.

14. Use the approaches of Winfree, Kuramoto, and Malkin to transform the integrate-
and-fire neuron v̇ = b− v + εp(t) in exercise 8 into its phase model

ϑ̇ = 1 + ε
(
eϑ/b

)
p(t) ,

with T = ln(b/(b− 1)).
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15. Use the approaches of Winfree, Kuramoto, and Malkin to transform the quadratic
integrate-and-fire neuron v̇ = 1 + v2 + εp(t) in exercise 9 into its phase model

ϑ̇ = 1 + ε (sin2 ϑ) p(t) ,

with T = π.

16. Use the approaches of Winfree, Kuramoto, and Malkin to transform the Andronov-
Hopf oscillator ż = (1 + i)z − z|z|2 + εp(t) with real p(t) into its phase model

ϑ̇ = 1 + ε (− sin ϑ)p(t) ,

with T = 2π.

17. (PRC for Andronov-Hopf) Consider a weakly perturbed system near supercritical
Andronov-Hopf bifurcation (see section 6.1.3)

ż = (b + i)z + (−1 + di)z|z|2 + εp(t) , z ∈ C .

with b > 0. Let ε = b
√

b/ε be small. Prove that the corresponding phase model
is

θ̇ = 1 + d + ε Im {(1 + di)p(t)e−iθ} .

When the forcing p(t) is one-dimensional (i.e., p(t) = cq(t) with c ∈ C and scalar
function q(t)), the phase model has the sinusoidal form

θ̇ = 1 + d + εs sin(θ − ψ)q(t) ,

with the strength s and the phase shift ψ depending only on d and c.

18. (Delayed coupling) Show that weakly coupled oscillators

ẋi = f(xi) + ε

n∑
j=1

gij(xi(t), xj(t− dij))

with explicit axonal conduction delays dij ≥ 0 have the phase model

ϕ′i = ωi +
n∑

j 6=i

Hij(ϕj − dij − ϕi)

where ′ = d/dτ , τ = εt is the slow time, and H(χ) is defined by (10.16). Thus,
explicit delays result in explicit phase shifts.

19. Determine the existence and stability of synchronized states in the system

ϕ̇1 = ω1 + c1 sin(ϕ2 − ϕ1)

ϕ̇2 = ω2 + c2 sin(ϕ1 − ϕ2)

as a function of the parameters ω = ω2 − ω1 and c = c2 − c1.
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20. Consider the Kuramoto model

ϕi = ω +
n∑

j=1

cij sin(ϕj + ψij − ϕi) ,

where cij and ψij are parameters. What can you say about its synchronization
properties?

21. Derive the self-consistency equation (10.22) for the Kuramoto model (10.20).

22. Consider the phase deviation model

ϕ′1 = ω + c1H(ϕ2 − ϕ1)

ϕ′2 = ω + c2H(ϕ1 − ϕ2)

with an even function H(−χ) = H(χ). Prove that the in-phase synchronized
state, ϕ1 = ϕ2, if it exists, cannot be exponentially stable. What can you say
about the anti-phase state ϕ1 = ϕ2 + T/2?

23. Prove that the in-phase synchronized state in a network of three or more pulse
coupled quadratic integrate-and-fire neurons is unstable.

24. Prove (10.25).

25. (Brown et al. 2004) Show that the PRC for an oscillator near saddle homoclinic
orbit bifurcation scales as PRC (ϑ) ∼ eλ(T−ϑ), where λ is the positive eigenvalue
of the saddle and T is the period of oscillation.

26. Consider the quadratic integrate-and-fire neuron ẋ = ±1 + x2 with the resetting
“ if x = +∞, then x ← xreset”. Prove that

regime SNIC homoclinic
model x′ = +1 + x2 x′ = −1 + x2, (xreset > 1)

xreset x xreset
x -1 1

period T π/2− atanxreset acothxreset

solution x(t) − cot(t− T ) − coth(t− T )
PRC Q(ϑ) sin2(ϑ− T ) sinh2(ϑ− T )

0
0

1

T

xreset=-1.1

0
0

5

T

xreset=+1.1
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Figure 10.47: Left: Relaxation oscillator in the limit µ = 0 near the onset of oscillation.
Middle and right: A magnification of a neighborhood of the jump point a1 for various
g(a1) and µ. Canard solutions can appear when g(a1) ¿ µ.

where coth, acoth, and sinh are hyperbolic cotangent, hyperbolic inverse cotan-
gent and hyperbolic sine, respectively.

27. [M.S.] Derive the PRC for an oscillator near saddle homoclinic orbit bifurcation
that is valid during the spike downstroke. Take advantage of the observation in
Fig.10.39 that the homoclinic orbit consists of two qualitatively different parts.

28. [M.S.] Derive the PRC for a generic oscillator near fold limit cycle bifurcation
(beware of the problems of defining the phase near such a bifurcation).

29. [M.S.] Simplify the connection function H for coupled relaxation oscillators
(Izhikevich 2000b) when the slow nullcline approaches the left knee, as in Fig.10.47.
Explore the range of parameters ε, µ, and |g(a1)| where the analysis is valid.

30. [Ph.D.] Use ideas outlined in section 10.4.5 to develop the theory of reduction of
weakly coupled bursters to phase models. Do not assume that bursting trajectory
is periodic.

Solutions to Chapter 10

1. In polar coordinates, z = reiϑ, the system has the form

ϑ̇ = 1 , ṙ = r − r3.

Since the phase of oscillation does not depend on the amplitude, the isochrons have the radial
structure depicted in Fig.10.3.

2. In polar coordinates, the oscillator has the form

ϑ̇ = 1 + dr2 , ṙ = r − r3.

The second equation has an explicit solution r(t), such that

r(t)2 =
1

1− (1− 1/r(0)2)e−2t
.
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The phase difference between ϑ̇lc = 1+ d(1)2 and ϑ̇ = 1+ dr(t)2 grows as χ̇ = d(r(t)2− 1), and
its asymptotic value is

χ(∞) =
∫ ∞

0

d(r(t)2 − 1) = d log r(0) .

Thus, on the χ-isochron, we have ϑ + d log r = χ.

3. An example is the file isochrons.m

function isochrons(F,phases,x0)
% plot isochrons of a planar dynamical system x’=F(t,x)
% at points given by the vector ’phases’.
% ’x0’ is a point on the limit cycle (2x1-vector)
T= phases(end); % is the period of the cycle
tau = T/600; % time step of integration
m=200; % spatial grid
k=5; % the number of skipped cycles

[t,lc] = ode23s(F,0:tau:T,x0); % forward integration
dx=(max(lc)-min(lc))’/m; % spatial resolution
center = (max(lc)+min(lc))’/2; % center of the limit cycle
iso=[x0-m^0.5*dx, x0+m^0.5*dx]; % isochron’s initial segment

for t=0:-tau:-(k+1)*T % backward integration
for i=1:size(iso,2)

iso(:,i)=iso(:,i)-tau*feval(F,t,iso(:,i)); % move one step
end;
i=1;
while i<=size(iso,2) % remove infinite solutions

if any(abs(iso(:,i)-center)>1.5*m*dx) % check boundaries
iso = [iso(:,1:i-1), iso(:,i+1:end)]; % remove

else
i=i+1;

end;
end;
i=1;
while i<=size(iso,2)-1

d=sqrt(sum(((iso(:,i)-iso(:,i+1))./dx).^2)); % normalized distance
if d > 2 % add a point in the middle

iso = [iso(:,1:i), (iso(:,i)+iso(:,i+1))/2 ,iso(:,i+1:end)];
end;
if d < 0.5 % remove the point

iso = [iso(:,1:i), iso(:,i+2:end)];
else

i=i+1;
end;

end;
if (mod(-t,T)<=tau/2) & (-t<k*T+tau) % refresh the screen

cla;plot(lc(:,1),lc(:,2),’r’); hold on; % plot the limit cycle
end;
if min(abs(mod(-t,T)-phases))<tau/2 % plot the isochrons

plot(iso(1,:),iso(2,:),’k-’); drawnow;
end;

end;
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hold off;

The call of the function is isochrons(’F’,0:0.1:2*pi,[1;0]); with

function dx = F(t,x);
z=x(1)+1i*x(2);
dz=(1+1i)*z-z*z*conj(z);
dx=[real(dz); imag(dz)];

4. (Hoppensteadt and Keener 1982) From calculus, B · C = |B| |C| cos(ψ). Since |B| = 1 and
C = (A + cos ϑ, sin ϑ) – see Fig.10.46 – we have B · C = A cosϑ + cos2 ϑ + sin2 ϑ. Hence,
cos ψ = (1+A cos ϑ)/

√
1 + 2A cos ϑ + A2. When ϑ is in the upper (lower) half-plane, the phase

is delayed (advanced).

5. An example is the file prc.m

function PRC=prc(F,phases,x0,A)
% plot phase-resetting curve (PRC) of system x’=F(t,x) + A delta(t)
% at points given by the vector ’phases’.
% ’x0’ is a point on the limit cycle with zero phase
% A is the strength of stimulation (row-vector)
% use peaks of spikes to find the phase differences
T= phases(end); % is the period of the cycle
tau = T/6000; % time step of integration
k=3; % the number of cycles needed to determine the new phase
PRC=[];
[tc,lc] = ode23s(F,0:tau:k*T,x0); % find limit cycle
peak=1+find(lc(2:end-1,1)>lc(1:end-2,1)&lc(2:end-1,1)>=lc(3:end,1));
peak0 = tc(peak(end)); % the last peak is used for reference
for i=1:length(phases)

[m,j]=min(abs(phases(i)-tc));
[t,x] = ode23s(F,phases(i):tau:k*T,lc(j,:)+A); % stimulate
peaks=1+find(x(2:end-1,1)>x(1:end-2,1)&x(2:end-1,1)>=x(3:end,1));
PRC=[PRC, mod(T/2+peak0-t(peaks(end)),T)-T/2];
subplot(2,1,2);drawnow;
plot(phases(1:length(PRC)),PRC);
xlabel(’phase of stimulation’);ylabel(’induced phase difference’);
subplot(2,1,1);
plot(tc,lc(:,1),’r’,t,x(:,1),t(peaks(end)),x(peaks(end),1),’ro’);
xlabel(’time’);ylabel(’membrane potential’);

end;

An example of a call of the function is PRC=prc(’F’,0:0.1:2*pi,[-1 0],[0.1 0]); with

function dx = F(t,x);
z=x(1)+1i*x(2);
dz=(1+1i)*z-z*z*conj(z);
dx=[real(dz); imag(dz)];

6.

gradϑ(x) =
(

ϑ(x + h1)− ϑ(x)
h1

, . . . ,
ϑ(x + hm)− ϑ(x)

hm

)

=
(

PRC1(ϑ(x), h1)
h1

, . . . ,
PRCm(ϑ(x), hm)

hm

)
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(in the limit h → 0)

=
(

Z1(ϑ(x))h1

h1
, . . . ,

Zm(ϑ(x))hm

hm

)

= (Z1(ϑ(x)), . . . , Zm(ϑ(x))) = Z(ϑ(x)) .

7. (Brown et al. 2004, appendix A) Let x be a point on the limit cycle and z be an arbitrary
nearby point. Let x(t) and z(t) be the trajectories starting from the two points, and y(t) =
z(t) − x(t) be the difference. All equations below are valid up to O(y2). The phase shift
∆ϑ = ϑ(z(t)) − ϑ(x(t)) = grad ϑ(x(t)) · y(t) does not depend on time. Differentiating with
respect to time and taking grad ϑ(x(t)) = Z(ϑ(t)) (see previous exercise), results in

0 = (d/dt) (Z(ϑ(t)) · y(t)) = Z ′(ϑ(t)) · y(t) + Z(ϑ(t)) ·Df(x(t))y(t)

= Z ′(ϑ(t)) · y(t) + Df(x(t))>Z(ϑ(t)) · y(t)

=
(
Z ′(ϑ(t)) + Df(x(t))>Z(ϑ(t))

)
· y(t) .

Since y is arbitrary, Z satisfies Z ′(ϑ) + Df(x(ϑ))>Z(ϑ) = 0, that is, the adjoint equation
(10.10). The normalization follows from (10.7).

8. The solution to v̇ = b− v with v(0) = 0 is v(t) = b(1− e−t) with the period T = ln(b/(b− 1))
determined from the threshold crossing v(T ) = 1. From v = b(1−e−ϑ) we find ϑ = ln(b/(b−v)),
hence

PRC (ϑ) = ϑnew − ϑ = min {ln(b/(b exp(−ϑ)−A), T} − ϑ .

9. The system v̇ = 1 + v2 with v(0) = −∞ has the solution (the reader should check this by
differentiating) v(t) = tan(t− π/2) with the period T = π. Since t = π/2 + atan v, we find

PTC (ϑ) = π/2 + atan [A + tan(ϑ− π/2)]

and
PRC (ϑ) = PTC (ϑ)− ϑ = atan [A + tan(ϑ− π/2)]− (ϑ− π/2) .

10. The system v̇ = b + v2 with b > 0 and the initial condition v(0) = vreset has the solution (the
reader should check this by differentiating)

v(t) =
√

b tan(
√

b(t + t0))

where
t0 =

1√
b

atan
vreset√

b
.

Equivalently,

t =
1√
b

atan
v√
b
− t0 .

From the condition v = 1 (peak of the spike), we find

T =
1√
b

atan
1√
b
− t0 =

1√
b

(
atan

1√
b
− atan

vreset√
b

)
,

Hence

PRC (ϑ) = ϑnew − ϑ = min { 1√
b

atan [
A√
b

+ tan(
√

b(ϑ + t0))]− t0, T} − ϑ .
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11. Let ϑ denote the phase of oscillator 1. Let χn denote the phase of oscillator 2 just before
oscillator 1 fires a spike (i.e., when ϑ = 0). This spike resets χn to PTC2(χn). Oscillator 2 fires
a spike when ϑ = T2−PTC2(χn), and it resets ϑ to PTC1(T2−PTC2(χn)). Finally, oscillator
1 fires its spike when oscillator 2 has the phase χn+1 = T1−PTC1(T2−PTC2(χn)).

12. [MATLAB] An example is the file adjoint.m

function Q=adjoint(F,t,x0)
% finds solution to the Malkin’s adjoint equation Q’ = -DF^t Q
% at time-points t with t(end) being the period
% ’x0’ is a point on the limit cycle with zero phase
tran=3; % the number of skipped cycles
dx = 0.000001; dy = 0.000001; % for evaluation of Jacobian

Q(1,:)=feval(F,0,x0)’; % initial point;
[t,x] = ode23s(F,t,x0); % find limit cycle

for k=1:tran
Q(length(t),:)=Q(1,:); % initial point;
for i=length(t):-1:2 % backward integration

L = [(feval(F,t(i),x(i,:)+[dx 0])-feval(F,t(i),x(i,:)))/dx,...
(feval(F,t(i),x(i,:)+[0 dy])-feval(F,t(i),x(i,:)))/dy];

Q(i-1,:) = Q(i,:) + (t(i)-t(i-1))*(Q(i,:)*L);
end;

end;
Q = Q/(Q(1,:)*feval(F,0,x0)); % normalization

An example of a call of the function is Q=adjoint(’F’,0:0.01:2*pi,[1 0]); with

function dx = F(t,x);
z=x(1)+1i*x(2);
dz=(1+1i)*z-z*z*conj(z);
dx=[real(dz); imag(dz)];

13. [MATLAB] We assume that PRC (ϑ) is given by its truncated Fourier series with unknown
Fourier coefficients. Then, we find the coefficients that minimize the difference between pre-
dicted and actual interspike intervals. The MATLAB file findprc.m takes the row vector of
spike moments, not counting the spike at time zero, and the input function p(t), determines the
sampling frequency and the averaged period of oscillation; and then calls the file prcerror.m
to find PRC.

function PRC=findprc(sp,pp)
global spikes p tau n
% finds PRC of an oscillator theta’= 1 + PRC(theta)pp(t)
% using the row-vector of spikes ’sp’ (when theta(t)=0)
spikes = [0 sp];
p=pp;
tau = spikes(end)/length(p) % time step (sampling period)
n=8; % The number of Fourier terms approximating PRC
coeff=zeros(1,2*n+1); % initial approximation
coeff(2*n+2) = spikes(end)/length(spikes); % initial period

coeff=fminsearch(’prcerror’,coeff);
a = coeff(1:n) % Fourier coefficients for sin
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b = coeff(n+1:2*n) % Fourier coefficients for cos
b0= coeff(2*n+1) % dc term
T = coeff(2*n+2) % period of oscillation
PRC=b0+sum((ones(floor(T/tau),1)*a).*sin((tau:tau:T)’*(1:n)*2*pi/T),2)+...

sum((ones(floor(T/tau),1)*b).*cos((tau:tau:T)’*(1:n)*2*pi/T),2);

The following program must be in the file prcerror.m.

function err=prcerror(coeff)
global spikes p tau n
a = coeff(1:n); % Fourier coefficients for sin
b = coeff(n+1:2*n); % Fourier coefficients for cos
b0= coeff(2*n+1); % dc term
T = coeff(2*n+2); % period of oscillation
err=0;
i=1;
clf;
for s=2:length(spikes)

theta=0;
while i*tau<=spikes(s)

PRC=b0+sum(a.*sin((1:n)*2*pi*theta/T))+...
sum(b.*cos((1:n)*2*pi*theta/T));

theta = theta + tau*(1+PRC*p(i));
i=i+1;

end;
err = err + (theta-T)^2;
subplot(2,1,1);
plot(spikes(s),T,’r.’,spikes(s),theta,’b.’);hold on;

end;
axis([0 spikes(end) 0.75*T 1.25*T])
subplot(2,1,2);
PRC=b0+sum((ones(floor(T/tau),1)*a).*sin((tau:tau:T)’*(1:n)*2*pi/T),2)+...

sum((ones(floor(T/tau),1)*b).*cos((tau:tau:T)’*(1:n)*2*pi/T),2);
plot(PRC);
err = (err/(length(spikes)-1))^0.5; % normalization
text(0,mean(PRC),[’err=’ num2str(err)]);
drawnow;

14. Winfree approach: Using results of exercise 8,

∂

∂A
ln

b

be−ϑ −A
=

1
be−ϑ −A

and setting A = 0, we obtain Z(ϑ) = eϑ/b.

Kuramoto approach: The solution is v(ϑ) = b(1 − e−ϑ) with T = ln(b/(b − 1)) and f(v(ϑ)) =
be−ϑ. From the condition (10.7), grad (ϑ) = 1/f(v(ϑ)) = eϑ/b.

Malkin approach: Df = −1; hence Q̇ = 1 · Q has the solution Q(t) = Cet. The free constant
C = 1/b is found from the normalization condition Q(0) · (b− 0) = 1.

15. Winfree approach: Using results of exercise 10 and the relation PRC=PTC−ϑ, we obtain,

∂

∂A
(π/2 + atan (A− cot ϑ)− ϑ) =

1
1 + (A− cot ϑ)2
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and, setting A = 0, Z(ϑ) = sin2 ϑ.
Kuramoto approach: The solution is v(ϑ) = − cot ϑ with T = π and f(v(ϑ)) = 1/ sin2 ϑ. From
the normalization condition (10.7), grad (ϑ) = 1/f(v(ϑ)) = sin2 ϑ.
Malkin approach: Df = 2v, hence Q̇ = 2 cot(t) · Q has the solution Q(t) = C sin2 t. The free
constant C = 1 is found from the normalization condition Q(π/2) · (1 + 02) = 1.

16. Winfree approach: Using results of exercise 4,

Z(ϑ) =
∂

∂A
acos

1 + A cos ϑ√
1 + 2A cosϑ + A2

= − sinϑ

at A = 0.
Kuramoto approach: Since grad ϑ(x) is orthogonal to the contour line of the function ϑ(x) at
x (i.e., the isochron of x) and the results of exercise 1 that isochrons are radial, we obtain
grad (ϑ) = (− sinϑ, cos ϑ), using purely geometrical considerations. Since p(t) is real, we need
to keep only the first component.

Malkin approach: Let us work in the complex domain. On the circle z(t) = eit we obtain
Df = i. Since Df> is equivalent to complex-conjugation in the complex domain, we obtain
Q̇ = i · Q, which has the solution Q(t) = Ceit. The free constant C = i is found from the
normalization condition Q(0)∗i = 1, where ∗ means complex-conjugate.

Alternatively, on the circle z(t) = eit, we have f(z(t)) = f(eit) = ieit. From the normalization
condition Q(t)∗f(z(t)) = 1 we find Q(t) = ieit = − sin ϑ + i cos ϑ.

17. Rescaling the state variable z =
√

bu and the time, τ = εt, we obtain the reduced system

u′ = (1 + i)u + (−1 + di)u|u|2 + εp(t) .

We can apply the theory only when ε is small. That is, the theory is guaranteed to work in
a very weak limit ε ¿ b

√
b ¿ 1. As is often the case, numerical simulations suggest that the

theory works well outside the guaranteed interval. Substituting u = reiθ into this equation,

r′eiθ + reiθiθ′ = (1 + i)reiθ + (−1 + di)r3eiθ + εp(t) ,

dividing by eiθ, and separating real and imaginary terms, we represent the oscillator in polar
coordinates

r′ = r − r3 + εRe p(t)e−iθ

θ′ = 1 + dr2 + ε Im r−1p(t)e−iθ .

When ε = 0, this system has a limit cycle attractor r(t) = 1 and θ(t) = (1 + d)t, provided that
d 6= −1. On the attractor, the solution to Malkin’s adjoint equation (10.10),

Q′ = −
( −2 0

2d 0

)>
Q with Q(t) ·

(
0

1 + d

)
= 1 ,

is Q(t) = (d, 1)/(1+d). Indeed, the normalization condition results in Q2(t) = 1/(1+d). Hence,
unique periodic solution of the first equation, Q′1 = 2Q1 − 2d/(1 + d), is Q1(t) = d/(1 + d).
One can also use Kuramoto’s approach and the results of exercise 2. The corresponding phase
model,

ϑ′ = 1 + ε{d Re p(t)e−i(1+d)ϑ + Im p(t)e−i(1+d)ϑ}/(d + 1) ,

can be simplified via θ = (1 + d)ϑ (notice the font difference) to get the result.
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18. (Delayed coupling) Let ϑ(t) = t + ϕ(τ), where τ = εt is the slow time. Since ϑ(t − d) =
t− d + ϕ(τ − εd) = t− d + ϕ(τ) +O(ε), we have xj(ϑi(t− dij)) = xj(t− dij + ϕ(τ)), so that
we can proceed as in section 10.2.5, except that there is an extra term, −dij , in (10.16). See
also Izhikevich (1998).

19. Let χ = ϕ2 − ϕ1; then we have
χ̇ = ω − c sin χ .

If |ω/c| ≤ 1, then there are two synchronized states, χ = arcsin (ω/c) and χ = π− arcsin (ω/c),
one stable and the other unstable.

20. From the theorem of Hoppensteadt and Izhikevich (1997), presented in section 10.3.3, it follows
that Kuramoto’s model is a gradient system when cij = cji and ψij = −ψji. From Ermentrout’s
theorem presented in the same section, it follows that the synchronized state ϕi = ϕj is stable
if, for example, all ψij = 0 and cij > 0.

21. Since the probability density function g(ω) is symmetric, the averaged frequency deviation of
the network is zero, and, rotating the coordinate system, we can make the cluster phase ψ = 0.
The network is split into two populations: One oscillating with the cluster (|ω| < Kr), thereby
forming the cluster, and one drifting in and out of the cluster. The latter does not contribute
to the Kuramoto synchronization index, because contributions from different oscillators cancel
each other on average. In the limit n →∞, the sum (10.21) becomes the integral

r =
∫

eiϕ(ω)g(ω)dω ≈
∫

|ω|<Kr

eiϕ(ω)g(ω)d ω .

Next, since there are as many oscillators with positive ϕ as with negative, the imaginary parts
of eiϕ(ω) cancel each other, so that

r =
∫

|ω|<Kr

cos ϕ(ω)g(ω)dω .

Using the condition for locking with the cluster, ω = Kr sin ϕ, we change the variables in the
integral and obtain (10.22).

22. Let χ = ϕ2−ϕ1; then χ′ = (c2− c1)H(χ). The in-phase state χ = 0 exists when either c1 = c2

or H(0) = 0. Since H(χ) is even, H ′(0) = 0, and hence it is neutrally stable in either case.
The anti-phase state χ = T/2 exists when H(T/2) = 0, and it can be exponentially stable or
unstable, depending on the sign of H ′(T/2).

23. See Izhikevich (1999), Sect IVB.

24. The exponential stability requirement is G′(0) = −2H ′(0) < 0. Since x′(t) = f(x(t)), we have

TH ′(0) =
∫ T

0

g′(x(t))f(x(t))
f(x(t))

dt =
∫ T

0

g′(x(t)) dt =
∫

S1

g′(x)
f(x)

dx > 0

Integrating the latter equation by parts, or differentiating

H(χ) =
1
T

∫ T

0

g(x(t))
f(x(t− χ))

dt at χ = 0, we obtain
∫

S1

f ′(x)
f2(x)

g(x) dx > 0 .

25. (Brown et al. 2004) The solution of x′ = λx with x(0) = x0 is x(t) = x0e
λt. The period T =

log(∆/x0)/λ is found from the condition x(T ) = ∆. Hence, Q(ϑ) = 1/(λx(ϑ)) = 1/(λx0e
λϑ) =

eλ(T−ϑ)/(∆λ).
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26. Let us first consider the SNIC case ẋ = 1+x2. The solution starting with x(0) = xreset has the
form (the reader should check by differentiating) x(t) = tan(t+t0), where t0 = atan xreset. The
period should be found from the condition tan(T + t0) = +∞, and it is T = π/2− t0. Hence,
x(t) = tan(t + π/2− T ) = − cot(t− T ). Now, Q(ϑ) = 1/(1 + x(ϑ)2) = 1/(1 + cot2(ϑ− T )) =
sin2(ϑ− T ).
The homoclinic case ẋ = −1 + x2 is quite similar. The solution starting with x(0) = xreset > 1
has the form (the reader should check by differentiating) x(t) = − coth(t + t0), where t0 =
acoth(−xreset) = − acoth(xreset). The period is found from the condition − coth(T + t0) = +∞
resulting in T = −t0. Hence, x(t) = − coth(t − T ). Finally, Q(ϑ) = 1/(−1 + x(ϑ)2) =
1/(1 + coth2(ϑ− T )) = sinh2(ϑ− T ).


