Aulas em Física para pós-graduação

Física Atômica e Molecular

Ph.W. Courteille
Universidade de São Paulo
Instituto de Física de São Carlos
17 de novembro de 2017
Sumário

0 Preface .. 1
 0.1 Organização do curso 1
 0.2 Literatura recomendada 2

1 Revisão da física moderna e da mecânica quântica 3
 1.1 Constantes em física atômica 3
 1.1.1 Unidades atômicas 4
 1.2 Modelos do átomo 4
 1.2.1 Modelo do Demócrito 4
 1.2.2 Modelo de Thomson e experimento do Rutherford 6
 1.2.3 Emissão de radiação no modelo planetário 9
 1.2.4 Efeito Zeeman no modelo planetário 10
 1.2.5 Teoria de Bohr e suas limitações 12
 1.3 Formalismo da mecânica quântica 13
 1.3.1 Equação de Schrödinger 14
 1.3.2 Caracterização de sistemas por operadores 14
 1.4 Exercícios .. 14
 1.4.1 Modelos do átomo 14
 1.4.2 Formalismo da mecânica quântica 16

2 Rotações / Potenciais centrais 17
 2.1 Partícula num potencial central 17
 2.1.1 Hamiltoniano em coordenadas esféricas 17
 2.1.2 Separação do movimento radial 19
 2.2 Tratamento quântico do hidrogênio 20
 2.2.1 O modelo de Bohr 21
 2.2.2 O teorema virial 24
 2.3 Momento angular ... 25
 2.3.1 Operador do momento angular orbital 25
 2.3.2 Álgebra SU(2) do momento angular e spin 26
 2.3.3 O spin do elétron 27
 2.4 Acoplamento de momentos angulares 28
 2.4.1 Sistema de dois elétrons 28
 2.4.2 Estados singlete e tripleto 29
 2.4.3 Bases desacopladas e acopladas 31
 2.4.4 Coeficientes de Clebsch-Gordan 33
 2.5 Exercícios .. 35
 2.5.1 Partícula num potencial central 35
 2.5.2 Tratamento quântico do hidrogênio 36
 2.5.3 Momento angular 37
 2.5.4 Acoplamento de momentos angulares 38
3 Métodos de aproximação

3.1 Perturbações estacionárias ... 41
 3.1.1 Método de perturbação independente do tempo 41
 3.1.2 TPIT com estados degenerados 43

3.2 Método variacional .. 46
 3.2.1 A fração de Rayleigh ... 46
 3.2.2 Método de Rayleigh-Ritz 47

3.3 Exercícios ... 47
 3.3.1 Perturbações estacionárias 47
 3.3.2 Método variacional .. 49

4 Subestrutura de átomos hidrogenoides 53

4.1 Estrutura fina e equação de Dirac 53
 4.1.1 Correção para velocidades relativas 54
 4.1.2 Correção pelo acoplamento spin-órbita 55
 4.1.3 Interação elétron-núcleo não-local 57
 4.1.4 Resumo das correções .. 58
 4.1.5 Deslocamento de Lamb 59

4.2 Estrutura hiperfina .. 59
 4.2.1 Acoplamento ao spin do núcleo 60
 4.2.2 Interação quadrupolar elétrica 62

4.3 Átomos exóticos .. 63
 4.3.1 Positrônio e múonio ... 63
 4.3.2 Átomos hadrônicos .. 64
 4.3.3 Hidrogênio muônico .. 64
 4.3.4 Átomos de Rydberg .. 65

4.4 Exercícios ... 67
 4.4.1 Estrutura fina e equação de Dirac 67
 4.4.2 Estrutura hiperfina ... 67
 4.4.3 Átomos exóticos .. 68

5 Átomos com spin em campos externos 69

5.1 Partículas carregadas em campo eletromagnético 69
 5.1.1 Lagrangiano e hamiltoniano de partículas carregadas ... 69
 5.1.2 Acoplamento mínimo .. 70

5.2 Interação com campos magnéticos 70
 5.2.1 Efeito Zeeman normal da estrutura fina 70
 5.2.2 Efeito Zeeman anômalo 71
 5.2.3 Efeito Paschen-Back e campos magnéticos intermediários 72
 5.2.4 Efeito Zeeman da estrutura hiperfina 72
 5.2.5 Efeito Paschen-Back da estrutura hiperfina 74
 5.2.6 Estrutura hiperfina em regime de campos intermediários 74

5.3 Interação com campos elétricos 76
 5.3.1 Efeito Stark .. 76

5.4 Exercícios ... 77
 5.4.1 Partículas carregadas em campo eletromagnético 77
 5.4.2 Interação com campos magnéticos 77
 5.4.3 Interação com campos elétricos 79
6 Interação de luz com átomos monoeletrônicos

6.1 Transições entre estados atômicos 81
6.1.1 Perturbação dependente do tempo por uma onda plana 81
6.1.2 Absorção e emissão estimulada 82
6.1.3 Emissão espontânea ... 83
6.2 Transições dipolares .. 85
6.2.1 Aproximação dipolar ... 85
6.2.2 Regras de seleção e transições eletrônicas 87
6.2.3 Resumo das regras de seleção inclusive estrutura fina 89
6.3 Linhas espectrais e tempos de vida 90
6.3.1 Largura natural de uma transição 90
6.3.2 Alargamento de linha homogêneo 91
6.3.3 Alargamento de linha inomogêneo 91
6.3.4 Equações de Bloch ópticas 91
6.4 Exercícios ... 92
6.4.1 Transições entre estados atômicos 92
6.4.2 Transições dipolares ... 92
6.4.3 Linhas espectrais e tempos de vida 92
6.4.4 Equações de Bloch ópticas 94

7 Átomos de múltiplos elétrons .. 95
7.1 Simetriação de bosons e fermions 95
7.1.1 O princípio de Pauli ... 96
7.1.2 Consequências para estatística quântica 98
7.2 Hélio ... 98
7.2.1 O estado fundamental ... 98
7.2.2 Estados excitados ... 100
7.3 Estrutura da casca eletrônica 103
7.3.1 Modelo de Thomas-Fermi 104
7.3.2 Método de Hartree ... 107
7.3.3 Método de Hartree Fock 109
7.4 O sistema periódico dos elementos 112
7.4.1 Modelo de camadas eletrônicas 113
7.4.2 Alcalinos ... 115
7.4.3 Acoplamento LS e jj .. 117
7.4.4 Resumo dos graus de liberdade de um átomo 118
7.5 Exercícios ... 119
7.5.1 Simetriação de bosons e fermions 119
7.5.2 Hélio ... 120
7.5.3 Estrutura da casca eletrônica 120
7.5.4 O sistema periódico dos elementos 120

8 Moléculas diméricas .. 123
8.1 A ligação molecular .. 123
8.1.1 Ligação iônica e covalente 123
8.1.2 Aproximação de Born-Oppenheimer e a molécula H₂ 125
8.1.3 Combinação linear de orbitais atômicos e a molécula H₂ .. 127
8.1.4 Teoria dos orbitais moleculares 128
SUMÁRIO

8.1.5 Ligação de valência .. 130
8.2 Estrutura rovibracional dos potenciais moleculares 134
 8.2.1 As equações radial e angular 134
 8.2.2 Estados moleculares vibracionais 135
 8.2.3 O princípio de Franck-Condon 138
 8.2.4 Progressão rotacional .. 140
 8.2.5 Computação dos estados vibracionais 142
8.3 Forças de van der Waals e acoplamento ao spin 145
 8.3.1 Modelos analíticos para potenciais de curto e longo alcance 146
 8.3.2 Acoplamento de spins em dímeros, números quânticos moleculares ... 147
 8.3.3 Os casos de acoplamento de Hund 148
8.4 Exercícios ... 149
 8.4.1 Ligação molecular .. 149
 8.4.2 Estrutura rovibracional dos potenciais moleculares 150
 8.4.3 Forças de van der Waals e acoplamento ao spin 151
9 Colisões .. 153
 9.1 Teoria de espalhamento .. 153
 9.1.1 Equação de Lippmann-Schwinger 153
 9.1.2 Pacotes de onda .. 155
 9.1.3 Aproximação de Born ... 157
 9.1.4 Potenciais esféricos ... 157
 9.1.5 Fase e comprimento de espalhamento 159
 9.1.6 Teorema óptico .. 160
 9.2 Colisões de átomos frios .. 162
 9.2.1 Estados ligados e ressonâncias em colisões frias 163
 9.2.2 Colisões entre partículas idênticas 164
 9.2.3 Colisões de átomos quentes 166
 9.3 Exercícios .. 166
 9.3.1 Teoria de espalhamento .. 166
 9.3.2 Colisões de átomos frios 167
Capítulo 0

Preface

A física dos átomos é tem uma história de quase 2500 anos, começando com o postulado da existência do átomo por Demócrito até sua descrição pela teoria da mecânica quântica. De fato, a necessidade de entender o átomo e sua interação com a luz foi a primeira motivação para o desenvolvimento da mecânica quântica, tal que os cursos em física atômica e em mecânica quântica geralmente tem uma grande sobreposição temática.

O aluno ouvinte deste curso desejando aprofundar seu conhecimento da matéria é encorajado também consultar, além de outros livros, a apostila do curso de Mecânica quântica aplicada do mesmo autor.

0.1 Organização do curso

A apostila foi desenvolvida para o curso Física Atômica e Molecular (SFI5814) oferecido pelo Instituto de Física de São Carlos (IFSC) da Universidade de São Paulo (USP). O curso é destinado à estudantes em Física de pós-graduação. A apostila é uma versão preliminar continuamente sujeita à correções e modificações. Notificações de erros e sugestões de melhoramento sempre são bem-vindas. A apostila incorpora exercícios as soluções das quais podem ser obtidas do autor.

Informações e anúncios a respeito do curso serão publicados na página web:
http://www.ifsc.usp.br/strontium/—>Teaching—>SFI5814

A avaliação do estudante será feita baseado em provas escritas e um seminário sobre um tópico específico. No seminário o estudante apresentará um tópico em 15 minutos. Ele também entregará um trabalho científico de 4 páginas em forma digital. Tópicos possíveis são:
- Condensação de Bose-Einstein,
- O método de Hartree-Fock,
- A aproximação WKB,
- O método de simulação de Monte Carlo da função de onda,
- A radiação do corpo negro e sua influência sobre os estados dos átomos,
- O efeito Zeno quântico,
- Evolução temporal de uma partícula livre descrita por um pacote de onda gaussiano,
- As equações de Bloch: derivação e interpretação,
- Átomos exóticos: o muônio,
- O salto quântico. A sua história e observação,
- O átomo de hélio,
- O efeito Stark quadrático e dinâmico,
- Cálculo de efeito fotoelétrico à partir da regra de ouro de Fermi,
- O método de combinação de orbitais atômicos (LCAO),
- Moléculas ultrafrías.

0.2 Literatura recomendada

P.W. Atkins e R.S. Friedman, Molecular Quantum Mechanics (Oxford University 1997, 2001)
I.N. Levine, Quantum Chemistry, (Boston, Allyn and Bacon, 1983)
H.A. Bethe, R. Jackiw, Intermediate Quantum Mechanics, 2nd ed. (W.A. Benkamin, Inc)
J.I. Stienfeld, Molecules and Radiation, (The MIT Press)
B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, (John Wiley & Sons)
C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum mechanics, vol. 1, (Wiley Interscience)
Capítulo 1

Revisão da física moderna e da mecânica quântica

1.1 Constantes em física atômica

<table>
<thead>
<tr>
<th>Constantes físicas:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidade da luz</td>
<td>$c = 299792458 \text{ m/s}$</td>
</tr>
<tr>
<td>Constante de Planck</td>
<td>$\hbar = 1.05457266 \times 10^{-34} \text{ Js}$</td>
</tr>
<tr>
<td>Unidade de massa atômica</td>
<td>$u = 1.6605402 \times 10^{-27} \text{ kg}$</td>
</tr>
<tr>
<td>Constante de Boltzmann</td>
<td>$k_B = 1.380658 \times 10^{-23} \text{ J/K}$</td>
</tr>
<tr>
<td>Constante de Faraday</td>
<td>$F = 96485.309 \text{ C/mol}$</td>
</tr>
<tr>
<td>Permeabilidade</td>
<td>$\mu_0 = 10^{-7} \text{ Vs/Am}$</td>
</tr>
<tr>
<td>Constante de gravitação</td>
<td>$\gamma = 6.67259 \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$</td>
</tr>
<tr>
<td>Massa do elétron</td>
<td>$m_e = 9.1096 \times 10^{-12} \text{ kg}$</td>
</tr>
<tr>
<td>Carga do elétron</td>
<td>$e = 1.60217733 \times 10^{-19} \text{ C}$</td>
</tr>
<tr>
<td>Fator g do elétron</td>
<td>$g = 2.002319304386$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constantes derivadas:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante de estrutura fina</td>
<td>$\alpha = e^2/4\pi\varepsilon_0hc \approx 1/137$</td>
</tr>
<tr>
<td>Constante de Avogadro</td>
<td>$N_A = 1/u_A \times 1 \text{g/mol} = 6.0221367 \times 10^{23} \text{1/mol}$</td>
</tr>
<tr>
<td>Constante do gás</td>
<td>$R = N_Ak_B = 8.314510 \text{ J/mol K}$</td>
</tr>
<tr>
<td>Permitividade</td>
<td>$\varepsilon_0 = 1/\mu_0c^2 = 8.8542 \times 10^{-12} \text{ As/Vm}$</td>
</tr>
<tr>
<td>Raio de Bohr</td>
<td>$a_B = 4\pi\varepsilon_0\hbar^2/m_e e^2 = 0.529 \times 10^{-10} \text{ m}$</td>
</tr>
<tr>
<td>Magneton de Bohr</td>
<td>$\mu_B = eh/2m_e = 9.27 \times 10^{-24} \text{J/T}$</td>
</tr>
<tr>
<td>Raio de clássico do elétron</td>
<td>$r_e = \alpha^2a_B$</td>
</tr>
<tr>
<td>Constante de Rydberg</td>
<td>$R_\infty = m_e\alpha^2/2h = 13.7 \text{ eV}$</td>
</tr>
<tr>
<td>Comprimento de onda de Compton</td>
<td>$\lambda_C = h/m_e c$</td>
</tr>
<tr>
<td>Seção de choque de Thomson</td>
<td>$\sigma_e = (8\pi/3)r_e^2$</td>
</tr>
<tr>
<td>Massa do múon</td>
<td>$m_\mu = 105.658389 \text{ MeV}$</td>
</tr>
<tr>
<td>Massa do próton</td>
<td>$m_p = 938.27231 \text{ MeV}$</td>
</tr>
<tr>
<td>Massa do neutron</td>
<td>$m_n = 939.56563 \text{ MeV}$</td>
</tr>
<tr>
<td>Massa do deuteron</td>
<td>$m_d = 1875.61339 \text{ MeV}$</td>
</tr>
</tbody>
</table>
1.1.1 Unidades atômicas

Um sistema de unidade comumente usado em física atômica são as unidades atômicas. Este sistema se baseia no sistema de unidades gaussianas (CGS)\(^1\) definido por,

\[e_{\text{cgs}} = e / \sqrt{4 \pi \varepsilon_0}, \quad a_B = 1 / \alpha \times \hbar / m_e c = \hbar^2 / m_e e_{\text{cgs}}^2, \quad \hbar = 1. \] \tag{1.1}

Com isso damos a energia em termos de \(e_{\text{cgs}}^2 / a_B\), o vetor de onda em termos de \(1 / a_B\), a distancia em termos de \(a_B\) e a massa em termos de \(m_e\), tal que,

\[\tilde{E} = E / (e_{\text{cgs}}^2 / a_B), \]
\[\tilde{k} = k a_B, \]
\[\tilde{R} = R / a_B, \]
\[\tilde{\mu} = \mu / m_e. \] \tag{1.2}

Esta notação simplifica as fórmulas. Por exemplo:

\[k = \sqrt{\frac{2 \mu}{\hbar^2}} (E - V) \text{ fica } \tilde{k} = \sqrt{2 \tilde{\mu}} (\tilde{E} - \tilde{V}), \] \tag{1.3}
\[V = C_6 \frac{e_{\text{cgs}}^2 a_B^5}{\tilde{R}^6} \text{ fica } \tilde{V} = \frac{C_6}{\tilde{R}^6}. \]

1.2 Modelos do átomo

1.2.1 Modelo do Demócrito

"Os princípios de toda a realidade são os átomos e o vazio enquanto as outras coisas são meras opiniões." Esta é uma citação do filósofo grego Demócrito 400 ante Cristo e ante Sócrates. Junto com seu professor Leucipo, ele formou a primeira ideia de partículas indivisíveis: os átomos.

![Figura 1.1: Demócrito e poeira num raio de sol.](image)

A obra de Demócrito sobreviveu apenas na forma de relatos de segunda mão a maioria sendo escritas por Aristóteles que também, defendendo a ideia do contínuo, erá o maior crítico da teoria do Demócrito. Aristóteles disse que o raciocínio que guiou Demócrito para afirmar a existência dos átomos foi o seguinte. Para que um corpo possa mudar a sua forma, é necessário que as suas partes podem se mover. Isso pressupõe o vazio no qual a matéria se desloca. Mas, se a matéria se dividisse em partes sempre menores infinitamente no vazio, ela não teria consistência. Nada poderia se formar porque nada poderia surgir da diluição sempre cada vez mais infinitamente.

\(^1\)Consulte a apostila *Eletrodinâmica* do mesmo autor.
profunda da matéria no vazio. Daí concluiu que, a divisão da matéria não pode ser infinita, isto é, há um limite indivisível, o átomo. "Há apenas átomos e vazio", disse ele.

Observando partículas de poeira num movimento de turbilhão dentro de um raio de sol, Demócrito foi levado à ideia de que os átomos se comportariam da mesma maneira, colidindo aleatoriamente, alguns se aglomerando, outros se dispersando, outros ainda nunca se juntando com outro átomo.

A consistência dos aglomerados de átomos, que faz com que algo pareça sólido, líquido, gasoso ou anímico (que é o estado de espírito) seria então determinada pela forma dos átomos envolvidos e seu arranjo espacial. Desse modo, os átomos de água são lisos e escorregadios; os átomos de aço possuem um formato com bordas afiadas, que os prendem solidamente entre si; os átomos de sal, como demonstra o seu gosto, são ásperos e pontudos; os átomos de ar são pequenos e pouco ligados, penetrando todos os outros materiais; e os átomos da alma e do fogo são esféricos e muito delicados.

Figura 1.2: Átomos numa gota de água, átomos de aço e de ar, átomos anímicos e o modelo do átomo de Bohr.

Sabemos hoje em dia que a primeira teoria da estrutura da matéria do Demócrito estava bem perto da verdade: Realmente existem partículas indivisíveis chamado de átomos compostos por um núcleo é uma camada eletrônica, e o espaço entre os núcleos atômicos é bastante vazio.

A hipótese atômica viria a renascer na idade moderna com Boyle, Clausius, Maxwell e Boltzmann devido ao sucesso das explicações das propriedades de um gás por meio da chamada teoria cinética, onde assumiam o gás constituído de moléculas idênticas que colidiam elasticamente entre si e com as paredes do recipiente que as contém. A descoberta do átomo através das leis das proporções em química e o estabelecimento do número de Avogadro fortaleceram consideravelmente a hipótese atômica da matéria que foi definitivamente consagrada com os vários experimentos clássicos que estabeleceram a carga do elétron e a relação da massa entre elétrons e prótons.

No início do século 19 a natureza atômica da matéria tinha definitivamente sido estabelecida, e também já era relativamente bem conhecida a composição básica dos átomos. Sabia-se, através de experimentos, que elétrons podiam ser removidos de átomos neutros criando íons positivamente carregados, e que dependendo do tipo de átomo, somente um determinado número de elétrons podia ser removido de cada um. Este número provou ser dependente de cada espécie e denominado de número atômico Z. Estas informações foram fundamentais para o estabelecimento da composição básica dos átomos. A questão que surgia nesta altura dizia respeito as dimensões e configurações do sistema atômico. Como as cargas e massas estariam distribuídas nesta entidade?
1.2.2 Modelo de Thomson e experimento do Rutherford

Em um série de experimentos feitos antes de 1911 o Ernest Rutherford analisou a estrutura interna de átomos de ouro usando partículas α, isto é, átomos He$^{2+}$. O experimento realizado por Geiger, Marsden e Rutherford consistia em observar a deflexão de partículas α proveniente de um feixe colimado quando espalhado por uma fina folha metálica (ouro de espessura $\sim 1 \mu m$) cuidadosamente obtidas por eletrodeposição [vide Fig. 1.3(c-d)].

O modelo do átomo proposto por Joseph John Thomson propõe uma estrutura tipo de pudim de passas: os elétrons seriam distribuídos de forma homogênea dentro de um núcleo extenso (de tamanho 0.1 nm) de carga positiva assim compensando a carga. As partículas α penetrariam o núcleo de ouro, percebido como quase homogêneo, mas sofreriam múltiplas deflexões devido às colisões com os elétrons desordenados dentro do núcleo. Como os elétrons são muito leves, o ângulo de deflexão θ seria pequeno, mesmo após muitas colisões. Para este modelo espera-se uma dependência gaussiana do ângulo de deflexão das partículas α dada pela seção transversal de espalhamento [vide Fig. 1.3(a-b)],

$$\frac{d\sigma}{d\Omega} \propto e^{-\theta^2/\theta_0^2}$$

onde θ_0 é um ângulo pequeno.

No entanto, as medidas realizadas neste espalhamento de Rutherford mostraram resultados diferentes:

- Para um ângulo de espalhamento θ fixo a quantidade de partículas espalhadas dentro de um elemento de ângulo sólido $d\Omega$ é proporcional à espessura da folha metálica.

Figura 1.3: Comparação do espalhamento de Rutherford por elétrons livres e elétrons fortemente ligados a núcleos pequenos. (a) Átomo tipo "pudim de passas" de Thomson; (b) átomo planetário de Rutherford. (c) O espalhamento de Rutherford por um átomo pudim de passas e (d) por átomo planetário.
• Para um determinado ângulo fixo e uma dada folha metálica a quantidade de partículas espalhadas em \(d\Omega\) varia inversamente com \(E_{\text{kin}}^2\), onde \(E_{\text{kin}}\) é a energia cinética das partículas \(\alpha\).

• Para uma determinada energia e uma dada folha metálica, o número de partículas espalhadas em \(d\Omega\) é proporcional a \((\sin \frac{\theta}{2})^{-4}\).

• Para uma determinada energia e espessura da folha o número de partículas espalhadas em \(d\Omega\) numa determinada direção é proporcional a \(Z_{tg}^2\), onde \(Z_{tg}\) é o número atômico do elemento que constitui a folha.

A deflexão extremamente rara de partículas \(\alpha\) e a sua distribuição angular pode ser entendida pela suposição, que a carga positiva está localizada em um volume muito pequeno (\(~1\ fm\) ou seja \(10000\) vezes menor do que do próprio átomo). Este volume é chamado de núcleo atômico, daí a denominação de modelo nucleado. Uma vez que a maioria das partículas passam através da folha de ouro sem impedimento, deve haver uma grande folga entre os núcleos. Os elétrons, que se movem em relação ao diâmetro do núcleo grande espaço vazio (vácuo) em torno do núcleo, protegem a carga nuclear positiva, de modo que o átomo aparecer exteriormente neutro.

![Figura 1.4: (Esquerda:) Trajetória da partícula \(\alpha\). (Direita:) Ilustração da seção de choque.](image)

Derivamos agora a fórmula de espalhamento de Rutherford à partir da hipótese de um núcleo puntiforme. Devido à ação repulsiva da força de Coulomb,

\[
F = \frac{Z_{\alpha}Z_{tg}e^2}{4\pi\varepsilon_0r^2}, \tag{1.5}
\]

temos para a trajetória da partícula \(\alpha\) (\(Z_{\alpha} = 2\)) uma hipérbola [vide Fig. 1.4(a)]. O grande semi-eixo da hipérbola pode ser determinado à partir do seguinte ansatz,

\[
E_{\text{kin}} = \frac{Z_{\alpha}Z_{tg}e^2}{4\pi\varepsilon_0} \frac{1}{2a}, \tag{1.6}
\]

onde \(2a\) é a distância mínima da partícula \(\alpha\), quando ela colide com o núcleo numa colisão central \(^2\). A distância \(a\) depende da energia cinética e pode ser usada também para colisões não centrais. O parâmetro de colisão \(b\) é a distância mínima da partícula \(\alpha\) do núcleo, se ela continuasse voar numa linha reta. De fato a partícula \(\alpha\) será defletida por um ângulo \(\theta\). Da geometria da hipérbola, como \(2\phi + \theta = 180^\circ\), obtemos a seguinte equação:

\[
\tan \phi = \frac{b}{a} = \tan \left(90^\circ - \frac{\theta}{2}\right) = \cot \left(\frac{\theta}{2}\right), \tag{1.7}
\]

\(^2\)Numa colisão central, quando a partícula \(\alpha\) chega à distância mínima \(2a\), a sua energia cinética inicial \(E_{\text{kin}}\) é totalmente convertida em energia potencial.
e portanto
\[\cot \frac{\theta}{2} = \frac{b}{a} = \frac{8\pi\varepsilon_0 E_{\text{kin}} b}{Z_\alpha Z_{tg} e^2} , \]
substituindo \(a \) pela formula (1.6). Derivando esta última formula obtemos uma relação entre a largura \(db \) do cone oco e a largura pertinente \(d\theta \) do ângulo de deflexão \(\theta \).

\[-\frac{1}{2\sin^2 \frac{\theta}{2}} d\theta = \frac{8\pi\varepsilon_0 E_{\text{kin}}}{Z_\alpha Z_{tg} e^2} \cdot \frac{1}{2\sin^2 \frac{\theta}{2}} d\theta . \]

Seja \(n_{tg} = \frac{N_{tg}}{V} \) a densidade das partículas do alvo (\(N_{tg} \) átomos por volume \(V \)) e \(x \) a espessura da película. Então \(\sigma = \frac{A}{N_{tg}} = \frac{V}{N_{tg}} = \frac{1}{n_{tg} x} \) é a seção transversal média por átomo sentida pela partícula \(\alpha \) na transição através da película. \(\sigma \) se chama corte transversal. A probabilidade \(P(\theta)d\theta \) para a partícula \(\alpha \) de ficar num anel numa distância \(b \) do núcleo (cuja área é \(2\pi bdb \)) sendo espalhado para o ângulo \(\theta \) então é dada por,

\[P(\theta)d\theta = \frac{2\pi bdb}{\sigma} = n_{tg} x 2\pi bdb . \]

Estas partículas, isto é, o número \(dN \) das \(N \) partículas são defletidas para o cone oco com a probabilidade,

\[\frac{dN}{N} = P(\theta)d\theta = n_{tg} x 2\pi \frac{Z_\alpha Z_{tg} e^2}{8\pi\varepsilon_0 E_{\text{kin}}} \cot \frac{\theta}{2} \cdot \frac{Z_\alpha Z_{tg} e^2}{8\pi\varepsilon_0 E_{\text{kin}}} \cdot \frac{1}{2\sin^2 \frac{\theta}{2}} d\theta = n_{tg} x \frac{Z_\alpha^2 Z_{tg}^2 e^4}{64\pi\varepsilon_0^2 E_{\text{kin}}^2} \cdot \frac{\cos \frac{\theta}{2} d\theta}{\sin^3 \frac{\theta}{2}} , \]

onde substituímos os parâmetros \(b \) e \(db \) pelas expressões (1.8) e (1.9). O ângulo sólido do cone pode ser exprimido por,

\[d\Omega = 2\pi \sin \theta d\theta = 4\pi \sin \frac{\theta}{2} \cos \frac{\theta}{2} d\theta . \]

Assim, o número \(dN \) de partículas espalhadas para o ângulo sólido \(d\Omega \) fica,

\[\frac{dN}{N} = \frac{n_{tg} x Z_\alpha^2 Z_{tg}^2 e^4}{256\pi\varepsilon_0^2 E_{\text{kin}}^2} \cdot \frac{1}{\sin^3 \frac{\theta}{2}} d\Omega . \]

Isso é a formula de espalhamento de Rutherford. Frequentemente, a formula é exprimida com a seção eficaz diferencial \(\frac{d\sigma}{d\Omega} \). Temos,

\[\frac{dN}{N} = \frac{d\sigma}{\sigma} = n_{tg} x d\sigma , \]

e portanto

\[\frac{d\sigma}{d\Omega} = \left(\frac{Z_\alpha Z_{tg} e^2}{4\pi\varepsilon_0 \cdot 4E_{\text{kin}}} \right)^2 \cdot \frac{1}{\sin^4 \frac{\theta}{2}} , \]

com

\[\frac{dN}{d\Omega} = N n_{tg} x \frac{d\sigma}{d\Omega} . \]

É preciso fazer alguns comentários:

- O ângulo \(\theta = 0 \) não é definido, pois existe um ângulo mínimo de deflexão \(\theta_{\text{min}} \). Este é adotado, quando a partícula \(\alpha \) se move na distância \(b = b_{\text{max}} \) do átomo, isto é, na borda
da área circular da seção transversal. Para um parâmetro de colisão b maior, a partícula α fica no campo do próximo átomo vizinho, e o ângulo de deflexão aumenta de novo. Temos:

$$
\sigma = \frac{A}{N t_g} = \pi b_{\text{max}}^2 \quad \text{e} \quad \theta_{\text{min}} \simeq \tan \frac{\theta_{\text{min}}}{2} = \frac{Z_\alpha Z_t e^2}{8 \pi \varepsilon_0 E_{\text{kin}} \cdot b_{\text{max}}},
$$

(1.17)
simplesmente invertendo a fórmula (1.8). Para parâmetros de impacto muito grandes, isto é, a partícula α passa o átomo fora da camada eletrônica, os elétrons do átomo protegem a carga do núcleo, um efeito chamado screening.

- Para energias muito elevadas, a distribuição da carga nuclear sobre um volume finito influencia o espalhamento, implicando a necessidade de correções na fórmula de Rutherford. Além disso, em curtas distâncias internucleares surgem as forças nucleares em cima da interação eletromagnética.

- A integral sobre a distribuição de probabilidade $P(\theta)d\theta$ é normalizada,

$$
\int_{\theta_{\text{min}}}^{\pi} P(\theta)d\theta = 1.
$$

(1.18)

Similarmente temos para as integrais de superfície

$$
\int_{\theta \gg \theta_{\text{min}}} \frac{d\sigma}{d\Omega} d\Omega = \sigma.
$$

(1.19)

![Figura 1.5](image)

Figura 1.5: Dependência angular da seção transversal correspondendo aos modelos de Thomson (verde) e Rutherford (vermelho).

Rutherford derivou a fórmula (1.15) descendo o espalhamento das partículas α dentro da física clássica. Uma derivação à partir das leis governando a mecânica quântica usando a aproximação de Born mostra, que a fórmula de Rutherford descreve o espalhamento corretamente em primeira ordem, e que efeitos puramente quânticos apresentam apenas pequenas correções. Revisaremos o espalhamento de Rutherford nos Excs. 1.4.1.1 e 1.4.1.2 e discutiremos o efeito de screening no Exc. 1.4.1.3.

1.2.3 Emissão de radiação no modelo planetário

No modelo planetário proposto por Rutherford imagina-se os elétrons girando em torno de um núcleo positivamente carregado em órbitas circulares. Este movimento dos elétrons deveria obedecer as leis da teoria eletrodinâmica de Maxwell. Vamos agora calcular algumas consequências desta imagem.
Tratamos agora o átomo como um rotor onde a partícula negativa, o elétron, orbita a partícula positiva. O momento dipolar é,

\[p_0 = -eR . \]

Calculemos no Exc. 1.4.1.4 a potência emitida pela aceleração \(a = \omega^2 R \) do elétron em sua trajetória circular,

\[P = \frac{\mu_0 \omega^4 p_0^2}{12\pi c} . \]

A energia inicial do elétron girando em torno do núcleo (para um átomo de hidrogênio \(Z = 1 \)),

\[E = \frac{p^2}{2m_e} - \frac{e^2}{4\pi \epsilon_0 r} = \frac{m_e \omega^2 r^2}{2} - \frac{e^2}{4\pi \epsilon_0 r} , \]

é dissipada por radiação da potência (1.21), isto é,

\[-P = \frac{dE}{dt} = m_e \omega^2 r \frac{dr}{dt} r + \frac{e^2}{4\pi \epsilon_0 r^2} \frac{dr}{dt} = 2m_e \omega^2 r \frac{dr}{dt} . \]

A última equação supõe o equilíbrio entre a força centrífuga e a força de Coulomb,

\[m_e \omega^2 r = \frac{e^2}{4\pi \epsilon_0 r^2} , \]

permitindo relacionar a frequência de rotação \(\omega \) ao raio instantâneo da órbita \(r(t) \). Resolvendo a Eq. (1.23) por \(\frac{dr}{dt} \) e substituindo a potência pela relação (1.21) e a frequência \(\omega \) pela relação (1.24), obtemos

\[\frac{dr}{dt} = \frac{P}{2m_e \omega^2 r} = -\frac{\mu_0 \omega^2 e^2}{24\pi m_e c} r = -\frac{e^4}{96\pi^2 \epsilon_0^2 m_e^2 c^3 r^2} . \]

Integração desta equação dá,

\[t - t_0 = -\frac{32\pi^2 \epsilon_0^2 m_e^2 c^3}{e^4} [r^3 - r^3(t_0)] . \]

Agora inserindo \(t_0 = 0 \) e supondo \(r(t_0) = a_B \), o tempo \(\tau \) dentro do qual a perda de energia devido à emissão de radiação diminui o raio da órbita do elétron até \(r = 0 \) é,

\[t = \tau = \frac{32\pi^2 \epsilon_0^2 m_e^2 c^3 a_B^3}{e^4} . \]

Inserção dos valores dá o tempo de decaimento \(\tau \sim 10^{-10} \) s. Este é o efeito chamado de catástrofe de radiação do modelo clássico do átomo.

1.2.4 Efeito Zeeman no modelo planetário

O movimento orbital do elétron corresponde a um anel de corrente \(I = e/T = e\omega/2\pi \) que produz um \textit{momento magnético orbital} que, como mostrado no Exc. 1.4.1.5, pode ser calculado seguinte as leis do electromagnetismo,

\[\vec{\mu}_\ell = IA\hat{n} = \frac{e\omega}{2\pi} r^2 \hat{n} , \]

onde \(A = \pi r^2 \) é a área da trajetória. Introduzindo o momento angular \(\mathbf{L} = m_e \omega r^2 \hat{n} \) obtemos em notação vetorial,

\[\vec{\mu}_\ell = \frac{e}{2m_e} \mathbf{L} . \]
Imaginamos agora este átomo na presença de um campo magnético B na direção que chamaremos de z. Isso resulta numa precessão do momento magnético ao redor do campo (como no caso da precessão de um pinó na presença de um campo gravitacional) governada pela equação,

$$\frac{dL}{dt} = \vec{\mu} \times \vec{B} = \frac{e}{2m_e} \vec{L} \times \vec{B} = -\Omega_L \times \vec{L},$$

com $\Omega_L = \frac{e}{2m_e} B$ representando a frequência de precessão e sendo chamado de frequência de Larmor. É evidente que a presença do campo magnético altera consideravelmente o estado do átomo, chegando mesmo a produzir profundas modificações na frequência da órbita do elétron ω_0 e portanto no estado energético do átomo. Esta alteração e denominada de efeito Zeeman.

O efeito Zeeman pode ser calculado imaginando que o campo tem uma direção qualquer com relação a \vec{L}. Neste caso, a equação descrevendo o movimento eletrônico pelo equilíbrio entre a força centrípeta e a força de Coulomb, será influenciado pela força de Lorentz,

$$m_e \ddot{r} + m_e \omega_0^2 \dot{r} = F_L = -e \vec{v} \times \vec{B}.$$ (1.30)

onde $m \ddot{r}$ é a força centrípeta devida ao movimento circular do elétron e $m_e \omega_0^2 \dot{r}$ a força centrípeta devida a força atrativa de Coulomb exercida pelo núcleo. Assumindo a direção de $\vec{B} = B \hat{z}$ com $B = \frac{2m_e \Omega_L}{e}$, as equações de movimento podem ser decompostas em

$$\ddot{x} + \omega_0^2 x + 2\Omega_L \dot{y} = 0$$

$$\ddot{y} + \omega_0^2 y - 2\Omega_L \dot{x} = 0$$

$$\ddot{z} + \omega_0^2 z = 0.$$ (1.31)

A direção z não é alterada. Com o ansatz $x = a e^{i\omega t}$ e $y = b e^{i\omega t}$ obtemos o sistema de equações,

$$a(\omega_0^2 - \omega^2) + 2i\Omega_L \omega b = 0$$

$$b(\omega_0^2 - \omega^2) - 2i\Omega_L \omega a = 0,$$ (1.32)

que apresenta solução não trivial para a e b quando a determinante dos coeficientes de a e b for zero:

$$0 = \begin{vmatrix} \omega_0^2 - \omega^2 & 2i\Omega_L \omega \\ -2i\Omega_L \omega & \omega_0^2 - \omega^2 \end{vmatrix} = \omega^4 - (2\omega_0^2 + 4\Omega_L^2)\omega^2 + \omega_0^4.$$ (1.33)

Obtemos

$$\omega = \omega_{1,2} = \sqrt{\omega_0^2 + 2\Omega_L^2 \pm 2\Omega_L \sqrt{\omega_0^2 + \Omega_L^2}} = \omega_0 \pm \Omega_L + \frac{1}{2} \frac{\Omega_L^2}{\omega_0} + \ldots,$$ (1.34)

ou, como $\Omega_L \ll \omega$, obtemos $\omega_{1,2} = \omega_0 \mp \Omega_L$. O resultado é um desdobramento dos níveis de energia proporcional ao campo magnético,

$$\Delta E = 2\hbar \Omega_L = \frac{\hbar e}{m_e} B = 2\mu_B B,$$ (1.35)

onde a abreviação $\mu_B = e \hbar / 2m_e \simeq 9.27 \cdot 10^{-24}$ JT$^{-1}$ se chama magneton de Bohr.

Apesar do cálculo clássico mostrar desvios em comparação com observações experimentais, ele é bastante importante na ilustração de vários aspectos em que encontraremos equivalência em mecânica quântica.
Exemplo 1 (Experimento de Stern-Gerlach): Entre vários experimentos históricos realizados para aumentar o conhecimento da estrutura atômica, um dos mais importantes é o experimento realizado por Otto Stern e Walter Gerlach em 1922, para medir o momento magnético de átomos. Os resultados deste experimento demonstraram mais uma vez a necessidade de novos conceitos para explicar as observações. Se utilizarmos a regra de quantização de Bohr, $L = n\hbar$, dentro da fórmula (1.29) obtemos,

$$\vec{\mu} = -\mu_B \frac{L}{\hbar}.$$

Na presença de um campo magnético o dipolo sofre uma interação $W = -\vec{\mu} \cdot \vec{B}$, e portanto uma força,

$$F = -\vec{\mu} \cdot \nabla \vec{B}.$$

Submetendo feixes de átomos à gradientes de campos magnéticos e detectando esta força, Stern e Gerlach conseguiram medir o momento magnético produzido pela rotação dos elétrons em torno dos núcleos atômicos.

1.2.5 Teoria de Bohr e suas limitações

O modelo clássico do átomo planetário fornece uma ilustração mecânica do mundo microscópico, mas falha em explicar quantitativamente observações experimentais, como a natureza discreta dos espectros atômicos.

A radiação emitida por átomos de hidrogênio só acontece em linhas discretas espectralmente muito finas. As linhas observadas são agrupadas em séries chamadas de Lyman, Balmer e outras,

$$\frac{1}{\lambda} = R_H \frac{\mu}{m_e} \left(\frac{1}{m^2} - \frac{1}{n^2} \right), \quad (1.36)$$

onde m e n são números inteiros. $R_H = (1/4\pi e)^2 (m_e e^4/4\pi \hbar^3 c)$ é a constante de Rydberg e $\mu = m_e m_{at}/(m_e + m_{at})$ a massa reduzida.

A natureza discreta das linhas espectrais e o problema da catástrofe de radiação levaram Niels Bohr para formular os seguintes postulados de Bohr:

1. Existem órbitas estacionárias específicas, onde os elétrons não emitem energia.
2. Cada emissão ou absorção de energia de radiação por elétrons vem com uma transição entre órbitas estacionárias. A radiação emitida durante essa transição é homogênea.
3. As leis da mecânica descrevem o equilíbrio dinâmico de elétrons em estados estacionários, mas não descrevem a transição do elétron entre órbitas estacionárias.

Assim, o modelo de Bohr prevê a quantização dos níveis de energia, conhecida como a primeira quantização da mecânica quântica. Os raios das órbitas possíveis podem ser calculados postulando, que o momento angular orbital seja quantizado em unidades de \hbar, ou seja, os elétrons formam ondas estacionárias de Broglie ao longo das órbitas. Discutimos o modelo de Bohr nos Excs. 1.4.1.6 e 1.4.1.7.

No retrato proposto por Bohr, o decaimento radiativo é corresponde à uma transição abrupta de um elétron entre uma órbita exterior (mais energética) e uma órbita interior (menos energética).

3Uma generalização da teoria de Bohr foi fornecido por Arnold Sommerfeld. Assumindo órbitas elípticas para os elétrons que poderia explicar algumas características da estrutura fina, se a massa do elétron foi tratado relativisticamente. As premissas básicas foram 1. órbitas estáveis para a atração de Coulomb é equilibrada por uma força centrífuga, 2. quantização da fase de espaço $\int r dq = n_q \hbar$, e 3. momento angular $\int L d\theta = n_q \hbar$.
Como as energias das órbitas estacionárias são definidas com muita precisão, a radiação emitida é monoenérgética, isto é, o espectro consiste em linhas características.

Notamos aqui, que a imagem da transição abrupta do elétron entre estados discretos, chamada de salto quântico, não teve a bênção do Schrödinger. Ele imaginava para os elétrons, dentro da sua teoria da mecânica quântica ondulatória, orbitais em forma de ondas em vez de trajetórias planetárias, assim evitando o problema de radiação por desaceleração de cargas e o conceito do salto quântico. Seguinte ele, a energia dos orbitais é gradualmente transformada em radiação.

1.3 Formalismo da mecânica quântica

Nesta seção faremos uma revisão muito rápida dos fundamentos da mecânica quântica. As demais noções que emprestaremos da mecânica quântica repetiremos, quando precisamos.

Na mecânica quântica desenvolvida por Erwin Schrödinger em 1925, chamada de mecânica das ondas, o estado de um sistema é caracterizado por uma função \(\psi \) (chamada de função de onda) de uma variável representando um grau de liberdade do sistema. Em física atômica ou molecular, quando a função de onda descreve uma partícula, ela frequentemente depende de sua posição no espaço, \(\psi(r) \), da sua velocidade \(\psi(v) \), ou da sua energia \(\psi(E) \). A interpretação física da autofunção é aquela de uma densidade de probabilidade de encontrar o sistema num dado valor do grau de liberdade, p.ex. \(|\psi(r)|^2 \) é a distribuição de probabilidade de encontrar uma partícula na posição \(r \). As grandezas físicas mensuráveis, como a posição ou a velocidade de uma partícula, são representadas por operadores denotados por um chapel, p.ex. \(\hat{L} \) para o momento angular de uma partícula. Estes operadores, chamados de observáveis, são lineares e agem sobre as funções de onda. Exemplos são os operadores diferenciais representando a energia, o momento linear e o momento angular,

\[
\hat{H} = i\hbar \frac{d}{dt} \quad e \quad \hat{p} = -i\hbar \nabla \quad e \quad \hat{L} = -i\hbar \frac{d}{d\phi} .
\] (1.37)

No entanto, existem outras formulações da mecânica quântica. Na mecânica das matrizes inventada simultaneamente por Werner Heisenberg, os estados são representados por vetores, uma vez que temos definido uma base ortonormal, p.ex.,

\[
|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad e \quad |1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} ,
\] (1.38)

adotando a notação Bra-Ket introduzida por Paul Adrien Maurice Dirac, e as observáveis são representadas por matrizes, p.ex.,

\[
\hat{H} \equiv \sum_{ij} |i\rangle h_{ij} \langle j| = \begin{pmatrix} \vdots \\ h_{ij} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \langle j|\hat{H}|i\rangle \\ \vdots \end{pmatrix} .
\] (1.39)

Os valores possíveis das grandezas físicas são as soluções \(h_n \) de equações de autovalores do tipo,

\[
\hat{H}|\psi_n\rangle = h_n|\psi_n\rangle .
\] (1.40)

Ou seja, a probabilidade de encontrar o valor \(h_n \) numa medida do operador \(\hat{H} \) é dada por \(h_n = \langle \psi_n|\hat{H}|\psi_n\rangle \).

\(^4\)Notamos aqui, que saltos quânticos foram observados muito mais tarde!

\(^5\)Vide a apostila do curso Mecânica quântica aplicada do mesmo autor.
Como o Heisenberg mostrou posteriormente, as duas formulações da mecânica quântica são equivalentes, pois a função de onda do Schrödinger é obtida por projeção do estado abstrato do Heisenberg sobre o grau de liberdade sob consideração, p.ex.,

$$\langle \mathbf{r} | \psi(t) \rangle = \psi(\mathbf{r}, t) .$$

(1.41)

Não obstante, cada formulação tem suas vantagens em situações diferentes. Aquela do Heisenberg é bem adaptada para tratar de sistemas discretos e aquela do Schrödinger para tratar de sistemas contínuos.

1.3.1 Equação de Schrödinger

Na maioria dos casos, em física atômica e molecular, com a exceção de fenômenos de transições, discutiremos situações estáveis bem descritas pela equação de Schrödinger estacionária,

$$\hat{H}\psi_n(\mathbf{r}, t) = E_n\psi_n(\mathbf{r}, t) ,$$

(1.42)

onde \hat{H} é o hamiltoniano do sistema resumindo a sua energia total. P.ex. para uma partícula aprisionada num potencial $V(\mathbf{r})$, temos,

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{\mathbf{r}}) = -\frac{\hbar^2}{2m}\nabla^2 + V(\hat{\mathbf{r}}) .$$

(1.43)

1.3.2 Caracterização de sistemas por operadores

Existem grandezas físicas compatíveis entre si ou não compatíveis. Lembramos, p.ex., que a posição e a velocidade de uma partícula não podem ser dadas simultaneamente com precisão arbitrária, isto é, estas grandezas são incompatíveis, fato exprimido na famosa relação de incerteza de Heisenberg,

$$\Delta p_x \Delta x \geq \hbar .$$

(1.44)

Para determinar quais grandezas são compatíveis, calculamos o comutador que, neste caso deve desaparecer, p.ex.,

$$[\hat{x}_j, \hat{x}_k] = 0 \quad \text{mas} \quad [\hat{p}_j, \hat{x}_k] = -i\hbar\delta_{jk} .$$

(1.45)

Frequentemente, na física atômica, teremos a tarefa de caracterizar um sistemas completamente por um número mínimo de operadores, o chamado conjunto completo de operadores comutados (CCOC). O número necessário de operadores reflete os graus de liberdade do sistema.

1.4 Exercícios

1.4.1 Modelos do átomo

1.4.1.1 Ex: Análise do espalhamento de Rutherford

a. Quais conclusões podem ser deduzidas à partir da observação que a formula de Rutherford descreve bem o espalhamento de partícula carregadas na transição através de matéria numa grande faixa de parâmetros?
b. Porque observa-se um desvio da formula de Rutherford para grandes energias?
c. O espalhamento de prótons com a energia E numa fina película de thorium é bem descrita até energias de $E = 4.3$ MeV pela formula de Rutherford. Faz para este caso uma estimativa
do alcance das forças nucleares.

d. No espalhamento para pequenos ângulos θ observa-se grandes desvios da fórmula de Rutherford. Explique porque?

e. Assumindo os átomos de thorium do item (c) distribuídos numa rede periódica de espaçamento $d = 10a_B$, em qual ângulo mínimo θ a fórmula de Rutherford perde a validade.

1.4.1.2 Ex: Espalhamento de Rutherford

a. Um feixe de partículas α de energia $E_{\text{kin}} = 3$ MeV e fluxo $I = 5 \cdot 10^3$ s$^{-1}$ impinge numa película de ouro de espessura $x = 1$ µm. Usando a fórmula de Rutherford calcule quantas partículas são espalhadas em $\Delta = 10$ minutos dentro do intervalo angular $10^\circ \leq \theta \leq 30^\circ$.

b. A película de ouro seja substituída por uma película de alumínio com a mesma espessura. Quantas partículas α são espalhadas, se as outras condições ficam iguais?

1.4.1.3 Ex: Screening dos elétrons

Considere fina camada de carga $-Z_\text{eq}e$ de raio R. Este screening causa um ângulo de espalhamento, $$\tan \frac{\theta}{2} = \frac{D \sqrt{1 - (b/R)^2}}{2b(1 + D/2R)},$$ com $D \equiv \frac{3Ze^2}{m_2v^2}$ para $b < R$. Verifique como o screening muda o choque diferencial $\frac{d\sigma}{d\Omega}$.

1.4.1.4 Ex: Radiação de um dipolo oscilante

Calcule a distribuição angular de potência radiada por um dipolo elétrico ou magnético oscilante como extensão da radiação esférica usando o método dos potenciais retardados.
Sugestão: Procure as expressões para os campos elétricos e magnéticos emitidos na literatura.

1.4.1.5 Ex: Momentos magnéticos

a. Derive a partir da expressão $\vec{\mu}_L = \frac{1}{2} \int_{\mathbb{R}^3} \vec{r} \times j(r')d^3r'$ da eletrodinâmica clássica e uma parametrização adequada da densidade de corrente j a relação entre o momento magnético dipolar $\vec{\mu}$ devido à órbita do elétron e o momento angular L.

b. O comprimento do vetor do momento angular sendo dado por $|L| = \hbar$, calcule o momento magnético para um elétron e para um próton.

1.4.1.6 Ex: O átomo de Bohr

Em 1913, Niels Bohr apresentou seu modelo atômico através da adaptação do modelo de Rutherford as ideias de quantização propostas por Max Planck.

a. Imponha a regra de quantização para o momento angular ($L = n\hbar$) para um elétron ao redor de um átomo de número atômico Z e encontre uma expressão para os raios das órbitas permitidas.

b. Segundo o modelo de Bohr, a transição entre diferentes órbitas é acompanhada pela emissão (absorção) de um fóton. Determine a energia do fóton emitido devido a transição entre o primeiro estado excitado e o estado fundamental em um átomo de hidrogênio.

c. Considere um elétron preso em um poço unidimensional retangular infinito de largura a. Determine uma expressão para os níveis de energia eletrônicos.

d. Qual deveria ser a largura a deste poço, em termos do raio de Bohr, para que um fóton
emitido devido à transição entre o primeiro estado excitado e o estado fundamental se iguale a obtida no item (b)?

1.4.1.7 **Ex: O átomo de hidrogênio**

O átomo de hidrogênio pode ser visto como um próton puntiforme e um elétron distribuído com a densidade de carga \(\rho = A e^{-2r/a_B} \) em torno do próton que fica no centro. Aqui, \(A \) é uma constante e \(r \) a distância do centro.

a. Calcule \(A \) considerando o fato que o átomo é eletricamente neutro.

b. Calcule a amplitude do campo elétrico no raio \(r = a_B \).

1.4.2 **Formalismo da mecânica quântica**

1.4.2.1 **Ex: Átomo excitado**

Calcule a evolução temporal de um átomo com dois níveis acoplados por um campo de luz usando o hamiltoniano,

\[
\hat{H} = \begin{pmatrix}
0 & \frac{1}{2} \hbar \Omega \\
\frac{1}{2} \hbar \Omega & \hbar \Delta
\end{pmatrix},
\]

onde \(\Delta = \omega - \omega_0 \) é a dessintonização entre a frequência da luz e a frequência da transição e \(\Omega \) a frequência de Rabi.
Capítulo 2

Rotações / Potenciais centrais

2.1 Partícula num potencial central

Muitos potenciais não têm simetria cartesiana. Felizmente, muitos problemas têm algum tipo de simetria, cilíndrica, esférica ou periódica. Aquelas com simetria cilíndrica ou esférica podem ser resolvidas por separação das coordenadas curvilíneas, como mostraremos no seguinte. Particularmente importante são potenciais esféricos causados por forças centrais, por exemplo, a força de Coulomb entre o próton e o elétron no átomo de hidrogênio.

2.1.1 Hamiltoniano em coordenadas esféricas

Podemos reescrever o operador de momento em coordenadas esféricas,

\[x = r \sin \vartheta \cos \varphi, \quad y = r \sin \vartheta \sin \varphi, \quad z = r \cos \vartheta, \]

como

\[\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2}{\partial \vartheta^2} \]

onde

\[\hat{L}^2 \equiv \frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2}, \]

e uma abreviação chamada de legendriano. Para um potencial isotrópico, \(V(r) = V(r) \), podemos tentar o ansatz \(\Psi(r) = R(r)Y(\vartheta, \varphi) \) para resolver a equação de Schrödinger (1.42),

\[\frac{r^2}{R(r)} \left[-\frac{\hbar^2}{2m} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + V(r) - E \right] R(r) = \frac{-1}{2m} \hat{L}^2 Y(\vartheta, \varphi) = \text{const} \equiv -\frac{\hbar^2}{2m} \ell(\ell + 1), \]

onde escolhemos uma constante de separação, \(\ell(\ell + 1) \), a significação da qual aprenderemos em breve. Consideramos só a parte angular,

\[\hat{L}^2 Y(\vartheta, \varphi) = \hbar^2 \ell(\ell + 1)Y(\vartheta, \varphi), \]

e fazemos mais um ansatz de separação, \(Y(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi) \),

\[\sin^2 \vartheta \left(\frac{1}{\Theta(\vartheta)} \frac{\partial}{\partial \vartheta} \sin \vartheta \frac{\partial}{\partial \vartheta} \Theta(\vartheta) + \ell(\ell + 1) \right) = -\frac{1}{\Phi(\varphi)} \frac{\partial^2}{\partial \varphi^2} \Phi(\varphi) = \text{const} \equiv m^2, \]

onde escolhemos uma constante de separação, \(m^2 \). Introduzindo outra abreviação

\[\hat{L}_z \equiv \frac{\hbar}{i} \frac{\partial}{\partial \varphi}, \]

a equação azimutal adota a forma

\[\hat{L}_z \Phi(\varphi) = \hbar m \Phi(\varphi). \]
CAPÍTULO 2. ROTACÕES / POTENCIAS CENTRAIS

Como no caso do potencial cilíndrico, a solução da equação azimutal é, utilizando a normalização

\[\Phi(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}, \] \hspace{1cm} (2.8)

com o número quântico magnético \(m = 0, \pm 1, \pm 2, \ldots \)

À equação polar,

\[\frac{1}{\Theta(\vartheta)} \frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \sin \vartheta \frac{\partial}{\partial \vartheta} \Theta(\vartheta) + \ell(\ell + 1) = \frac{m^2}{\sin^2 \vartheta}, \] \hspace{1cm} (2.9)

se chama equação diferencial de Legendre e pode ser resolvida por uma série de potências em \(\cos^k \vartheta \). Para \(m = 0 \), as soluções são os polinômios de Legendre, \(P_\ell(\cos \vartheta) \) com

\[P_\ell(z) = \frac{1}{2^\ell \ell!} \frac{d^\ell}{dz^\ell} [(z^2 - 1)^{\ell}]. \] \hspace{1cm} (2.10)

Os primeiros polinômios são,

\[P_0(z) = 1, \quad P_1(z) = z, \quad P_2(z) = \frac{1}{2}(3z^2 - 1), \quad P_3(z) = \frac{1}{2}(5z^3 - 3z). \] \hspace{1cm} (2.11)

Para \(m > 0 \), as soluções são os polinômios associados,

\[P^m_\ell(z) = (-1)^m (1 - z^2)^{m/2} \frac{d^m}{dz^m} P_\ell(z) = \frac{(-1)^m}{2^\ell \ell!} (1 - z^2)^{m/2} \frac{d^{\ell + m}}{dz^{\ell + m}} [(z^2 - 1)^{\ell}] \] \hspace{1cm} (2.12)

\[P^{-m}_\ell(z) = (-1)^m \frac{(\ell - m)!}{(\ell + m)!} P^m_\ell(z). \]

A função polar ainda deve ser normalizada,

\[\Theta^m(\vartheta) = P^m_\ell(\cos \vartheta) \sqrt{\frac{2\ell + 1}{2}} \frac{1}{(\ell + m)!}. \] \hspace{1cm} (2.13)

As funções \(Y_{\ell m}(\vartheta, \varphi) \) são as harmónicos esféricos. Eles formam um sistema ortonormal,

\[\int_0^\pi \int_0^{2\pi} Y^{*}_{\ell' m'}(\vartheta, \varphi) Y_{\ell m}(\vartheta, \varphi) \sin \vartheta d\vartheta d\varphi = \delta_{\ell \ell'} \delta_{m m'}. \] \hspace{1cm} (2.14)

Soluções finitas só existem, quando o número quântico do momento angular e \(\ell = 0, 1, \ldots \) e para \(|m| \leq \ell \).

As soluções da parte angular da equação de Schrödinger do átomo de hidrogênio são finalmente,

\[Y_{\ell m}(\vartheta, \varphi) = \frac{1}{\sqrt{2\pi}} P^m_\ell(\cos \vartheta) \sqrt{\frac{2\ell + 1}{2}} \frac{1}{(\ell + m)!} e^{im\varphi}. \] \hspace{1cm} (2.15)

Os harmónicos esféricos são simultaneamente autofunções dos operadores \(L^2 \), como pode ser visto na Eq. (2.4), e do operador \(L_z \) conforme a Eq. (2.7). As quantidades representadas pelos operadores quânticos \(\hat{H}, \hat{L}^2, \hat{L}_z \) são conservadas no sistema do hidrogênio. A conservação do momento angular deve-se à simetria esférica do potencial de Coulomb.

Verificaremos a paridade dos harmónicos esféricos no Exc. 2.5.1.1.
2.1. PARTÍCULA NUM POTENCIAL CENTRAL

2.1.2 Separação do movimento radial

Na Sec. 2.1.1 derivamos, depois de ter separado o movimento do centro-de-massa (ou seja do núcleo pesado) e as coordenadas angulares a equação radial (2.3) descrevendo a componente radial do movimento do elétron,

$$\frac{1}{R(r)} \left[-\frac{\hbar^2}{2m} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + V(r) - E \right] R(r) = -\frac{L^2}{2mr^2}, \quad (2.16)$$

Agora fazemos a substituição $R(r) = u(r)/r$ e a equação radial fica,

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + \frac{L^2}{2mr^2} + V(r) \right] u(r) = Eu(r). \quad (2.17)$$

Essa equação é bem similar à uma equação de Schrödinger unidimensional, só que aparece um potencial adicional que se chama potencial centrifugal,

$$V_\ell(r) = \frac{L^2}{2mr^2}. \quad (2.18)$$

Por exemplo, para o potencial de um elétron orbitando um próton temos,

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} - \frac{Ze^2}{4\pi\varepsilon_0 r} + \frac{\hbar^2\ell(\ell + 1)}{2mr^2} - E \right] u_{E\ell}(r) = 0. \quad (2.19)$$

Discutiremos está equação intensamente no âmbito da discussão do átomo de hidrogênio.
Figura 2.2: (Code: AM_Hidrogenoido_Centrifugal.m) Soma de um potencial coulombiano e um potencial centrífuga para $\ell = 0$ (curva inferior), $\ell = 1$ (curva no meio) e $\ell = 2$ (curva superior).

No Exc. 2.5.1.2 derivamos a equação de Gross-Pitaevskii radial para um condensado de Bose-Einstein aprisionado num potencial esférico. No Exc. 2.5.1.3 estudaremos partículas dentro de um potencial central de profundidade nula, nos Excs. 2.5.1.4 e 2.5.1.5 consideramos poucos de potenciais esféricos 3D e no Exc. 2.5.1.6 um potencial esférico harmônico.

Exemplo 2 (Rotor rígido em coordenadas esféricas): Continuamos a discussão do rotor rígido, agora em coordenadas esféricas. No caso em que a órbita da partícula é fixa a um raio R, podemos negligenciar a energia cinética devido ao movimento radial e o potencial, ambos sendo constantes. Nesse caso a equação de Schrödinger radial é

$$\left[\frac{\hbar^2 \ell (\ell + 1)}{2mr^2} \right] u_{E\ell} = E_{E\ell} u_{E\ell}. $$

As energias do rotor rígido são

$$E_{\ell} = \frac{\hbar^2 \ell (\ell + 1)}{2I},$$

com o momento de inércia $I = mR^2$.

2.2 Tratamento quântico do hidrogênio

Seguindo o modelo planetário do átomo de Rutherford e Bohr podemos imaginar um átomo como um núcleo muito pesado com carga elétrica positiva cercado por uma nuvem de elétrons muito leve com carga negativa. Como o núcleo é muito pequeno em comparação com a nuvem eletrônica, tratamo-lhe como uma entidade com a massa M e a carga Ze, onde Z é o número de prótons e corresponde à ordem do elemento no sistema periódico.

O procedimento canônico para calcular todas as propriedades de um átomo é de estabelecer o seu hamiltoniano, isto é, determinar as energias cinéticas de todos os componentes e todas energias de interação entre eles, e de resolver a equação de Schrödinger. Para cada componente escrevemos a energia cinética

$$T_{ncl} = \frac{p^2}{2M} \quad e \quad T_{ele} = \sum_{i=1}^{Z} \frac{p_i^2}{2m}. \quad (2.20)$$

Aqui (\mathbf{R}, \mathbf{P}) são as coordenadas do núcleo e ($\mathbf{r}_i, \mathbf{p}_i$) aquelas dos elétrons. A energia que corresponde às interações, isto é, atração ou repulsão coulombiana, entre as componentes do átomo é

$$V_{ncl-ele} = -\sum_{i=1}^{Z} \frac{Ze^2}{4\pi\varepsilon_0 |\mathbf{R} - \mathbf{r}_i|} \quad e \quad V_{ele-ele} = \sum_{i \neq j=1}^{Z} \frac{e^2}{4\pi\varepsilon_0 |\mathbf{r}_i - \mathbf{r}_j|}. \quad (2.21)$$

Também existem interações devido ao spin das partículas, que trataremos posteriormente.
2.2. TRATAMENTO QUÂNTICO DO HIDROGÉNIO

Obviamente, a solução desse problema de muitos corpos é muito complicado. Por isso, nesse capítulo, baseado na equação de Schrödinger, calcularemos o espectro completo do átomo mais simples possível, o hidrogênio. Esse átomo consiste de um próton e um elétron, só.

Figura 2.3: O modelo do hidrogênio se aplica em outros átomos desde que eles têm um elétron de valência ocupando um espaço tão grande, que ele está vendo o núcleo e o resto dos elétrons blindando o núcleo como uma única carga positiva.

2.2.1 O modelo de Bohr

Vamos agora voltar para a parte radial da equação de Schrödinger descrevendo uma partícula num potencial radial. Esperamos que as soluções quânticas para o átomo de hidrogênio são parecidas às predições do modelo de Bohr. Segundo esse modelo, a órbita é estável quando a força de atração é igual à força centrífuga. Mas além disso, Bohr postulou, que apenas certas energias são permitidas. Para o átomo de hidrogênio ele achou

\[
E_n = - \frac{1}{2} \frac{Ze^2}{4\pi\varepsilon_0 r_n} - \frac{Z^2\hbar^2}{2m a_B^2 \alpha^2} = - \frac{Z^2 e^2}{4\pi\varepsilon_0} \frac{1}{2a_B n^2} = - \frac{Z^2}{n^2} 13.6 \text{ eV} ,
\]

com o raio de Bohr

\[
a_B \equiv 4\pi\varepsilon_0 \frac{\hbar^2}{me^2} .
\]

Com essa equação ele consegui explicar as observações espectrais. Os elétrons só podem saltar de um nível para um outro, dessa vez emitindo ou absorvendo um fôton. As séries observadas no espectro do hidrogênio \((E_n - E_m)/\hbar\) foram a série de Lyman \((m = 1)\), de Balmer \((m = 2)\), de Paschen \((m = 3)\) e de Brackett \((m = 4)\).

Figura 2.4: As transições do hidrogênio.

A discussão do átomo de hidrogênio dentro da mecânica quântica pode começar à partir da
equação de Schrödinger radial (2.19) com o potencial de atração coulombiano,

\[
\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} - \frac{Ze^2}{4\pi\varepsilon_0 r} + \frac{\hbar^2 \ell(\ell + 1)}{2mr^2} - E\right] u_{E\ell}(r) = 0.
\] (2.24)

Para facilitar a comparação, vamos exprimir a energia em termos da energia de Bohr, \(E \equiv E_n = E_1/n^2\), e escrever o raio em unidade de \(a_B\), isto é, \(\tilde{r} \equiv Zr/a_B\). Isso dá,

\[
u''_{n,\ell}(\tilde{r}) + \left(-\frac{\ell(\ell + 1)}{r^2} + \frac{2}{\tilde{r}} - \frac{1}{n^2}\right) u_{n,\ell}(\tilde{r}) = 0.
\] (2.25)

Para garantir que para grandes raios, \(r \to \infty\), a solução fica finita, precisamos um comportamento assimptótico como \(u_{n,\ell}(\tilde{r} \to \infty) = e^{-\tilde{r}/n}\). Para garantir que para pequenos raios, \(r \to 0\), a solução fica finita, precisamos \(u_{n,\ell}(\tilde{r} \to 0) = \tilde{r}^{\ell+1}\). Derivamos as soluções assimptóticas no Exc. 2.5.2.1. A equação diferencial resultante só tem soluções para um **número quântico principal** \(n\) inteiro e positivo e quando \(\ell = 0, 1, ..., n - 1\). Ou seja, na relação \(E = E_1/n^2\) o parâmetro \(n\) é inteiro e positivo, tal que os níveis de energia permanecem degenerados em \(\ell\) e \(m\). Isso significa, que o postulado de Bohr de níveis de energias discretos, isto é, quantizados, é válido (uff!)

![Figura 2.5: Esquema dos níveis.](image)

Substituindo o ansatz,

\[
u_{n\ell}(\tilde{r}) = D_{n\ell}\tilde{r}^{\ell+1}e^{-\tilde{r}/n}L(\tilde{r})
\] (2.26)

é fácil mostrar (vide Exc. 2.5.2.2), que a equação diferencial (2.25) se reduz para,

\[
\tilde{r}L''(\tilde{r}) + 2 \left[(\ell + 1) - \frac{1}{n}\right] L'(\tilde{r}) + 2 \left[1 - \frac{1}{n}(\ell + 1)\right] L(\tilde{r}) = 0.
\] (2.27)

Ainda com a abreviação \(\rho \equiv 2\tilde{r}/n = 2Zr/na_B\) o ansatz

\[
u_{n\ell}(\rho) = D_{n\ell}\rho^{\ell+1}e^{-\rho/2}L(\rho)
\] (2.28)
2.2. TRATAMENTO QUÂNTICO DO HIDROGÊNIO

Leve até a equação diferencial \(^1\)

\[
\rho L''(\rho) + [2(\ell + 1) - \rho] L'(\rho) + [n - \ell - 1]L(\rho) = 0.
\] (2.29)

As soluções desta equação diferencial, \(L^{(2\ell+1)}(\rho)\), são os polinômios de Laguerre. Esses polinômios figuram em tabelas matemáticas. Utilizando as propriedades desses polinômios é possível mostrar, que as funções radiais são ortogonais e podem ser normalizadas (vide Exc. 2.5.2.3).

A figura 2.6 mostra as curvas para os orbitais mais baixos.

\[\text{Figura 2.6: (Code: AM_Hidrogenoido_Laguerre.m) Funções de onda radiais, esquerda } R; \text{ direita } u. \text{ Acima para } (n, \ell) = (1, 3, 0); \text{ embaixo } (n, \ell) = (3, 0, 2).\]

Finalmente, podemos escrever as soluções totais

\[
\psi_{n,\ell,m}(r, \theta, \phi) = \frac{u_{n,\ell}(r)}{r} Y_{\ell,m}(\theta, \phi) \quad \text{com} \quad E_n = -\frac{\hbar^2}{2ma_B^2} \frac{Z^2}{n^2},
\] (2.30)

onde \(n = 1, 2, 3, .. \) e \(\ell = 0, 1, .., n - 1\) e \(m = -\ell, -\ell + 1, .., \ell\). É claro, que cada nível \(n\) de energia é

\[
\sum_{\ell=0}^{n-1} (2\ell + 1) = n^2
\] (2.31)

vezes degenerado.

\(^1\)A equação diferencial associada de Laguerre é

\[
\rho^2 \phi^{(\alpha)} + (\alpha + 1 - \rho) \phi^{(\alpha)} + \nu L^{(\alpha)} = 0.
\]

Os polinômios de Laguerre são gerados por

\[
L^{(\alpha)}(\rho) = \frac{\rho^{(\alpha)}}{\alpha!} d^{\alpha} \left(e^{-\nu} \rho^{\alpha+\nu} \right).
\]
Aqui é uma lista das primeiras funções do átomo de hidrogênio,

\[\psi_{100} = \frac{1}{\sqrt{\pi}} (\frac{Z}{a_B})^{3/2} e^{-\tilde{r}} \] (2.32)

\[\psi_{200} = \frac{1}{4\sqrt{2\pi}} (\frac{Z}{a_B})^{3/2} (2 - \tilde{r})e^{-\tilde{r}/2} \]

\[\psi_{210} = \frac{1}{4\sqrt{2\pi}} (\frac{Z}{a_B})^{3/2} \tilde{r}e^{-\tilde{r}/2} \cos \theta \]

\[\psi_{21\pm1} = \frac{1}{8\sqrt{2\pi}} (\frac{Z}{a_B})^{3/2} \tilde{r}e^{-\tilde{r}/2} \sin \theta e^{\pm i\phi} \]

\[\psi_{300} = \frac{1}{81\sqrt{3\pi}} (\frac{Z}{a_B})^{3/2} (27 - 18\tilde{r} + 2\tilde{r}^2)e^{-\tilde{r}} \]

\[\psi_{31\pm1} = \frac{\sqrt{2}}{81\sqrt{3\pi}} (\frac{Z}{a_B})^{3/2} 6^2e^{-\tilde{r}^3/3} \sin \theta e^{\pm i\theta} \]

\[\psi_{320} = \frac{1}{81\sqrt{3\pi}} (\frac{Z}{a_B})^{3/2} \tilde{r}^2e^{-\tilde{r}^2/3} (3\cos^2 \theta - 1) , \]

onde usamos a abreviação \(\tilde{r} \equiv Zr/a_B \). Usando estas funções de onda podemos agora calcular vários valores esperados como, por exemplo,

\[\langle 1 \rangle_{n\ell m} = 1 \] (2.33)

\[\langle \tilde{r} \rangle_{n\ell m} = n^2 \left[1 + \frac{1}{2} \left(1 - \frac{\ell(\ell + 1)}{n^2}\right) \right] \]

\[\langle \tilde{r}^2 \rangle_{n\ell m} = n^4 \left[1 + \frac{3}{2} \left(1 - \frac{\ell(\ell + 1) - \frac{1}{3}}{n^2}\right) \right] \]

\[\langle \tilde{r}^3 \rangle_{n\ell m} = n^6 \left[\frac{35}{8} - \frac{35}{8n^2} - \frac{15}{4n^2}(\ell + 2)(\ell - 1) + \frac{3}{8n^4}(\ell + 2)(\ell + 1)(\ell(\ell - 1)) \right] \]

\[\langle \tilde{r}^4 \rangle_{n\ell m} = n^8 \left[\frac{63}{8} + \frac{35}{8n^2}(2\ell^2 + 2\ell - 3) + \frac{5}{8n^4}5\ell(\ell + 1)(3\ell^2 + 3\ell - 10) + \frac{12}{n^8} \right] \]

\[\langle 1 / \tilde{r} \rangle_{n\ell m} = \frac{1}{n^2} \]

\[\langle 1 / \tilde{r}^2 \rangle_{n\ell m} = \frac{1}{n^3(\ell + \frac{1}{2})} \]

\[\langle 1 / \tilde{r}^3 \rangle_{n\ell m} = \frac{n}{n^4(\ell + \frac{1}{2})(\ell + 1)} \]

\[\langle 1 / \tilde{r}^4 \rangle_{n\ell m} = \frac{\frac{3}{2}n^2 - \frac{1}{2}\ell(\ell + 1)}{n^5(\ell + \frac{3}{2})(\ell + 1)(\ell + \frac{1}{2})(\ell(\ell + 1))} . \]

Estes resultados serão importantes posteriormente. No Exc. 2.5.2.4 calcularemos o valor esperado \(\langle \tilde{r} \rangle \) para vários orbitais \(\langle \Psi_{n\ell m} \rangle \).

2.2.2 O teorema virial

Originalmente derivado para a mecânica clássica, o teorema virial também vale para a mecânica quântica, como mostrado pela primeira vez por Vladimir Aleksandrovich Fock. Avaliaremos o comutador entre o hamiltoniano

\[\hat{H} = \hat{p}^2/2m + V(\tilde{r}) , \] (2.34)
2.3. MOMENTO ANGULAR

e o produto do operador de posição \(\hat{r} \) com o operador de momento \(\hat{p} = -i\hbar \nabla \) da partícula:

\[
[\hat{H}, \hat{r} \cdot \hat{p}] = [\hat{H}, \hat{r}] \cdot \hat{p} + \hat{r} \cdot [\hat{H}, \hat{p}] = -i\hbar \frac{\hat{p}^2}{m} + i\hbar \hat{r} \cdot \nabla V ,
\]

(2.35)

usando os teoremas de Ehrenfest. Portanto, achamos para o operador \(\hat{Q} = \hat{r} \cdot \hat{p} \) o comutador,

\[
\frac{i}{\hbar} [\hat{H}, \hat{Q}] = 2E_{\text{kin}} - \hat{r} \cdot \nabla V .
\]

(2.36)

O lado esquerda desta equação é justamente \(-d\hat{Q}/dt \), seguinte a equação de movimento de Heisenberg. O valor esperado \(\langle d\hat{Q}/dt \rangle \) da derivada temporal zera no estado estacionário, portanto obtemos o teorema virial,

\[
2\langle E_{\text{kin}} \rangle = \langle \hat{r} \cdot \nabla V \rangle .
\]

(2.37)

Exemplo 3 (Teorema virial aplicado num potencial central): Por exemplo, para um potencial central \(V(r) \propto r^s \) obtemos,

\[
2\langle E_{\text{kin}} \rangle = \langle \hat{r} \cdot \hat{e}_r \frac{\partial V}{\partial r} \rangle = s\langle V \rangle .
\]

No Exc. 2.5.2.5 calcularemos os valores esperados \(\langle r^{-1} \rangle \) e \(\langle p^2 \rangle \) e verificaremos o teorema virial. Finalmente, no Exc. 2.5.2.6 calculamos elementos da matriz de transição entre diferentes orbitais.

2.3 Momento angular

2.3.1 Operador do momento angular orbital

A definição do *momento angular orbital* é adotada da mecânica clássica:

\[
\hat{l} = \hat{r} \times \hat{p} = -i\hbar \hat{r} \times \hat{\nabla} = -i\hbar \begin{vmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ x & y & z \\ \partial_x & \partial_y & \partial_z \end{vmatrix} .
\]

(2.38)

Para entender melhor as propriedades do operador do momento angular na mecânica quântica derivaremos nos Excs. 2.5.3.1 e 2.5.3.2 algumas das suas propriedades.

Figura 2.7: Ilustração do momento angular na mecânica quântica.
CAPÍTULO 2. ROTAÇÕES / POTENCIAIS CENTRAIS

2.3.1.1 Constantes do movimento

O capítulo anterior dedicou-se à resolução das equações radial e angular no caso de um potencial radial. A equação radial permitiu calcular as auto-energias do hamiltoniano H

$$\hat{H}|\psi\rangle = E_n\ell |\psi\rangle \ . \quad (2.39)$$

Também encontramos os autovalores e autofunções comuns dos operadores \hat{l}^2 e \hat{l}_z [vide Eqs. (2.4) e (2.7)]. Utilizamos agora a notação $|\ell, \ell, \rangle \equiv Y_{\ell m}(\theta, \phi)$ para as autofunções,

$$\hat{l}^2|\ell, \ell, \rangle = \hbar^2 \ell(\ell + 1)|\ell, \ell, \rangle \quad e \quad \hat{l}_z|\ell, \ell, \rangle = \hbar m|\ell, \ell, \rangle \ . \quad (2.40)$$

Com isso temos,

$$[\hat{H}, \hat{l}_z]|\psi\rangle = \hat{H} m|\psi\rangle - \hat{l}_z E|\psi\rangle = 0 \quad e \quad [\hat{H}, \hat{l}^2]|\psi\rangle = \hat{H} h^2 \ell(\ell + 1)|\psi\rangle - \hat{l}^2 E|\psi\rangle = 0 \ . \quad (2.41)$$

Portanto, os operadores \hat{l}^2 e \hat{l}_z são constantes do movimento,

$$[\hat{H}, \hat{l}_z] = 0 = [\hat{H}, \hat{l}^2] \ . \quad (2.42)$$

O Exc. 2.5.3.3 pede para mostrar explicitamente no exemplo de um oscilador harmônico tridimensional isotrópico que \hat{l}^2 e \hat{l}_z são constantes do movimento.

2.3.2 Álgebra SU(2) do momento angular e spin

Até aqui, resolvemos a equação angular de autovalores na representação espacial para um momento angular orbital, $\hat{l} = \hat{r} \times \hat{p}$. Mas não é claro que cada momento angular tem essa representação derivada de noções clássicas. Na verdade, veremos que o elétron tem um spin intrínseco sem cargas orbitandos. O que devemos mostrar agora é, que para um qualquer spin, \hat{j}, satisfazendo

$$\hat{j}^2|j, m\rangle = \hbar^2 j(j + 1)|j, m\rangle \quad e \quad \hat{j}_z|j, m\rangle = \hbar m|j, m\rangle \ , \quad (2.43)$$

ou $[\hat{j}_m, \hat{j}_n] = i\hbar \epsilon_{kmn}\hat{j}_k$ usando o símbolo de Levi-Civita, obtemos uma álgebra consistente.

Como \hat{j}^2 e \hat{j}_z comutam (mostramos isso a partir da Eq. (2.43) no Exc. 2.5.3.4), eles têm autofunções comuns $|j, m\rangle$. Podemos escrever os autovalores assim,

$$\hat{j}^2|j, m\rangle = \hbar^2 j(j + 1)|j, m\rangle \quad e \quad \hat{j}_z|j, m\rangle = \hbar m|j, m\rangle \ , \quad (2.44)$$

onde, por enquanto, só sabemos que m é real e $j \geq 0$. Mas com $\langle j, m|\hat{j}^2|j, m\rangle \geq \langle j, m|\hat{j}_z^2|j, m\rangle$ é claro que $j(j + 1) \geq m^2$.

2.3.2.1 Operador de subida e descida

Agora introduzimos o **operador de subida** \hat{j}_+ e o **operador de descida** \hat{j}_- por

$$\hat{j}_\pm \equiv \hat{j}_x \pm i\hat{j}_y \quad tais \ que \quad \hat{j}_- = \hat{j}_+^\dagger \ . \quad (2.45)$$

É fácil verificar as seguintes relações

$$[\hat{j}_z, \hat{j}_\pm] = \pm \hbar \hat{j}_\pm \quad e \quad [\hat{j}^2, \hat{j}_\pm] = 0 \quad e \quad \hat{j}_+ \hat{j}_- - \hat{j}_- \hat{j}_+ = \hat{j}^2 - \hat{j}_z^2 \mp \hbar \hat{j}_z \ . \quad (2.45)$$
2.3. MOMENTO ANGULAR

Com isso achamos
\begin{align}
\hat{J}_+ |j, m\rangle &= (\hat{J}_x \hat{J}_+ + \hat{J}_+ \hat{J}_x) |j, m\rangle = \hbar (m \pm 1) \hat{J}_\mp |j, m\rangle \\
\hat{J}_\mp^2 |j, m\rangle &= \hat{J}_\mp \hat{J}_\pm^2 |j, m\rangle = \hbar^2 j(j + 1) \hat{J}_\pm |j, m\rangle .
\end{align}

Isto é, \(\hat{J}_\pm |j, m\rangle \) é um autoestado de \(\hat{J}_\mp \) e \(\hat{J}_\mp \) com os autovalores \(j \) e \(m \pm 1 \) se \(j \neq 0 \). Portanto,
\[\hat{J}_+ |j, m\rangle \propto |j, m + 1\rangle . \tag{2.48} \]

Para não ultrapassar a condição \(m^2 \leq j(j + 1) \) precisamos fixar \(\hat{J}_+ |j, \pm j\rangle = 0 \). Portanto, para um \(j \) especificado, o \(m \) pode ter um dos \(2j + 1 \) valores possíveis \(m = -j, -j + 1, \ldots, j \). Como \(2j + 1 \) é um número ímpar, \(j \) só pode ter os valores \(j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \) Com isso, a equação de autovalores das observáveis \(\hat{J}_\pm \) é resolvida, pois poderíamos ter escolhido, em vez de \(\hat{J}_x \), cada uma das componentes de \(\hat{J} \), sabendo que as outras não comutam com a escolhida.

Todas as componentes do spin \(\hat{J}_x \) e do raio \(\hat{J}_\mp \) só têm autovalores discretos. A menor unidade é \(\hbar/2 \). Com a normalização \(\langle j, m | j', m' \rangle = \delta_{j,j} \delta_{m,m'} \) temos
\[\langle j, m | \hat{J}_\pm |j, m\rangle = \langle j, m | \hat{J}_\pm^2 - \hat{J}_\mp^2 |j, m\rangle = \hbar^2 \langle j(j + 1) - m(m + 1) \rangle , \tag{2.49} \]
e
\[\hat{J}_\pm |j, m\rangle = \hbar \sqrt{j(j + 1) - m(m + 1)} |j, m \pm 1\rangle . \tag{2.50} \]

No Exc. 2.5.3.5 calculamos a incerteza das componentes do momento angular e no Exc. 2.5.3.6 escrevemos o operador \(\hat{J}_x \) numa forma matricial.

2.3.3 O spin do elétron

Cada momento angular \(\hat{I} \) gera um momento dipolar \(\vec{\mu}_l \propto \hat{I} \), que interage com campos magnéticos externos, \(V(B) = \vec{\mu}_l \cdot \vec{B} \). Campos magnéticos inhomogêneos exercem forças sobre momentos dipolares, \(\vec{F} = -\nabla(\vec{\mu}_l \cdot \vec{B}) \), que são detectadas pelo experimento de Stern-Gerlach. Esse experimento revela não só a quantização do momento angular, mas também a presença de valores semi-inteiros para o número quântico magnético.

Em 1925 Uhlenbeck e Goudsmit propunham que o elétron teria um momento angular intrínseco com o número quântico \(s = 1/2 \). Esse momento angular, chamado spin, não corresponde a nenhuma órbita de massas ou de distribuições de cargas dentro do raio clássico do elétron do tipo \(\hat{I} = \vec{r} \times \vec{p} \). O spin é um fenômeno puramente quântico, pois desaparece quando \(\hbar \to 0 \). Se acredita, hoje em dia, que o elétron é realmente puntiforme sem desviação detectável da lei de Coulomb em todas as distâncias. O spin do elétron não segue da equação de Schrödinger, mas pode ser incluído, ad hoc. É interessante, que é uma consequência necessária da derivação estritamente relativa da mecânica quântica pelo Paul Dirac.

Para caracterizar o spin, podemos usar todo o aparelho formal SU(2) da mecânica quântica do momento angular:
\[\hat{\sigma} \times \hat{\sigma} = i\hbar \hat{\sigma} , \tag{2.51} \]
e
\[\hat{\sigma}^2 |\frac{1}{2}, \pm \frac{1}{2}\rangle = \hbar^2 \left(|\frac{1}{2}, \pm \frac{1}{2}\rangle + |\frac{1}{2}, \pm \frac{1}{2}\rangle \right) , \quad \hat{\sigma}_z |\frac{1}{2}, \pm \frac{1}{2}\rangle = \pm \hbar |\frac{1}{2}, \pm \frac{1}{2}\rangle \] , \quad \hat{\sigma}_\pm = \hat{\sigma}_x = \pm \hbar |\frac{1}{2}, \pm \frac{1}{2}\rangle (|\frac{1}{2}, \pm \frac{1}{2}\rangle - |\frac{1}{2}, \pm \frac{1}{2}\rangle) . \tag{2.52} \]

Os operadores \(\hat{\sigma} \) são as matrizes de Pauli.
2.4 Acoplamento de momentos angulares

Partículas orbitadas elétricamente carregadas produzem um campo magnético. Esse campo pode influenciar o movimento de outras partículas. Do mesmo jeito, o spin de um elétron pode influenciar o seu próprio movimento orbital. Isto é, os momentos angulares podem se acoplar e interagir de maneira complicada. Mesmo para descrever o comportamento de um átomo tão simples como o hidrogênio num campo exterior, precisamos construir os auto-estados do momento angular total resultando de um acoplamento do spin intrínseco do elétron e do seu movimento orbital.

Do outro lado, consideramos até agora predominantemente hidrogênio e higrogenoides, isto é, átomos com um núcleo e um único elétron. Na verdade átomos podem ter até mais o que 100 elétrons, o que complica a descrição exata. Em átomos com muitos elétrons, um dos sistemas de acoplamientos mais comuns é aquele dos momentos angulares de todos os elétrons para um momento angular total, \(L = \sum_k l_k \), seguido por um acoplamento de \(L \) com o spin total, \(S = \sum_k s_k \), para formar o momento angular, \(J = L + S \). Designamos momentos totais por letras maiúsculas.

Adotando uma notação sem preconceitos estudamos algumas propriedades do momento angular total, \(\hat{J} \equiv \hat{J}_1 + \hat{J}_2 \). No Exercício 2.5.4.1 verificamos que a adição de momentos angulares produz uma grandeza que também é um momento angular, mas não a subtração.

2.4.1 Sistema de dois elétrons

Nesta seção consideramos primeiramente os estados de spin de dois elétrons, que podem ser combinados em dois grupos com spin bem-definido. Com isso podemos entender o espectro de energia do hélio, que é muito dominado pelo princípio de Pauli e a estatística quântica. Os conceitos introduzidos podem ser estendidos para átomos com muitos elétrons.

O momento angular é um número quântico importante no tratamento da estrutura interna dos átomos. Os dois elétrons da camada do hélio contribuem cada um um spin de \(\frac{1}{2} \), que acoplam para um momento angular total. Consideramos dois elétrons livres. O estado do sistema de duas partículas é um elemento do espaço de produto dos dois espaços de Hilbert, nos quais os elétrons individuais são descritos. Para entender o que é o espaço produto, devemos introduzir o produto tensorial de dois vetores (estados),

\[
|\alpha \rangle = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \in \mathcal{A} \quad \text{e} \quad |\beta \rangle = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \in \mathcal{B}.
\]

onde \(\mathcal{A} \) e \(\mathcal{B} \) são os espaços dois-dimensionais dos dois elétrons. O produto tensorial entre vetores (estados) é definido como,

\[
|\gamma \rangle \equiv |\alpha \rangle \otimes |\beta \rangle = \begin{pmatrix} \alpha_1 \beta_1 \\ \alpha_1 \beta_2 \\ \alpha_2 \beta_1 \\ \alpha_2 \beta_2 \end{pmatrix} \in \mathcal{C}.
\]

onde \(k = 1, 2, 3, 4 \) é identificado com \((i, j) = (1, 1), (1, 2), (2, 1), (2, 2) \). O novo vetor é elemento do espaço vetorial 4-dimensional \(\mathcal{C} \). Aqui é importante distinguir de qual espaço o vetor vem.

\(^2\)As considerações se aplicam de maneira análoga para a estrutura hiperfina do hidrogênio, que também é devida à interação de duas partículas com spin \(\frac{1}{2} \). Indiretamente já aprendemos o seguinte na descrição do pósitrons e do elétron dentro da teoria de Dirac.
Nesta notação, o vetor antes do símbolo para o produto tensorial (\otimes) é o vetor vem do espaço \mathcal{A}, e aquele depois do \otimes vem do espaço \mathcal{B}. Para a dimensão do novo espaço \mathcal{C} temos,

$$\dim \mathcal{C} = \dim \mathcal{A} \dim \mathcal{B},$$ \hspace{1cm} (2.55)

Se $\{\ket{\alpha}_n\}$ e $\{\ket{\beta}_m\}$ são bases nos respetivos espaços \mathcal{A} e \mathcal{B}, então $\{\ket{\gamma}_k\}$ é uma base do espaço de produto \mathcal{C}.

O produto tensorial entre matrizes (operadores) é definido assim:

$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} & A_{12}B_{11} & A_{12}B_{12} \\ A_{11}B_{21} & A_{11}B_{22} & A_{12}B_{21} & A_{12}B_{22} \\ A_{21}B_{11} & A_{21}B_{12} & A_{22}B_{11} & A_{22}B_{12} \\ A_{21}B_{21} & A_{21}B_{22} & A_{22}B_{21} & A_{22}B_{22} \end{pmatrix}.$$ \hspace{1cm} (2.56)

Com essa definição podemos verificar que os operadores somente agem sobre os estados respetivos:

$$\mathbf{A} \otimes \mathbf{B})(\ket{\alpha} \otimes \ket{\beta}) = \mathbf{A}\ket{\alpha} \otimes \mathbf{B} \ket{\beta}.$$ \hspace{1cm} (2.57)

Exemplo 4 (Definição do produto tensorial): Verificamos,

$$\left[\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \otimes \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \right] \left[\begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \otimes \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} \right] = \begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} & A_{12}B_{11} & A_{12}B_{12} \\ A_{11}B_{21} & A_{11}B_{22} & A_{12}B_{21} & A_{12}B_{22} \\ A_{21}B_{11} & A_{21}B_{12} & A_{22}B_{11} & A_{22}B_{12} \\ A_{21}B_{21} & A_{21}B_{22} & A_{22}B_{21} & A_{22}B_{22} \end{pmatrix} \begin{pmatrix} \alpha_1 \beta_1 \\ \alpha_2 \beta_2 \end{pmatrix}.$$

$$= \begin{pmatrix} (A_{11}B_{11} + A_{12}B_{21})(\beta_1 + \beta_2) \\ (A_{11}B_{21} + A_{12}B_{22})(\beta_1 + \beta_2) \\ (A_{21}B_{11} + A_{22}B_{21})(\beta_1 + \beta_2) \\ (A_{21}B_{21} + A_{22}B_{22})(\beta_1 + \beta_2) \end{pmatrix}.$$ \hspace{1cm} (2.58)

2.4.2 Estados singuleto e triplolet

Podemos exprimir o produto tensorial de dois operadores pelas matrizes da identidade I_2:

$$\mathbf{A} \otimes \mathbf{B} = (\mathbf{A} \otimes I_2)(I_2 \otimes \mathbf{A}).$$ \hspace{1cm} (2.59)

Verificaremos isso no 8.4.1.4. O operador $\tilde{\mathbf{A}} = \mathbf{A} \otimes \mathbf{A}$ é a extensão de \mathbf{A} agindo no espaço de produto \mathcal{C}.

Aplicaremos agora este formalismo sobre um par de elétrons. Os estados que os dois elétrons podem ocupar são:

$$\ket{\gamma_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \equiv \ket{\uparrow \uparrow}, \quad \ket{\gamma_2} = \ket{\uparrow \downarrow}, \quad \ket{\gamma_3} = \ket{\downarrow \uparrow}, \quad \ket{\gamma_4} = \ket{\downarrow \downarrow}.$$ \hspace{1cm} (2.59)
As matrizes de Pauli agem sobre os spin dos elétrons individuais \(a \) e \(b \). Elas podem ser estendidas ao espaço \(C \) da maneira seguinte,

\[
\begin{align*}
\frac{\hbar}{2} \sigma_x \otimes I_2 &= \frac{\hbar}{2} \begin{pmatrix} 0 & I_2 \\ I_2 & 0 \end{pmatrix}, & \frac{\hbar}{2} I_2 \otimes \sigma_x &= \frac{\hbar}{2} \begin{pmatrix} \sigma_x & 0 \\ 0 & \sigma_x \end{pmatrix} \\
\frac{\hbar}{2} \sigma_y \otimes I_2 &= \frac{\hbar}{2} \begin{pmatrix} 0 & iI_2 \\ -iI_2 & 0 \end{pmatrix}, & \frac{\hbar}{2} I_2 \otimes \sigma_y &= \frac{\hbar}{2} \begin{pmatrix} \sigma_y & 0 \\ 0 & \sigma_y \end{pmatrix} \\
\frac{\hbar}{2} \sigma_z \otimes I_2 &= \frac{\hbar}{2} \begin{pmatrix} I_2 & 0 \\ 0 & I_2 \end{pmatrix}, & \frac{\hbar}{2} I_2 \otimes \sigma_z &= \frac{\hbar}{2} \begin{pmatrix} \sigma_z & 0 \\ 0 & \sigma_z \end{pmatrix}.
\end{align*}
\]

Com estes operadores podemos agora construir outros operadores. Consideramos primeiramente as três componentes do momento angular total,

\[
S_k = \frac{\hbar}{2} (\sigma_k \otimes I_2 + I_2 \otimes \sigma_k) \quad \text{tal que} \quad S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}, \quad S_y = \frac{i \hbar}{2} \begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}, \quad S_z = \hbar \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.
\]

O operador para o quadrado do valor absoluto do momento angular total se calcula da seguinte maneira:

\[
S^2 = S_x^2 + S_y^2 + S_z^2 = \hbar^2 \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.
\]

Agora procuramos os autovalores do momento angular total. A equação de autovalores de \(S_z \),

\[
S_z |\gamma_k \rangle = M_S |\gamma_k \rangle,
\]

já é diagonal na base introduzida \(\{\gamma_k\} \) com os autovalores,

\[
M_S = \hbar, 0, 0, -\hbar.
\]

Para \(S^2 \) a situação e mais interessante: Os estados \(|\gamma_1 \rangle \) e \(|\gamma_4 \rangle \) são autoestados de \(S^2 \) para autovalor \(2\hbar^2 \), mas os estados \(|\gamma_2 \rangle \) e \(|\gamma_3 \rangle \) não são autoestados. Do outro lado, sabemos que a combinação linear de dois autoestados com o mesmo autovalor também é um autoestado. Portanto, os estados,

\[
|\gamma_a \rangle = \frac{1}{\sqrt{2}} (|\gamma_2 \rangle - |\gamma_3 \rangle) \quad \text{e} \quad |\gamma_s \rangle = \frac{1}{\sqrt{2}} (|\gamma_2 \rangle + |\gamma_3 \rangle),
\]

são autoestados de \(S_z \), só que eles também são autoestados de \(S^2 \), pois podemos facilmente verificar,

\[
S^2 |\gamma_a \rangle = 2\hbar^2 |\gamma_a \rangle \quad \text{e} \quad S^2 |\gamma_s \rangle = 0 \hbar^2 |\gamma_a \rangle,
\]

usando as matrizes (2.61). Em resumo, para o autovalor \(\langle S^2 \rangle = 2\hbar^2 \) existem os seguintes três estados:

\[
|\gamma_1 \rangle \quad m_s = 1 \\
|\gamma_4 \rangle \quad m_s = -1 \\
|\gamma_s \rangle \quad m_s = 0
\]

tripleto , \(s = 1 \)
2.4. ACOPLAMENTO DE MOMENTOS ANGULARES

Para \(\langle S^2 \rangle = 0 \) somente existe um estado:

\[
|\gamma_a\rangle \quad m_s = 0 \quad \text{singleto} \quad s = 0 .
\] (2.68)

Comutando os dois elétrons, os vetores \(|\gamma_1\rangle \) e \(|\gamma_4\rangle \) conservam a sua forma, enquanto os vetores mistos trocam a sua forma: \(\gamma_2 \leftrightarrow \gamma_3 \). Sob troca de partícula \(|\gamma_4\rangle \) inverte seu sinal, isto é, é antisimétrico, enquanto \(|\gamma_1\rangle \), \(|\gamma_4\rangle \) e \(|\gamma_3\rangle \) conservam seu sinal, isto é, são simétricos.

Em resumo, os estados tripletos têm o número quântico do momento angular total (com o valor esperado para \(S^2 \) de \(\hbar^2 S(S + 1) = 2\hbar^2 \)), e eles são simétricos a respeito da troca de partículas. O estado singleto tem o número quântico do momento angular total \(S = 0 \), e ele é antisimétrico a respeito da troca de partículas.

2.4.3 Bases desacopladas e acopladas

Os momentos angulares de dois partículas ou dois momentos angulares de origens diferentes em uma partícula representam graus de liberdade independentes, \([j_1, j_2] = 0 \). Sem interação entre os momentos angulares os espaços de Hilbert são ortogonais:

\[
H_1 \otimes H_2 = \begin{pmatrix} H_1 & 0 \\ 0 & H_2 \end{pmatrix} .
\] (2.69)

As autofunções agem sobre um espaço da dimensão, \(\dim H_1 + \dim H_2 \):

\[
|j_1, m_{j_1}; j_2, m_{j_2}\rangle .
\] (2.70)

Isto é, existe um conjunto completo de operadores comutando \(\{\hat{J}_1, \hat{J}_2, \hat{J}_1^z, \hat{J}_2^z\} \). Por isso, podemos especificar os números quânticos \(j_1, j_2, m_{j_1} \) e \(m_{j_2} \) simultaneamente. Do outro lado, o conjunto \(\{\hat{J}_1^2, \hat{J}_2^2, \hat{J}_1^z, \hat{J}_2^z\} \) também representa um conjunto completo de operadores comutando, como mostramos no Exc. 2.5.4.2. Ele tem a base

\[
|(j_1, j_2)j, m_j\rangle .
\] (2.71)

No Exc. 2.5.4.3 derivamos a representação matricial de dois spins em bases desacopladas e acopladas.

Para descrever os dois momentos angulares simultaneamente devemos escolher entre a imagem desacoplada \(|j_1, m_{j_1}; j_2, m_{j_2}\rangle \) e a imagem acoplada \(|(j_1, j_2)j, m_j\rangle \). Por enquanto, a escolha da imagem não faz diferença, mas veremos mais tarde que pode existir uma energia associada ao acoplamento \(^3\). Neste caso, mostraremos mais tarde, que a escolha da base acoplada é mais natural, porque a energia comuta como \([\hat{H}, \hat{J}_1^2] = 0 = [\hat{H}, \hat{J}_2^2] \) mas \([\hat{H}, \hat{J}_1^z] \neq 0 \neq [\hat{H}, \hat{J}_2^z] \).

2.4.3.1 Valores permitidos do momento angular total

Como não especificamos energia de interação entre os spins ou entre spins e campos externos, todos estados são energeticamente degenerados. Na imagem desacoplada a degenerescência é facilmente calculada,

\[
= \sum_{m_{j_1}=-j_1}^{j_1} \sum_{m_{j_2}=-j_2}^{j_2} 1 = (2j_1 + 1)(2j_2 + 1) .
\] (2.72)

\(^3\)Isto é, o hamiltoniano do sistema não contem termos do tipo \(\hat{J}_1 \cdot \hat{J}_2 \), mas sim pode ter termos proporcionais a \(\hat{J}_1^2 \) e \(\hat{J}_2^2 \).
CAPÍTULO 2. ROTAÇÕES / POTENCIAIS CENTRAIS

Figura 2.8: Ilustração do acoplamento de dois momentos angulares.

Agora precisamos encontrar os valores possíveis de \(j \) e \(m_j \) na imagem acoplada. Os valores de \(m_j \) seguem imediatamente de \(\hat{j}_1 + \hat{j}_2 = \hat{j} \).

\[
m_j = m_{j1} + m_{j2} .
\]

(2.73)

Com \(|m_{j1}| \leq j_1 \) e \(|m_{j2}| \leq j_2 \) os valores de \(m_j \) são limitados á

\[
|m_j| \leq j_1 + j_2 .
\]

(2.74)

Frequentemente conhecemos os dois momentos angulares \(j_1 \) e \(j_2 \) e todas as suas projeções na base desacoplada,

\[
|m_{j1}| \leq j_1 \quad e \quad |m_{j2}| \leq j_2 .
\]

(2.75)

Para achar os números quânticos na base acoplada, arranjamos os estados seguinte o número quântico magnético total \(m_j \). Podemos, sem restrição da generalidade concentrar na situação \(j_1 \geq j_2 \). A seguinte tabela reproduz as combinações possíveis. Os \(x \) representam os coeficientes de Clebsch-Gordan.

<table>
<thead>
<tr>
<th>(m_{j1}) + (m_{j2}) = (m_j)</th>
<th>(j)</th>
<th>(j - 1)</th>
<th>(j - 2)</th>
<th>(j - 3)</th>
<th>(j - 4)</th>
<th>(j - 5)</th>
<th>(j - 6)</th>
<th>(j - 7)</th>
<th>(j - 8)</th>
<th>(j - 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j_1) (j_2)</td>
<td>(j_1 - 1) (j_2)</td>
<td>(j_1 - 2) (j_2)</td>
<td>(j_1 - 3) (j_2)</td>
<td>(j_1 - 4) (j_2)</td>
<td>(j_1 - 5) (j_2)</td>
<td>(j_1 - 6) (j_2)</td>
<td>(j_1 - 7) (j_2)</td>
<td>(j_1 - 8) (j_2)</td>
<td>(j_1 - 9) (j_2)</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
</tbody>
</table>

Os valores possíveis de \(j \) são todos aqueles permitindo que \(j \geq |m_j| = |m_{j1} + m_{j2}| \), ou seja,

\[
|j_1 - j_2| \leq j \leq j_1 + j_2 .
\]

(2.76)

Cada valor de \(j \) tem a degenerescência \(2j+1 \). Portanto, como deverá ser verificado no Exc. 2.5.4.4, a degenerescência total é

\[
\sum_{j=|j_1-j_2|}^{j_1+j_2} 2j + 1 = (2j_1 + 1)(2j_2 + 1) .
\]

(2.77)
2.4. ACOPLOMento DE MOMENTos ANGULARES

Exemplo 5 (Acomplamento L · S): Como exemplo consideramos dois elétrons. O primeiro elétron tem \(s_1 = \frac{1}{2} \) e \(\ell_1 = 0 \), o segundo tem \(s_2 = \frac{1}{2} \) e \(\ell_2 = 1 \). Como ilustrado na Fig. 2.9, o acoplamento dá primeiramente \(S = s_1 + s_2 = 0,1 \) e \(L = \ell_1 + \ell_2 = 0,1 \). Depois determinamos os valores possíveis do momento angular total \(J = L + S \) de 0, 1, 2 dependendo dos valores de \(L \) e \(S \).

![Figura 2.9: Acomplamento spin-orbita L · S para dois elétrons.](image)

2.4.4 Coeficientes de Clebsch-Gordan

Por enquanto, só vamos descrever como adicionar dois momentos angulares, \(\hat{j}_1 \) e \(\hat{j}_2 \). Como eles agem sobre diferentes graus de liberdade,

\[
[\alpha_1 \cdot \hat{j}_1, \alpha_2 \cdot \hat{j}_2] = 0 ,
\]

para arbitrários vetores \(\alpha_k \). Temos um sistema de autovetores comuns, \(|\eta, j_1, j_2, m_1, m_2\rangle\), onde \(\eta \) são os autovalores de outras observáveis comutando com \(\hat{j}_1 \) e \(\hat{j}_2 \). Esses autovetores dão os valores \(h^2 j_1(j_1 + 1) \) e \(h^2 j_2(j_2 + 1) \) para as observáveis \(\hat{j}_1^2 \) e \(\hat{j}_2^2 \) e \(\ell m_1 \) e \(\ell m_2 \) para as observáveis \(j_1 \) e \(j_2 \). O número de estados é \((2j_1 + 1)(2j_2 + 1) \). Agora queremos construir os autoestados do momento angular total \(\hat{j} = \hat{j}_1 + \hat{j}_2 \). Como

\[
[\hat{j}, \hat{j}_1^2] = 0 = [\hat{j}, \hat{j}_2^2] ,
\]

existem autoestados \(|j_1, j_2, j, m\rangle\) comuns para o conjunto de observáveis \(\hat{j}_1^2, \hat{j}_2^2, \hat{j}^2 \) e \(\hat{j} \). Esses autoestados são combinações lineares dos estados individuais,

\[
|\langle j_1, j_2\rangle j, m\rangle = \sum_{m_1, m_2} |j_1, j_2, m_1, m_2\rangle \langle j_1, j_2, m_1, m_2| (j_1, j_2) j, m\rangle \tag{2.80}
\]

O coeficiente matricial se chama coeficiente de Clebsch-Gordan. Os Clebsch-Gordans desaparecem se as condições 4

\[
|j_1 - j_2| \leq j \leq j_1 + j_2 \quad \text{e} \quad m = -j_1 - j_2, -j_1 - j_2 + 1, ..., j_1 + j_2 \tag{2.81}
\]

\[\text{Ver [1], p.111 ou [24], p.119. Os Clebsch-Gordans são relacionados com os símbolos (3j) de Wigner:}\]

\[
\left(\begin{array}{c|c|c} j_1 & j_2 & j \hline m_1 & m_2 & m \end{array} \right) = \left(\begin{array}{c} j_1 \hline m_1 \end{array} \right) \left(\begin{array}{c} j_2 \hline m_2 \end{array} \right) \left(\begin{array}{c} j \hline m \end{array} \right) = (-1)^{j_1 - j_2 + m} \sqrt{\Delta(j_1, j_2, j)} \times \right.
\]

\[\left. \times \sqrt{(j_1 + m_1)! (j_1 - m_1)! (j_2 + m_2)! (j_2 - m_2)! (j + m)! (j - m)!} \right]\]

\[
\sum_{t} t!(m_1 - j_2 + j + t)! (-1)^{t} (j_1 + j_2 - j - t)! (j_1 + j_2 - j)! (j_1 - m_1 + t)! (j_2 + m_2 - t)!
\]

onde \(\Delta(j_1, j_2, j) \equiv \frac{(j_1 + j_2 - j)! (j_1 - j_2 + j)! (j_1 + j_2 + j)!}{(j_1 + j_2 + j + 1)!} \).
não estão satisfeitas.

As matrizes unitárias de transformação entre bases desacopladas e acopladas,

\[|(j_1, j_2), m \rangle = U_{CGC}|j_1, m_1; j_2, m_2 \rangle , \] \hspace{1cm} (2.82)

são listadas em tabelas dos coeficientes de Clebsch-Gordans.

Exemplo 6 (Clebsch-Gordans para o acoplamento de dois spins \(\frac{1}{2} \)): Por exemplo, para o sistema de dois spins \(\frac{1}{2} \) temos,

\[
\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2} \rangle \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2}, \frac{1}{2} \rangle 0 \rangle 0 \\ \frac{1}{2}, \frac{1}{2} \rangle - \frac{1}{2}, - \frac{1}{2} \rangle \end{array} \right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} \frac{1}{2}, \frac{1}{2} \rangle \frac{1}{2}, \frac{1}{2} \rangle \frac{1}{2}, \frac{1}{2} \rangle \\ \frac{1}{2}, \frac{1}{2} \rangle \frac{1}{2}, \frac{1}{2} \rangle 0 \\ 0 \rangle \frac{1}{2}, \frac{1}{2} \rangle \frac{1}{2}, \frac{1}{2} \rangle \end{array} \right).

Nos Excs. 2.5.4.5 e 2.5.4.6 escrevemos todos estados possíveis de dois momentos angulares em bases desacopladas e acopladas. Nos Excs. 2.5.4.7, 2.5.4.8, 2.5.4.9, 2.5.4.10, 2.5.4.11 e 2.5.4.12 praticamos a transformação entre bases desacopladas e acopladas e no Exc. 2.5.4.13 verificamos uma regra garantindo a unitariedade das transformações de Clebsch-Gordan.

2.4.4.1 Acoplamento de três momentos angulares

Três momentos angulares podem acoplar-se em três configurações diferentes: Primeiro j₁ com j₂, depois o spin total \(\langle j_1, j_2 \rangle j_{12} \) com o terceiro \(j_3 \). Utilizamos a notação \(\langle \langle (j_1, j_2, j_{12}), j_3 \rangle \rangle \) ou \(\mid \langle (j_1, j_2, j_{12}), j_3, j_{13} \rangle \rangle \) ou \(\mid (j_2, j_3, j_{23}, j_1) \rangle \). O reacoplamento de três spins é descrito por símbolos \{6j\}, por exemplo,

\[
\mid \langle (j_1, j_2) j_{12}, j_3 \rangle J \rangle = \sum_{j_{13}} \{6j\} \mid \langle (j_1, j_3) j_{13}, j_2 \rangle J \rangle . \hspace{1cm} (2.83)

2.4.4.2 Notação para estados em átomos com acoplamento LS

Num átomo, frequentemente os spins dos elétrons se acoplam para um spin total, \(S = \sum_k s_k \), e separadamente os momentos angulares orbitais se acoplam para um momento angular orbital total, \(L = \sum_k l_k \). Esse dois spins totais agora se acoplam para um momento angular total, \(J = L + S \). Quando esse acoplamento LS acontece, para caracterizar os estados eletrônicos em átomos se usa a notação seguinte:

\[
2^{S+1} L_J . \hspace{1cm} (2.84)
\]

2.4.4.3 Acoplamento j j

Também existe o caso para cada elétron o spin se acopla com o momento orbital, \(j_k = l_k + s_k \), antes de se acoplar os momentos angulares de todos os elétrons, \(J = \sum_k j_k \). Isso se chama acoplamento j j. O reacoplamento dos quatro spins é descrito por símbolos \{9j\} = \left\{ \begin{array}{ccc} l_1 \\ s_1 \\ j_1 \\ l_2 \\ s_2 \\ j_2 \\ L \\ S \\ J \end{array} \right\},

\[
\mid \langle (l_1, s_2) j_1, (l_2, s_2) j_2 \rangle J \rangle = \sum_{L,S} \{9j\} \mid \langle (l_1, l_2) L, (s_1, s_2) S \rangle J \rangle . \hspace{1cm} (2.85)
\]
2.5 Exercícios

2.5.1 Partícula num potencial central

2.5.1.1 Ex: Paridade das funções harmônicas esféricas

Consideramos a transformação de paridade \(P \) com \((x, y, z) \rightarrow (-x, -y, -z)\). Use coordenadas esféricas e mostre, que vale \(\mathcal{Y}_{\ell m} \rightarrow (-1)^\ell \mathcal{Y}_{\ell m} \), é portanto, que uma função de superfície esférica tem paridade par, quando \(\ell \) é par, respectivamente impar, quando \(\ell \) é impar.

2.5.1.2 Ex: Condensado de Bose-Einstein num potencial isótropo

A equação de Gross-Pitaevskii descrevendo a função de onda de um condensado de Bose-Einstein é,

\[
i\hbar \frac{\partial \psi(r)}{\partial t} = \left(-\frac{\hbar^2}{2m} \Delta + V_{trp}(r) + g|\psi(r)|^2 \right) \psi(r),
\]

onde o fator \(g \) depende da força de interação interatômica e \(V_{trp} \) é o potencial de aprisionamento dos átomos. Para \(V(r) = V(r) \) a função de onda terá simetria radial, \(\psi(r) = \frac{\phi(r)}{r} \). Reescreva a equação de Gross-Pitaevskii para a função \(\phi \).

2.5.1.3 Ex: Movimento de uma partícula livre em coordenadas esféricas

Obtenha as autofunções da partícula livre como caso limite do seu movimento num campo de força central com \(V(r) \rightarrow 0 \). Compare as autofunções assim derivadas - associadas ao conjunto completo de observáveis \(H, L_x^2, L_y^2, L_z^2 \) - às descriptas por ondas planas - associadas ao movimento caracterizado pelos observáveis \(p_x, p_y, p_z \) e \(\hat{H} = \frac{\mathbf{P}^2}{2m} \), que igualmente constituem um conjunto completo de observáveis.

2.5.1.4 Ex: Partícula numa caixa esférica

Encontre os níveis de energia e as funções de onda de uma partícula confinada em uma caixa esférica descrita pela energia potencial, \(V(r) = 0 \) para \(r < a \) e \(V(r) = \infty \) para \(r \geq a \) considerando o momento angular \(\ell = 0 \).

2.5.1.5 Ex: Poço de potencial 3D esférico finito

a. Derive os níveis de energia possíveis e as funções de onda associadas para uma partícula presa num poço de potencial 3D esférico de profundidade \(V_0 \) e raio \(a \). Note que este problema é analógico ao espalhamento de Mie com ondas esféricas.

b. Discute o caso de um poço cercado de paredes infinitas.

2.5.1.6 Ex: Partícula num potencial harmônico esférico

Uma partícula quântica de massa \(m \) está sujeita a um potencial

\[
V = \frac{1}{2} m \omega^2 (x^2 + y^2 + z^2).
\]

a. Obtenha os níveis de energia dessa partícula. Isto é, determine os autovalores de

\[
-\frac{\hbar^2}{2m} \nabla^2 \psi + V \psi = E \psi.
\]
b. Considere o nível fundamental e os dois primeiros níveis excitados. Monte uma tabela mostrando para cada um desses três níveis, o valor da energia, a degenerescência e os respectivos estados em termos dos números quânticos.

c. Utilizando

\[\nabla^2 \psi = \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{L^2}{\hbar^2 r^2} \right] \psi \]

e lembrando que \(L^2 Y_{\ell m}(\theta, \phi) = \hbar^2 \ell(\ell+1) Y_{\ell m} \), escreva a equação diferencial do item (a) para a parte radial da função de onda (não é preciso resolvê-la). Identifique nessa equação o potencial efetivo \(V_{\text{ef}}(r) \).

d. Resolva a equação diferencial do item anterior para o caso em que \(\ell = 0 \) e determine o autovalor correspondente. Para isso, admita uma solução do tipo \(e^{-\alpha r^2} \) e determine \(\alpha \).

2.5.2 Tratamento quântico do hidrogênio

2.5.2.1 Ex: Assimptotas dos polinômios de Laguerre

Derive as soluções assimptóticas das soluções da equação (2.25).

2.5.2.2 Ex: Equação de Laguerre

Mostre que a equação (2.25) se transforme com o ansatz (2.26) para a equação (2.27).

2.5.2.3 Ex: Funções de Laguerre

Utilizando a relação de ortogonalidade dos polinômios associados de Laguerre,

\[\int_0^\infty \rho^\alpha e^{-\rho} L_n^{(\alpha)}(\rho) L_m^{(\alpha)}(\rho) d\rho = \frac{\Gamma(n+\alpha+1)}{n!} \delta_{n,m} \]

\[\int_0^\infty \rho^{n+1} e^{-\rho} L_n^{(\alpha)}(\rho)^2 d\rho = \frac{(n+\alpha)!}{n!}(2n+\alpha+1) , \]

e as fórmulas de recorrência,

\[nL_n^{(\alpha+1)}(\rho) = (n-\rho)L_{n-1}^{(\alpha+1)}(\rho r) + (n+\alpha)L_{n-1}^{(\alpha)}(\rho) \]

\[\rho L_n^{(\alpha+1)}(\rho) = (n+\alpha)L_n^{(\alpha)}(\rho) - (n-\rho)L_n^{(\alpha)}(\rho) , \]

a. calcule a constante de normalização \(D_{n,l} \) para um átomo hidrogenoide com número atômico \(Z \);

b. calcule o valor médio

\[\langle r \rangle_{n l m} = \frac{n^2 a_B}{Z} \left[1 + \frac{1}{2} \left(1 - \frac{\ell(\ell+1)}{n^2} \right) \right] ; \]

c. calcule o valor médio

\[\left\langle \frac{1}{r} \right\rangle_{n l m} = \frac{Z}{n^2 a_B} . \]

2.5.2.4 Ex: Raios de orbitais no modelo de Bohr

A partir dos resultados acima, obtenha o valor esperado \(\langle r \rangle \) para os estados \(\Psi_{100} \), \(\Psi_{210} \) e \(\Psi_{320} \) do átomo de hidrogênio. Compare os resultados com aqueles do modelo de Bohr.
2.5.2.5 Ex: Teorema virial e modelo de Bohr
Calcule, para o estado ψ_{320} do átomo de hidrogênio, os valores esperados $\langle \frac{1}{r} \rangle$ e $\langle p^2 \rangle$.
A partir dos resultados, obtenha os valores esperados das energias cinética e potencial, $\langle T \rangle$ e $\langle V \rangle$, e mostre que, de acordo com o teorema virial, $\langle T \rangle = -(1/2)\langle V \rangle$. Compare os resultados com o modelo de Bohr.

2.5.2.6 Ex: Elementos da matriz de transição
Usando as seguintes funções de onda (não normalizadas) do hidrogênio, $\psi_{100}(r) = e^{-r}$, $\psi_{210}(r) = r e^{-r/2} \cos \theta$, $\psi_{21\pm 1}(r) = r e^{-r/2} \sin \theta e^{\pm i\phi}$, calcule os elementos de matriz a. $\langle \psi_{100} | \tilde{z} | \psi_{210} \rangle$, b. $\langle \psi_{100} | \tilde{x} - i\tilde{y} | \psi_{210} \rangle$, c. $\langle \psi_{100} | \tilde{x} - i\tilde{y} | \psi_{211} \rangle$. Tente interpretar os resultados. Formulário:

\[\int_{0}^{\infty} r^4 e^{-3r/2} dr = \frac{256}{81}, \quad \int_{0}^{\pi} \sin^3 x dx = \frac{4}{3}, \quad \int_{0}^{\pi} \cos x \sin^2 x dx = 0, \quad \int_{0}^{\pi} \cos^2 x \sin x dx = \frac{2}{3}. \]

2.5.3 Momento angular

2.5.3.1 Ex: Propriedades do momento angular orbital
Mostre $\hat{l} \times \hat{l} = i\hbar \hat{l}$ e $[\hat{l}_x, \hat{l}_y] = i\hbar \hat{l}_z$.

2.5.3.2 Ex: Tensor de Levi-Civita
Mostre $[l_k, r_m] = i\hbar r_n \varepsilon_{kmn}$ onde o Levi-Civita tensor é definido por $\varepsilon_{kmn} = 1$ quando (kmn) é uma permutação par de (123), $\varepsilon_{kmn} = -1$ para uma permutação ímpar e $\varepsilon_{kmn} = 0$ se dois dos índices são iguais.

2.5.3.3 Ex: Momento angular orbital de um oscilador harmônico
Mostre para um oscilador harmônico três-dimensional isotrópico $[\hat{H}, \hat{l}^2] = [\hat{H}, \hat{l}_z] = 0$. Faz cálculos explícitos, isto é, mostre

\[\left[\frac{p^2}{2m}, \hat{l}_z \right] = 0 = \left[\frac{m}{2\omega^2 r^2}, \hat{l}_z \right] \quad e \quad \left[\frac{p^2}{2m}, \hat{l}^2 \right] = 0 = \left[\frac{m}{2\omega^2 r^2}, \hat{l}^2 \right]. \]

2.5.3.4 Ex: Comutação do modulo e das componentes do momento angular orbital
Mostre $[\hat{l}, \hat{l}^2] = 0$.

2.5.3.5 Ex: Incerteza das componentes do momento angular
Mostre que se \hat{l}_z é preciso, \hat{l}_x e \hat{l}_y são imprecisos.

2.5.3.6 Ex: Representação matricial das componentes do momento angular
Calcule os elementos da matriz de \hat{j}_x e \hat{j}_x^2 na base, onde \hat{j}_z é observável.
2.5.4 Acoplamento de momentos angulares

2.5.4.1 Ex: Adição/subtração de momentos angulares

Mostre que \(\hat{j}_1 + \hat{j}_2 \) é um momento angular, mas não \(\hat{j}_1 - \hat{j}_2 \).

2.5.4.2 Ex: CCOC de momentos angulares acoplados

Mostre que \(\{\hat{j}_1^2, \hat{j}_2^2, \hat{j}_3^2, \hat{j}_z\} \) é um CCOC; isto é, mostre que
a. \(\hat{j}_2^2 \) comuta com \(\hat{j}_1^2 \) e \(\hat{j}_2^2 \);
b. \(\hat{j}_2^2 \) não comuta com \(\hat{j}_1^z \) ou \(\hat{j}_2^z \) e que não podemos especificar \(m_{j1} \) ou \(m_{j2} \) junto com \(j \).

2.5.4.3 Ex: Acoplamento spin-orbita

a. Mostre que o operador \(\hat{L} \cdot \hat{S} \) associado ao acoplamento spin-orbita, satisfaz a relação
\[
\hat{L} \cdot \hat{S} = L_z S_z + \left(L_+ S_- + L_- S_+ \right)/2.
\]
Obtenha a representação matricial do operador \(\hat{L} \cdot \hat{S} \), considerando as bases:
b. \(\{ |m_L \rangle \otimes |m_S \rangle \} \) dos autoestados comuns aos operadores \(L^2, S^2, L_z, S_z \);
c. \(\{|J, M\} \}, associada aos operadores \(L^2, S^2, J^2, J_z \).

2.5.4.4 Ex: Multiplicidade de momentos angular acoplados

Verifique \# = \((2j_1 + 1)(2j_2 + 1)\) dentro da representação acoplada.

2.5.4.5 Ex: Estados possíveis de dois momentos angulares (des-)acoplados

Ache todos estados possíveis com os momentos angulares \(j_1 = 1 \) e \(j_2 = 1/2 \) nas imagens desacoplados e acoplados.

2.5.4.6 Ex: Estrutura fina e hiperfina do átomo de rubélio \(^{85}\)Rb

1. O átomo de rubélio \(^{85}\)Rb tem um elétron de valência. No primeiro estado excitado esse elétron tem o momento angular orbital, \(L = 1 \). Quais são os estados possíveis?
2. No estado fundamental deste átomo o momento angular total dos elétrons, \(J \), acopla com o spin do núcleo, \(I = 5/2 \), para formar o momento angular total \(\hat{F} = \hat{J} + \hat{I} \). Determine os valores possíveis para o momento angular \(F \) e o número quântico magnético \(m_F \).

2.5.4.7 Ex: Expansão da estrutura hiperfina do átomo de rubélio \(^{87}\)Rb

Determine para os estados \(S_{1/2} \) e \(P_{3/2} \) de um átomo com o spin nuclear \(I = 3/2 \) com acoplamento hiperfino \(\hat{J} \cdot \hat{I} \) como os autoestados da base acoplada se expandem na base desacoplada. Não consideramos campo magnético externo.

2.5.4.8 Ex: Amplitudes de transição entre sub-estados Zeeman

a. Consideramos o átomo de \(^{87}\)Rb que tem o momento angular nuclear \(I = 3/2 \). Quais são os estados hiperfinos \(F \) possíveis resultando de um acoplamento de \(I \) com o momento angular eletrônico total do estado fundamental \(^2\)S\(_{1/2}\)? Quais são os sub-estados Zeeman possíveis dos \(F \)?
b. Quais são os estados hiperfinos \(F' \) possíveis resultando de um acoplamento de \(I \) com o momento angular eletrônico total do estado excitado \(^2\)P\(_{3/2}\), \(F' = 2 \)? Quais são os sub-estados
Zeeman possíveis dos F'?

c. Uma transição entre um estado hiperfino fundamental e um estado hiperfino excitado pode ser descrita por um acoplamento do momento angular total F com o momento angular do fóton κ formando o momento angular do estado excitado F'. Para ver isso, consideramos agora os níveis $F = 1$ e $F' = 2$. Expande o momento angular acoplado $| (F, \kappa)F', m_{F'}\rangle = | (1, 1)2, m_{F'}\rangle$ numa base desacoplada para cada valor de $m_{F'}$ possível. Utilize a tabela na Fig. 2.10 para determinar os coeficientes de Clebsch-Gordan.

Note bem: Os Clebsch-Gordans comparam só as forças das transições entre vários sub-estados Zeeman do mesmo par (F, F'). Para comparar as forças entre diferentes pares (F, F') é preciso calcular os coeficientes $6j$.

2.5.4.9 Ex: Expansão do acoplamento spin-orbit

Considere o problema da adição do momento angular orbital ℓ e de um spin $1/2$. Obtenha os $2\ell + 1$ estados $| \ell + 1/2, m_j\rangle$, além dos 2ℓ estados $| \ell - 1/2, m_j\rangle$ (que constituem uma base comum aos operadores ℓ_2, s_2^2, j_z, j^2), expandidos na base $| m_{j1}, m_{j2}\rangle$ dos autoestados dos operadores ℓ^2, s^2, ℓ_z, s_z. Você pode simplificar o procedimento derivando duas relações de recorrência das quais decorrem os estados desejados.

2.5.4.10 Ex: Ginástica de operadores de momento angular

Considere o problema da adição dos momentos angulares $j_1 = 1$ e $j_2 = 1/2$:

a. Quais os possíveis valores de m e j, em que $j^2|j, m\rangle = j(j+1)\hbar^2|j, m\rangle$ e $j_z|j, m\rangle = m\hbar|j, m\rangle$?

b. Quais as degenerescências $g_{j_1,j_2}(m)$?

c. Encontre os estados da base $|j, m\rangle$, comum aos operadores j_1^2, j_2^2, j_z, j^2, expandidos na base $|j_1, m_{j1}\rangle \otimes |j_2, m_{j2}\rangle$ dos autoestados de $j_1^2, j_2^2, j_{z,1}, j_{z,2}$.

2.5.4.11 Ex: Bases (des-)acopladas dos harmônicos esféricos

Expande o estado triplo $3P_J$ do estrôncio numa base desacoplada e escreve a matriz da transformação entre as bases.

2.5.4.12 Ex: Expansão do acoplamento $l \cdot s$

Considere o problema da adição do momento angular orbital l e de um spin $1/2$. Obtenha os $2l + 1$ estados $| l + 1/2, m_j\rangle$, além dos $2l$ estados $| l - 1/2, m_j\rangle$ (que constituem uma base comum aos operadores l^2, s^2, j_z, j^2), expandidos na base $| m, c\rangle$ dos autoestados dos operadores l^2, s^2, l_z, s_z. Você pode simplificar o procedimento derivando duas relações de recorrência das quais decorrem os estados desejados.

2.5.4.13 Ex: Propriedades dos coeficientes de Clebsch-Gordan

Dado os momentos j_1 e j_2, e sendo C_{m_1,m_2} os coeficientes de Clebsch-Gordan, prove que $\sum_{m_1,m_2} |C_{m_1,m_2}|^2 = 1$.

5Veja Cohen-Tannoudji, Vol.2, Complemento A_X.
6Veja Cohen-Tannoudji, Vol.2, Complemento A_X.
CAPÍTULO 2. ROTACÕES / POTENCIAIS CENTRAIS

Note: A square-root sign is to be understood over every coefficient, e.g., for $-8/15$ read $-\sqrt{8/15}$. Notation: $J \ J \ M \ M \ ... \ m_1 \ m_2 \ Coefficients$

Figura 2.10: Coeficientes Clebsch-Gordan.
Capítulo 3

Métodos de aproximação

Praticamente cada problema indo além do poço de potencial, do oscilador harmônico ou do átomo de hidrogênio sem spin e campos externos é impossível resolver analiticamente. Nesse capítulo vamos falar de técnicas para resolver aproximadamente problemas em situações mais realísticas. Existem vários métodos dos quais discutiremos os seguintes: 1. O método de perturbação estacionária ou de perturbação dependente do tempo é útil para avaliar pequenas perturbações do sistema, por exemplo, por campos elétricos ou magnéticos externos; 2. o método variacional serve para achar e melhorar chutes para as funções de onda motivadas pelas simetrias do sistema; 3. método WKB semiclássico; 4. o método de campos auto-consistentes é um método iterativo de resolver a equação de Schrödinger.

3.1 Perturbações estacionárias

3.1.1 Método de perturbação independente do tempo

Introduzimos primeiramente a teoria de perturbação independente do tempo (TPIT) para sistemas de muitos níveis. Separamos o hamiltoniano em uma parte não perturbada

\[\hat{H}^{(0)} | \psi^{(0)} \rangle = E^{(0)} | \psi^{(0)} \rangle, \]

e perturbações proporcionais à pequenos parâmetros \(\lambda \),

\[\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}^{(1)} + \lambda^2 \hat{H}^{(2)} + \ldots \]

As funções de onda perturbadas são

\[| \psi \rangle = | \psi^{(0)} \rangle + \lambda | \psi^{(1)} \rangle + \lambda^2 | \psi^{(2)} \rangle + \ldots, \]

e as energias

\[E = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \ldots \]

As contribuições \(\propto \lambda^n \) são as correções de ordem \(n \). A equação que precisamos resolver agora é

\[\hat{H} | \psi \rangle = E | \psi \rangle. \]

Inserindo todas as expansões acima e segregando todos as ordens de \(\lambda^k \), achamos o seguinte sistema de equações,

\[\hat{H}^{(0)} | \psi^{(0)} \rangle = E^{(0)} | \psi^{(0)} \rangle \]

\[(\hat{H}^{(0)} - E^{(0)}) | \psi^{(1)} \rangle = (E^{(1)} - \hat{H}^{(1)}) | \psi^{(0)} \rangle \]

\[(\hat{H}^{(0)} - E^{(0)}) | \psi^{(2)} \rangle = (E^{(2)} - \hat{H}^{(2)}) | \psi^{(0)} \rangle + (E^{(1)} - \hat{H}^{(1)}) | \psi^{(1)} \rangle \]

... .
3.1.1.1 Correção de primeira ordem para a energia

Agora consideramos auto-estados $|\psi_n^{(1)}\rangle$ do sistema perturbado e expandimos a correção de primeira ordem da função de onda em uma combinação linear dos autovetores não perturbados $|\psi_n^{(0)}\rangle \equiv |n\rangle$,

$$|\psi_n^{(1)}\rangle = \sum_m |m\rangle \langle m|\psi_n^{(1)}\rangle .$$

(3.7)

Inserimos esta expansão na segunda equação (3.6) e multiplicamos com $\langle n|$,

$$\langle n| (\hat{H}^{(0)} - E_n^{(0)}) \sum_m |m\rangle \langle m|\psi_n^{(1)}\rangle = 0 = \langle n| E_n^{(1)} - \hat{H}^{(1)}|n\rangle .$$

(3.8)

Obtemos para a correção de primeira ordem para a energia de estados não perturbados

$$E_n^{(1)} = \langle n|\hat{H}^{(1)}|n\rangle .$$

(3.9)

Como primeiro exemplo calcularemos no Exc. 3.3.1.1 a correção de primeira ordem para a energia de um poço unidimensional ligeiramente deformado.

3.1.1.2 Correção de primeira ordem para a função de onda

Agora vamos olhar para a correção de primeira ordem para a função de onda considerando a segunda equação (3.6),

$$\langle m|\hat{H}^{(0)} - E_n^{(0)}|\psi_n^{(1)}\rangle = \langle m|E_n^{(1)} - \hat{H}^{(1)}|n\rangle .$$

(3.10)

Quando $n = m$, o lado esquerdo desta equação desaparece. Portanto, $E_n^{(1)} - \langle n|\hat{H}^{(1)}|n\rangle = 0$, e podemos nos restringir aos termos $n \neq m$ descartando os termos em $E_n^{(1)}$,

$$\langle m|\psi_n^{(1)}\rangle = \frac{E_n^{(1)} \delta_{mn} - \langle m|\hat{H}^{(1)}|n\rangle}{E_m^{(0)} - E_n^{(0)}} = \frac{\langle m|\hat{H}^{(1)}|n\rangle}{E_n^{(0)} - E_m^{(0)}} .$$

(3.11)

Obtemos para a correção de primeira ordem para a energia dos estados,

$$|\psi_n^{(1)}\rangle = \sum_m |m\rangle \langle m|\psi_n^{(1)}\rangle = \sum_{m \neq n} |m\rangle \frac{\langle m|\hat{H}^{(1)}|n\rangle}{E_n^{(0)} - E_m^{(0)}} .$$

(3.12)

Esse procedimento simula a distorção do estado por misturas com outros estados. A perturbação induz transições virtuais para outros estados. A perturbação é grande quando os níveis admistos são perto.

Vide Exc. 3.3.1.2. No Exc. 3.3.1.3 calculamos a correção de primeira ordem devido à extensão finita do núcleo do hidrogênio. No Exc. 3.3.1.4 tratamos o acoplamento de dois níveis de energia de um sistema de dois níveis como perturbação em primeira ordem, e comparamos o resultado com a solução exata. O efeito Stark para um elétron confinado numa caixa pode ser discutido (vide Exc. 3.3.1.5) em primeira ordem TPIT.
3.1. PERTURBAÇÕES ESTACIONÁRIAS

3.1.1.3 Correção de segunda ordem para a energia

Para calcular a correção de segunda ordem para a energia expandimos a correção de segunda ordem,

\[|\psi^{(2)}_n\rangle = \sum_m |m\rangle \langle m| \psi^{(2)}_n\rangle, \]
(3.13)
e importamos na terceira equação (3.6) e multiplicamos com \(\langle n| \),

\[\langle n|(\hat{H}^{(0)} - E^{(0)}_n) \sum_m |m\rangle \langle m| \psi^{(2)}_n\rangle = \langle n|(E^{(2)}_n - \hat{H}^{(2)})|n\rangle + \langle n|(E^{(1)}_n - \hat{H}^{(1)}) \sum_m |m\rangle \langle m| \psi^{(1)}_n\rangle. \]
(3.14)

Agora,

\[\sum_m \langle m| \psi^{(2)}_n \rangle (E^{(0)}_n - E^{(0)}_m) \delta_{nm} = 0 = E^{(2)}_n - \langle n|\hat{H}^{(2)}|n\rangle + \sum_m \langle m| \psi^{(1)}_n \rangle \left(E^{(1)}_n \delta_{nm} - \langle n|\hat{H}^{(1)}|m\rangle \right). \]
(3.15)

O lado esquerdo desta equação desaparece. Além disso, no lado direito, para \(n \neq m \), o termo \(E^{(1)}_n \delta_{nm} \) desaparece e para \(n = m \) a parêntese inteira desaparece. Portanto, podemos descartar o termo \(E^{(1)}_n \) inteiramente e nós restringir a soma para termos \(n \neq m \). Inserindo os coeficientes \(\langle m| \psi^{(1)}_n \rangle \) calculados em (3.11), obtemos finalmente,

\[E^{(2)}_n = \langle n|\hat{H}^{(2)}|n\rangle + \sum_{m \neq n} \frac{\langle n|\hat{H}^{(1)}|m\rangle \langle m|\hat{H}^{(1)}|n\rangle}{E^{(0)}_n - E^{(0)}_m}. \]
(3.16)

O primeiro termo é similar à correção de primeira ordem; o valor esperado da perturbação de segunda ordem nos estados não perturbados. O segundo termo descreve o deslocamento das energias através de transições possíveis temporárias para outros estados.

No Exc. 3.3.1.6 tratamos um sistema de 3 níveis acoplados até a segunda ordem perturbativa. O efeito Stark discutido no Exc. 3.3.1.7 precisa do cálculo TPIT até segunda ordem.

3.1.2 TPIT com estados degenerados

Cálculos exatos mostram que o efeito de uma perturbação é maior – porém finito – para estados degenerados. Do outro lado, pelas expressões acima derivadas para as correções tanto das energias quanto das funções de onda, podemos inferir que estas correções podem tornar-se muito grandes para pequenas perturbações ou mesmo divergir.

Felizmente, o fato que cada combinação linear de funções degeneradas também é uma auto-função do hamiltoniano nós dá a liberdade de escolher a combinação mais similar á forma final das funções perturbadas. Por exemplo, considerando uma perturbação por um campo magnético pode tornar-se vantajoso expandir as funções esférica \(Y_{lm} \) numa base de coordenadas cilíndricas\(^1\). Veremos no seguinte que podemos resolver ambos os problemas, a seleção da combinação inicial é a prevenção de denominadores divergentes em uma vez, sem especificar a expansão explicitamente.

Consideramos auto-estados \(|n,\nu\rangle \) com a energia \(E^{(0)}_n \) sendo \(r \) vezes degenerada à respeito do número quântico \(\nu \), onde \(\nu = 1, \ldots, r \). Todos estados satisfazem

\[\hat{H}^{(0)}|n,\nu\rangle = E^{(0)}_n|n,\nu\rangle. \]
(3.17)

\(^1\)Um outro exemplo seria a preferência para a base acoplada \(|l,s,j,m_j\rangle \) em comparação com a base desacoplada \(|l,m_l,s,m_s\rangle \) sabendo que a degenerescência em \(j \) é levada quando existe uma energia associada à interação dos momentos angulares e a degenerescência em \(m_j \) é levada quando aplicamos um campo magnético.
Construímos combinações que mais se assemelham aos estados perturbados

\[|\psi_{n\mu}^{(0)}\rangle = \sum_{\nu=1}^r c_{\mu\nu} |n,\nu\rangle . \]

(3.18)

Quando a perturbação \(\hat{H}^{(1)} \) está aplicada, supomos que o estado \(|\psi_{n\mu}^{(0)}\rangle \) é distorcido para o estado semelhante \(|\psi_{\mu}^{(0)}\rangle \), e a energia muda de \(E_n^{(0)} \) para \(E_{n\mu} \). Precisamos agora do índice \(\mu \) para etiquetar a energia, pois a degenerescência pode ser removida pela perturbação. Como antes, escrevemos agora,

\[\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}^{(1)} + .. \]

(3.19)

\[|\psi_{n\mu}\rangle = |\psi_{n\mu}^{(0)}\rangle + \lambda |\psi_{n\mu}^{(1)}\rangle + .. \]

\[E_{n\mu} = E_n^{(0)} + \lambda E_{n\mu}^{(1)} + .. . \]

Substituição dessas expansões em \(\hat{H} |\psi_{n\mu}\rangle = E_{n\mu} |\psi_{n\mu}\rangle \), e coleção das ordens de \(\lambda \) até primeira ordem dá,

\[\hat{H}^{(0)} |\psi_{n\mu}^{(0)}\rangle = E_n^{(0)} |\psi_{n\mu}^{(0)}\rangle \]

(3.20)

\[(E_n^{(0)} - \hat{H}^{(0)}) |\psi_{n\mu}^{(1)}\rangle = (E_{n\mu}^{(1)} - \hat{H}^{(1)}) |\psi_{n\mu}^{(0)}\rangle . \]

Como antes, tentamos exprimir as correções de primeira ordem para as funções de onda através das funções não perturbadas degeneradas, \(|\psi_{n\mu}^{(0)}\rangle \), e não degeneradas, \(|\psi_{m}^{(0)}\rangle \):^2

\[|\psi_{n\mu}^{(1)}\rangle = \sum_\nu b_{\mu\nu} |\psi_{n\nu}^{(0)}\rangle + \sum_m a_{nm} |\psi_{m}^{(0)}\rangle . \]

(3.21)

Colocando isso na equação de primeira ordem (3.20), obtemos,

\[\sum_\nu b_{\mu\nu} (E_n^{(0)} - E_n^{(0)}) |\psi_{n\nu}^{(0)}\rangle + \sum_m a_{nm} (E_m^{(0)} - E_n^{(0)}) |\psi_{m}^{(0)}\rangle = (E_{n\mu}^{(1)} - \hat{H}^{(1)}) |\psi_{n\mu}^{(0)}\rangle . \]

(3.22)

O primeiro termo desaparece. Inserindo a expansão (3.18),

\[\sum_m a_{nm} (E_m^{(0)} - E_n^{(0)}) |\psi_{m}^{(0)}\rangle = (E_{n\mu}^{(1)} - \hat{H}^{(1)}) \sum_\nu c_{\mu\nu} |n,\nu\rangle , \]

(3.23)

e multiplicando os dois lados com \(\langle n, \mu | \) , obtemos zero na esquerda, pois podemos escolher os estados não-degenerados ortogonais \(\langle n, \mu | m \rangle = \delta_{m,n} \). Portanto,

\[\sum_\nu c_{\mu\nu} \left[E_{n\mu}^{(1)} \langle n, \mu | n, \nu \rangle - \langle n, \mu | \hat{H}^{(1)} | n, \nu \rangle \right] = 0 , \]

(3.24)

Essa equação secular (uma para cada \(\mu \)), e um conjunto de \(r \) equações lineares para os coeficientes \(c_{\mu\nu} \). A condição para ter soluções não-triviais é,

\[\text{det} \left(\langle n, \mu \rangle H^{(1)} | n, \mu \rangle - E_{n\mu}^{(1)} \delta_{\mu,\nu} \right)_{\mu,\nu} = 0 . \]

(3.25)

^2Note, que etiquetamos todos os estados que não são degenerados com o estado sob investigação \(|\psi_{n\mu}^{(1)}\rangle \) com o índice \(m \), mesmo se existem degenerescências entre eles mesmo.
3.1. PERTURBAÇÕES ESTACIONÁRIAS

A solução dessa *determinante secular* dá as energias $E^{(1)}_{\mu}$ procuradas. Depois, a solução da equação secular (3.24) *para cada valor de energia* dá os coeficientes definindo a melhor forma de combinações lineares adaptada à perturbação. Diferentemente aos cálculos anteriores com estados degenerados, aqui consideramos combinações lineares dos vetores do subespaço degenerado antes de por a perturbação.

Na prática, aplicamos a teoria de perturbação somente até a ordem mais baixa relevante. Isto é, somente calculamos a correção de segunda ordem se a primeira ordem zerar. Um exemplo famoso é o *efeito Stark quadrático* discutido na Sec. 5.3. No caso de autovalores degenerados na ausência de perturbação a primeira ordem sempre vai produzir uma correção notável, como no exemplo do *efeito Stark linear*, também discutido na Sec. 5.3. Por essa razão, não precisamos discutir ordens de perturbação mais elevados no caso de autovalores degenerados.

Exemplo 7 (Perturbação num sistema com dois estados degenerados): Como exemplo consideramos o seguinte hamiltoniano,

$$
\hat{H} = \begin{pmatrix} \Delta & \Omega \\ \Omega & \Delta \end{pmatrix}.
$$

A solução exata dá os autovalores e os autovetores,

$$
E_1 = \Delta + \Omega \quad , \quad E_2 = \Delta - \Omega \quad , \quad |\psi_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad , \quad |\psi_2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}.
$$

Agora dividimos o hamiltoniano em uma parte não perturbada e uma perturbação

$$
\hat{H} \equiv \hat{H}^{(0)} + \hat{H}^{(1)} = \begin{pmatrix} \Delta & 0 \\ 0 & \Delta \end{pmatrix} + \begin{pmatrix} 0 & \Omega \\ \Omega & 0 \end{pmatrix}.
$$

Obtemos em ordem zero,

$$
E^{(0)}_1 = \Delta = E^{(0)}_2 \quad , \quad |1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad , \quad |2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.
$$

A aplicação da teoria de perturbação não-degenerada em primeira ordem daria,

$$
\langle 1|\hat{H}^{(1)}|1\rangle = 0 = \langle 2|\hat{H}^{(1)}|2\rangle \quad , \quad |\psi^{(1)}_1\rangle = |1\rangle \frac{\langle 1|\hat{H}^{(1)}|2\rangle}{E^{(0)}_1 - E^{(0)}_2} \rightarrow \infty \leftarrow |\psi^{(1)}_2\rangle.
$$

Isto é, a correção da energia zero em primeira ordem enquanto a correção da função de onda diverge. Obviamente, a base $|\nu\rangle$ obtida pela diagonalização da matriz $\hat{H}^{(0)}$ não é adaptada ao cálculo dos elementos da matriz $\hat{H}^{(1)}$.

Agora, aplicando teoria de perturbação degenerada, obtemos pela determinante secular,

$$
0 = \det \left[\langle \nu|\hat{H}^{(1)}|\mu\rangle - E^{(1)}_{\mu} \delta_{\mu,\nu} \right] = \det \begin{pmatrix} -E^{(1)}_{\mu} & \Omega \\ \Omega & -E^{(1)}_{\mu} \end{pmatrix} = (E^{(1)}_{\mu})^2 - \Omega^2,
$$

os autovalores são $E^{(1)}_1 = \Omega$ e $E^{(1)}_2 = -\Omega$ permitindo estabelecer a equação secular,

$$
c_{11} \left[E^{(1)}_1 - (1|\hat{H}^{(1)}|1) \right] - c_{12} (1|\hat{H}^{(1)}|2) = c_{11} [\Omega - 0] - c_{12} \Omega = 0
$$

$$
c_{21} (2|\hat{H}^{(1)}|1) + c_{22} \left[E^{(1)}_2 - (2|\hat{H}^{(1)}|2) \right] = -c_{21} \Omega + c_{22} [-\Omega - 0] = 0.
$$

Obtemos $c_{11} = c_{12}$ e $c_{21} = -c_{22}$ e com isso,

$$
|\psi^{(0)}_1\rangle = \sum_{\nu} c_{1\nu} |\nu\rangle = c_{11} |1\rangle + c_{12} |2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad , \quad |\psi^{(0)}_2\rangle = c_{21} |1\rangle + c_{22} |2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}.
$$

Assim, podemos verificar que as correções para as autoenergias,
\[E_1 = E_1^{(0)} + \langle \psi_1^{(0)} | \hat{H}^{(1)} | \psi_1^{(0)} \rangle = \Delta + \Omega \]
\[E_2 = E_2^{(0)} + \langle \psi_2^{(0)} | \hat{H}^{(1)} | \psi_2^{(0)} \rangle = \Delta - \Omega \]
coincidem com o cálculo exato feito no início. As autofunções \(|\psi_1^{(0)}\rangle\) deveriam já estar corrigidas em primeira ordem, por isso,
\[|\psi_1^{(1)}\rangle = |\psi_1^{(0)}\rangle \frac{\langle \psi_1^{(0)} | \hat{H}^{(1)} | \psi_2^{(0)} \rangle}{E_1 - E_2} = 0 = |\psi_2^{(1)}\rangle .\]

No Exc. 3.3.1.8 estudamos um sistema de três níveis parcialmente degenerado e a quebra da degenerescência por uma perturbação. No Exc. 3.3.1.9 trataremos uma perturbação num poço com níveis de energia degenerados.

3.2 Método variacional

3.2.1 A fração de Rayleigh

Supondo que queremos calcular a energia do estado fundamental \(E_g\) de um sistema descrito por um hamiltoniano \(\hat{H}\), mas não conhecemos a função de onda e não sabemos como resolver a equação de Schrödinger. Se pelo menos tivéssemos uma boa ideia da forma genérica da solução (gaussiano, sinusoidal,...), poderíamos fazer um chute com um parâmetro livre e otimizar o parâmetro minimizando a energia, que deve ser mínima para o estado fundamental. Isso é exatamente a ideia do \textit{método variacional}. Nota bem que o método variacional só funciona com o estado fundamental.

Para qualquer função \(\psi\) sabemos que a \textit{fração de Rayleigh} \(E\) satisfaz,
\[E_g \leq \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \equiv E , \tag{3.26} \]
não só quando \(\psi\) é a função de um estado excitado, mas mesmo quando representa um chute (imperfeito) para o estado fundamental. Assumindo funções normalizadas podemos descartar o denominador \(\langle \psi | \psi \rangle = 1\). Para verificar o teorema, expandimos a função \(\psi\) em auto-funções (desconhecidas) ortonormais, \(|\psi\rangle = \sum_n c_n |\psi_n\rangle\). Como \(\psi\) está normalizada,
\[1 = \langle \psi | \psi \rangle = \sum_{m,n} \langle \psi_m | c_m^* c_n | \psi_n \rangle = \sum_n |c_n|^2 . \tag{3.27} \]

Do mesmo jeito,
\[\langle \psi | \hat{H} | \psi \rangle = \sum_{m,n} \langle \psi_m | c_m^* \hat{H} c_n | \psi_n \rangle = \sum_n E_n |c_n|^2 . \tag{3.28} \]

Como o estado fundamental é aquele da energia mais baixa, \(E_g \leq E_n\), demonstramos a relação (3.26)
\[E_g = E_g \sum_n |c_n|^2 \leq \sum_n E_n |c_n|^2 = \langle \hat{H} \rangle . \tag{3.29} \]

Na prática, o chute \(\psi_\alpha\) para o estado fundamental permite calcular uma energia que deve ser minimaliza por
\[\frac{\partial \langle \psi_\alpha | \hat{H}_\alpha | \psi_\alpha \rangle}{\partial \alpha} = 0 \tag{3.30} \]

Nos Excs. 3.3.2.1 e 3.3.2.2 nós aproximaremos do estado fundamental, respectivamente, de um potencial quártico e de um oscilador harmônico tentando vários chutes e optimizando os seus parâmetros livres.
3.3. EXERCÍCIOS

3.2.2 Método de Rayleigh-Ritz

Uma modificação do método variacional é o método de Rayleigh-Ritz. Aqui, em vez de utilizar uma função "chute", utilizamos uma combinação linear de auto-funções com coeficientes variáveis: $|\psi\rangle = \sum_k c_k |k\rangle$. Esses variáveis são então otimizadas para minimizar a fração de Rayleigh,

$$E_g \leq \frac{\sum_{k,m} c_k c_m \langle k|\hat{H}|m\rangle}{\sum_{k,m} c_k c_m \langle k|m\rangle} = \mathcal{E},$$

onde supomos coeficientes e auto-funções reais. Para isso, as derivadas por todos os coeficientes devem desaparecer:

$$\frac{\partial \mathcal{E}}{\partial c_q} = \frac{\sum_k c_k \langle k|\hat{H}|q\rangle + \sum_m c_m \langle q|\hat{H}|m\rangle}{\sum_{k,m} c_k c_m \langle k|m\rangle} - \frac{\sum_{k,m} c_k c_m \langle k|\hat{H}|m\rangle (\sum_k c_k \langle k|q\rangle + \sum_m c_m \langle q|m\rangle)}{\left(\sum_{k,m} c_k c_m \langle k|m\rangle\right)^2}$$

$$= \frac{\sum_k c_k (\langle k|\hat{H}|q\rangle - \mathcal{E}\langle k|q\rangle) + \sum_m c_m (\langle q|\hat{H}|m\rangle - \mathcal{E}\langle q|m\rangle)}{\sum_{k,m} c_k c_m \langle k|m\rangle} = 0,$$

utilizando a definição de \mathcal{E} (3.31). A equação está satisfeita quando o numerador desaparece:

$$0 = \sum_m c_m (\langle q|\hat{H}|m\rangle - \mathcal{E}\langle q|m\rangle) .$$

A condição para a existência de soluções é, que a determinante secular desaparece,

$$0 = \det(\langle q|\hat{H}|m\rangle - \mathcal{E}\langle q|m\rangle) .$$

A solução dessa equação leve até um conjunto de valores \mathcal{E}, e o valor mais baixo, \mathcal{E}_{min}, é a melhor aproximação para a energia do estado fundamental. Os coeficientes da função de onda são obtidos resolvendo a auto-equação (3.33) com \mathcal{E}_{min}.

No Exc. 3.3.2.3 usaremos o método de Rayleigh-Ritz para estimar o efeito da massa nuclear finita no átomo de hidrogênio sobre as níveis de energia. No Exc. 3.3.2.4 usaremos o método de Rayleigh-Ritz para encontrar o número máximo de átomos permitindo um condensado de Bose-Einstein estável feito de átomos com força interatômica atraente.

3.3 Exercícios

3.3.1 Perturbações estacionárias

3.3.1.1 Ex: Poço unidimensional com deformação central

Considere um poço de potencial unidimensional entre $-L/2$ e $L/2$ com paredes infinitas. No centro do poço seja uma pequena perturbação

$$H^{(1)} = \begin{cases}
\varepsilon & \text{para } -\frac{a}{2} \leq x \leq \frac{a}{2} \\
0 & \text{para fora dessa região} .
\end{cases}$$

Calcule a correção para a energia em primeira ordem e discute os limites $a \ll L$ e $a \to L$.

3.3.1.2 Ex: Perturbação

Demonstre que o produto escalar $\langle \psi_n^{(0)} | \psi_n^{(1)} \rangle$ (da correção de primeira ordem ao estado do sistema "perturbado" com o n-ésimo estado do hamiltoniano livre), anula-se quando impomos que o estado "perturbado" $|\psi(\lambda)\rangle$ seja normalizado e que o produto $\langle \psi_n^{(0)} | \psi(\lambda) \rangle$ seja real.\(^3\)

3.3.1.3 Ex: Núcleo estendido

A expressão $V(r) = -e^2/4\pi\epsilon_0 r$ para a energia potencial de um elétron no átomo de hidrogênio implica, que o núcleo (o próton) seja tratados partícula puntiforme. Agora supõe que, contrário, a carga do próton $+e$ seja distribuída uniformemente sobre uma esfera de raio $R = 10^{-13}$ cm.

a. Dá o potencial modificado V_m, que corresponde a esta distribuição da carga nuclear.

b. Supõe que a função de onda do átomo de hidrogênio não muda muito devido ao potencial modificado. Calcule na ordem mais baixa em R/a_B o deslocamento de energia média $\langle \Delta V \rangle$ para os estados $(n = 1, l = 0, m = 0)$. Como será em comparação o deslocamento de energia para os estados $(n = 2, l = 0, m = 0)$ e $(n = 2, l = 1, m = 0)$?

c. Calcule na mesma maneira $\langle \Delta V \rangle$ para hidrogênio muônico no estado fundamental.

3.3.1.4 Ex: Perturbação de sistema de dois níveis

Consideramos um sistema de dois níveis. Sem perturbação o sistema teria o hamiltoniano $H^{(0)}$, as autoenergias $E_{1,2}^{(0)}$ e as autofunções $\psi_{1,2}^{(0)}$. Agora ligamos uma perturbação estacionária da forma $H^{(1)} = \epsilon (|1\rangle \langle 2| + |2\rangle \langle 1|)$.

a. Calcule as autoenergias resolvendo diretamente a equação de Schrödinger perturbada.

b. Calcule as energias perturbadas usando TPIT e compare com o cálculo exato das autoenergias.

c. Calcule os autoestados resolvendo diretamente a equação de Schrödinger perturbada.

d. Calcule os estados perturbados usando TPIT e compare com o cálculo exato das autofunções.

3.3.1.5 Ex: Efeito Stark para um elétron numa caixa

Considere um elétron numa "caixa unidimensional", isto é, num poço no intervalo $x \in [0, a]$ delimitado por paredes infinitos. Quando um campo elétrico uniforme \mathcal{E} é ligado também na direção x, o elétron experimenta uma força igual a $-e\mathcal{E}$, sendo $-e$ a carga do elétron, de forma que a energia potencial no interior da caixa torna-se $e\mathcal{E}x$.

a. Qual a energia do estado fundamental do elétron (em aproximação de primeira ordem)? Podemos assumir que $e\mathcal{E}a$ seja muito menor que a energia do estado fundamental do elétron na caixa, na ausência do campo elétrico.

b. Utilize a TPID em primeira ordem para obter uma aproximação para a função de onda do estado fundamental, calculando o primeiro termo da correção.

3.3.1.6 Ex: Sistema de três níveis perturbados até segunda ordem TPIT

Considere o seguinte hamiltoniano perturbado:

$$H = H_0 + H_\lambda = \begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix} + \begin{pmatrix} 0 & \lambda & 0 \\ \lambda & 0 & \lambda \\ 0 & \lambda & 0 \end{pmatrix}. $$

\(^3\)Veja [8], Cap XI, A-2.
a. Determine os autovalores e as autofunções perturbados em primeira ordem TPIT.
b. Determine os autovalores em segunda ordem TPIT.

3.3.1.7 Ex: Efeito Stark para uma carga num oscilador harmônico

Considere um oscilador harmônico carregado, imerso num campo elétrico uniforme E, descrito pelo hamiltoniano $H^{(1)} = H + eE x$, sendo $H = p^2/2m + m\omega^2x^2/2$ o hamiltoniano do oscilador unidimensional livre, e e a carga do oscilador.

a. Obtenha, via TPIT, as auto-energias (correções de primeira a segunda ordem). Compare os resultados obtidos via TPIT com os analíticos.\(^4\)
b. Mesma coisa com uma perturbação da forma $\rho m\omega^2x^2/2$.
c. Mesma coisa com uma perturbação $\sigma\hbar\omega x^3$.

3.3.1.8 Ex: Sistema de três níveis com degenerescência

Considere o hamiltoniano $\hat{H}^{(0)}$ e sua perturbação $\hat{H}^{(1)}$

$$\hat{H}^{(0)} + \hat{H}^{(1)} = \begin{pmatrix} \Delta & 0 & 0 \\ 0 & \Delta & 0 \\ 0 & 0 & \Delta' \end{pmatrix} + \begin{pmatrix} 0 & \Omega & 0 \\ \Omega & 0 & \Omega \\ 0 & \Omega & 0 \end{pmatrix}.$$

Calcule as correções para os autovalores e autofunções até primeira ordem.

3.3.1.9 Ex: Perturbação num poço 3D com degenerescência

Seja uma partícula confinada a um poço cúbico tri-dimensional e infinito, descrito pela energia potencial $V(x, y, z) = 0$ para $0 < x < a$, $0 < y < a$ e $0 < z < a$ e $V(x, y, z) = \infty$ além da região acima definida. Sabemos que os estados estacionários da partícula são $\Psi^{(0)}_{n_x, n_y, n_z}(x, y, z) = \left(\frac{2a}{\pi}\right)^{3/2} \sin\left(\frac{n_x\pi x}{a}\right) \sin\left(\frac{n_y\pi y}{a}\right) \sin\left(\frac{n_z\pi z}{a}\right)$, sendo n_x, n_y, n_z inteiros positivos. As energias associadas são $E^{(0)}_{n_x, n_y, n_z} = \frac{\pi^2\hbar^2}{2ma^2}(n_x^2 + n_y^2 + n_z^2)$. Note que o estado fundamental não é degenerado enquanto o primeiro estado excitado é três vezes degenerado. Considere que a partícula nesta caixa seja submetida a uma perturbação da forma $H^{(1)} = V_0$ para $0 < x < a/2$ e $0 < y < a/2$ e $H^{(1)} = 0$ além da região acima definida.

a. Obtenha a correção de primeira ordem da energia do estado fundamental.
b. Obtenha a correção de primeira ordem para a energia (degenerada) do primeiro estado excitado, além da base ótima (que decorre das combinações lineares dos estados degenerados) que mais se aproxima dos estados perturbados.

3.3.2 Método variacional

3.3.2.1 Ex: Método variacional aplicado um potencial quártico

Determine a energia do estado fundamental do potencial quártico $V(x) = bx^4$ fazendo o ansatz variacional $\psi_{\alpha}(x) = (\alpha/\pi)^{1/4}e^{-\alpha x^2/2}$. Formulário:

$$\int_{-\infty}^{\infty} e^{-x^2}dx = \sqrt{\pi} \quad , \quad \int_{-\infty}^{\infty} x^2e^{-x^2}dx = \frac{1}{2}\sqrt{\pi} \quad , \quad \int_{-\infty}^{\infty} x^4e^{-x^2}dx = \frac{3}{4}\sqrt{\pi}$$

\(^4\)Veja [8], Complemento A XI.
3.3.2.2 Ex: Método variacional aplicado ao oscilador harmônico

Obtenha, através do método variacional, a energia do estado fundamental do oscilador harmônico unidimensional, descrito pelo hamiltoniano

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m \omega^2 x^2,$$

e a correspondente função de onda, a partir das funções tentativas

a. $$\psi(x) = Ae^{-\alpha x^2}$$ sendo $$\alpha$$ uma constante;

b. $$\psi(x) = A/(x^2 + \beta^2)$$ sendo $$\beta$$ uma constante;

c. $$\psi(x) = A \cos(\pi x/a)$$ entre os limites $$\pm a/2$$ sendo $$a$$ uma constante.

3.3.2.3 Ex: Efeito da massa nuclear finita no hidrogênio por Rayleigh-Ritz

Use o método de Rayleigh-Ritz para estimar o efeito da massa finita do núcleo do átomo de hidrogênio. Para isso, calcule a energia do estado fundamental utilizando o hamiltoniano exato, mas uma base de funções de onda assumindo um núcleo infinitivamente pesado. Somente tome em conta os estados $$\psi_{100}$$ e $$\psi_{200}$$.

3.3.2.4 Ex: Colapso de um condensado com interação atrativa

Um condensado de Bose-Einstein de 7Li pode se tornar instável devido a força interatômica atrativa, o comprimento de espalhamento sendo $$a_s = -27.3a_B$$. Considere o hamiltoniano de Gross-Pitaevskii radial derivado no Exc. 2.5.1.2 com um potencial externo harmônico com a frequência de oscilação $$\omega_{trp}/(2\pi) = 50$$ Hz. Usando o método variacional determine o número máximo de átomos permitindo um condensado estável. (Note que a condição de minimização derivada precisa ser avaliada numericamente.)

3.3.2.5 Ex: Oscilação de Rabi

A população seja inicialmente no estado $$|1\rangle$$. Qual deve ser a duração da perturbação para deixar um sistema degenerado no estado $$|2\rangle$$?

3.3.2.6 Ex: Oscilador harmônico perturbado

Considere o oscilador harmônico (OH) unidimensional inicialmente preparado ($t = -\infty$) no estado fundamental $$|0\rangle$$ do hamiltoniano não perturbado $$H^{(0)} = \hbar \omega \hat{a}^\dagger \hat{a}$$, tal que $$H^{(0)}|n\rangle = E_n|n\rangle$$ com $$E_n = n\hbar \omega$$.

a. Através da expressão, $$a_f(t) \approx \frac{1}{\hbar} \int_{t_0}^{t_f} W_{fi} e^{i\omega_f t} dt$$, e do hamiltoniano perturbativo $$W(t) = -e \mathcal{E} x e^{-t^2/\tau^2}$$ (x é o operador posição do OH), aplicado entre $$t = -\infty$$ e $$t = +\infty$$, calcule a probabilidade de que o sistema esteja no estado excitado $$|n\rangle$$, especificando $$n$$, em $$t = +\infty$$. Analise o resultado.

b. Faça o mesmo para uma perturbação da forma $$W(t) = \Lambda x^2 e^{-t^2/\tau^2}$$.

3.3.2.7 Ex: Impacto da velocidade de uma perturbação

Aqui consideramos uma variação lenta,

$$\dot{W}(t) = \begin{cases} 0 & \text{para } t < 0 \\ W_0(1 - e^{-\gamma t}) & \text{para } t \geq 0 \end{cases},$$

com $$\gamma \ll \omega_{fi}$$. Calcule a taxa de transição para tempos longos, $$t \gg \gamma^{-1}$$.
3.3. EXERCÍCIOS

3.3.2.8 Ex: Efeito fotoelétrico

Um átomo de hidrogênio no estado fundamental 1s é colocado num campo elétrico \(\vec{E}(t) = \vec{E}_0 \cos \omega t \), tal que \(W(t) = -e\vec{r} \cdot \vec{E}(t) = W_0 e^{-i\omega t} + W_0^* e^{i\omega t} \) com \(W_0 = e\vec{r} \cdot \vec{E}_0 / 2 \). Encontre, via regra de ouro de Fermi,

\[
R = \frac{2\pi}{\hbar} |\langle f | W(t) | i \rangle|^2 \rho(E_f - E_i \pm \hbar \omega),
\]

utilizando a densidade de estados \(\rho(E_k) \, dE_k = V/(2\pi)^3 k^2 \, dk \, d\Omega \), a probabilidade por unidade de tempo para que o átomo seja ionizado, excitando-se do estado fundamental \(\psi_{100}(r) = e^{-r/a_B}/(\pi a_B^2) \) para o estado descrito pela onda plana \(\psi_k(r) = e^{-ikr}/V^{1/2} \). Simplifique o cálculo supondo \(\vec{E}_0 = \vec{E}_0 \hat{e}_z \) e \(\vec{k} = k \hat{e}_z \).
Capítulo 4

Subestrutura de átomos hidrogenoides

4.1 Estrutura fina e equação de Dirac

A estrutura energética do hidrogênio calculada pelo modelo de Bohr à partir do hamiltoniano não relativístico,

\[
\hat{H} = \frac{\hat{p}^2}{2m_e} - \frac{Ze^2}{4\pi\varepsilon_0 r}
\]

concorde muito bem com as medidas experimentais. No entanto, em experiências de alta resolução foram observados finos desvios como deslocamentos de energia e desdobramentos das linhas espectrais chamadas de *estrutura fina*, que não eram previstos pela teoria. Isso sugere, que existem efeitos adicionais fracos, que não afetam fortemente a posição das linhas espectrais, mas levantam a degenerescência energética a respeito do número quântico orbital \(\ell \):

\[
E = E_{n,\ell}.
\]

Como explicação possível temos o fato que os elétrons apresentam massa e momento relativístico. Para estimar a relevância das correções relativísticas estimamos a velocidade do elétron no estado fundamental do hidrogênio dado por \(E_1 = -\frac{\hbar^2}{2m_e a_B^2} \). Usando as definições do raio de Bohr, \(a_B = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} \), e da *constante da estrutura fina* \(\alpha \equiv \frac{e^2}{4\pi\varepsilon_0\hbar c} \),

\[
\alpha \equiv \frac{e^2}{4\pi\varepsilon_0\hbar c} \simeq \frac{1}{137},
\]

obtemos,

\[
v = \sqrt{\frac{2E_1}{m_e}} = \frac{\hbar}{m_e a_B} = \frac{e^2}{4\pi\varepsilon_0\hbar} = \alpha c,
\]

o que mostra, que a velocidade do elétron é muito alta e que efeitos relativísticos podem ser *não negligenciáveis*.

Outra explicação pode ser ligada ao spin intrínseco do elétron evidenciado no experimento de Stern-Gerlach. Em campos magnéticos o spin levou à um desdobramento dos níveis energéticos dos átomos. Do outro lado sabemos, que a órbita do elétron em torno do núcleo produz uma corrente que pode gerar um campo magnético com o qual o spin pode interagir.\(^1\)

A equação de onda que satisfaça simultaneamente os requisitos da mecânica quântica e da relatividade se chama *equação de Dirac* e foi derivada pelo físico Paul Dirac em 1928. No espaço livre incluindo interações eletromagnéticas ela descreve todas as partículas massivas de spin semi-inteiro com a paridade como simetria, tais como elétrons e quarks. Foi a primeira teoria para explicar inteiramente relatividade especial no contexto da mecânica quântica. A

\(^1\)O spin do elétron não gera campo magnético, em contraste com o seu momento angular. Ele só interage com o meio ambiente através do requerimento da simetria por ser um fermion.
A equação de Dirac descreve a estrutura fina do espectro do hidrogênio de maneira completamente rigorosa. A equação também implícita a existência de uma nova forma de matéria, a antimateria, anteriormente insuspeita e não observada. A equação também justifica à posteriori a introdução de spinores, isto é, de funções de onda vetoriais introduzidos por Pauli de maneira heurística.

No limite de velocidades altas mas não-relativísticas, a equação de Dirac adota a forma de uma equação de Schrödinger com o seguinte hamiltoniano modificado,

\[\hat{H} = \hat{H}_0 + \hat{H}_{rl} + \hat{H}_{ls} + \hat{H}_{de} + \hat{H}_{lamb} \]

\[\approx \left(\frac{p^2}{2m_e} - \frac{Z e^2}{4\pi \varepsilon_0 r} \right) - \frac{p^4}{8m_e^3 c^2} + \frac{1}{2m_e^2 c^2} \int \frac{1}{r} \cdot \mathbf{s} \cdot \mathbf{r} \mathbf{d}V \left(\frac{\pi \hbar^2}{2m_e^2 c^2} \right \delta (r) + \hat{H}_{lamb} . \]

Discutiremos os diversos termos nas seções seguintes.

4.1.1 Correção para velocidades relativísticas

A primeira correção na expressão, \(\hat{H}_{rl} \) na (4.4), vem da expansão da energia relativística para velocidades pequenas até segunda ordem,

\[E_{kin} = \sqrt{p^2 c^2 + m_e^2 c^4} \approx m_e c^2 + \frac{p^2}{2m_e} - \frac{p^4}{8m_e^3 c^2} + \]

A correção é da ordem de grandeza,

\[\frac{\hat{H}_{rl}}{\hat{H}_0} = \frac{\frac{p^4}{8m_e^3 c^2}}{\frac{p^2}{2m_e}} \approx \frac{v^2}{4c^2} \approx \frac{\alpha^2}{4} \approx 0.01\% . \]

Devido a degenerescência destes estados, seria apropriado o uso da teoria de perturbação com estados degenerados. Porém, como \(\hat{H}_{rl} \) somente depende das coordenadas espaciais comutando com \(l \) e \(s \), a degenerescência não é muito importante, pois \(\hat{H}_{rl} \) já é diagonal na base \(|n, \ell, m\rangle \), isto é, \(\langle n, \ell, m|n', \ell', m'\rangle = \delta_{ll'}\delta_{mm'} \). A partir de,

\[\hat{H}_{rl} = - \frac{p^4}{8m_e^3 c^2} = - \frac{1}{2m_e c^2} \left(\frac{p^2}{2m_e} \right)^2 = - \frac{1}{2m_e c^2} \left(\hat{H}_0 + \frac{Ze^2}{4\pi \varepsilon_0 r} \right)^2 \]

\[= - \frac{1}{2m_e c^2} \left(\hat{H}_0 - \frac{2En^2}{\hat{r}} \right)^2 , \]

com \(\hat{r} \equiv \frac{Ze}{\alpha_B} \) e usando como abreviação as energias do hidrogênio seguinte o modelo de Bohr,

\[E_n = \langle n, \ell|\hat{H}_0|n, \ell\rangle = - \frac{Z^2 e^2}{4\pi \varepsilon_0} \frac{1}{2a_B n^2} = - \frac{m_e c^2 Z^2 \alpha^2}{2n^2} . \]

Temos

\[\Delta E_{rl} = \langle n, \ell|\hat{H}_{rl}|n, \ell\rangle = - \frac{1}{2m_e c^2} \left[\langle n, \ell|\hat{H}_0^2|n, \ell\rangle - \langle n, \ell|\hat{H}_0|n, \ell\rangle + \langle n, \ell|\hat{H}_0|n, \ell\rangle \left(\frac{2En^2}{\hat{r}} \right)^2 \right] \]

\[= \frac{Z^2 \alpha^2}{4E_n n^2} \left[E_n^2 - 4E_n^2 n^2 \frac{1}{n^2} + 4E_n^2 n^4 \frac{1}{n^3(\ell + 1)} \right] , \]

usando os valores esperados calculados em (2.33). Contudo obtemos a seguinte correção relativística,

\[\Delta E_{rl} = E_n (Z \alpha)^2 \left[\frac{1}{n(\ell + \frac{1}{2})} - \frac{3}{4n^2} \right] . \]

Obviamente, a degenerescência a respeito do momento angular \(\ell \) é quebrada por esta correção.
4.1.2 Correção pelo acoplamento spin-órbita

A segunda correção, $\hat{H}_{s\ell}$ na expressão (4.4), chamada de *interação spin-órbita* é uma correção relativística devido ao fato que o elétron se move rapidamente dentro do campo eletrostático E do núcleo. Vamos agora tratar a questão do spin do elétron interagindo com campos magnéticos.

4.1.2.1 Momento dipolar do momento angular e do spin

O movimento rotacional de uma carga, $-e$, cria uma corrente I, correspondendo à uma densidade de corrente,

$$\mathbf{j}(r') = I e \delta(r - r') \delta(z').$$

O momento dipolar causado por um movimento circular de um elétron é,

$$\vec{\mu}_l = \frac{1}{2} \int_V \mathbf{r} \times \mathbf{j}(r') d^3r' = \frac{1}{4\pi} e \int_0^{2\pi} d\phi' \int_0^\infty dz' \int_0^{r'} r'dr' \frac{-e\mathbf{v}}{r} \delta(r - r') \delta(z').$$

$$= -\frac{1}{2} e r \mathbf{v} = -\frac{e}{2m_e} \mathbf{l},$$

com o momento angular $\mathbf{l} = \mathbf{r} \times m_e \mathbf{v}$. O quociente $\gamma_e \equiv -e/2m_e$ se chama *razão giromagnética* do elétron. Frequentemente usamos o *magneton de Bohr*, $\mu_B \equiv \hbar e/2m_e$, que representa a unidade elementária do spin,

$$\vec{\mu}_l = -\frac{\mu_B}{\hbar} g_l \mathbf{l},$$

onde $g_l \equiv \mu_l/\mu_B = 1$ é um fator tomando em conta correções possíveis entre a derivação clássica e a mecânica quântica.

Do mesmo jeito, poderíamos pensar que o spin do elétron dá origem à um momento angular. No entanto, prova-se que a derivação correta baseada na equação relativística de Dirac dá um *fator-g*, $g_s \equiv \mu_s/\mu_B = 2.002319314\ldots$, \(^2\)

$$\vec{\mu}_s = -\frac{e}{2m_e} g_s \mathbf{s} = -\frac{\mu_B}{\hbar} g_s \mathbf{s}.$$

4.1.2.2 Acoplamento spin-órbita

Dentro do sistema de repouso do elétron sendo na posição $\mathbf{x} = 0$, é o próton que orbita em torno do elétron. Esta órbita cria uma corrente, $-\mathbf{j}(r')$, que gera um campo magnético. Seguindo a *lei de Biot-Savart* o potencial vetor e a amplitude do campo são,

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int_V \frac{-\mathbf{j}(r') d^3r'}{|\mathbf{x} - \mathbf{r}'|},$$

$$\mathbf{B}(\mathbf{x}) = \nabla_x \times \mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int_V \frac{(\mathbf{x} - \mathbf{r}') \times \mathbf{j}(r') d^3r'}{|\mathbf{x} - \mathbf{r}'|^3},$$

$$= -\frac{\mu_0}{4\pi} \int_0^{\infty} dz' \int_0^{r'} r'dr' \int_0^{2\pi} d\phi' \frac{(\mathbf{x} - \mathbf{r}') \times \mathbf{v} e\delta(r - r') \delta(z')}{2\pi r |\mathbf{x} - \mathbf{r}'|^3} = \frac{e\mu_0}{4\pi} \frac{(\mathbf{x} - \mathbf{r}) \times \mathbf{v}}{|\mathbf{x} - \mathbf{r}'|^3},$$

\(^2\)O desvio $g_s - 2 \approx \frac{\alpha}{2} - 0.164\frac{\alpha^2}{2}$ é devido ao acoplamento do spin às flutuações do vácuo eletromagnético. Precisamos usar métodos da eletrodinâmica quântica para calcular as correções.
substituindo a expressão (4.11). Com a expressão para o potencial de Coulomb entre o elétron e o próton e sua derivada radial,

$$V_{el}(r) = -\frac{e^2}{4\pi\varepsilon_0 r}, \quad \frac{1}{r} \frac{dV_{el}(r)}{dr} = \frac{e^2}{4\pi\varepsilon_0 r^3},$$ \(4.17\)

temos na posição do elétron,

$$B(0) = \frac{e\mu_0}{4\pi} \frac{-\mathbf{r} \times \mathbf{v}}{r^3} = -\frac{e\mu_0}{e} \frac{\mathbf{r} \times \mathbf{v}}{r} \frac{dV_{el}(r)}{dr} = -\frac{1}{ec^2} \frac{\mathbf{r} \times \mathbf{v}}{r} \frac{dV_{el}(r)}{dr} = -\frac{1}{em_ec^2r} \frac{dV_{el}(r)}{dr} \mathbf{1}. \quad (4.18)$$

O mesmo resultado pode ser obtido no quadro da eletrodinâmica relativística, como mostramos no seguinte cálculo. Aproximando $$g_s \simeq 2$$ obtemos a energia de interação resultante é

$$\hat{H}_{ls} = -\vec{\mu}_s \cdot \mathbf{B}(0) \simeq \frac{1}{m_e^2c^2} \frac{1}{r} \frac{dV_{el}(r)}{dr}. \quad (4.19)$$

4.1.2.3 Correção da energia

Agora só falta transformar de volta para o sistema inercial do núcleo. Esta transformação, chamada de precessão de Thomas, deve ser feita por uma transformação de Lorentz, o que não é trivial com o elétron continuamente acelerado na sua órbita circular. A transformação traz um fator adicional de $$\frac{1}{2}$$ chamado de fator de Thomas. Assim, temos,

$$\hat{H}_{ls} = \xi(r)\mathbf{l} \cdot \mathbf{s}, \quad (4.20)$$

com a abreviação,

$$\xi(r) = -\frac{1}{2m_e^2c^2r} \frac{dV_{el}}{dr}. \quad (4.21)$$

A vantagem da introdução do potencial $$V_{el}$$ é, que essa expressão também vale para átomos mais complicados com muitos elétrons, onde o potencial pode desvir considereavelmente do potencial coulombiano. Note, que o campo magnético é muito forte, $$B \simeq \xi(a_B)h/\mu_B \approx 5 \text{ T}$$.

Considerando a órbita fundamental e o fato que os momentos angulares são da ordem de $$\hbar$$ podemos estimar a importância deste efeito,

$$\frac{H_{ls}}{H_0} = \frac{1}{2m_e^2c^2r} \frac{1}{\varepsilon_0 m_0 a_B} \mathbf{l} \cdot \mathbf{s} \simeq \frac{1}{2m_e^2c^2} \frac{\epsilon^2}{4\pi\varepsilon_0 a_B} \frac{1}{r^2} \mathbf{l} \cdot \mathbf{s} = \frac{1}{2m_e^2c^2} \frac{\epsilon^2}{4\pi\varepsilon_0 a_B} \frac{h^2}{a_B} \frac{\alpha^2}{2} \approx 0.01\% . \quad (4.22)$$

Em princípio, deveríamos solver de novo a equação de Schrödinger incluindo a energia $$V_{ls}$$. Mas como esse termo é pequeno, é muito mais fácil considerar essa energia como perturbação, e calcular ele utilizando as funções de onda não perturbadas,

$$\Delta E_{ls} = \langle n, \ell, s, m_\ell, m_s | V_{ls} | n, \ell, s, m_\ell, m_s \rangle = \langle n, \ell | \xi(r) | n, \ell \rangle \langle \ell, s, m_\ell, m_s | \mathbf{l} \cdot \mathbf{s} | \ell, s, m_\ell, m_s \rangle. \quad (4.23)$$

Olhamos primeiro para parte radial. Assumindo um potencial coulombiano,

$$\xi(r) = -\frac{1}{2m_e^2c^2r} \frac{dV_{el}}{dr} = -\frac{Ze^2}{8\pi\varepsilon_0 m_e^2c^2r^3} = \frac{E_n Z^2 \alpha^2 n^2}{\hbar^2} \frac{1}{r^3}, \quad (4.24)$$

com $$\tilde{r} \equiv Zr/a_B$$ e usando as formulas (2.33) a parte radial fica [25],

$$\langle n, \ell | \xi(r) | n, \ell \rangle = \frac{E_n Z^2 \alpha^2 n^2}{\hbar^2} \frac{1}{n^3\ell(\ell + \frac{1}{2})(\ell + 1)}. \quad (4.25)$$
Usa-se a abreviação
\[\zeta_{nl} \equiv \frac{\hbar^2}{2} \langle \xi(r) \rangle . \] \hspace{1cm} (4.26)

A parte angular é,
\[s \cdot l = \frac{1}{2} (j^2 - s^2 - l^2) . \] \hspace{1cm} (4.27)

Como os spins precessam um em torno do outro, \(\ell_z \) e \(s_z \) não são bons observáveis, a base não acoplada não é adaptada. Mas \(s^2 \), \(\ell^2 \) e \(j^2 \) são bons observáveis. Na base acoplada \(\{ n, (\ell, s)j, m_j \} \)
\[\langle n, (\ell, s)j, m_j | s \cdot l | n, (\ell, s)j, m_j \rangle = \frac{\hbar^2}{2} [j(j + 1) - \ell(\ell + 1) - s(s + 1)] . \] \hspace{1cm} (4.28)

Como \(j = \ell \pm 1/2 \), achamos que cada nível se desdobra em dois níveis com as energias \(E_{nl} + \ell \zeta_{nl} \) com a degenerescência \(2\ell + 2 \) e \(E_{nl} - (\ell + 1)\zeta_{nl} \) com a degenerescência \(2\ell \). Contudo temos uma correção de energia devido à interação spin-órbita de,
\[\Delta E_{ls} = -E_n(Z\alpha)^2 j(j + 1) - \ell(\ell + 1) - \frac{3}{2} \left(\frac{2n(\ell + 1/2)(\ell + 1)}{2} \right) . \] \hspace{1cm} (4.29)

Note, que o acoplamento \(l \cdot s \) leva a degenerescência de \(l \), mas não de \(\ell_z \) (vide Fig. 4.1). No Exc. 4.4.1.1 verificamos que, no caso de uma energia associada ao acoplamento \(l \cdot s \), só o momento angular total \(l + s \) é uma constante do movimento.

4.1.3 Interação elétron-núcleo não-local

Vamos agora discutir a terceira correção na expressão (4.4). A interação elétron-núcleo que temos considerado até agora é local, isto é, a interação no ponto \(r \) sentido pelo elétron depende essencialmente do campo naquele ponto do espaço. No entanto, quando a teoria relativística é corretamente aplicada, a interação elétron-núcleo torna-se não local, e o elétron é então afetado por todos os valores do campo nuclear num domínio ao redor de \(r \). O tamanho deste domínio é da ordem do comprimento de onda Compton do elétron, \(\lambda_C/2\pi \equiv \hbar/m_e c \). Esta correção foi introduzida por Sir Charles Galton Darwin através de uma substituição na equação de Dirac que resolvia o problema da normalização da função de onda.

Imaginemos que ao invés do potencial \(V(r) \), o potencial do elétron é dado pela integral,
\[\int f(r')V(r + r')d^3r' , \] \hspace{1cm} (4.30)
onde \(f(r') \) é uma função tipo densidade radialmente simétrica e normalizada que assume valores significativos somente nas vizinhanças de \(r \) dentro de um volume \((\lambda_C/2\pi)^3 \) centrado em \(r' = 0 \). Expansando o potencial \(V(r + r') \) perto da origem,
\[V(r + r') = V(r) + [r' \cdot \nabla_r]V(r) + \frac{1}{2!}[r' \cdot \nabla_r]^2V(r) + ... , \] \hspace{1cm} (4.31)
e inserindo na integral,
\[\int f(r')V(r + r')d^3r' = V(r) \int f(r')d^3r' + \int r'f(r')d^3r' \cdot \nabla_r V(r) + \frac{1}{2!} \int r'^2 f(r') \left| \nabla_r \right|^2d^3r'V(r) + ... = V(r) + 0 + \frac{1}{2!} \int r'^2 f(r')d^3r' \frac{\partial^2}{\partial r^2}V(r) + \] \hspace{1cm} (4.32)
O segundo termo é nulo devido à paridade de \(f(r') \) e o terceiro produz a correção de Darwin usando \(V(r) = V(r) \). Deixando a função ser constante dentro do volume, \(f(r) \approx f_0 \), e com a normalização,

\[
1 = \int \frac{h}{2m_e c} \int \frac{h}{2m_e c} \int \frac{h}{2m_e c} \ f(r) dx dy dz = 8 f_0 \left(\frac{\hbar}{2m_e c} \right)^3 ,
\]

obtemos a integral

\[
\int r^2 f(r) d^3 r = \int \frac{h}{m_e c} \int \frac{h}{m_e c} \int \frac{h}{m_e c} f(r) r^2 dx dy dz = \left(\frac{\hbar}{2m_e c} \right)^2 .
\]

Também,

\[
\nabla^2 V(r) = -e \nabla^2 \frac{Ze}{4\pi \varepsilon_0 r} = -e \frac{\rho(r)}{\varepsilon_0} = -\frac{Ze^2 \delta(r)}{\varepsilon_0} .
\]

Portanto,

\[
\int f(r') V(r + r') d^3 r' = -\frac{Ze^2}{4\pi \varepsilon_0 r} + \frac{\pi \hbar^2}{2m_e c^2} \frac{Ze^2}{4\pi \varepsilon_0} \delta(r) + ... ,
\]

o que é justamente a energia eletrostática com sua correção de Darwin na expressão (4.4).

Para estimar a importância deste efeito consideramos o estado fundamental, inserindo a sua função de onda (2.32),

\[
\langle \hat{H}_{dw} \rangle = \int d^3 r \psi^*_1(0) \frac{\pi \hbar^2}{2m_e c^2} \frac{Ze^2}{4\pi \varepsilon_0} \delta(r) \psi_1(0) = \frac{\pi \hbar^2}{2m_e c^2} \frac{Ze^2}{4\pi \varepsilon_0} |\psi(0)|^2 = \frac{\pi \hbar^2}{2m_e c^2} \frac{Ze^2}{4\pi \varepsilon_0} \frac{1}{\pi a_B^2} .
\]

Obtemos,

\[
\frac{H_{dw}}{H_0} = \frac{\pi \hbar^2}{2m_e c^2} \frac{Ze^2}{4\pi \varepsilon_0} \frac{1}{\pi a_B^2} = \frac{\hbar^2}{2m_e c^2} \frac{Z e^2}{4\pi \varepsilon_0} \frac{1}{\pi a_B^2} \approx 0.01\% .
\]

A correção de Darwin não depende do momento angular \(\ell \) nem do spin \(s \), tal que fica,

\[
\Delta E_{dw} = \langle \hat{H}_{dw} \rangle = -E_n(Z\alpha)^2 .
\]

4.1.4 Resumo das correções

Combinando as correções LS e relativísticas, obtemos,

\[
\Delta E_{fs} = \Delta E_{rl} + \Delta E_{ls} + \Delta E_{dw} \tag{4.40}
\]

\[
= E_n(Z\alpha)^2 \left[\frac{1}{n(\ell + \frac{1}{2})} - \frac{3}{4n^2} \right] - E_n(Z\alpha)^2 J(j + 1) - \ell(\ell + 1) - \frac{3}{2} J(j + 1) - \ell(\ell + 1) - \frac{3}{2} - E_n(Z\alpha)^2
\]

\[
= E_n(Z\alpha)^2 \left\{ \begin{array}{ll}
\frac{1}{n(\ell + 1)} - \frac{3}{4n^2} - \frac{j(j+1)-(j+\frac{1}{2})(j+\frac{3}{2})}{2n(j+\frac{1}{2})(j+\frac{3}{2})} - 1 & \text{para } \ell = j - \frac{1}{2} \\
\frac{1}{n(j+1)} - \frac{3}{4n^2} - \frac{j(j+1)-(j+\frac{1}{2})(j+\frac{3}{2})}{2n(j+\frac{1}{2})(j+\frac{3}{2})} - 1 & \text{para } \ell = j + \frac{1}{2}
\end{array} \right.
\]

\[
= E_n(Z\alpha)^2 \left[\frac{1}{n(j+1)} - \frac{3}{4n^2} - 1 \right] .
\]
4.2. ESTRUTURA HIPERFINA

Isto é, os níveis são agora degenerados em \(j \) (vide Fig. 4.1)\(^3\). Obviamente os níveis mais afetados pelas correções relativísticas são aqueles com baixos valores de \(n \) e \(\ell \).

\[
\begin{align*}
E_n = & E_{n} + V_{el} \\
E_{nj} = & E_n + V_{\lambda} \\
E_{nj} = & E_n + V_{\mu} + V_{\lambda} \\
E_{nj} = & E_n + V_{\lambda} + V_{\mu} + V_{\lambda\mu}
\end{align*}
\]

Figura 4.1: Níveis do hidrogênio.

As energias relativísticas do hidrogênio também podem ser obtidas por um cálculo exato à partir da equação de Dirac,

\[
\Delta E_{fs}^{\text{exato}} = mc^2 \sqrt{1 + \left(\frac{Z\alpha}{n - \frac{j}{2} + \sqrt{(j + \frac{1}{2})^2 - Z^2\alpha^2}} \right)^2} - mc^2. \tag{4.41}
\]

A expansão deste resultado em potência de \(Z\alpha \) até segunda ordem reproduz o cálculo aproximado (4.40).

4.1.5 Deslocamento de Lamb

Só falta discutir a quarta correção, \(\hat{H}_{\text{lamb}} \) na expressão (4.4). A origem do deslocamento de Lamb é na eletrodinâmica quântica. Sendo devido à natureza quântica do campo eletromagnético, esta correção não é prevista dentro da equação de Dirac.

Podemos imaginar a força de Coulomb entre partículas carregadas como sendo mediata por um intercâmbio contínuo de fótons virtuais. Mas cada carga individual também emite e reabsorve continuamente fótons virtuais, como resultado que a posição do elétron está manchada numa região de 0.1 fm. Isso reduz a sobreposição entre as órbitas eletrônicas e o núcleo. Por isso, o deslocamento de Lamb causa correções que são mais fortes para pequenos \(n \) e pequenos \(\ell \). Por exemplo no hidrogênio, o nível \(2p_{1/2} \) é \(4.4 \cdot 10^{-6} \) eV = 1 GHz embaixo do \(2s_{1/2} \) (vide Fig. 4.1).

4.2 Estrutura hiperfina

As medidas do Rutherford sugeriam um núcleo atômico puntiforme e infinitamente pesado. De fato, a massa é finita e a carga nuclear é distribuída num volume finito e, frequentemente, de maneira não isotrópica, o que leva a interações multipolares com os elétrons. Além disso, muitos núcleos têm um spin que pode interagir com o momento magnético dos elétrons. As correções de energia devido às estes efeitos são chamadas de estrutura hiperfina \(^4\).

\(^3\)É interessante, que o tratamento quântico aqui mostrado, incluindo as correções relativísticas, por acaso coincide com as correções de Arnold Johannes Wilhelm Sommerfeld,

\[
E_{n,j} = E_n \left[1 + \frac{\alpha^2}{n} \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \right) \right].
\]

4.2.1 Acoplamento ao spin do núcleo

4.2.1.1 Momento dipolar do núcleo nuclear

O núcleo também pode ter um momento angular interagindo com o momento angular dos elétrons. No entanto, o momento depende inversamente das massas. Isso é, o momento angular do núcleo é \(\mu_N/\mu_B = m_e/m_p \approx 10^{-3} \) vezes menor, onde \(\mu_N = \hbar e/2m_p \) é uma abreviação chamada de magneton nuclear. Por isso, podemos supor, que a interação entre o núcleo e os átomos não vai mexer com o acoplamento \(L \cdot S \) entre o momento angular orbital e o spin dos elétrons. O spin do núcleo se orientará ao momento total dos elétrons \(J \). No entanto, essa interação terá a capacidade de quebrar a degenerescência do hidrogênio, mesmo se o desdobramento for hiperfino. A ordem de grandeza do desdobramento hiperfino é \(10^{-6} \) eV.

Analogicamente com a equação (4.13), escrevemos o momento dipolar do núcleo,

\[
\vec{\mu}_I = \frac{e}{2m_p} g_p \vec{I} = \frac{\mu_N}{\hbar} g_p \vec{I},
\]

com \(g_p \equiv \mu_I/I \) é, mais uma vez, um fator tomando em conta correções possíveis entre a derivação clássica e a mecânica quântica \(^5\).

4.2.1.2 Desdobramento hiperfino

O spin nuclear produz na posição dos elétrons um potencial vetor magnético,

\[
A_{dp}(r) = \frac{\mu_0}{4\pi} \frac{\vec{\mu}_I \times \vec{r}}{r^3},
\]

interagindo com o momento angular do elétron \(\vec{L} \) da forma,

\[
\hat{H}_{LI} = \frac{e}{m_e} \vec{A} \cdot \hat{p}_e = \frac{e}{m_e} \frac{\mu_0}{4\pi r^3}(\vec{\mu}_I \times \vec{r}) \cdot \vec{p} = \frac{e}{m_e} \frac{\mu_0}{4\pi r^3} g_p (\vec{I} \times \vec{r}) \cdot \vec{p} = \frac{\mu_0}{4\pi r^3} \frac{\mu_B \mu_N}{\hbar} g_p \vec{L} \cdot \vec{I},
\]

usando a definição de magneton de Bohr.

Além disso, o potencial vetor gerado pelo spin nuclear produz um campo magnético

\[
B = \nabla \times A = \frac{\mu_0}{4\pi r^3} \left[3(\vec{\mu}_I \cdot \hat{r})\hat{r} - \vec{\mu}_I \right],
\]

como será mostrado no Exc. 4.4.2.1 \(^6\). Este campo interage com o spin do elétron \(\vec{S} \) da forma,

\[
\hat{H}_{SI} = -\vec{\mu}_S \cdot \vec{B} = -\frac{\mu_0}{4\pi r^3} \left[3(\vec{\mu}_I \cdot \hat{r})\vec{S} \cdot \hat{r} - (\vec{\mu}_S \cdot \vec{\mu}_I) \right] = \frac{\mu_0}{4\pi r^3} \frac{\mu_B \mu_N}{\hbar} g_s \frac{1}{\hbar} g_p [3(\vec{I} \cdot \hat{r})(\vec{S} \cdot \hat{r}) - (\vec{S} \cdot \vec{I})],
\]

usando a equação (4.14).

Combinando os dois termos (4.44) e (4.46), obtemos,

\[
\hat{H}_{JI} = \hat{H}_{LI} + \hat{H}_{SI} = \frac{\mu_0}{4\pi r^3} \frac{\mu_B \mu_N}{\hbar} g_s \frac{1}{\hbar} g_p [3(\vec{I} \cdot \hat{r})(\vec{S} \cdot \hat{r}) + \vec{L} \cdot \vec{I} - \vec{S} \cdot \vec{I}]
\]

\[
= \frac{\mu_0}{4\pi r^3} \frac{\mu_B \mu_N}{\hbar} g_s \frac{1}{\hbar} g_p \vec{N} \cdot \vec{I},
\]

\(^5\)De fato, o fator \(g \) do próton é anormal, \(g_p = 5.58 \), o que diminui a razão \(\mu_I/\mu_L \). Para o nêutron temos: \(g_p = -3.83 \)

\(^6\)Apresentamos aqui um cálculo simplificado curto-circuitando o termo do contato de Fermi.
introduzindo
\[N \equiv 3(S \cdot \hat{r})\hat{r} + L - S . \] (4.48)
Definir o momento angular total do átomo
\[F \equiv I + J , \] (4.49)
é útil para poder calcular o acoplamento \(I \cdot J = \frac{1}{2}(F^2 - I^2 - J^2) \). Agora, como o acoplamento \(L \cdot S \) é forte, projetamos os dois momentos angulares sobre o momento angular total eletrônico \(J \),
\[N \rightarrow \frac{N \cdot J}{|J|} J , \quad I \rightarrow \frac{I \cdot J}{|J|} J . \] (4.50)
Consideramos dois casos:

4.2.1.3 Momentos angulares orbitais \(L = 0 \)
No caso \(L = 0 \) podemos aproximar,
\[N \cdot S \simeq S^2 , \] (4.51)
e substituir os \(J \) por \(S \) nas projeções (4.50). Com isso o acoplamento entre os spins da camada eletrônica e do núcleo fica,
\[N \cdot I = \frac{(N \cdot S)(I \cdot S)}{\hbar^2 |J|^2} = \frac{S^2(F^2 - I^2 - S^2)}{2\hbar^2 |S|^2} . \] (4.52)
Calculamos
\[\Delta E_{hfs}^{L=0} (F = 1) - \Delta E_{hfs}^{L=0} (F = 0) = \frac{2\mu_0 \mu_B g_s \mu_N g_p}{3\pi a_B^2} \approx \frac{2g_s g_p m_e c^2}{3m_p} \alpha^4 \approx (2\pi \hbar) \cdot 1.420 \text{ GHz} . \] (4.53)
O valor experimental é 1.4204057518 GHz. Está frequência corresponde à linha espectral utilizada em radio-astronomia, onde a medida da distribuição espacial desta radiação permite o mapeamento da distribuição de hidrogênio interstelar.

4.2.1.4 Momentos angulares orbitais \(L \neq 0 \)
No caso \(L \neq 0 \) obtemos o acoplamento entre os spins da camada eletrônica e do núcleo,
\[N \cdot I = \frac{(N \cdot J)(F^2 - I^2 - J^2)}{2|J|^2} . \] (4.54)
CAPÍTULO 4. SUBESTRUTURA DE ÁTOMOS HIDROGENOIDES

Calculamos
\[\Delta E_{hfs}^{L \neq 0} = \langle (L, S)J, I) F, m_F | \hat{H}_{JJ} | ((L, S)J, I) F, m_F \rangle \]

\[= \frac{\mu_0 \mu_B}{4\pi} \frac{g_s}{\hbar} \frac{\mu_N}{\hbar} g_p \left\langle \frac{\mathbf{N} \cdot \mathbf{I}}{r^3} \right\rangle \]

\[= \frac{\mu_0 \mu_B}{4\pi} \frac{g_s}{\hbar} \frac{\mu_N}{\hbar} g_p \left(\frac{\mathbf{N} \cdot \mathbf{J}[F(F + 1) - I(I + 1) - J(J + 1)]}{2J(J + 1)} \right) \left(\frac{Z}{a_B} \right)^3 \frac{n}{n^4L(L + \frac{1}{2})(L + 1)}. \]

Introduzindo o \textit{fator de intervalo}
\[A_J = \frac{\mu_0 \mu_B}{4\pi} \frac{g_s}{\hbar} \frac{\mu_N}{\hbar} g_p \left(\frac{Z}{a_B} \right)^3 \frac{n}{2J(J + 1) n^4L(L + \frac{1}{2})(L + 1)}, \]

podemos escrever
\[\Delta E_{hfs}^{L \neq 0} = A_J [F(F + 1) - J(J + 1) - I(I + 1)]. \]

Note, que o acoplamento \textbf{J} \cdot \textbf{I} quebra a degenerescência de \textbf{J} no átomo de hidrogênio, mas não de \textbf{J}_z. Podemos derivar a seguinte \textit{regra de intervalo},
\[\Delta E_{F+1} - \Delta E_F = A_J (F + 1). \]

Além da interação magnética entre os momentos angulares do núcleo e da camada eletrônica existe uma interação entre o núcleo, quando não é esfericamente simétrico e a camada eletrônica. Esta interação causa desvios da regra de intervalo e um desdobramento adicional dos estados hiperfino.

4.2.2 Interação quadrupolar elétrica

O fato do núcleo não ser perfeitamente esférico, dá origem a novas correções elétron-núcleo que são denominadas \textit{interação quadrupolar}. A partir de,
\[\hat{H}_{quad} = -\frac{1}{4\pi \epsilon_0} \frac{e^2}{|\mathbf{r}_e - \mathbf{r}_N|} - \frac{1}{4\pi \epsilon_0} \frac{e^2}{|\mathbf{r}_e|}, \]

onde \(\mathbf{r}_e \) é a coordenada eletrônica e \(\mathbf{r}_N \) a coordenada isotômica, ambas tomadas como origem o centro de massa do núcleo. Para \(\mathbf{r}_e > \mathbf{r}_N \) está interação pode ser obtida após vários passos matemáticos como sendo,
\[\hat{H}_{quad} = B_J \frac{3(\mathbf{I} \cdot \mathbf{J})(2\mathbf{I} \cdot \mathbf{J} + 1) - 2\mathbf{I}^2\mathbf{J}^2}{2I(I - 1)2J(J - 1)}, \]

sendo \(B_J \) chamada \textit{constante de interação elétron-núcleo quadrupolar}. Com esta expressão podemos calcular,
\[\Delta E_{quad} = \langle IJKm_K|\hat{H}_{quad}|IJKm_K \rangle = B_J \frac{3K(K + 1) - 2I(I + 1)J(J + 1)}{2I(2I - 1)2J(2J - 1)}, \]

onde \(K = 2(\mathbf{J} \cdot \mathbf{I}) = F(F + 1) - I(I + 1) - J(J + 1) \). É importante lembrar que um núcleo que apresenta \(I = 0 \) ou \(I = \frac{1}{2} \) não tem momento quadrupolar, \(B_J = 0 \). O mesmo acontece para \(J = \frac{1}{2} \).
Juntando as contribuições \(J \cdot I \) da Eq. (4.58) e quadrupolar (4.62), a estrutura hiperfina pode ser descrita por,

\[
\Delta E_{\text{hfs}} = \Delta E_{JI} + \Delta E_{\text{qud}} = \frac{A_J}{2} K + \frac{B_J}{8I(2I-1)(2J-1)}[3K(K+1) - 4I(I+1)J(J+1)],
\]

onde as constantes \(A_J \) e \(B_J \) dependem do átomo e do momento angular total eletrônico.

<table>
<thead>
<tr>
<th>átomo</th>
<th>(n)</th>
<th>(A_J(n^2S_{1/2})) [MHz·h]</th>
<th>(A_J(n^2P_{1/2})) [MHz·h]</th>
<th>(A_J(n^2P_{3/2})) [MHz·h]</th>
<th>(B_J(n^2P_{3/2})) [MHz·h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1\text{H}), (I = \frac{1}{2})</td>
<td>1</td>
<td>1420</td>
<td>46.17</td>
<td>-3.07</td>
<td>-0.18</td>
</tr>
<tr>
<td>(^4\text{Li}), (I = \frac{3}{2})</td>
<td>2</td>
<td>401.75</td>
<td>46.17</td>
<td>-3.07</td>
<td>-0.18</td>
</tr>
<tr>
<td>(^9\text{Be}), (I = \frac{1}{2})</td>
<td>3</td>
<td>13.5</td>
<td>-0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{23}\text{Na}), (I = \frac{3}{2})</td>
<td>3</td>
<td>885.82</td>
<td>94.3</td>
<td>18.65</td>
<td>2.82</td>
</tr>
<tr>
<td>(^{85}\text{Rb}), (I = \frac{1}{2})</td>
<td>5</td>
<td>1011.9</td>
<td>120.7</td>
<td>25.029</td>
<td>26.03</td>
</tr>
<tr>
<td>(^{87}\text{Rb}), (I = \frac{3}{2})</td>
<td>5</td>
<td>3417.3</td>
<td>409.1</td>
<td>84.852</td>
<td>12.510</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>809.1</td>
<td>132.5</td>
<td>27.70</td>
<td>3.947</td>
</tr>
</tbody>
</table>

Nos Excs. 4.4.2.2 e 4.4.2.3 determinamos as estruturas hiperfinas de átomo de sódio e rubídio.

4.3 Átomos exóticos

Átomos 'normais' consistem de um núcleo de prótons e nêutrons e de uma casca eletrônica. Mas outros sistemas de duas partículas são possíveis, p.ex. onde o núcleo ou ou elétron é substituído por um outro hadron ou leptón (anti-próton, pósitron, múon, etc.). Um tal sistema é chamado de átomo exótico. Átomos em estados de Rydberg também pertencem nesta categoria.

4.3.1 Positrónio e múonio

O positrónio \((e^+e^-) \) é um sistema hidrogenoide constituído por léptons, isto é, um elétron e um pósitron, que é a antipartícula do elétron. O múonio \((\mu^+e^-) \) é semelhante ao positrónio, só que ao invés do pósitron há um múon cuja massa é \(m_{\mu^+} = 207m_e \). Léptons são, de acordo com o entendimento atual, partículas sem estrutura interna. Ambos sistemas são instáveis: os dois partículas aniquilam-se uns aos outros produzindo fótons \(\gamma \). Os níveis de energia e de órbita das duas partículas são semelhantes à do átomo de hidrogênio. No entanto, devido à massa reduzida, as frequências das linhas espectrais são menos de metade das linhas de hidrogênio correspondentes.

O estado fundamental do positrónio, assim como o do hidrogênio, têm duas configurações possíveis dependendo das orientações relativas dos spins do elétron e do pósitron. O estado singueto que com os antiparalelos spins \((S = 0, M_s = 0) \) é conhecido como para-positrónio (p-Ps) e denota \(^1S_0 \). Ele tem uma vida média de

\[
\tau = \frac{2\hbar}{m_e e^2 \alpha^3} = 124.4 \text{ ps}
\]
CAPÍTULO 4. SUBESTRUTURA DE ÁTOMOS HIDROGENOIDES

e decaí preferencialmente em dois raios gammas com energia de 511 keV cada (no centro de massa). O estado triplo com os spins paralelos \((S = 1, M_s = -1, 0, 1)\) é conhecido como orto-positrônio \((o\text{-}Ps)\) e denotado como \(^3\text{S}_1\). Ele têm uma vida média de 138.6 ps, e a forma mais comum de decaimento produz três fôtons. Outras formas de decaimentos são negligenciáveis. Por exemplo, o decaimento produzindo cinco fôtons é \(10^{-6}\) vezes menos provável. Medidas desses tempos de vida e dos níveis de energia do positrônio têm sido usados em testes de precisão da eletrodinâmica quântica.

Enquanto que o cálculo preciso dos níveis de energia do positrônio é feito baseado na equação de Bethe-Salpeter, a similaridade entre o positrônio e o hidrogênio permite uma estimativa aproximada. Nessa aproximação, os níveis de energia são diferentes daqueles do hidrogênio devido a diferença no valor da massa reduzida \(\mu\), usada na equação de energia. Como \(\mu = m_e/2\) para o positrônio, temos

\[
E_n = -\frac{\mu q^2}{8\hbar^2 c_0^2 n^2} = -\frac{1}{2} \frac{m_e q^2}{8\hbar^2 c_0^2} n^2 = -6.8 \text{ eV}.
\]

(4.65)

Já foi observada uma molécula de di-positrônio, isto é, de dois átomos de positrônio ligados. Positrônio em altos estados de energia tem sido previstos para serem a forma dominante de matéria atômica no universo em um futuro muito distante, se o decaimento do próton se tornar real.

4.3.2 Átomos hadrônicos

Em contraste com os léptons (tal como o elétron \(e^-\), o pósitron \(e^+\) e os muôns \(\mu^+\) e \(\mu^-\)) que participam somente em interações eletromagnéticas e interações fracas, os hâdrons participam também em interações fortes (tipo nuclear). Há dois tipos de hâdrons, os bérons (como o próton \(p\) e antipróton \(\bar{p}\), o nêutron \(n\) e antinêutron \(\bar{n}\), híperons \(\Sigma, \Xi, \ldots\)) que apresentam spin semi-inteiro comportando-se com fêrmions e os mésons (como o méson \(\pi\), o méson \(K, \ldots\)) que têm spin inteiro. Cada hâdrons com carga negativa podem formar um átomo hâdronico do tipo hidrogenoide. Esses sistemas contêm um núcleo e um híperon negativo e são conhecidos como átomos hípernúcleos. Todos estes são instáveis e devido ao fato de possuírem um tempo de vida suficientemente longo algumas de suas linhas espectrais tem sido atualmente observadas.

Uma vez que os hâdrons interagem fortemente com o núcleo, a teoria desenvolvida para os sistemas hidrogenoide (em que consiste somente da interação coulombiana) não pode ser diretamente aplicada. Desta forma os valores mostrados na Tab. 4.2 dão somente uma estimativa do "raio" e do potencial de ionização dos átomos hâdronicos \(p\pi^-, p\kappa^-, p\bar{p}\) e \(p\Sigma^-\).

4.3.3 Hidrogênio muônico

A massa do muôn é \(m_\mu = 207m_e\). Quando um muôn é ligado a um próton temos hidrogênio muônico. O seu tamanho é menor pela razão das massas reduzidas \(a_\mu = a_B1/m_e + 1/m_\mu\) e a energia de ligação e as energias de excitação são maiores pela mesma razão. P.ex. enquanto para \(H = p^+e^-\) a transição \(2S - 2P_{1/2}\) fica em 10 eV \(\equiv 121\) nm, para \(p^+\mu^-\) fica em 1900 eV. Átomos muônicos são interessantes porque eles tem deslocamentos de Lamb, interações hiperfinas, e correções de eletrodinâmica quântica amplificados. Portanto, o deslocamento devido a distribuição finita da cargas no próton \(r_p = 0.8\) fm deve influenciar o espectro. Enquanto em \(p^+e^-\) o \(2S\) é deslocado para cima pelo deslocamento de Lamb shift de um valor \(4.4 \times 10^{-6}\) eV, em \(p^+\mu^-\) é deslocado para baixo por um valor 0.14 eV. Vide Exc. 4.4.3.1.
Tabela 4.2: Principais características de alguns átomos exóticos.

<table>
<thead>
<tr>
<th>sistema</th>
<th>massa reduzida</th>
<th>raio °a°</th>
<th>I_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>pe^-</td>
<td>1836/1837 ≈ 1</td>
<td>$a_B = 1$</td>
<td>$e^2/2a_B ≈ 0.5$</td>
</tr>
<tr>
<td>e^+e^-</td>
<td>0.5</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>μ^+e^-</td>
<td>207/208 ≈ 1</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>$p\mu^-$</td>
<td>≈ 186</td>
<td>5.4 · 10$^{-3}$</td>
<td>93</td>
</tr>
<tr>
<td>$p\pi^-$</td>
<td>≈ 238</td>
<td>4.2 · 10$^{-3}$</td>
<td>119</td>
</tr>
<tr>
<td>$p\kappa^-$</td>
<td>≈ 633</td>
<td>1.6 · 10$^{-3}$</td>
<td>317</td>
</tr>
<tr>
<td>$p\bar{\pi}^-$</td>
<td>≈ 928</td>
<td>1.1 · 10$^{-3}$</td>
<td>459</td>
</tr>
<tr>
<td>$p\Sigma^-$</td>
<td>≈ 1029</td>
<td>9.7 · 10$^{-3}$</td>
<td>515</td>
</tr>
</tbody>
</table>

4.3.4 Átomos de Rydberg

Um átomo excitado para um estado cujo número quântico principal é muito elevado é chamado de átomo de Rydberg. Tais átomos têm várias propriedades peculiares, incluindo uma grande sensibilidade a campos elétricos e magnéticos, longos tempos de decaimento e funções de onda que se aproximam de órbitas clássicas de elétrons. Os elétrons interiores protegem o elétron exterior do campo elétrico do núcleo tal que, visto de longe, o potencial elétrico parece idêntico do elétron de um átomo de hidrogênio.

Apesar de suas falhas, o modelo de Bohr do átomo é útil para explicar essas propriedades. No Ex. 1.4.1.6 derivamos a expressão de Bohr para o raio orbital em termos do número quântico principal n:

$$r = \frac{4\pi\epsilon_0 n^2 \hbar^2}{e^2 m}.$$ \hspace{1cm} (4.66)

Com isso, fica evidente porque átomos de Rydberg têm propriedades peculiares: o raio vai como n^2 (tal que p.ex. o estado com $n = 137$ do hidrogênio tem um raio de ~ 1 mm) e a secção transversal geométrica vai como n^4. Assim, átomos de Rydberg são extremamente grandes, com elétrons de valência frouxamente ligados que são facilmente perturbados ou ionizados por colisões ou campos externos.

Como a energia de ligação de um elétron de Rydberg é proporcional a $1/r$ e, portanto, cai como uma $1/n^2$, o espaçamento entre níveis de energia cai como

$$\Delta E = \frac{1}{(n+1)^2} - \frac{1}{n^2} \rightarrow \infty - \frac{2}{n^3} + \frac{3}{n^4} + ...$$ \hspace{1cm} (4.67)

levando a níveis cada vez menos espaçados. Estes estados de Rydberg formam a série de Rydberg.

4.3.4.1 Produção de átomos de Rydberg

No átomo hidrogenoide só estado fundamental ($n = 1$) é realmente estável. Outros estados devem ser excitados por várias técnicas como p.ex. por impacto de elétrons ou por troca de carga. Em contraste com estes métodos, que produzem uma distribuição de átomos excitados em vários níveis, o método de excitação óptica permite produzir estados específicos, mas só em metais alcalinos cujas transições ficam em regimes de frequência acessíveis por lasers.
4.3.4.2 Potencial num átomo de Rydberg

O elétron de valência num átomo de Rydberg com \(Z \) prótons no núcleo e \(Z - 1 \) elétrons em camadas fechadas vê o potencial Coulomb esféricamente simétrico:

\[
U_{\text{cou}} = -\frac{e^2}{4\pi\varepsilon_0 r} .
\] (4.68)

A semelhança do potencial efetivo "visto" pelo elétron exterior com o potencial de hidrogênio sugere um tratamento clássico dentro do modelo planetário. Existem três exceções notáveis:

- Um átomo pode ter dois (ou mais) elétrons em estados altamente excitados com raios orbitais comparáveis. Neste caso, a interação elétron-elétron dá origem a um desvio significativo do potencial de hidrogênio. Para um átomo em um estado de Rydberg múltiplo o termo adicional, \(U_{ee} \) inclui um somatório de cada par de elétrons altamente excitados:

\[
U_{ee} = \frac{e^2}{4\pi\varepsilon_0} \sum_{i<j} \frac{1}{|r_i - r_j|} .
\] (4.69)

- Se o elétron de valência tem momento angular muito baixo (interpretado classicamente como uma órbita elíptica extremamente excêntrica), ele pode passar perto o suficiente do núcleo para polarizar-ló, dando origem a um termo adicional

\[
U_{\text{pol}} = -\frac{e^2\alpha_d}{(4\pi\varepsilon_0)^2 r^4} .
\] (4.70)

- Se o elétron exterior penetra nas camadas eletrônicas internas, ele vê mais da carga do núcleo e, portanto, sente uma força maior. Em geral, a modificação para a energia potencial não é simples de calcular e deve ser baseado no conhecimento da geometria do núcleo.

No hidrogênio a energia de ligação é dada por:

\[
E_B = -\frac{R_y}{n^2} .
\] (4.71)

A energia de ligação é fraca para altos valores de \(n \), o que explica porque estados de Rydberg são susceptíveis à ionização.

Termos adicionais modificando a energia potencial de um estado de Rydberg requerem a introdução de um defeito quântico, \(\delta l \), na expressão para a energia de ligação:

\[
E_B = -\frac{R_y}{(n - \delta l)^2} .
\] (4.72)

Os longos tempos de vida dos estados de Rydberg com altos momentos angulares orbitais pode ser explicada em termos de uma sobreposição das funções de onda. A função de onda de um elétron em um estado com alto \(\ell \) (grande momento angular, "órbita circular") tem pouca sobreposição com as funções de onda dos elétrons internos e, portanto, fica relativamente imperturbável.
4.4. EXERCÍCIOS

4.3.4.3 Átomos de Rydberg em campos externos

A grande distância entre o elétron e núcleo iônico em um átomo de Rydberg da jeito a um momento elétrico dipolar d extremamente grande. Há uma energia associada com a presença de um dipolo elétrico num campo elétrico \mathcal{E}, conhecido como uma deslocamento de Stark,

$$E_S = -d \cdot \mathcal{E}. \quad (4.73)$$

Dependendo do sinal da projeção do momento dipolar sobre o vetor do campo elétrico local a energia de um estado aumenta ou diminui com a intensidade do campo. O espaçamento estreito entre níveis n adjacentes na série de Rydberg significa que os estados podem se aproximar da degenerescência mesmo para campos relativamente fracos. Teoricamente, a força do campo em que ocorreria uma travessia assumindo que não há acoplamento entre os estados é dada pelo limite Inglis-Teller,

$$F_{IT} = \frac{e}{12\pi \varepsilon_0 a_0^2 n^5}. \quad (4.74)$$

No hidrogênio o potencial Coulombiano puro não acopla os estados Stark de conjuntos n, o que resulta em cruzamento real. Em outros elementos, os desvios do potencial da forma $1/r$ ideal permite cruzamento evitado.

4.4 Exercícios

4.4.1 Estrutura fina e equação de Dirac

4.4.1.1 Ex: Constantes do movimento no acoplamento $\mathbf{L} \cdot \mathbf{S}$

Considere uma partícula de massa μ descrita pelo hamiltoniano $H = -\frac{\hbar^2}{2\mu} \nabla^2 + V(r) + \xi(r) \mathbf{L} \cdot \mathbf{S}$, sendo $V(r)$ um potencial central, \mathbf{L} e \mathbf{S} os seus momentos angulares orbitais e de spin. Obtenha as relações de comutação $[\mathbf{L}, H]$, $[\mathbf{S}, H]$ e $[\mathbf{L} + \mathbf{S}, H]$ quando consideramos ou não a interação spin-órbita $\xi(r) \mathbf{L} \cdot \mathbf{S}$ introduzida via correções relativísticas.

4.4.2 Estrutura hiperfina

4.4.2.1 Ex: Campo de um momento magnético

a. Calcule o potencial vetor $\mathbf{A}(r)$ e o momento dipolar magnético $\vec{\mu}$ produzido por um elétron orbitando numa trajetória circular pela lei de Biot-Savart usando a expansão de $|r - r'|^{-1}$ em polinômios de Legendre.
b. Calcule o campo magnético $\mathbf{B}(r)$.

4.4.2.2 Ex: Estrutura hiperfina do sódio

Determine a estrutura hiperfina dos estados 2S e 2P do átomo de sódio inclusive os deslocamentos de energia. Consulte a Tab. 6.1 para as constantes hiperfinas A_J e B_J.
4.4.2.3 Ex: Estrutura hiperfina do Rb

Dados as seguintes distâncias energéticas $\nu_{F,F'}$ dos níveis hiperfinos dos ísótopos do rubídio ^{87}Rb e ^{85}Rb [3],

- $^{87}\text{Rb}, S_{1/2}$ se desdobra em $\nu_{1,2} = 6834.7$ MHz,
- $^{87}\text{Rb}, P_{3/2}$ se desdobra em $\nu_{0,1} = 72.3$ MHz, $\nu_{1,2} = 157.1$ MHz, $\nu_{2,3} = 267.2$ MHz,
- $^{85}\text{Rb}, S_{1/2}$ se desdobra em $\nu_{1,2} = 3035.7$ MHz,
- $^{85}\text{Rb}, P_{3/2}$ se desdobra em $\nu_{1,2} = 29.4$ MHz, $\nu_{2,3} = 63.4$ MHz, $\nu_{3,4} = 120.7$ MHz,

calcule as posições dos baricentros.

4.4.2.4 Ex: Duas partículas

Considere um sistema de duas partículas, de massas μ_1 e μ_2, submetidas a um potencial central $V(r)$ e a uma energia potencial de interação $V(|\mathbf{r}_1-\mathbf{r}_2|)$ que depende apenas da distância entre as partículas. O hamiltoniano do sistema na representação de interação é $H = H_1 + H_2 + V(|\mathbf{r}_1-\mathbf{r}_2|)$, com $H_\ell = -\frac{\hbar^2}{2\mu_\ell} \nabla_\ell^2 + V(r_\ell)$, $\ell = 1, 2, \ldots$ Mostre que os momentos angulares individuais L_ℓ não são, em geral, constantes de movimento, diferentemente do momento angular total $L = L_1 + L_2$.

4.4.3 Átomos exóticos

4.4.3.1 Ex: Hidrogênio muônico

Hidrogênio muônico consiste em um próton e um muôn negativo. Calcula a energia de ligação do estado fundamental do hidrogênio muônico em eV e escreve a função de onda do estado fundamental.
Capítulo 5

Átomos com spin em campos externos

5.1 Partículas carregadas em campo eletromagnético

5.1.1 Lagrangiano e hamiltoniano de partículas carregadas

Uma carga sujeita a um campo eletromagnético sente a força de Lorentz,

\[\mathbf{F} = q \mathbf{E} + q \dot{\mathbf{r}} \times \mathbf{B}, \]

onde

\[\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t} \quad \text{e} \quad \mathbf{B} = \nabla \times \mathbf{A}, \]

sendo \(\phi \) e \(\mathbf{A} \) respectivamente chamados potenciais escalar e vetorial.

Como aprendemos em eletrodinâmica é possível, derivar esta força a partir do lagrangiano do movimento eletrônico,

\[\mathcal{L}(\mathbf{r}_i, \dot{\mathbf{r}}_i) = \frac{m}{2} \dot{\mathbf{r}}^2 - q \phi(\mathbf{r}) + q \dot{\mathbf{r}} \cdot \mathbf{A}(\mathbf{r}). \]

Com este objetivo determinamos primeiramente o momento por

\[p_i = \frac{\partial \mathcal{L}}{\partial \dot{r}_i} = m \dot{r}_i + q A_i, \]

e o hamiltoniano por,

\[\mathcal{H} = \sum_i p_i \dot{r}_i - \mathcal{L}(\mathbf{r}_i, \dot{\mathbf{r}}_i) = (m \mathbf{v} + q \mathbf{A}) \cdot \dot{\mathbf{r}} - \frac{m}{2} \dot{\mathbf{r}}^2 + q \phi - q \dot{\mathbf{r}} \cdot \mathbf{A} = \frac{m}{2} \mathbf{v}^2 + q \phi. \]

Ou seja,

\[\mathcal{H}(\mathbf{r}_i, p_i) = \frac{1}{2m} (p - q \mathbf{A})^2 + q \phi. \]

Valem as equações,

\[\dot{r}_i = \frac{\partial \mathcal{H}}{\partial p_i} \quad \text{e} \quad \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial r_i}. \]

A primeira equação é facilmente verificada inserindo o hamiltoniano (5.6). A segunda leve à força de Lorentz,

\[F_i = m \dot{v}_i = \dot{p}_i - q \dot{A}_i = -\frac{\partial \mathcal{H}}{\partial r_i} - q \dot{A}_i = q E_i + e (\mathbf{v} \times \mathbf{B})_i, \]

onde o último passo da derivação será mostrada no Exc. 5.4.1.1 usando o calibre de Coulomb \(\nabla \cdot \mathbf{A} = 0. \)
5.1.2 Acoplamento mínimo

Note, que o mesmo resultado (5.6) pode ser obtido por uma substituição canônica,

\[mv \longrightarrow p - qA \quad \text{e} \quad \mathcal{H} \longrightarrow \mathcal{H} + q\phi . \]

(5.9)

Esta regra de substituição, chamada de **acoplamento mínimo**, pode ser aplicada em mecânica quântica,

\[m\hat{v} \longrightarrow -\imath \hbar \nabla - qA \quad \text{e} \quad \hat{H} \longrightarrow \hat{H} + q\phi . \]

(5.10)

No caso do elétron \(q = -e \) preso no potencial coulombiano central \(q\phi = -\frac{Ze^2}{4\pi\varepsilon_0 r} \) e na presença de um qualquer potencial magnético \(A \), obtemos assim,

\[\hat{H} = \frac{m}{2} \dot{v}^2 - \frac{Ze^2}{4\pi\varepsilon_0 r} = -\frac{\hbar^2}{2m} \nabla^2 - \frac{\imath e\hbar}{2m} A \cdot \nabla - \frac{\imath e\hbar}{2m} \nabla \cdot A + \frac{e^2 A^2}{2m} - \frac{Ze^2}{4\pi\varepsilon_0 r} . \]

(5.11)

O quarto termo chamado de termo diamagnético é quadrático em \(A \) e geralmente tão pequeno, que pode ser desprezado. O segundo e o terceiro termo descrevem a interação do elétron através do seu momento \(\hat{p} \) com o potencial vetor \(A \) produzido por momentos magnéticos no interior do átomo ou campos magnéticos exteriores. Dentro do calibre de Coulomb temos \((\nabla \cdot A)\psi = (A \cdot \nabla)\psi + \psi(\nabla \cdot A) = (A \cdot \nabla)\psi\), tal que

\[\hat{H}_{\text{int}} = \frac{e}{m} A \cdot \hat{p}. \]

(5.12)

5.2 Interação com campos magnéticos

5.2.1 Efeito Zeeman normal da estrutura fina

Os momentos dipolares dos átomos podem interagir com campos magnéticos externos. A interação leva a um deslocamento dos níveis, que depende do número quântico magnético. Assim, a última degenerescência na estrutura energética do átomo está quebrada. Isso se chama **desdobramento Zeeman**. Consideramos um campo magnético \(B = B\hat{e}_z \) uniforme com o potencial vetor,

\[A = \frac{1}{2} B \times r = -\frac{B}{2} (y\hat{e}_x + x\hat{e}_y) . \]

(5.13)

Com isso a energia de interação entre o elétron e o campo é dada pelo hamiltoniano (5.12),

\[V_{\text{zee}}(B) = -\frac{\imath e\hbar}{m} A \cdot \nabla = -\frac{\imath e\hbar}{2m} (B \times r) \cdot \nabla = -\frac{\imath e\hbar}{2m} B \cdot (r \times \nabla) \]

(5.14)

\[= -\frac{e}{m} B \cdot \hat{L} = -\frac{\mu_B}{\hbar} g_L \hat{L} \cdot B = -\hat{\mu}_L \cdot B = -\frac{\mu_B}{\hbar} \hat{L}_z B , \]

com \(g_L = 1 \) usando a relação \(\hat{\mu}_L = \frac{e}{2m}\hbar \hat{L} \) entre o momento angular do elétron e o momento magnético resultante. Essa relação vale para um átomo sem spin (dois elétrons podem acoplar os seus spins para um estado singlet) e sem estrutura hiperfina (ou uma estrutura hiperfina não resolvida). As energias são portanto,

\[\Delta E_{\text{zee}}(B) = -\frac{\mu_B}{\hbar} B \langle n, L, m_L | \hat{L}_z | n, L, m_L \rangle = -\mu_B m_L B . \]

(5.15)

Nos Excs. 5.4.2.1 e 5.4.2.2 representamos a interação entre um momento angular atômico e um campo magnético em diferentes bases caracterizadas por diferentes eixos de quantização.
5.2. INTERAÇÃO COM CAMPOS MAGNÉTICOS

5.2.2 Efeito Zeeman anômalo

O efeito Zeeman anômalo ocorre quando o conjunto dos elétrons tem um spin. Utilizando as expressões já conhecidas para os momentos dipolares do momento orbital e do spin do elétron, obtemos para o momento magnético dipolar,

\[\vec{\mu}_J = \vec{\mu}_L + \vec{\mu}_S = \frac{\mu_B}{\hbar} g_L \vec{L} + \frac{\mu_B}{\hbar} g_S \vec{S} = \frac{\mu_B}{\hbar} (\vec{L} + 2\vec{S}), \]

com \(g_L = 1 \) e \(g_S = 2 \). Podemos ver que o momento dipolar do átomo não é paralelo ao momento total, \(\vec{J} = \vec{L} + \vec{S} \).

Quando o campo magnético é fraco, \(V_{ls} \gg V_{zee}(B) \), o momento total \(\vec{J} \) será a boa observável. Portanto, devemos primeiro projetar os momentos \(\vec{L} \) e \(\vec{S} \) sobre \(\vec{J} \),

\[\vec{L} \rightarrow \left(\vec{L} \cdot \frac{\vec{J}}{|\vec{J}|} \right) \frac{\vec{J}}{|\vec{J}|} \quad \text{e} \quad \vec{S} \rightarrow \left(\vec{S} \cdot \frac{\vec{J}}{|\vec{J}|} \right) \frac{\vec{J}}{|\vec{J}|}, \]

antes de projetar o resultado sobre o campo \(\vec{B} \). O potencial fica

\[V_{zee}(B) = -\vec{\mu}_J \cdot \vec{B} = -\frac{\mu_B}{\hbar} \left(\vec{L} + 2\vec{S} \right) \cdot \vec{B} \rightarrow -\frac{\mu_B}{\hbar} \left(\left(\vec{L} \cdot \frac{\vec{J}}{|\vec{J}|} \right) \frac{\vec{J}}{|\vec{J}|} \cdot \vec{B} + 2 \left(\vec{S} \cdot \frac{\vec{J}}{|\vec{J}|} \right) \frac{\vec{J}}{|\vec{J}|} \cdot \vec{B} \right) \]

\[= -\frac{\mu_B}{\hbar|\vec{J}|^2} \left[|\vec{L}| \cdot \left(J + 2S \right) \cdot \vec{J} \cdot \vec{B} = -\frac{\mu_B}{\hbar|\vec{J}|^2} \left(J^2 + L^2 - S^2 + 2(J^2 + S^2 - L^2) \right) \right] J \cdot B \]

E a energia é,

\[\Delta E_{zee}(B) = -\frac{\mu_B}{\hbar} \langle \hat{J}_z \hat{B} \rangle. \]

Introduzindo o fator de Landé,

\[g_J \equiv 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}, \]

podemos escrever

\[\Delta E_{zee}(B) = -\frac{\mu_B}{\hbar} g_J \langle \hat{J}_z B \rangle = -\mu_B g_J m_J B. \]

Esta expressão descreve o efeito Zeeman anômalo, para o qual \(S \neq 0 \). Para o efeito Zeeman normal, para o qual o spin é zero, achamos de volta \(g_J = 1 \).

Figura 5.1: Acoplamento dos momentos angulares para o efeito (a) Zeeman normal, (b) Zeeman anormal, (c) Paschen-Back, (d) Zeeman da estrutura hiperfina e (e) Paschen-Goudsmith.
5.2.3 Efeito Paschen-Back e campos magnéticos intermediários

Um campo magnético externo muito forte (> 1 T), tal que $V_{ls} \ll V_{zee}(B)$, pode quebrar o acoplamento $L \cdot S$. Ambos os spins L e S agora se acoplam separadamente ao campo,

$$L \rightarrow \left(L \cdot \frac{B}{|B|} \right) \frac{B}{|B|} \quad \text{e} \quad S \rightarrow \left(S \cdot \frac{B}{|B|} \right) \frac{B}{|B|} .$$

Por isso,

$$V_{ph}(B) = -\frac{\mu B}{\hbar} (\hat{L} + 2\hat{S}) \cdot B \rightarrow -\frac{\mu B}{\hbar} \left[\left(\hat{L} \cdot \frac{B}{|B|} \right) \frac{B}{|B|} + 2 \left(\hat{S} \cdot \frac{B}{|B|} \right) \frac{B}{|B|} \right] \cdot B ,$$

tal que,

$$\Delta E_{ph}(B) = -\mu_B (m_L + 2m_S) B .$$

Isso é o efeito Paschen-Back.

As derivações que fizemos até agora se concentraram em situações simples bem descritas por CCOCs em vários esquemas de acoplamento. As projeções sobre os diferentes eixos de quantização [o spin total (5.17) no caso Zeeman ou o campo magnético aplicado (5.22) no caso Paschen-Back] garantem que os hamiltonianos V_{ls} e $V_{zee}(B)$ nestes CCOCs são descritos por matrizes diagonais. No entanto, em regimes intermediários entre Zeeman e Paschen-Back, $V_{ls} \approx V_{zee}(B)$, geralmente não é possível achar uma representação diagonal.

Para calcular o espectro energético em regimes intermediários devemos, portanto, determinar todas as componentes da matriz

$$V_{ls} + V_{zee}(B) = \xi(r) \hat{L} \cdot \hat{S} + \frac{\mu B}{\hbar} (\hat{L} + 2\hat{S}) .$$

Utilizando $\hat{L}_\pm \equiv \hat{L}_x \pm i\hat{L}_y$ e $\hat{S}_\pm \equiv \hat{S}_x \pm i\hat{S}_y$, podemos facilmente reescrever a energia na forma seguinte,

$$V_{ls} + V_{zee}(B) = \xi(r) \left(\hat{L}_z \hat{S}_z + \frac{1}{2} \hat{L}_+ \hat{S}_- + \frac{1}{2} \hat{L}_- \hat{S}_+ \right) + \frac{\mu B}{\hbar} (\hat{L} + 2\hat{S}) \cdot B .$$

Esse operador age sobre os estados não acoplados,

$$\Delta E_{ls} + \Delta E_{zee}(B) = \langle L^l m'_L; S^l m'_S | \xi_{nl}(\hat{L}_z \hat{S}_z + \frac{1}{2} \hat{L}_+ \hat{S}_- + \frac{1}{2} \hat{L}_- \hat{S}_+) + \mu_B (\hat{L}_z + 2\hat{S}_z) B | L m_L; S m_S \rangle = \hbar^2 \xi_{nl} \left(m_L m_S \delta_{m_L, m'_L} \delta_{m_S, m'_S} + \frac{1}{2} L^l S^l \delta_{m_L, m'_L} \delta_{m_S, m'_S} + \frac{1}{2} L^l S^l \delta_{m_L, m'_L} \delta_{m_S, m'_S} \right) + \hbar \mu_B (m_L + 2m_S) \delta_{m_L, m'_L} \delta_{m_S, m'_S} ,$$

com as abreviações $L_\pm \equiv \sqrt{L(L + 1) - m_L(m_L + 1)}$. As energias agora são os auto-valores dessa matriz. O fator ξ_{nl} é geralmente determinado experimentalmente deixando $B = 0$. No Exc. 5.4.2.3 calculamos o reacoplamento dos spins de dois elétrons em um campo magnético externo.

5.2.4 Efeito Zeeman da estrutura hiperfina

Quando a interação com o campo magnético é comparável com as interações hiperfina, mas muito mais fraco do que as interações finas, os campos não perturbam o acoplamento entre o momento elétronico total J e o spin do núcleo I. Portanto, $J, I, F,$ e m_F são números quânticos bons. Portanto, para calcular a energia de interação,

$$V_{hfs} + V_{zee}(B) = V_{hfs} - \tilde{\mu}_F \cdot B ,$$

(5.28)
5.2. INTERAÇÃO COM CAMPOS MAGNÉTICOS

Figura 5.2: Transição entre o regime Zeeman e o regime Paschen-Back para o caso de \(L = 1 \) e \(S = 1/2 \).

projetamos o spin nuclear e o momento eletrônico total separadamente na direção \(F \),

\[
\mathbf{J} \rightarrow \left(\mathbf{J} \cdot \frac{\mathbf{F}}{|\mathbf{F}|} \right) \frac{\mathbf{F}}{|\mathbf{F}|} \quad \text{e} \quad \mathbf{I} \rightarrow \left(\mathbf{I} \cdot \frac{\mathbf{F}}{|\mathbf{F}|} \right) \frac{\mathbf{F}}{|\mathbf{F}|}.
\]

(5.29)

O momento magnético total é,

\[
\vec{\mu}_F = \vec{\mu}_J + \vec{\mu}_I = -\frac{\mu_B}{\hbar} g_J \mathbf{J} + \frac{\mu_N}{\hbar} g_p \mathbf{I}.
\]

(5.30)

Note o sinal negativo devido a carga negativa do elétron. O fator de Landé \(g \) é aquele (5.20), causado pelo acoplamento do momento angular orbital \(L \) e do spin de elétron \(S \) e depende do estado sob consideração. Com isso,

\[
V_{\text{zee}}(B) = \left[-\frac{\mu_B}{\hbar} g_J \left(\mathbf{J} \cdot \frac{\mathbf{F}}{|\mathbf{F}|} \right) \frac{\mathbf{F}}{|\mathbf{F}|} + \frac{\mu_N}{\hbar} g_p \left(\mathbf{I} \cdot \frac{\mathbf{F}}{|\mathbf{F}|} \right) \frac{\mathbf{F}}{|\mathbf{F}|} \right] \mathbf{B}
\]

(5.31)

Usando \(\mathbf{J} \cdot \mathbf{F} = \frac{1}{2}(\mathbf{F}^2 + \mathbf{J}^2 - \mathbf{I}^2) \) e \(\mathbf{I} \cdot \mathbf{F} = \frac{1}{2}(\mathbf{F}^2 - \mathbf{J}^2 + \mathbf{I}^2) \) escrevemos,

\[
V_{\text{zee}}(B) = -\frac{\mu_B}{\hbar} g_J \frac{\mathbf{F}^2 + \mathbf{J}^2 - \mathbf{I}^2}{2|\mathbf{F}|^2} BF_z + g_p \frac{\mu_N}{\hbar} \frac{\mathbf{F}^2 - \mathbf{J}^2 + \mathbf{I}^2}{2|\mathbf{F}|^2} BF_z,
\]

(5.32)

tal que

\[
\Delta E_{hfs} + \Delta E_{\text{zee}}(B) \simeq \Delta E_{hfs} + \mu_B g_F |m_F| B,
\]

(5.33)

usando o \textit{fator de Landé} \(g_F \) para o estado \(F \),

\[
g_F \simeq g_J \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)} - g_J \frac{\mu_N}{\mu_B} \frac{F(F+1) - J(J+1) + I(I+1)}{2F(F+1)},
\]

(5.34)

onde o segundo termo pode ser desprezado.

O desdobramento dos estados eletrônicos com o momento \(\mathbf{F} \) em \(2F + 1 \) subníveis \(m_F = -F, \ldots, F \) é chamado \textit{efeito Zeeman da estrutura hiperfina}. O resultado (5.31) só vale para campos fracos. Para campos fortes o desdobramento Zeeman muda para o desdobramento Paschen-Back da estrutura hiperfina.
5.2.5 Efeito Paschen-Back da estrutura hiperfina

Quando a interação com o campo magnético excede a interação hiperfina, o spin nuclear \(\mathbf{I} \) se desacopla do momento total \(\mathbf{J} \), é ambos acoplados separadamente com o campo magnético externo,

\[
\mathbf{J} \rightarrow \left(\mathbf{J} \cdot \frac{\mathbf{B}}{|\mathbf{B}|} \right) \frac{\mathbf{B}}{|\mathbf{B}|} \quad \text{e} \quad \mathbf{I} \rightarrow \left(\mathbf{I} \cdot \frac{\mathbf{B}}{|\mathbf{B}|} \right) \frac{\mathbf{B}}{|\mathbf{B}|} .
\]

(5.35)

O efeito Zeeman da estrutura hiperfina se transforma numa estrutura hiperfina do efeito Zeeman, também chamada de efeito Paschen-Back da estrutura hiperfina ou efeito Paschen-Goudsmith. Podemos diagonalizar o potencial numa base, onde \(I, m_I, J, \) e \(m_J \) são números quânticos bons. Usando a expressão (4.63) mas desprezando a contribuição quadrupolar para a interação hiperfina, \(B_J \approx 0 \), obtemos

\[
V_{hfs} + V_{zee}(B) = V_{hfs} - (\mu_J + \mu_I) \cdot \mathbf{B} \approx \frac{A_J}{\hbar^2} \mathbf{J} \cdot \mathbf{I} + \mu_J \cdot \mathbf{B}
\]

(5.36)

onde negligenciamos a interação do momento dipolar do núcleo com o campo magnético externo, \(\mu_I \approx 0 \). Obtemos,

\[
\Delta E_{hfs} + \Delta E_{zee}(B) \approx A_J m_J m_I + \mu_B g_J m_J B .
\]

(5.37)

Aqui projetamos o momento angular \(\mathbf{J} \) e o spin \(\mathbf{I} \) separadamente sobre a direção do campo magnético. O reacoplamento do estado \(|F m_F⟩\) para \(|m_I m_J⟩\) em campos magnéticos fortes é descrito por coeficientes de Clebsch-Gordan,

\[
|F m_F⟩ = \sum_{m_I + m_J = m_F} |m_I m_J⟩⟨m_I m_J|F m_F⟩ .
\]

(5.38)

5.2.6 Estrutura hiperfina em regime de campos intermediários

Sabendo os fatores de intervalo dipolar magnético \(A_J \) e quadrupolar \(B_J \), é possível calcular o deslocamento Zeeman da estrutura hiperfina em campos magnéticos intermediários entre os regimes Zeeman e Paschen-Back. Para isso, devemos determinar todas as componentes da matriz \(V_{hfs} + V_{zee}(B) \) e calcular os autovalores. Os termos relevantes das Eqs. (4.63) e (5.35) são,

\[
V_{hfs} + V_{zee}(B) = \frac{A_J}{\hbar^2} \mathbf{I} \cdot \mathbf{J} + \frac{B_J}{\hbar^2} \left(6 \mathbf{I} \cdot \mathbf{J}^2 + 3 \mathbf{I} \cdot \mathbf{J} - 2 \mathbf{J}^2 \mathbf{I}^2 \right) + \frac{g_J \mu_B}{\hbar^2} \mathbf{B} \cdot \mathbf{J} - g_I \mu_N \mathbf{B} \cdot \mathbf{I} .
\]

(5.39)

Desenvolvem a forma matricial completa deste hamiltoniano dentro da base não acoplada, onde \(m_J, m_I \) são bons números quânticos, introduzindo as abreviações \(I_\pm = \sqrt{I(I+1) - m_I(m_I \pm 1)} \) e \(I_{\pm \pm} = \sqrt{I(I+1) - (m_I \pm 1)(m_I \pm 2)} \). A álgebra SU(2) fornece expressões úteis, \(\mathbf{I} \cdot \mathbf{J} = I_I J_I + \frac{1}{2} (I_+ J_- + I_- J_+) \). Os elementos da matriz ficam,

\[
⟨m_I' m_J' | H_{hfs} + H_B | m_I m_J⟩ = \left[A_J + \frac{3B_J}{2(I+1)(2J+1)} \right] \left\{ m_I m_J \delta_{m_I' m_I} \delta_{m_J' m_J} + \frac{1}{2} I_J - \delta_{m_J' m_J} \delta_{m_I' m_I} + \frac{1}{2} I_J + \delta_{m_I' m_I} \delta_{m_J' m_J} \right\} + \frac{B_J}{2(I+1)(2J+1)} |m_I m_J⟩⟨m_I m_J| \left(\frac{1}{2} \mathbf{J}^2 \right) + \left[- \frac{B_J}{2(2J+1)} J_J + (g_J m_J - g_I \mu_N m_I) \mu_B B \right] \delta_{m_I' m_I} \delta_{m_J' m_J}.
\]

(5.40)
5.2. INTERAÇÃO COM CAMPOS MAGNÉTICOS

onde

$$\langle m'_I m'_J | (\frac{1}{i})^2 | m_I m_J \rangle = \left[(m_I m_J)^2 + \frac{1}{4} I^2 - J^2 + \frac{1}{4} I^2 + J^2 \right] \delta_{m'_I m_I} \delta_{m'_J m_J} +$$

$$+\frac{1}{2} (m'_I m'_J + m_I m_J) I_{+} J_{-} \delta_{m'_I m_I+1} \delta_{m'_J m_J-1} +$$

$$+\frac{1}{2} (m'_I m'_J + m_I m_J) I_{-} J_{+} \delta_{m'_I m_I-1} \delta_{m'_J m_J+1} +$$

$$+\frac{1}{2} I_{+} J_{-} I_{+} J_{+} \delta_{m'_I m_I} \delta_{m'_J m_J} +$$

$$+\frac{1}{2} I_{-} J_{+} I_{-} J_{-} \delta_{m'_I m_I} \delta_{m'_J m_J}.$$

A matriz $$\langle m'_I m'_J | H_{hfs} + H_B | m_I m_J \rangle$$ é dividida em 2F + 1 blocos diagonais, cada um rotulado por $$m_F$$. O número total de níveis é

$$\sum_{F=|I-J| \ldots I+J} 2F + 1 = (2I + 1)(2J + 1) = \sum_{m_F=|-F \ldots F|} \sum_{m_I=|-I \ldots I|, \ m_J=|-J \ldots J|, \ m_I+m_J=m_F} 1.$$

Nesta forma a matriz programada, e.g. usando MATLAB, e todos os autovalores do hamiltoniano para um qualquer estado $$2^{25+1}X_J$$ e um spin nuclear de I podem ser calculados numericamente. Obviamente, os autovalores seguem da diagonalização da matriz e não dependem da base escolhida. A Fig. 5.3 mostra o resultado obtido para o $$6^6$$Li ($$I = \frac{3}{2}$$) no estado $$2P_{3/2}$$ sabendo, que $$A_J / h = -1.17$$ MHz e $$B_J = 0$$.

Figura 5.3: Estrutura hiperfina e Zeeman do estado $$2P_{3/2}$$ do $$6^6$$Li.

É interessante analisar os estados chamados de totalmente estirados. Neste caso, o fator de intervalo é $$A = V_{hfs}/2$$. Inserindo $$F = I + J$$ dentro da primeira fórmula, obtemos,

$$V_{hfs} + V_{ze}(B) = \frac{A_J}{h^2} J^2 - B_J \frac{3(I + J)}{2(2I - 1)(2J - 1)} + g_J \mu_B B \cdot J - g_I \mu_N B \cdot I \approx A_J m_J m_I + \mu_B g_J m_J B.$$ (5.42)

O deslocamento de energia dos estados totalmente estirados é linear no campo magnético. Podemos também olhar para os elementos da matriz $$I_+ = 0$$ e $$I_- = \sqrt{2I}$$ e notar que todos os termos não diagonais zeram.

Quando um dos spins, J ou I, é igual a 1/2 só tem dois estados hiperfinos possíveis: $$F = I \pm J$$, que necessariamente são totalmente estirados. Para este caso existe uma fórmula analítica aproximada chamada de formula de Breit-Rabi [2], que será deduzida no Exc. 5.4.2.4,

$$\Delta E_{hfs} + \Delta E_{ze}(B) = \langle \frac{A_J}{E^2} I \cdot J + g_J \mu_B B \cdot J - g_I \mu_N B \cdot I \rangle$$

$$= -\frac{A_J}{4} + \mu_N g_N m_F B \pm \frac{A_J(I + \frac{1}{2})}{2} \sqrt{1 + \frac{4m_F}{2I + 1} x + x^2},$$ (5.43)
CAPÍTULO 5. ÁTOMOS COM SPIN EM CAMPOS EXTERNOS

com a abreviação \(x \equiv \frac{2(\mu_{BGJ} - \mu_{NYJ}) R}{A_J} \).

5.3 Interação com campos elétricos

5.3.1 Efeito Stark

Campos elétricos interagem com os elétrons do átomo,

\[
\hat{V}_{\text{stark}} = -e \mathbf{d} \cdot \mathbf{E}.
\]

Isso é o efeito de Stark. Este efeito geralmente é fraco, e sua observação requer campos fortes ou resolução espectral grande. A teoria de perturbação estacionária TPIT dá,

\[
E^{(1)}_n = \langle \psi^{(0)}_n | -e \mathbf{d} \cdot \mathbf{E} | \psi^{(0)}_n \rangle = e E_z \int_{\mathbb{R}^3} z |\psi^{(0)}_n|^2 d^3r = 0.
\]

Isso só vale, quando os estados tem paridade bem definida e NÃO são degenerados em \(\ell \). Quando SÃO degenerados à respeito de \(\ell \), o que é o caso do hidrogênio, os estados não têm paridade definida. Por exemplo, os estados \(s \) e \(p \) contribuindo no mesmo estado \(|\psi_{n,j}\rangle \) têm paridades diferentes. Neste caso, a condição (5.45) não precisa ser satisfeita, e a primeira ordem de perturbação dá um valor. É o caso do efeito Stark linear.

Em outros átomos, não tem esta degenerescência, e devemos calcular o efeito quadrático de Stark em segunda ordem TPIT,

\[
E^{(2)}_n = e^2 E_z^2 \sum_{n' \neq n} \frac{\langle \psi^{(0)}_{n'} | \hat{z} | \psi^{(0)}_n \rangle^2}{E_n - E_{n'}}.
\]

Para simplificar os elementos da matriz, separamos a parte radial da parte angular,

\[
\langle \psi^{(0)}_{n'} | \hat{z} | \psi^{(0)}_n \rangle = \langle n'J'm'_j|\hat{z}|nJm_j \rangle = \int_0^\infty r^3 R_{n'J'm'_j} R_{nJm_j} d\Omega.
\]

A parte radial, escrita como

\[
\langle n'J'|\hat{z}|nJ \rangle = \int_0^\infty r^3 R_{n'J'm'} R_{nJm} d\Omega,
\]

e chamada de elemento da matriz irreduzível, não depende mais do número quântico magnético. Do outro lado, a parte angular pode ser expressa por coeficientes de Clebsch-Gordan, como será discutido de maneira mais profunda na Sec. 6.2.2. O resultado é o chamado teorema de Wigner-Eckart,

\[
\frac{|\langle n'J'm'_j|\hat{z}|nJm_j \rangle|^2}{|\langle n'J'|\hat{z}|nJ \rangle|^2} = \frac{1}{2J'+1} \begin{pmatrix} J & 1 \\ m_j & 0 \end{pmatrix} \begin{pmatrix} J' & 1 \\ m'_j & 0 \end{pmatrix}.
\]

Com \([\hat{z}, \hat{L}_z] = 0 \), o que foi mostrado no Exc. 2.5.3.2 achamos,

\[
0 = \langle J'm'_j|\hat{z}|Jm_j \rangle = (m_j - m'_j) \langle J'm'_j|\hat{z}|Jm_j \rangle.
\]
Isso significa que para \(m_J \neq m'_J \), os elementos da matriz \(\langle J'm'_J|\hat{z}|Jm_J \rangle \) devem desaparecer. Portanto, a matriz é diagonal em \(m_J \). Consideramos transições dipolares com \(|J - J'| \leq 1 \).

\[
\begin{pmatrix}
 J & 1 & J + 1 \\
 m_J & 0 & -m_J
\end{pmatrix} = \frac{(J+1)^2 - m_J^2}{(2J+1)(J+1)}, \quad (5.52)
\]

\[
\begin{pmatrix}
 J & 1 & J \\
 m_J & 0 & -m_J
\end{pmatrix} = \frac{m_J^2}{J(J+1)},
\]

\[
\begin{pmatrix}
 J & 1 & J - 1 \\
 m_J & 0 & -m_J
\end{pmatrix} = \frac{J^2 - m_J^2}{J(2J + 1)}.
\]

Estados com os mesmos \(|m_J| \) levam ao mesmo efeito quadrático de Stark

\[
\Delta E \sim A + B|m_J|^2. \quad (5.53)
\]

Os fatores \(A \) e \(B \) dependem do número quântico principal \(n \) e também de \(L, S, J \). Além disso, dependem da distância energética para todos os níveis contribuintes, por causa do denominador na equação de perturbação (5.46). Só os níveis com paridade diferente \((-1)^L\) contribuem. No 5.4.3.1 calculamos explicitamente o deslocamento de energia Stark para um átomo de hidrogênio sujeito a um campo elétrico.

5.4 Exercícios

5.4.1 Partículas carregada em campo eletromagnético

5.4.1.1 Ex: Lagrangiano de um elétron em campo eletromagnético

a. Mostre que o lagrangiano (5.3) reproduz a força de Lorentz (5.1).
b. Mostre que o hamiltoniano (5.5) reproduz a força de Lorentz (5.1).

5.4.2 Interação com campos magnéticos

5.4.2.1 Ex: Efeito Zeeman com diferentes eixos de quantização

O efeito Zeeman pode ser descrito em várias maneiras dependendo da escolha do eixo de quantização. Considere um campo magnético \(B = B_x \hat{e}_x \) e calcule o hamiltoniano de interação \(V(B) = -\vec{\mu}_J \cdot \vec{B} \)

a. escolhendo o eixo de quantização \(\hat{e}_x \) na direção do campo magnético,
b. escolhendo o eixo de quantização \(\hat{e}_x \) perpendicular à direção do campo magnético.

5.4.2.2 Ex: Deslocamento Zeeman e eixos de quantização

Escolhendo o eixo de quantização fixo \(\hat{e}_z \) e um campo magnético \(\vec{B} \) em direção arbitrária calcule o hamiltoniano de interação Zeeman com um momento angular \(J = 1 \) e mostre, que o deslocamento de energia só depende do valor absoluto \(|\vec{B}|\).

\(^1\)Pois é possível mostrar que \(\langle n'_J|\hat{z}|n_J \rangle = 0 \) para \(JJ - J' > 1 \).
5.4.2.3 Ex: Acoplamento de dois elétrons

Considere um sistema de dois elétrons.

a. Mostre que o operador \((hA/h^2)\hat{s}_1 \cdot \hat{s}_2\) distingue os estados triplos do singueto.

b. Considere agora, que os elétrons sejam expostos à um campo magnético \(B\) aplicado na direção \(e_z\), de forma que adquiram as energias de interação com o campo \((\mu_B B/h)(g_1 \hat{s}_{1z} + g_2 \hat{s}_{2z})\).

Obtenha a matriz associada ao hamiltoniano total e demonstre que no regime \(hA \gg \mu_B B\), a representação que privilegia o momento total é mais adequada.

c. Mostre que no regime \(hA \ll \mu_B B\), é conveniente a utilização da representação que privilegia os spins individuais do momento total.

d. Trata o regime intermediário \(hA \simeq \mu_B B\).

5.4.2.4 Ex: Formula de Breit-Rabi

Derive a fórmula analítica de Breit-Rabi (5.43) supondo \(J = \frac{1}{2}\).

5.4.2.5 Ex: Poluição recíproca dos regimes Paschen-Back e Zeeman

a. Determine a matriz de interação \(\langle \hat{m}_J \hat{m}_J \rangle \hat{V}_{hfs} + \hat{V}_{zee}(B)|m_j m_I\rangle\) de um átomo com spin eletrônico \(J\) e spin nuclear \(J\) na base desacoplada sem considerar os termos quadrupolares.

b. Determine a matriz de interação explicitamente para o caso do \(^6\)Li \((I = 1)\) no estado fundamental \(2S_{1/2}(A_J = h \cdot 152.137\) MHz) para um campo magnético de \(B = 100\) G.

c. Para o sistema definido em (b) determine os autovalores \(E(B)\) da matriz de interação e os autovetores \(|\alpha(B)\rangle\) na base acoplada \(|Fm_F\rangle\).

d. Para o sistema definido em (c) determine os autovetores \(|\alpha(B)\rangle\) na base desacoplada \(|m_j m_I\rangle\).

e. Quão boas são as regras de seleção para transições \(S_{1/2} \rightarrow P_{3/2}\) no regime intermediário entre Zeeman e Paschen-Back? Começamos calculando os deslocamentos de Zeeman para ambos os níveis \((s\) denota a estrutura \(S_{1/2}\), \(p\) a estrutura \(P_{3/2}\))

\[
B \langle m_J^s m_I^s | H_{hfs} + H_B | m_J^p m_I^p \rangle = E^s(B) \\
B \langle m_J^p m_I^p | H_{hfs} + H_B | m_J^s m_I^s \rangle = E^p(B)
\]

Para o nível \(P_{3/2}\) o fator de intervalo é menor. In particular for \(^6\)Li é tão pequeno que estamos imediatamente no regime de Paschen-Back. Isso significa que a matriz \(\infty \langle \hat{m}_J^s \hat{m}_J^s | m_J^p m_I^p \rangle_B = \delta_{m_J^s, m_J^p} \delta_{m_I^s, m_I^p}\) é diagonal. O elemento do matrix de transição é então,

\[
B \langle m_J^p m_I^p | T_{q}^{(E)} | m_J^s m_I^s \rangle_B = \sum_{m_J^s, m_I^s} \sum_{m_J^p, m_I^p} \infty \langle \hat{m}_J^s \hat{m}_J^s | m_J^p m_I^p \rangle_B \infty \langle \hat{m}_J^s \hat{m}_J^s | m_J^s m_I^s \rangle_B \infty \langle \hat{m}_J^p \hat{m}_J^p | T_{q}^{(E)} | \hat{m}_J^s \hat{m}_J^s \rangle_{\infty} \infty \langle \hat{m}_J^s \hat{m}_J^s | m_J^s m_I^s \rangle_B \infty \langle \hat{m}_J^p \hat{m}_J^p | T_{q}^{(E)} | \hat{m}_J^s \hat{m}_J^s \rangle_{\infty}
\]

Os elementos da matriz no regime Zeeman puro podem ser expressos por [Deh07, unpublished],

\[
\langle F^p m_I^p | T_{q}^{(E)} | F^s m_I^s \rangle_{=0} \langle m_J^p m_I^p | T_{q}^{(E)} | m_J^s m_I^s \rangle_{=0} = \left(J^s m_J^s \text{ sign}(m^p - m^s) - m_J^p \right) \left(J^p m_J^p \text{ sign}(m^s - m^p) - m_J^s \right) \frac{J^p J^s}{F^p F^s} = \frac{2(F^s + 1)(2J^p + 1)(2\kappa + 1)}{2I + 1}.
\]

Que tal o regime puro de Paschen-Back?

\[
\infty \langle m_J^p m_I^p | T_{q}^{(E)} | m_J^s m_I^s \rangle_{\infty} = ???
\]
5.4.3 Interação com campos elétricos

5.4.3.1 Ex: Efeito Stark no hidrogênio

Considere o átomo de hidrogênio imerso num campo elétrico uniforme E aplicado ao longo da direção \hat{e}_z. O termo que corresponde a esta interação no hamiltoniano total é $H^{(1)} = -eEz$. Para campos elétricos típicos, produzidos em laboratório, a condição $H^{(1)} \ll H_0$, que permite a aplicação da TPIT, é satisfeita. O efeito da perturbação $H^{(1)}$ denominado efeito Stark, é a remoção da degenerescência de alguns dos estados do átomo de hidrogênio. Calcule o efeito Stark para o estado $n = 2$ do átomo de hidrogênio.

5.4.3.2 Ex: Efeito Stark

Derive as Eqs. (5.52) à partir da formula dada na nota de rodapé da Seção 2.4.4.
Capítulo 6

Interação de luz com átomos monoeletrônicos

6.1 Transições entre estados atômicos

6.1.1 Perturbação dependente do tempo por uma onda plana

Olhando para o hamiltoniano (5.11) descrevendo a interação de uma partícula carregada com um campo eletromagnético, achamos que o termo \(A \cdot \nabla \propto e^{i\omega t} \) enquanto o termo \(A^2 \propto e^{2i\omega t} \). Só consideramos o termo de interação (5.9), que é linear em \(A \), e trataremos este termo como perturbação em primeira ordem pela teoria de perturbação dependente do tempo (TPDT).

Neste âmbito separamos o hamiltoniano em uma parte estacionária e uma parte dependente do tempo,

\[\hat{H}(t) = \hat{H}(0) + \hat{H}_{\text{int}}(t), \]

onde \(\hat{H}(0) \) contém a energia cinética e o potencial colombiano da Eq. (5.11). Agora inserimos a expansão,

\[|\psi\rangle = \sum_k c_k(t)|k\rangle e^{-iE_k t/\hbar}, \]

dentro da equação de Schrödinger e obtemos,

\[\frac{\partial}{\partial t} |\psi\rangle = \sum_k \dot{c}_k(t)e^{-iE_k t/\hbar}|k\rangle - \frac{iE_k}{\hbar} \sum_k c_k(t)e^{-iE_k t/\hbar}|k\rangle \]

\[\frac{1}{i\hbar} (\hat{H}(0) + \hat{H}_{\text{int}})|\psi\rangle = \frac{1}{i\hbar} \sum_k c_k(t)e^{-iE_k t/\hbar}(E_k + \hat{H}_{\text{int}})|k\rangle. \]

Projetando sobre o estado final \(\langle f| \) obtemos,

\[e^{iE_f t/\hbar} \langle f| \frac{\partial}{\partial t} |\psi\rangle = \langle f| \hat{H}_{\text{int}} |k\rangle c_k(t) e^{i\omega_k t} \]

com \(\omega_{fk} \equiv (E_f - E_k)/\hbar \). Ou na versão integral,

\[c_f(t) = \frac{1}{i\hbar} \sum_k \int_0^t c_k(t') e^{i\omega_{fk} t'} \langle f| \hat{H}_{\text{int}} |k\rangle dt'. \]

A aproximação perturbativa de primeira ordem agora consiste em fixar a condição inicial \(c_k(t \leq 0) = \delta_ki \) e supor, que a probabilidade de encontrar o átomo inicialmente no estado fundamental \(|i\rangle \) para tempos curtos é 1,

\[c_f^{(1)}(t) \simeq \frac{1}{i\hbar} \int_0^t \langle f| \hat{H}_{\text{int}} |i\rangle e^{i\omega_{fi} t'} dt'. \]
6.1.1.1 Excitação por ondas planas

Consideramos agora uma perturbação por uma onda eletromagnética plana dentro do calibre de Coulomb,

$$\phi = 0 \quad \text{e} \quad \nabla \cdot \mathbf{A} = 0 \quad (6.7)$$

A solução da equação de onda pode ser escrita,

$$\mathbf{A}(\mathbf{r}, t) = \mathbf{A}_0^* \mathbf{r} e^{i\omega t} + \mathbf{A}_0(\mathbf{r}) e^{-i\omega t}. \quad (6.8)$$

Para onda planas,

$$\mathbf{A}_0(\mathbf{r}) = \mathbf{A}_0 e^{i\mathbf{k} \cdot \mathbf{r}}. \quad (6.9)$$

e

$$\mathbf{k} = \omega/c \quad \text{e} \quad \mathbf{k} \cdot \mathbf{A}_0 = 0. \quad \text{Com isso, é possível mostrar (vide Exc. 6.4.1.1) que a densidade de energia é}$$

$$u(\omega) = \frac{\varepsilon_0}{2} E^2 + \frac{1}{2\mu_0} B^2 = 2\varepsilon_0 \omega^2 A_0^2 \quad (6.10)$$

Do outro lado, a densidade de energia é proporcional ao número de fótons $N(\omega)$ dentro do volume V,

$$u(\omega) = \frac{N(\omega) \hbar \omega}{V} \quad (6.11)$$

A intensidade corresponde a um fluxo de energia,

$$I(\omega) = u(\omega) c \quad (6.12)$$

Separando a polarização $\hat{\epsilon}$ da amplitude A_0,

$$\mathbf{A} = \hat{\epsilon} A_0 e^{i\mathbf{k} \cdot \mathbf{r}} e^{-i\omega t} + \text{c.c.} \quad (6.13)$$

e inserindo a perturbação (5.12) dentro da aproximação (6.6),

$$c_f^{(1)}(t) = -\frac{e}{m} \int_0^t dt' \langle f | \mathbf{A} \cdot \nabla | i \rangle e^{i(\omega_f t') - i\mathbf{k} \cdot \mathbf{r} - \Delta} dt' \quad (6.14)$$

$$= -\frac{e A_0}{m} \langle f | e^{i\mathbf{k} \cdot \mathbf{r}} \hat{\epsilon} \cdot \nabla | i \rangle \int_0^t dt' e^{i(\omega_f t' - \omega) t'} dt' - \frac{e A_0}{m} \langle f | e^{-i\mathbf{k} \cdot \mathbf{r}} \hat{\epsilon} \cdot \nabla | i \rangle \int_0^t dt' e^{i(\omega_f t' + \omega) t'} dt' \quad .$$

Qual dos dois processos ocorre depende das energias iniciais e finais. Assim, para $E_f = E_i + \hbar \omega$ o primeiro termo domina descrevendo o processo de absorção, para $E_f = E_i - \hbar \omega$ o segundo termo descrevendo a emissão prevalece.

6.1.2 Absorção e emissão estimulada

6.1.2.1 Absorção

Definimos o elemento de matriz,

$$M_{fi} \equiv \langle f | e^{i\mathbf{k} \cdot \mathbf{r}} \hat{\epsilon} \cdot \nabla | i \rangle \quad (6.15)$$

e concentramos no processo de absorção. Definindo a dessintonização por $\Delta \equiv \omega - \omega_f i$ e estimando a integral,

$$\left| \int_0^t e^{-i\Delta t'} dt' \right|^2 = \left| \frac{e^{-i\Delta t} - 1}{-i\Delta} \right|^2 = 4 \sin^2 \frac{\Delta t}{\Delta} \simeq 2\pi \delta(\Delta) \quad .$$

(6.16)
6.1. TRANSIÇÕES ENTRE ESTADOS ATÔMICOS

para tempos curtos \(^1\), a probabilidade de absorção fica,

\[
|c_f^{(1)}(t)|^2 = \frac{e^2}{m^2} A_0(\omega)^2 |M_{fi}|^2 \left| \int_0^t dt' e^{i(\omega_{fi} - \omega)t'} \right|^2 = \frac{e^2}{m^2} A_0(\omega)^2 |M_{fi}|^2 2\pi \delta(\Delta).
\] (6.17)

A função \(\delta(\Delta = 0)\) simplesmente representa a conservação de energia. Claro que isso é apenas uma aproximação não tomando em conta a largura finita da linha de transição.

Exprimindo o campo pela intensidade (6.12), obtemos a taxa de transição para absorção,

\[
W_{fi}^{(ab)} = \frac{d}{dt} |c_f^{(1)}(t)|^2 = 2\pi \left(\frac{e A_0}{m} \right)^2 |M_{fi}|^2 \delta(\omega - \omega_{fi}) = \frac{\pi e^2}{\varepsilon_0 m^2 c \omega} \frac{I(\omega)}{\omega^2} |M_{fi}|^2 \delta(\omega - \omega_{fi}).
\] (6.18)

Notamos que a taxa de absorção é proporcional à intensidade da radiação, o que caracteriza um efeito tipicamente linear.

Se quisermos expressar a taxa de absorção por átomos em termos de energia, basta multipliquarmos \(W_{fi}\) por \(\hbar \omega\) e, portanto podemos definir a seção de choque para absorção de energia da radiação como,

\[
\sigma_{i\rightarrow f} \equiv \frac{\text{taxa de absorção}}{\text{intensidade incidente}} = \frac{\hbar \omega W_{fi}}{I(\omega)} = \frac{\pi e^2}{\varepsilon_0 m^2 c \omega} |M_{fi}(\omega_f)|^2 \delta(\omega - \omega_{fi}).
\] (6.19)

6.1.2.2 Emissão estimulada

Para \(E_f = E_i - \hbar \omega\) a equação descreve o processo de \textit{emissão estimulada}. Analogicamente ao cálculo para absorção obtemos,

\[
W_{if}^{(st)} = \frac{\pi e^2}{\varepsilon_0 m^2 c \omega} \frac{I(\omega)}{\omega^2} |M_{if}^*|^2 \delta(\omega + \omega_{fi}),
\] (6.20)

com \(M_{if}^* = \langle f | e^{-i k \hat{r} \cdot \nabla} | i \rangle\). É claro, que,

\[
W_{if}^{(st)} = W_{fi}^{(ab)}.
\] (6.21)

O fato que, num sistema átomo-radiação em equilíbrio, o campo de radiação excite o mesmo número de transições na absorção \(i \rightarrow f\) como na emissão estimulada \(f \rightarrow i\) se chama \textit{princípio detalhado de balanço}.

Obviamente, a situação é diferente se ao invés de dois estados temos vários estados que podem ser excitados pela radiação ou decair.

6.1.3 Emissão espontânea

Absorção e a emissão estimulada são devidos à interação do átomo com um campo de radiação. Existe um outro processo de emissão devido à interação com as flutuações do vácuo eletromagnético chamado de \textit{emissão espontânea}. Esta interação é entendida dentro da \textit{eletrodinâmica quântica} \(^2\). Aqui vamos adotar um tratamento heurístico.

Substituindo na Eq. (6.20) a intensidade pelo número de fôtons (6.11) obtemos,

\[
W_{if}^{(st)} = \frac{\pi e^2}{\varepsilon_0 m^2 \omega V} N(\omega) |M_{fi}|^2 \delta(\omega - \omega_{fi}).
\] (6.22)

\(^1\lim_{n \rightarrow \infty} \frac{\sin x}{x} = \delta(x)\).

\(^2\)Vide a apostila do curso \textit{Interação entre luz e matéria} do mesmo autor.
CAPÍTULO 6. INTERAÇÃO DE LUZ COM ÁTOMOS MONOELETRÔNICOS

O fato de introduzir o conceito de fótons já implica a quantização do campo eletromagnético. Adicionando ao número de fótons um fóton representando as flutuações de vácuo, \(N(\omega) \rightarrow N(\omega) + 1 \), conseguimos incluir a emissão espontânea,

\[
W^{(st)}_{if} + W^{(sp)}_{if} = \frac{\pi \hbar e^2 [N(\omega) + 1]}{\varepsilon_0 m^2 \omega V} |M_{fi}|^2 \delta(\omega + \omega_{fi}) .
\]

(6.23)

Isso significa que, mesmo na ausência de um campo de radiação clássica, \(N(\omega) = 0 \), existe uma probabilidade de emissão. Notamos que \(W^{(sp)}_{if} \) depende do volume confinando o átomo, isto é, a cavidade, pois descreve a transferência de energia para este volume. Aqui fica claro que ainda falta um argumento, pois a taxa de transferência deve depender, de alguma forma do número de estados disponíveis para acomodar o fóton emitido, isto é, da densidade dos estados dentro da cavidade. O cálculo desta densidade dos estados deveria nos permitir avaliar o volume de quantização \(V \).

6.1.3.1 Densidade de estados

Para estimar o número de modos, isto é, de estados fotônicos dentro de um ângulo sólido \(d\Omega \) do espaço livre, consideramos uma caixa de lado \(L \). Os modos dentro deste volume são impostos pelas condições de contorno periódicas na parte espacial das ondas planas \(e^{-i\mathbf{k} \cdot \mathbf{r}} \),

\[
k_{x,y,z} = \frac{2\pi}{L} n_{x,y,z} ,
\]

(6.24)

onde \((n_x, n_y, n_z) \) é um conjunto de números inteiros que representam os vários estados do fóton. No limite de grandes \(L \) a variação entre sucessivos \(k \) é muito pequena, tal que podemos tratar os números como variáveis contínuas. Isto é, o número de estados com \(k \) entre \((k_x, k_y, k_z) \) e \((k_x + dk_x, k_y + dk_y, k_z + dk_z) \) é,

\[
dn_xdn_ydn_z = \frac{L^3}{(2\pi)^3} dk_xdk_ydk_z = \frac{V}{(2\pi)^3} \frac{\omega^2}{c^3} d\omega d\Omega \equiv \rho_c(\omega) d\omega d\Omega ,
\]

(6.25)

onde a terceira expressão fica em coordenadas esféricas, a quarta use a relação \(\omega = ck \) e a última define a densidade dos estados,

\[
\rho_c(\omega) = \frac{V}{(2\pi)^3} \frac{\omega^2}{c^3} .
\]

(6.26)

Assim, a taxa de emissão espontânea de fótons dentro do ângulo sólido \(d\Omega \) é,

\[
W^{(sp)}_{if} d\Omega = \left(\int_\omega W^{(sp)}_{if}(\rho_c(\omega) d\omega) \right) d\Omega = \int_\omega \frac{\pi \hbar e^2}{\varepsilon_0 m^2 \omega V} |M_{fi}|^2 \delta(\omega + \omega_{fi}) \frac{V}{(2\pi)^3} \frac{\omega^2}{c^3} d\omega d\Omega
\]

(6.27)

\[
= \frac{\hbar e^2}{8\pi^2 \varepsilon_0 m^2 c^3} |M_{fi}|^2 \omega_{fi} d\Omega
\]

Este tratamento simplificado com somente dois estados atômicos considera a luz como um campo escalar. De fato, a luz é um campo vetorial e pode ter duas polarizações ortogonais independentes. A matriz pode depender da polarização, tal que,

\[
W^{(sp)}_{if} = \frac{\hbar e^2}{8\pi^2 \varepsilon_0 m^2 c^3} \sum_{\lambda=1,2} |M_{fi}^\lambda|^2 \omega_{fi} d\Omega .
\]

(6.28)
6.2 Transições dipolares

6.2.1 Aproximação dipolar

Até agora, utilizamos o elemento de matriz $M_{\lambda}^{\lambda}(\omega)_{fi}$ sem mencionar como este pode ser calculado nem quando ele é significativo. Em muitos casos de interesse o cálculo deste elemento de matriz é consideravelmente simplificado por uma expansão do termo $e^{-ik\cdot r}$, que faz parte do elemento da matriz (6.15),

$$e^{-ik\cdot r} = 1 - i\mathbf{k} \cdot \mathbf{r} - \frac{1}{2!}(\mathbf{k} \cdot \mathbf{r})^2 +$$

(6.29)

Esta expansão se justifique no fato que a estrela de onda é muito maior do que o tamanho do átomo espalhador, $ka_B \ll 1$. Na aproximação dipolar supomos

$$e^{-ik\cdot r} \simeq 1,$$

(6.30)

tal que podemos remover a dependência espacial. Nesta aproximação só haverá interação do campo elétrico da radiação com o átomo via um termo de dipolo elétrico $\mathbf{d} \cdot \mathbf{E}$. Desta forma,

$$M_{\lambda}^{\lambda}(\omega)_{fi} = \langle f|e^{-ik\cdot r}\hat{\epsilon} \cdot \nabla|i \rangle \simeq \hat{\epsilon} \frac{im}{\hbar} \langle f|\hat{p}|i \rangle = \hat{\epsilon} \frac{m}{\hbar} \langle f|\hat{r}|i \rangle.$$

(6.31)

Podemos calcular o valor esperado da velocidade da carga em movimento pela equação de Heisenberg usando o hamiltoniano não-perturbado,

$$M_{\lambda}^{\lambda}(\omega)_{fi} \simeq \epsilon \frac{im}{\hbar} \langle f|\frac{1}{\hbar}\hat{r}, \hat{H}_0|i \rangle = \epsilon \frac{m}{\hbar} \langle f|\hat{r}\hat{H}_0 - \hat{H}_0\hat{r}|i \rangle = \epsilon \frac{m}{\hbar} (E_i - E_f) \langle f|\hat{r}|i \rangle.$$

(6.32)

A interpretação da última equação é, que os estados $|i\rangle$ e $|f\rangle$ são conectados através de um deslocamento da nuvem eletrônica que, portanto, representa a indução de um dipolo elétrico durante a transição eletrônica. É conveniente introduzir o momento de dipolo elétrico,

$$\mathbf{d}_{fi} \equiv -e \langle f|\hat{r}|i \rangle.$$

(6.33)

Com isso, o elemento de matriz fica,

$$M_{\lambda}^{\lambda}(\omega)_{fi} \simeq \frac{m\omega_{fi}}{e\hbar} \hat{\epsilon} \cdot \mathbf{d}_{fi}$$

(6.34)

e a taxa de absorção (6.18) fica,

$$W_{fi}^{dp} = \frac{\pi e^2}{\varepsilon_0 m^2 c} \frac{I(\omega_{fi})}{\omega_{fi}^2} |M_{fi}|^2 \delta(\omega - \omega_{fi})$$

(6.35)

$$= \frac{\pi}{\varepsilon_0 h^2 c} I(\omega_{fi}) \hat{\epsilon} \cdot \mathbf{d}_{fi} |^2 \delta(\omega - \omega_{fi}) = \frac{4\pi^2 \alpha}{\hbar} I(\omega_{fi}) |\hat{\epsilon} \cdot \mathbf{r}_{fi}|^2 \delta(\omega - \omega_{fi}).$$

usando a definição da constante da estrutura fina $\alpha = e^2/4\pi\varepsilon_0\hbar c$.

6.2.1.1 Dependência da polarização

Seguindo a Eq. (6.34) a taxa de absorção depende da orientação do momento dipolar a respeito da polarização da luz que, portanto, assume um importante papel nesta transição. Quando \mathbf{d}_{fi} entre os estados é nulo a transição via dipolo elétrico é proibida. Isso não quer dizer que não haja transição, pois os demais termos da expansão (6.29) não são necessariamente nulos e podem existir transições de ordens multipolares superiores. Mesmo o elemento de matriz $M_{\lambda}^{\lambda}(\omega_{fi})$
sendo nulo para transições envolvendo um fóton ainda existe a possibilidade de transições de dois fôtons.

Definindo \(\theta \) como o ângulo entre \(\hat{\epsilon} \) e \(\mathbf{d}_{fi} \) obtemos,

\[
W^{(dp)}_{fi} = \frac{\pi}{\varepsilon_0 \hbar^2 c} I(\omega_{fi}) |\mathbf{d}_{fi}|^2 \cos^2 \theta \delta(\omega - \omega_{fi}) .
\] (6.36)

No caso que a radiação não é polarizada (ou aleatoriamente polarizada) podemos substituir a distribuição angular \(\cos^2 \theta \) pelo valor médio,

\[
\overline{\cos^2 \theta} = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} \cos^2 \theta \sin \theta d\theta d\phi = \frac{1}{3} ,
\] (6.37)

tal que,

\[
W^{(dp, no-pol)}_{fi} = \frac{\pi}{\varepsilon_0 \hbar^2 c} I(\omega_{fi}) |\mathbf{d}_{fi}|^2 \delta(\omega - \omega_{fi}) .
\] (6.38)

Esta expressão também representa a taxa de emissão estimulada na aproximação de dipolo elétrico.

A taxa de emissão espontânea total pode ser obtida a partir da Eq. (6.28) integrando sobre todas as possíveis orientações,

\[
W^{(sp)}_{fi} = \frac{\hbar e^2}{8\pi^2 \varepsilon_0 m^2 c^3} \sum_{\lambda=1,2} |M^{\lambda}_{fi}|^2 \omega_{fi} d\Omega = 2 \frac{\hbar e^2}{8\pi^2 \varepsilon_0 m^2 c^3} \int_0^{2\pi} \int_0^{\pi} \frac{|m \omega_{fi} \hat{\epsilon} \cdot \mathbf{d}_{fi}|^2}{\hbar c} \omega_{fi} \sin \theta d\theta d\phi
\]

\[
= \frac{e^2}{4\pi^2 \varepsilon_0 \hbar c^3} \omega_{fi}^3 |\hat{\epsilon} \cdot |\mathbf{r}_{fi}|^2 \int_0^{2\pi} \int_0^{\pi} \cos^2 \theta \sin \theta d\theta d\phi = \frac{e^2}{\pi \varepsilon_0 \hbar c^3} \omega_{fi}^3 |\hat{\epsilon} \cdot |\mathbf{r}_{fi}|^2 ,
\] (6.39)

tal que,

\[
W^{(sp)}_{fi} = 4\alpha C^2 |\hat{\epsilon} \cdot |\mathbf{r}_{fi}|^2 .
\] (6.40)

6.2.1.2 Probabilidades de transições de Einstein

Considerando o problema da transferência de energia entre o campo eletromagnético e uma amostra de átomos em equilíbrio térmico, Einstein chegou à conclusão que, os processos de absorção e de emissão estimulada não são suficientes para entender o acoplamento radiativo entre dois níveis de energia, isto é, o acoplamento não é corretamente descrito pela regra de ouro de Fermi e precisamos introduzir a noção da emissão espontânea.

Diferentemente da derivação da seção anterior, Einstein considerou átomos cujas populações dos estados de energia ficam em equilíbrio térmico com um campo eletromagnético de um corpo negro \(^3\) chegando ao mesmo resultado para a taxa de emissão espontânea (6.38). Os famosos coeficientes de Einstein \(A_{fi} \) e \(B_{fi} \) são dados por,

\[
A_{fi} N_f = W^{(sp)}_{fi} \quad \text{e} \quad \frac{A_{fi}}{B_{fi}} = \frac{\hbar \omega_{fi}^3}{\pi^2 c^3} ,
\] (6.41)

onde \(N_f \) é a população do estado excitado. De fato, a emissão espontânea é uma consequência necessária da interação de um átomo com um banho térmico (também chamado de reservatório).

\(^3\)Vide a apostila dos cursos *Interação entre luz e matéria* e *Mecânica quântica* do mesmo autor.
6.2. TRANSIÇÕES DIPOLARES

6.2.2 Regras de seleção e transições eletrônicas

As regras de seleção que determinam quais transições entre dois conjuntos de números quânticos \(i \rightarrow f \) são permitidas, refletem a propriedades de simetria do sistema, e.g. a conservação do momento angular (inclusive o spin do fôton) ou a mudança de paridade, que pode ser entendida pelo fato que a emissão de uma fôton numa direção particular deve, de alguma maneira, alterar a isotropia espacial do átomo. Note que oscilações simétricas da forma da distribuição da carga não radiam.

Como as transições eletrônicas via dipolo elétrico são descritas por \(| \hat{\epsilon} \cdot r_{fi} | \) esperamos uma forte dependência entre o estado de polarização da luz e a existência de um deslocamento \(r_{fi} \) na transição entre estados. Vamos expressar \(\hat{\epsilon} \) e \(r_{fi} \) em coordenadas esféricas mais adaptadas ao problema 4,

\[
x = r \cdot \hat{\epsilon}_x = r \sin \theta \cos \phi, \quad y = r \cdot \hat{\epsilon}_y = r \sin \theta \sin \phi, \quad z = r \cdot \hat{\epsilon}_z = r \cos \theta .
\] (6.42)

Definindo
\[
\hat{\epsilon}_{\pm 1} \equiv -\frac{1}{\sqrt{2}} (\hat{\epsilon}_x \pm i \hat{\epsilon}_y), \quad \hat{\epsilon}_0 \equiv \hat{\epsilon}_z .
\] (6.43)

obtemos
\[
r_{\pm 1} \equiv r \cdot \hat{\epsilon}_{\pm} = r \cdot \frac{1}{\sqrt{2}}(\mp \hat{\epsilon}_x - i \hat{\epsilon}_y) = \frac{1}{\sqrt{2}}(\mp x - iy) = \mp \frac{1}{\sqrt{2}} r \sin \theta e^{\pm i \phi} = r \sqrt{\frac{4\pi}{3}} Y_{1,\pm 1}(\theta, \phi) \] (6.44)

\[
r_0 \equiv r \cdot \hat{\epsilon}_0 = r \cdot \hat{\epsilon}_z = z = r \cos \theta = r \sqrt{\frac{4\pi}{3}} Y_{1,0}(\theta, \phi) .
\]

Similarmente,
\[
\epsilon_{\pm 1} \equiv \hat{\epsilon} \cdot \hat{\epsilon}_{\pm} \quad \epsilon_0 \equiv \hat{\epsilon} \cdot \hat{\epsilon}_0 .
\] (6.45)

Aplicando a expansão em coordenadas esféricas sobre o elemento da matriz \(r_{fi} = \langle f | r | i \rangle \) com \(\hat{\epsilon}_q \cdot \hat{\epsilon}_{q'} = \delta_{qq'} \) é fácil verificar,

\[
\hat{\epsilon} \cdot r_{fi} = \sum_{q=0,\pm 1} (\hat{\epsilon} \cdot \hat{\epsilon}_q) \hat{\epsilon}_q \cdot \sum_{q'=0,\pm 1} (r_{fi} \cdot \hat{\epsilon}_{q'}) \hat{\epsilon}_q = \sum_{q=0,\pm 1} \epsilon_q \langle f | r_q | i \rangle = \sqrt{\frac{4\pi}{3}} \sum_{q=0,\pm 1} \epsilon_q \langle f | Y_{1,q} | i \rangle .
\] (6.46)

Os elementos da matriz são

\[
\langle f | r_q | i \rangle = \sqrt{\frac{4\pi}{3}} \langle n_f \ell_f m_f | r Y_{1,q} | n_i \ell_i m_i \rangle = \sqrt{\frac{4\pi}{3}} \int_0^\infty r^3 R_{n_f,\ell_f} R_{n_i,\ell_i} dr \int Y_{\ell_f,m_f}^* Y_{1,q} Y_{\ell_i,m_i} d\Omega .
\] (6.47)

4Geralmente, é útil escolher o eixo de quantização ao longo do eixo de um campo magnético,

\[
\hat{\epsilon}_0 = \frac{B}{B} .
\]

O segundo eixo pode ser escolhido livremente, por exemplo,

\[
\hat{\epsilon}_x = \frac{\hat{\epsilon}_0 \times \hat{g}}{|\hat{\epsilon}_0 \times \hat{g}|} ,
\]

onde \(\hat{g} \) marca uma direção arbitrária, por exemplo, da gravidade. O terceiro eixo deve ser perpendicular aos dois primeiros,

\[
\hat{\epsilon}_y = \frac{\hat{\epsilon}_x \times \hat{\epsilon}_0}{|\hat{\epsilon}_x \times \hat{\epsilon}_0|} .
\]
CAPÍTULO 6. INTERAÇÃO DE LUZ COM ÁTOMOS MONOELETRÔNICOS

A integral radial, chamada de **elemento de matriz reduzido** ou **elemento de matriz irreduzível** com a notação,

\[
\langle n_f \ell_f | \bar{r} | n_i \ell_i \rangle \equiv \int_0^\infty r^3 R_{n_f, \ell_f} R_{n_i, \ell_i} dr ,
\]

é sempre não nula, enquanto a integral angular somente não é nula se houver um determinado compromisso entre valores de \(\ell_i, m_i, \ell_f, m_f \) e \(q \). São exatamente isso as **regras de seleção**. Vale \(^5\),

\[
\int Y^*_{\ell_f, m_f} Y_{\kappa, q} Y_{\ell_i, m_i} d\Omega = \sqrt{\frac{(2\ell_i+1)(2\ell_f+1)}{4\pi(2\kappa+1)}} \begin{pmatrix} \ell_i & \kappa & \ell_f \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell_i & \kappa & \ell_f \\ m_i & m_f & m_f \end{pmatrix} ,
\]

aqui com \(\kappa = 1 \). Definindo o operador tensorial de dipolo elétrico,

\[
Q^q_{\ell} (r) = er^q (r) = \sqrt{\frac{4\pi}{3}} Y^q_{\ell} (\theta, \phi) er ,
\]

podemos escrever,

\[
\langle n_f \ell_f m_f | r Y_{1,q} | n_i \ell_i m_i \rangle = \frac{1}{3} \sqrt{(2\ell_i+1)(2\ell_f+1)} \langle n_f \ell_f | \bar{r} | n_i \ell_i \rangle \begin{pmatrix} \ell_i & 1 & \ell_f \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell_i & \kappa & \ell_f \\ m_i & q & m_f \end{pmatrix} \]

Este é o **teorema de Wigner-Eckart**. O operador do dipolo elétrico é um exemplo mais simples de um operador tensorial \(Q^q_{\ell} (r) \) caracterizando a transição entre estados atômicos. Nos Excs. 6.4.2.1 e 6.4.2.2 calculamos explicitamente para um átomo de hidrogênio sujeito a um campo magnético componentes do operador do dipolo elétrico.

Regras de seleção podem ser quebradas em ordens superiores, p.ex. por radiação multipolar com no caso da **transição dipolar magnética** ou **transição elétrica quadrupolar**. Isto é o caso do fenômeno de *fotofosforescência*, que é um tipo de fluorescência emitida por estados metaestáveis.

6.2.2.1 Paridade

A **paridade** de um estado foi definida como,

\[
\mathcal{P} \psi_{n\ell m} (r) = \psi_{n\ell m} (-r) = (-1)^\ell \psi_{n\ell m} (r) ,
\]

como mostrado antes. Isto é, estados com \(\ell \) (im-)par têm paridade (im-)par. Agora a integral (6.51) só não se anula, quando \(\ell_i + \ell_f + 1 = \text{par} \). Portanto, **transições dipolares devem mudar a paridade do estado**. P.ex. transições \(S \rightarrow P \) seriam possíveis enquanto \(S \rightarrow S \) seriam proibidas.

6.2.2.2 Momento angular

Na decomposição (6.51) com \(\kappa = 1 \) o primeiro coeficiente de Clebsch-Gordan só é não nulo quando \(|\ell_f - \ell_i| \leq 1 \leq \ell_f + \ell_i \). Isto é, **transições dipolares não podem mudar o momento angular de mais de uma unidade**.

\(^5\)Frequentemente usados são os símbolos \((3j) \) conectados aos Clebsch-Gordans por,

\[
\langle j_i, m_i, j_f m_f | J, M \rangle = (-1)^{j_i - j_f + M} \sqrt{2J + 1} \begin{pmatrix} j_i & j_f & J \\ m_i & m_f & -M \end{pmatrix} ,
\]
6.2.2.3 Número quântico magnético

Na decomposição (6.51) com \(\kappa = 1 \) o segundo coeficiente de Clebsch-Gordan só é não nulo quando \(|q| \leq 1 \). Isto é, transições dipolares não podem mudar o número quântico magnético de mais de uma unidade. Isso também pode ser visto por,

\[
\int Y_{l_i,m_i}^* Y_{l,q} Y_{l_i,m_i} d\Omega \propto \int e^{i(m_i+q-m_f)} d\Omega \propto \delta_{m_i+q,m_f}.
\] (6.53)

6.2.3 Resumo das regras de seleção inclusive estrutura fina

A estrutura fina é devido a um acoplamento tipo \(L + S = J \). Neste caso,

\[
\langle (L,S)Jm_J|er|(L',S')J'm'_J \rangle = (-1)^{L'+L+J'+S+m_j-1} \sqrt{2L+2L'} \sqrt{2J+2J'+1} \delta_{S'S} \left\{ \begin{array}{ccc} L & L' & 1 \\ J' & J & S \end{array} \right\} \left\{ \begin{array}{ccc} L' & 1 & L \\ 0 & 0 & 0 \end{array} \right\} \left(\begin{array}{ccc} L & 1 & -m_i \\ m' & q & m \end{array} \right) \langle nL||er||n'L' \rangle,
\] (6.54)

onde a primeira matriz representa o chamado símbolo \(6j \).

Transições dipolares elétricas são excitadas por perturbações do tipo Stark,

\[
\hat{V}_{\text{stark}} = -\mathbf{d} \cdot \mathbf{E}.
\] (6.55)

onde \(\mathbf{E} = E_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega_t) \) é o campo elétrico de uma onda oscilatória eletromagnética com a polarização \(\mathbf{E}_0 \). Com \(\mathbf{d} = e \mathbf{z} \), para determinar quais transições dipolares são possíveis, devemos olhar para a matriz \(\langle J'm'_J|\hat{z}|Jm_J \rangle \). Aplicando o teorema de Wigner-Eckart (5.50), já é possível determinar, entre quais números quânticos magnéticos \(m_J \) e \(m'_J \) transições podem ocorrer.

Podemos comparar as amplitudes das várias transições entre estados \(|m_J\rangle \) e \(|m'_J\rangle \) através dos coeficientes de Clebsch-Gordan (vide Exc. 5.4.3.2). Transições só são possíveis entre estados para os quais o coeficiente de Clebsch-Gordan correspondente não desaparece. Isso se chama regra de seleção. Olhando nas equações (5.52) achamos para transições dipolares as seguintes regras de seleção,

\[
\Delta J = 0, \pm 1 \quad \text{mas} \quad (J = 0) \rightarrow (J = 0) \quad \text{está proibido}
\]
\[
\Delta m_J = 0, \pm 1 \quad \text{mas} \quad (m_J = 0) \rightarrow (m_J = 0) \quad \text{está proibido quando} \quad \Delta J = 0.
\] (6.56)

Além disso, temos para o acoplamento \(\mathbf{L} \cdot \mathbf{S} \),

\[
\Delta S = 0, \Delta L = \pm 1 \quad \text{e para o elétron fazendo a transição} \quad \Delta l = \pm 1.
\] (6.57)

Em presença de um campo magnético forte (regime de Paschen-Back) quebrando o acoplamento \(\mathbf{L} \cdot \mathbf{S} \) as regras de seleção são,

\[
\Delta m_S = 0, \Delta m_L = 0, \pm 1.
\] (6.58)

Para acoplamento \(\mathbf{j} \cdot \mathbf{j} \),

\[
\Delta j = 0, \pm 1 \quad \text{para um elétron} \quad \Delta j = 0 \quad \text{para todos os outros}.
\] (6.59)

Para todas transições dipolares a paridade deve mudar entre par e ímpar.

Exemplo 8 (Transições permitidas e proibidas na aproximação dipolar): Exemplos de transições permitidas são \(^2S_{1/2} \leftrightarrow ^2P_{1/2}, ^1S_0 \leftrightarrow ^1P_0 \). Transições proibidas são \(^1S_0 \leftrightarrow ^3P_1, ^2S_{1/2} \leftrightarrow ^2D_{3/2}, ^3P_{1/2} \leftrightarrow (5s6s)^3P_0 \).
6.2.3.1 Regras de seleção para emissão em certas direções

Como mostrado na Eq. (6.46), a taxa de excitação induzida por um campo de luz depende da orientação relativa da polarização do laser \(\hat{\epsilon} \) e do campo magnético \(\mathbf{B} \). Para tomar em conta dessa dependência, decomparamos o vetor de polarização (que pode ser linear ou elíptica) numa base de coordenadas como mostrado na Eq. (6.45). Assim, a amplitude relativa das transições \(\Delta m_J = 0 \) é proporcional à projeção do vetor de polarização no eixo do campo magnético, \(\epsilon_0 \equiv \hat{\epsilon} \cdot \mathbf{\epsilon}_0 \). Para estimar a amplitude das transições \(\Delta m_J = \pm 1 \), devemos projetar sobre as coordenadas \(\epsilon_{\pm 1} \equiv \hat{\epsilon} \cdot \mathbf{\epsilon}_\pm \). Note que a direção da incidência do feixe dada pelo vetor de onda \(\mathbf{k} \) não influencia a probabilidade de transição diretamente (já que a dependência espacial \(e^{i \mathbf{k} \cdot \mathbf{r}} \) foi removida pela aproximação dipolar (6.29)), somente através do fato, que a polarização é perpendicular ao vetor de propagação, \(\hat{\epsilon} \perp \mathbf{k} \).

Figura 6.1: Regras de seleção em função da polarização \(\hat{\epsilon} \) da luz incidente. A projeção deste vetor sobre os eixos \(\pi = \hat{\epsilon} \cdot \mathbf{\epsilon}_0 \) e \(\sigma_\pm = \hat{\epsilon} \cdot \mathbf{\epsilon}_\pm \) é proporcional à probabilidade de excitação (ou igualmente de emissão).

6.3 Linhas espectrais e tempos de vida

6.3.1 Largura natural de uma transição

Seja \(\Gamma = \sum_f S_{f \rightarrow g} \) a taxa de decaimento espontâneo do estado \(f \). Isso significa, que a sua população vai diminuindo,

\[
\dot{N}_f = -\Gamma N_f .
\]
Como \(N_f = \langle \psi_f | \psi_f \rangle \), temos \(|\psi_f(t)\rangle = |\psi_f(0)\rangle e^{i\omega_f t - \Gamma t/2} \). A transformada de Fourier é,

\[
|\xi(\omega)\rangle = \frac{1}{\sqrt{2\pi}} \int_0^\infty |\psi_f(t)\rangle e^{-i\omega t} dt = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{i\omega_f t - i\omega t - \Gamma t/2} dt |\psi_0(t)\rangle
\]

(6.61)

\[
|\psi_0(t)\rangle = \frac{1}{\sqrt{2\pi}} \lim_{t \to \infty} \frac{1}{i(\omega_f - \omega) - \Gamma/2} |\psi_f(t)\rangle = \frac{1}{\sqrt{2\pi}} \frac{1}{i(\omega - \omega_f) + \Gamma/2} |\psi_0(t)\rangle.
\]

O espectro,

\[
|\xi(\omega)|^2 = \frac{1}{2\pi} \frac{1}{(\omega - \omega_f)^2 - \Gamma^2/4},
\]

(6.62)

é uma distribuição de Lorentz. Note, que a largura natural pode ser escondida por efeitos de alargamento de linha, como o efeito Doppler ou colisões entre átomos.

Estados excitados as vezes podem decair em vários estados de energia inferior. Neste caso a largura de linha é dada pela soma das taxas de decaimento parciais, pois a convolução de distribuições de Lorentz \(L_{\gamma_k} \) com larguras \(\gamma_k \) tem a largura \(\gamma = \sum_k \gamma_k \).

6.3.2 Alargamento de linha homogêneo

Distingue-se dois tipos diferentes de alargamento. Os chamados alargamentos homogêneos afeta todos os átomos da mesma maneira independentemente das suas posições ou velocidades. Eles geralmente dão origem a perfis de linha lorentzianos e podem ser incluídos nas equações de Bloch. Eles correspondem a uma aceleração do decaimento. Exemplos são a largura natural, o alargamento por saturação e o alargamento por colisões.

6.3.3 Alargamento de linha inomogêneo

Os chamados alargamentos inomogêneos são devidos a um deslocamento de níveis atômicos, que pode ser diferente para cada átomo. Na média sobre uma grande amostra de átomos, os deslocamentos parecem um alargamento geralmente com perfis de linha gaussianos. Eles não podem ser incluídos nas equações de Bloch, mas só como média sobre todas as trajetórias dos átomos. Eles não correspondem a uma aceleração do decaimento. Eles frequentemente são devidos a perturbações exteriores, com p.ex. o alargamento Doppler e o alargamento por flutuações temperais ou inomogeneidades espaciais de campos elétricos ou magnéticos externos. Resolva os Excs. 6.4.3.1 e 6.4.3.2.

6.3.4 Equações de Bloch ópticas

Procuramos uma equação para descrever a evolução temporal de átomos interagentes com um campo de radiação. Entretanto para retratar sistemas que contém processos de excitação e relaxação acontecendo simultaneamente, a formulação usual da mecânica quântica usando a equação de Schrödinger, já não é mais suficiente, pois a mesma somente é capaz de explicar processos estimulados como absorção e uma onda monocromática. Desta forma, processos mais complexos como a emissão espontânea ou qualquer outro processo dissipativo devem ser incluídos na evolução temporal do sistema, gerando um caráter mais geral no processo de evolução do sistema.

Assim, já não é suficiente representar esta situação usando somente uma função de onda, mas sim por um ensemble delas, onde somos capazes de medir as probabilidades associadas a cada estado do sistema. Para realizar esta tarefa devemos construir um formalismo mais

\(^6\) Vide a apostila dos cursos *Interação entre luz e matéria* do mesmo autor.
abrangente, capaz de englobar casos mais complexos como descritos acima, denominado de formalismo de operador densidade ou simplesmente matriz densidade. Dentro deste contexto, se inseres as equações de Bloch ópticas [5], capaz de descrever a evolução temporal dos elementos de matriz do operador densidade, em outras palavras, a evolução temporal das populações, descrito pelos termos diagonais da matriz, e das coerências do sistema, representado pelos termos não diagonais, conforme veremos a seguir. As equações de Bloch foram inicialmente desenvolvidas para entender fenômenos ressonância magnética nuclear (RMN) 7. Resolve o Exc. 6.4.4.1.

6.4 Exercícios

6.4.1 Transições entre estados atômicos

6.4.1.1 Ex: Densidade de energia de ondas planas
Derive o resultado (6.10).

6.4.2 Transições dipolares

6.4.2.1 Ex: Estado não estacionário
Constrói uma função de onda de hidrogênio não-estacionária com contribuições iguais de \((n = 1, \ell = 0, m = 0), (n = 2, \ell = 1, m = 1) \). Calcule os valores esperados \(\langle |r| \rangle \) e \(\langle r \rangle \) como função do tempo.

6.4.2.2 Ex: Transições entre subestados Zeeman
Considere o atomo de hidrogênio imerso num campo magnético uniforme, descrito pelo hamiltoniano \(\hat{H} = \hat{H}^{(0)} + \hat{H}^{(1)} \), sendo \(\hat{H}^{(0)} = \hat{p}^2/2m + V(r) \) e \(\hat{H}^{(1)} = -(\mu_B/\hbar)\hat{L} \cdot \hat{B} \) desprezando o spin. 8
a. Dada a função inicial, \(|\psi_m(0)\rangle = \cos \alpha |\phi_{000}\rangle + \sin \alpha |\phi_{21m}\rangle \), obtenha a sua forma no tempo \(t \).
b. Calcule o valor médio \(\langle D_m(t) \rangle = \langle \psi_m(t) | D | \psi_m(t) \rangle \) do operador dipolo elétrico do atomo \(D = qR \).
c. Analise as frequências e polarizações da radiação emitida a partir da transição dos estados excitados \(|\phi_{21m}\rangle \) para o estado fundamental.

6.4.3 Linhas espectrais e tempos de vida

6.4.3.1 Ex: Densidade óptica de uma nuvem fria
A seção transversal de um átomo com a frequência de ressonância \(\omega_0 \) se movendo com a velocidade \(v \) e irradiado por um feixe laser de frequência \(\omega \) é,

\[
\sigma(v) = \frac{6\pi}{k^2} \frac{\Gamma^2}{4(\omega - \omega_0 - kv)^2 + \Gamma^2}.
\]

A distribuição de Maxwell uni-dimensionnal normalizada é,

\[
\rho(v)dv = \sqrt{\frac{m}{2\pi k_B T}} e^{-mv^2/2k_B T} dv.
\]

7 Vide a apostila Interação luz-matéria do mesmo autor.
8 Veja Cohen-Tannoudji, Complemento D, VII
a. Calcule o perfil de absorção da linha de ressonância de 461 nm ($\Gamma = (2\pi) \, 32 \, \text{MHz}$) de um gás de estrônio resfriado até o limite Doppler ($k_B T_D = \hbar \Gamma$) desta transição.

b. Calcule o perfil de absorção da linha de ressonância de 689 nm ($\Gamma = (2\pi) \, 7.6 \, \text{kHz}$) de um gás de estrônio resfriado até o limite Doppler da transição de 461 nm.

c. Compare as densidade ópticas em caso de ressonância.

6.4.3.2 Ex: Espectroscopia de absorção saturada

A espectroscopia de absorção saturada é uma técnica permitindo evitar o alargamento Doppler. O esquema, ilustrado na Fig. ??, consiste em uma célula cheio de um gás de rubídio (frequência de ressonância $\omega_0 = ck = 2\pi c/780 \, \text{nm}$, taxa de decaimento $\Gamma = (2\pi) \, 6 \, \text{MHz}$) e dois feixes laser com a mesma frequência ω mas contrapropagantes, um chamado de saturação e outro chamado de prova. A distribuição das velocidades de Maxwell uni-dimensional e normalizada é,

$$\rho(v)dv = \frac{\sqrt{m}}{2\pi k_B T} e^{-mv^2/2k_B T} dv .$$

O gás está em $T = 300 \, \text{K}$, onde a pressão parcial do rubídio fica em torno de $P = 10^{-1} \, \text{mbar}$. O comprimento da célula é $L = 10 \, \text{cm}$. O laser prova tem intensidade abaixo do limite de saturação, tal que a secção transversal de um átomo se movendo com a velocidade v é,

$$\sigma(v) = \frac{6\pi}{k^2} \frac{\Gamma^2}{4(\omega - \omega_0 - kv)^2 + \Gamma^2} .$$

O laser de saturação tem alta intensidade. Supomos aqui, $\Omega \equiv 10\Gamma$, onde Ω é a frequência de Rabi causada pelo feixe de saturação. Desta maneira ele cria uma população N_e de átomos no estado excitado. Como esta população falta no estado fundamental, $N_g = N - N_e$, a absorção do feixe prova é diminuída pelo fator,

$$\frac{N_e}{N} = \frac{\Omega^2}{4(\omega - \omega_0 + kv)^2 + 2\Omega^2 + \Gamma^2} .$$

Calcule para o laser prova o espectro da densidade óptica, $OD(\omega) = Ln \int_{-\infty}^{\infty} \frac{N_g-N_e}{N} \sigma(v)\rho(v)dv$, e a intensidade da luz transmitida através da célula, $\frac{I}{I_0} = e^{-OD}$.

6.4.3.3 Ex: O desacelerador Zeeman

Considere um tubo por onde passa um feixe colimado de átomos, todos inicialmente com velocidade $v = v_0$. No sentido contrário ao do movimento dos átomos, incide um feixe luminoso, colimado e monocromático, com frequência $\omega = kc$. Conforme foi estudado, a taxa de absorção de fôtons por um átomo é uma lorentziana, podendo ser escrita como:

$$W(v) = \frac{W_0}{2\pi} \frac{\Gamma^2}{(\omega - \omega_0 + kv)^2 + (\Gamma/2)^2} ,$$

onde Γ é a largura natural da linha espectral em ω_0, e W_0 é uma constante. Sintoniza-se a frequência da luz de modo a compensar o efeito Doppler no início do tubo, ou seja, $\delta =$
$\omega - \omega_0 = -k v_0$ (a luz é dessintonizada para o vermelho da ressonância). Conforme os átomos são desacelerados, eles deixam de estar em ressonância com o feixe luminoso, deixando de absorver fótons. Isso poderia ser evitado com a técnica de resfriamento Zeeman, que compensa o efeito com campos magnéticos. Aqui, vamos ver o que acontece caso essa técnica não seja utilizada.

a. Para um átomo com velocidade v, escreva uma expressão para a distância média $\Delta s(v)$ que ele percorre até absorver um fóton, em função dos parâmetros Γ, v_0, k e W_0. (O tempo médio que ele leva para absorver um fóton é $W(v)^{-1}$).

b. A velocidade do átomo em função do número n de fótons absorvidos é $v_n = v_0 - n \frac{\hbar k}{m}$ é o recuo devido à absorção de um fóton. A distância total média percorrida por um átomo após absorver N fótons é estimada por:

$$S = \sum_{n=0}^{N} \Delta s(v_n) \approx \int_{0}^{N} \Delta s(v_n) dn.$$

Calcule a distância média necessária para que os átomos sejam freados até $v = 0$ (ignore o limite Doppler). Deixe em função de Γ, v_0, k e W_0. Dica: Faça a mudança de variável $n \rightarrow v$ na integral, isso pode economizar alguns cálculos.

c. Tipicamente, a dessintonia da luz $|\delta| = kv_0$ é bem maior do que a largura natural Γ da transição. O que acontece com S no limite em que $kv_0 \gg \Gamma$? Interprete esse resultado, justificando a necessidade da técnica de resfriamento Zeeman.

6.4.4 Equações de Bloch ópticas

6.4.4.1 Ex: Esfera de Bloch

Verifique a evolução temporal da norma do vetor de Bloch definido por $\tilde{\rho} \equiv (2\text{Re}\sigma_+ , 2\text{Im}\sigma_- , \sigma_z)$, onde os σ_k são as matrizes de Pauli, para um sistema de dois níveis ressonantemente excitado sem e com emissão espontânea.
Capítulo 7

Átomos de múltiplos elétrons

7.1 Simetrização de bosons e fermions

A mecânica quântica deve ser formalizada de tal maneira, que não prevê resultados permitindo distinguir partículas idênticas. No entanto, matematicamente é necessário identificar uma partícula com uma função de onda; por exemplo, ψ_a(x_1) seja a função de onda a da partícula 1 e ψ_b(x_2) a função de onda b da partícula 2. Na ausência de interações, a função de onda total, Ψ = ψ_a(x_1)ψ_b(x_2), resolve a equação de Schrödinger de duas partículas. Agora, trocando as coordenadas das partículas obtemos um estado diferente Ψ′ = ψ_a(x_2)ψ_b(x_1). Isso erradamente sugere que a função de onda de uma partícula joga o papel de uma etiqueta (ou “alma”) caracterizando a partícula além do conjunto de números quânticos. Porque isso representa um problema, podemos ver no seguinte exemplo.

Exemplo 9 (Indistinguibilidade de partículas): Consideramos um sistema de duas partículas sem spin não-interagindo num poço de potencial infinito. A função de onda total é

\[\Psi^{(1,2)} = \psi_a(x_1)\psi_b(x_2) = C \cos \frac{n_a \pi x_1}{L} \cos \frac{n_b \pi x_2}{L} \]

com a energia

\[E_{a,b} = \frac{\pi^2 n_a^2}{2mL^2} + \frac{\pi^2 n_b^2}{2mL^2} . \]

Para quantidades observáveis, como |\Psi^{(1,2)}|^2, precisamos garantir, |\Psi^{(1,2)}|^2 = |\Psi^{(2,1)}|^2, isto é,

\[C^2 \cos^2 \frac{n_a \pi x_1}{L} \cos^2 \frac{n_b \pi x_2}{L} = C^2 \cos^2 \frac{n_b \pi x_1}{L} \cos^2 \frac{n_a \pi x_2}{L} , \]

mas isso não é válido para n_a ≠ n_b. Quando n_a = n_b, temos ψ_a = ψ_b. Isto é, as partículas ficam no mesmo estado e não precisamos nos preocupar com a indistinguibilidade:

\[\Psi^{(2,1)} = \psi_a(x_2)\psi_b(x_1) = \Psi^{(1,2)} \quad e \quad E_{a,b} = E_{b,a} . \]

No entanto, o fato que este estado nunca é observado com dois elétrons mostra, que a teoria deve ser corrigida para permitir uma descrição da realidade.

Precisamos construir a função de onda total de outra maneira. Utilizamos combinações lineares de Ψ^{(1,2)},

\[\Psi^{S,A} = \frac{1}{\sqrt{2}}(\Psi^{(1,2)} ± \Psi^{(2,1)}) = \frac{1}{\sqrt{2}} [\psi_a(x_1)\psi_b(x_2) ± \psi_a(x_2)\psi_b(x_1)] . \]

1Notamos, que os estados são ortogonais, pois

\[\int \Psi^{*(1,2)}\Psi^{(2,1)} dx_1 dx_2 = \int \psi_a^*(x_1)\psi_b^*(x_2)\psi_a(x_2)\psi_b(x_1) dx_1 dx_2 = \int \psi_a^*(x_1)\psi_a(x_1) dx_1 \int \psi_b^*(x_2)\psi_b(x_2) dx_2 = \delta_{n_a,n_b} . \]
Essa \textit{função de onda simetrizada} (ou anti-simetizada) representa um truque para erradicar a etiqueta das partículas. Pois, sob intercâmbio de partículas descrito pelo operador $\mathcal{P}_x \psi_a(x_1) \psi_b(x_2) \equiv \psi_a(x_2) \psi_b(x_1)$, as funções (anti-)simetrizadas se comportam como \footnote{Para garantir $|\mathcal{P}_x |\Psi(1,2)|^2 = |\Psi(1,2)|^2$ temos que $\mathcal{P}_x |\Psi(1,2)| = e^{i\phi} |\Psi(1,2)|$. Daí, $\mathcal{P}_x \mathcal{P}_x |\Psi(1,2)| = e^{2i\phi} |\Psi(1,2)| = |\Psi(1,2)|$. Portanto, $\mathcal{P}_x |\Psi(1,2)| = \pm |\Psi(1,2)|$.},

$$\mathcal{P}_x |\Psi^{S,A}| = \pm |\Psi^{S,A}|$$

e enquanto

$$\mathcal{P}_x |\Psi^{(1,2)}| = |\Psi^{(2,1)}| \neq |\Psi^{(1,2)}| .$$

A função (anti-)simetrizada resolve a equação de Schrödinger, também. Como $[\hat{H}, \mathcal{P}_x] = 0$, podemos dizer, que o sistema tem a \textit{simetria de intercâmbio} ou \textit{degenerescência de intercâmbio} das partículas. Observáveis como $\Psi^{S,A} \Psi^{S,A}$ ficam conservadas, por exemplo, a probabilidade

$$|\Psi^{S,A}|^2 = \frac{1}{2} \left[|\psi_a(x_1)\psi_b(x_2)|^2 + |\psi_a(x_2)\psi_b(x_1)|^2 \right]$$

não muda, quando trocamos x_1 por x_2. Para $x_1 = x_2$, observamos,

$$|\Psi^{S,A}|^2 = |\psi_a(x)\psi_b(x)|^2 \pm |\psi_a(x)\psi_b(x)|^2 .$$

Isto é, para um sistema simétrico, a probabilidade de encontrar duas partículas no mesmo lugar é dobrada, enquanto para um sistema anti-simétrico, essa probabilidade é zero.

Wolfgang Pauli mostrou que o caráter (anti-)simétrico é relacionado ao spin das partículas. Partículas com spin inteiro chamado \textit{bosons} devem ser simetizadas. Partículas com spin semi-inteiro chamado \textit{fermions} devem ser anti-simetizadas. Elétrons são fermions. Por isso, um átomo, eles não podem ficar no mesmo estado (no mesmo lugar), mas devem se repartir em uma camada complicada de orbitais. Notamos, que isso não só vale para partículas elementares, mas também para partículas compostas como átomos, por exemplo. Determinaremos no Exc. 8.4.1.4 o caráter bosônico ou fermiônico de várias espécies atômicas.

7.1.1 O princípio de Pauli

Dois elétrons com spins anti-paralelos podem ser separados em campos magnéticos inomogêneos, mesmo se eles estão inicialmente no mesmo lugar. Portanto, eles são distinguíveis e a função de onda não precisa ser anti-simétrica. Mas se trocamos o spin junto com a posição, as partículas devem ser indistinguíveis. Isso deve ser tomado em conta na função de onda atribuindo uma coordenada dedicada ao spin, $\psi_a(x_1, s_1)$. O operador de intercâmbio deve, agora, ser generalizado,

$$\mathcal{P}_{x,s} |\Psi^{(1,2)}| = \mathcal{P}_{x,s,\psi_a(x_1, s_1)\psi_b(x_2, s_2)} = \psi_a(x_2, s_2)\psi_b(x_1, s_1) = |\Psi^{(2,1)}| .$$

Suponhamos agora, que os elétrons não só não interagem entre eles, mas também não existe interação entre a posição e o spin de cada elétron. Isto é, vamos descartar o acoplamento \textbf{L} \cdot \textbf{S}.\footnote{Casos que tem acoplamento \textbf{L} \cdot \textbf{S}, a função de onda total não pode ser escrito como produto das funções espaciais e de spin, mas de qualquer jeito deve ser anti-simétrica.} Podemos então escrever a função total de onda de um elétron como \textit{produto} de uma função espacial, $\psi(x)$, e uma função de spin, $\chi(s) = \alpha \uparrow + \beta \downarrow$, onde α e β são amplitudes de probabilidade de encontrar o elétron no estado de spin respetivo, tal que

$$\psi(x, s) = \psi(x)\chi(s) .$$

Para duas partículas, a função de spin total é,

$$X^{(1,2)} = \chi_a(s_1)\chi_b(s_2) .$$
A versão (anti-)simetrizada é

\[X^{S,A} = \frac{1}{\sqrt{2}} \left(X^{(1,2)} \pm X^{(2,1)} \right) = \frac{1}{\sqrt{2}} \left[\chi_0(s_1) \chi_0(s_2) \pm \chi_0(s_2) \chi_0(s_1) \right] . \] (7.8)

Como só tem duas orientações para os spin, existem quatro possibilidades para distribuir os spins \(\uparrow \) e \(\downarrow \) para as funções \(\chi_m(s_n) \).

\[X^S = \left\{ \begin{array}{ll}
\frac{1}{\sqrt{2}} (\uparrow\uparrow + \downarrow\uparrow) = \chi_{1,1} \\
\frac{1}{\sqrt{2}} (\uparrow\downarrow - \downarrow\downarrow) = \chi_{1,-1}
\end{array} \right. \quad \text{e} \quad X^A = \frac{1}{\sqrt{2}} (\uparrow\downarrow - \downarrow\uparrow) = \chi_{0,0}. \] (7.9)

Para a função de onda total, que deve ser anti-simétrica para elétrons, existem duas possibilidades,

\[\Theta^A = \left\{ \begin{array}{c}
\psi^S X^A = \frac{1}{2} \left(\psi^{(1,2)} + \psi^{(2,1)} \right) \left(X^{(1,2)} - X^{(2,1)} \right) = \frac{1}{\sqrt{2}} \left[\psi_a(x_1) \psi_b(x_2) + \psi_a(x_2) \psi_b(x_1) \right] \chi_{0,0} \\
\psi^A X^S = \frac{1}{2} \left(\psi^{(1,2)} - \psi^{(2,1)} \right) \left(X^{(1,2)} + X^{(2,1)} \right) = \frac{1}{\sqrt{2}} \left[\psi_a(x_1) \psi_b(x_2) - \psi_a(x_2) \psi_b(x_1) \right] \left\{ \begin{array}{ccc}
\chi_{1,1} \\
\chi_{1,0} \\
\chi_{1,-1}
\end{array} \right. \right. \] (7.10)

Isto é, os dois elétrons podem estar num estado \textit{tríplênto} com a função de onda de spin anti-simétrica, ou num estado \textit{singelênto} com a função de onda de spin simétrica \(^4\).

Como generalizar essas considerações para \(N \) elétrons? As funções de onda simetrizadas contêm todas as permutações da etiqueta \(a_k \), onde entendemos por \(a_k \) o conjunto de números quânticos especificando sem ambiguidade o estado da partícula \(k \),

\[\Theta^S = \mathcal{N} \sum_{\mathcal{P}_{x,s a_k}} \psi_{a_1}(x_1) \psi_{a_2}(x_2) \cdots \psi_{a_N}(x_N) , \] (7.11)

com um fator de normalização \(\mathcal{N} \) \(^5\). A função de onda (anti-)simetrizada é obtida à partir da \textit{determinante de Slater},

\[\Theta^A = \frac{1}{\mathcal{N}^N \det \psi_{a_k}(x_n)} = \frac{1}{\mathcal{N}^N} \left| \begin{array}{ccc}
\psi_{a_1}(x_1) & \cdots & \psi_{a_1}(x_N) \\
\vdots & \ddots & \vdots \\
\psi_{a_N}(x_1) & \cdots & \psi_{a_N}(x_N)
\end{array} \right| . \] (7.12)

Essa função satisfaz

\[\mathcal{P}_{x,s} \Theta^A(1,\ldots,i,j,\ldots,N) = \Theta^A(1,\ldots,i,j,\ldots,N) . \] (7.13)

A determinante de Slater é zero, quando tem dois conjuntos de números quânticos idênticos, \(a_i = a_j \). Por exemplo, para dois elétrons numa camada eletrônica, \(|n_i, l_i, m_i, s_i\rangle = |n_j, l_j, m_j, s_j\rangle \). Isso é o \textit{princípio forte de exclusão de Pauli}.

A função de onda total deve ser antissimétrica com respeito à troca de qualquer par de fêrmions idênticos e simétrica com respeito à troca de qualquer par de bôsons idênticos.

O \textit{princípio fraco de exclusão de Pauli} (em geral suficiente para considerações qualitativas) diz, que dois fêrmions em estados idênticos não podem ocupar a mesma região no espaço. Isto é, a onda de Broglie deles interfere destrutivamente, como se o princípio de Pauli exercesse uma interação repulsiva sobre as partículas. Essa ‘força’ tem um grande impacto para a fenomenologia das ligações entre átomos, como discutiremos nas seções seguintes.

\(^4\)Na imagem acoplada, o spin total \(S = s_1 + s_2 \) pode ter os valores seguintes \(S = |s_1 - s_2|, \ldots, s_1 + s_2 = 0, 1 \). No caso \(S = 0 \) o número quântico magnético só pode ter um valor (singelênto), \(m_S = 0 \). No caso \(S = 1 \) ele pode ter três valores \(m_S = -1, 0, +1 \) (tríplênto) (vide Exc. 5.4.2.3).

\(^5\)É possível mostrar \(\mathcal{N} = \sqrt{\frac{n_k}{2^N N!}} \), onde \(n_k \) é a população do estado \(\psi_{a_k} \), isto é, o número de partículas com o mesmo conjunto de números quânticos \(a_k \).
7.1.2 Consequências para estatística quântica

A indistinguibilidade de partículas quânticas tem consequências interessantes no comportamento estatístico dos bósons e férmons. Isso fica obvio quando consideramos duas partículas 1 e 2 podendo adotar dois estados diferentes \(a \) e \(b \). Partículas distingüíveis podem ficar em um dos quatro seguintes estados,

\[
\Psi = \{ \psi_a(x_1)\psi_a(x_2), \psi_a(x_1)\psi_b(x_2), \psi_b(x_1)\psi_a(x_2), \psi_b(x_1)\psi_b(x_2) \} \quad (7.14)
\]

com a mesma probabilidade de \(p = 1/4 \). Partículas indistingüíveis bosônicas podem ficar em um dos três seguintes estados,

\[
\Psi = \{ \psi_a(x_1)\psi_a(x_2), \frac{1}{\sqrt{2}}[\psi_a(x_1)\psi_b(x_2) + \psi_b(x_1)\psi_a(x_2)], \psi_b(x_1)\psi_b(x_2) \} \quad (7.15)
\]

com a mesma probabilidade de \(p = 1/3 \). Finalmente, partículas indistingüíveis férmonicas só podem ficar em um estado,

\[
\Psi = \{ \frac{1}{\sqrt{2}}[\psi_a(x_1)\psi_b(x_2) - \psi_b(x_1)\psi_a(x_2)] \} \quad (7.16)
\]

com a mesma probabilidade de \(p = 1 \). Vemos que um simples sistema de duas partículas já exibe diferenças qualitativas em seu comportamento estatístico. Essas diferenças geram físicas diferentes quanto tratamos sistemas com números grande de partículas, como podemos ver nos casos de gás de elétrons livres e do condensado de Bose-Einstein.\(^6\)

Notamos finalmente um resultado do modelo padrão da física de partículas atribuindo um caráter férmonico para todas partículas constituintes fundamentais da matéria enquanto os mediadores de forças fundamentais são sempre bósons.

7.2 Hélio

O átomo mais simples para discutir o princípio de Pauli é o hélio. O átomo de hélio possui um núcleo com carga \(Ze = +2e \) e massa \(m_{He} \approx 4m_H \).

7.2.1 O estado fundamental

O estado fundamental reúne os dois elétrons no estado fundamental, isto é, \((1s)^2\). Para tratar o átomo de hélio podemos, como primeiro chute, descrever o átomo pelo modelo de Bohr, assumindo elétrons independentes. Negligenciando o termo de repulsão eletrônica (que depende de \(r_{12} \)), podemos separar a função de onda total em:

\[
\Psi(r_1, r_2) = \Psi_1(r_1)\Psi_2(r_2) , \quad (7.17)
\]

e ficamos com duas equações de Schrödinger, o hamiltoniano sendo igual ao caso de átomos hidrogenoides:

\[
\left[-\frac{\hbar^2}{2\mu} \nabla_i^2 - \frac{e^2}{4\pi \varepsilon_0 r_i} \right] \Psi_i(r_i) = E_n^{(i)} \Psi_i(r_i) , \quad (7.18)
\]

com \(i = 1,2 \). Para átomos hidrogenoides temos,

\[
E = E_n^{(1)} + E_n^{(2)} = E_B Z^2 \left(\frac{1}{n_1^2} + \frac{1}{n_2^2} \right) , \quad (7.19)
\]

\(^6\)Para uma discussão mais ampla vide a apostila Óptica atômica do mesmo autor.
com $E_B = -13.6 \text{ eV}$. Com isso, temos a energia para o estado fundamental:

$$E_{He}(1s) = -2Z^2E_B = -108.8 \text{ eV} \ .$$

(7.20)

O valor previsto pelo modelo de Bohr é longe do valor experimental: A energia de ionização medida para o primeiro elétron é 24.6 eV, para o segundo 54.4 eV, dando no total uma energia de ligação dos dois elétrons de -78.983 eV. Isso corresponde a um erro em torno de 38%. A energia menor do primeiro elétron é devido à blindagem do núcleo pelo segundo.

7.2.1.1 Perturbação de primeira ordem na energia

Tratando o termo de repulsão entre os elétrons como uma perturbação [1] e utilizando as autofunções para átomos hidrogenoides $|n, \ell, m\ell\rangle$, a função de onda total fica $|n_1, \ell_1, m\ell_1; n_2, \ell_2, m\ell_2\rangle$;

$$\Delta E = \langle n_1, \ell_1, m\ell_1; n_2, \ell_2, m\ell_2 | -\frac{e^2}{4\pi\varepsilon_0 r_{12}} | n_1, \ell_1, m\ell_1; n_2, \ell_2, m\ell_2 \rangle \ .$$

(7.21)

Esta correção é denominada integral de Coulomb e vale:

$$\Delta E = \frac{e^2}{4\pi\varepsilon_0} \int \Psi_{n_1,\ell_1,m\ell_1}(r_1)^2 \left(\frac{1}{r_{12}}\right) \Psi_{n_2,\ell_2,m\ell_2}(r_2)^2 dV_1 dV_2 \ .$$

(7.22)

Essa integral é sempre positiva. O termo $|\Psi_{n_1,\ell_1,m\ell_1}(r_1)|^2dV_1$ é a probabilidade de encontrar o elétron no elemento de volume dV_1, e, quando multiplicado por $-e$, dá a carga associada a essa região. Assim, o integrando representa a energia de interação coulombiana das cargas confinadas dentro dos dois elementos de volume dV_1 e dV_2. ΔE é a contribuição total para energia potencial. Calculando a integral de Coulomb para o estado fundamental, o que será feito no Exc. 7.5.2.1, obtemos,

$$\Delta E = \frac{5Z}{4} \left(\frac{e^2}{4\pi\varepsilon_0 2a_0}\right) = \frac{5Z}{4} E_B \ ,$$

(7.23)

com a_0 o raio de Bohr. ΔE corresponde a 34 eV. Assim, a energia do estado fundamental fica $E_{He}(1s) = -108.8 \text{ eV} + 34 \text{ eV} = -74.8 \text{ eV}$. Comparando com o valor experimental de -78.983 eV temos um erro em torno de 5.3%.

7.2.1.2 Blindagem da carga nuclear

Podemos fazer a aproximação em que consideramos que cada elétron se move em um potencial coulombiano, com relação ao núcleo, blindado pela distribuição de carga do outro elétron [13]. O potencial resultante será gerado por uma carga efetiva $\zeta e \equiv (Z - B)e$. A grandeza $B \in [0, 1]$ é chamada constante de blindagem.

O primeiro elétron sente uma carga nuclear total Ze, enquanto o segundo sente uma carga nuclear efetiva ζe. Trocamos Z por ζ no termo da energia para átomos hidrogenoides,

$$E_n = -\zeta \frac{E_B}{n^2} \ ,$$

(7.24)

e a energia para o estado fundamental fica, supondo uma blindagem total, $B = 1$,

$$E = E_1 + E_2 = -Z^2E_B - \zeta^2E_B = -4E_B - E_B = -5E_B = -67.5 \text{ eV} \ .$$

(7.25)
Comparando com o valor experimental de -78.983 eV temos um erro em torno de 15%. Para uma constante de blindagem em torno de $B = 0.656$ o valor experimental é reproduzido. Isso significa que a carga nuclear efetiva sentida pelo segundo elétron é blindada parcialmente pelo primeiro. No Exc. 7.5.2.2 estudamos a blindagem recíproca dos elétrons no exemplo do íon tipo-hélio H^-.

Os métodos de TPIT (7.21) e da blindagem (7.24) podem ser combinados num cálculo variacional, onde a carga efetiva ζ é o parâmetro variacional. Isso será demonstrado no Exc. ??.

7.2.2 Estados excitados

Vamos agora investigar os estados excitados do hélio. Os primeiros vão ser aqueles onde somente um elétron está excitado, o outro ficando no estado fundamental, $(1s)^1(2s)^1$ e $(1s)^1(2p)^1$. A energia do elétron na camada $n = 2$ é menor do que previsto pelo modelo de Bohr com $Z = 2$ por causa da interação com o outro elétron. Também, os níveis $(2s)$ e $(2p)$ não são mais degenerados, porque o potencial electrostático não é mais coulombiano (veja Fig. 7.1).

Figura 7.1: Níveis do hélio e transições permitidas de singlete e triplo. Note que o estado $(1s)^{1+}$ não existe.

Como já vimos na discussão da estrutura fina, a energia do acoplamento $1 \cdot s$ dada por (4.29) e $\propto E_n(Z\alpha)^2 \propto Z^4$. Para hélio que ainda tem um Z pequeno, a energia do acoplamento é fraca, e podemos contar com um acoplamento direto dos dois spins. Como as órbitas dos elétrons são agora diferentes, podemos construir combinações de funções de onda espaciais $\Psi^{S,A}$ simétricas ou anti-simétricas, é portanto, combinações de spins $X^{A,S}$ anti-paralelos ou paralelos. Quando os spins são paralelos ($S = 1$), a função de onda espacial é anti-simétrica, quando são anti-paralelos ($S = 0$), é simétrica. Da simetria da função de onda depende a energia da interação coulombiana intereletrônica, pois no estado simétrico a distância média dos elétrons é muito menor do que no estado anti-simétrico, onde a função espacial total desaparece para distância zero. Por consequência, a configuração $(1s)^1(2s)^1$ tem dois estados com $S = 0, 1$, com energia $E_{S=0} > E_{S=1}$. Da mesma forma, todas as configurações são desdobradas, como ilustrado na Fig. 7.1. A diferença de energias ($\sim 1 \text{ eV}$) é considerável e bem superior à energia da interação fina ($\sim 10^{-4} \text{ eV}$). Isso explica, porque primeiro os dois spins se acoplam para um spin total, $s_1 + s_2 = S$, antes ele acoplar-se com o momento angular orbital total, $S + L = J$. Isso é o acoplamento $L \cdot S$.
7.2. HÉLIO

7.2.2.1 Energia de troca
A diferença de energia dos dois estados \(S = 0,1 \) se chama \textit{energia de troca}. Ela saí de um cálculo de perturbação de primeira ordem. Por exemplo, para o estado \((1s)^1(2s)^1\) escrevemos as funções de onda anti-simétrizadas

\[
\Theta^A_{\pm} = \frac{1}{\sqrt{2}} [\psi_{100}(r_1)\psi_{200}(r_2) \pm \psi_{100}(r_2)\psi_{200}(r_1)] \cdot \chi^{A,S},
\]

onde o signo (+) vale para \(\chi^A (S = 0) \) e o signo (−) para \(\chi^S (S = 1) \). As energias são,

\[
\Delta E^{S,A} = \frac{1}{2} \int dr^3 \int dr^3 \Theta^A_{\pm} \frac{e^2}{4\pi\varepsilon_0|r_1 - r_2|} \Theta^A_{\pm} \tag{7.27}
\]

\[
= \frac{1}{2} \int dr^3 \int dr^3 \frac{e^2}{4\pi\varepsilon_0|r_1 - r_2|} [\psi_{100}(r_1)^2|\psi_{200}(r_2)|^2 + |\psi_{100}(r_2)|^2|\psi_{200}(r_1)|^2] \\
\pm \frac{1}{2} \int dr^3 \int dr^3 \frac{e^2}{4\pi\varepsilon_0|r_1 - r_2|} 2\psi_{100}^*(r_1)\psi_{200}^*(r_2)\psi_{100}(r_2)\psi_{200}(r_1) \\
= \Delta E_{\text{coulomb}} \pm \Delta E_{\text{exchange}}.
\]

A primeira integral,

\[
\Delta E_{\text{coulomb}} = \int dr^3 \int dr^3 \Theta^A_{\pm} \frac{e^2}{4\pi\varepsilon_0|r_1 - r_2|} |\psi_{100}(r_1)|^2|\psi_{200}(r_2)|^2, \tag{7.28}
\]

é a energia de Coulomb entre os orbitais eletrônicos. Notamos, que essa parte pode ser calculada à partir do hamiltoniano por orbitais \textit{não simetrizados}. A segunda integral,

\[
\Delta E_{\text{exchange}} = \int dr^3 \int dr^3 \frac{e^2}{4\pi\varepsilon_0|r_1 - r_2|} \psi_{100}^*(r_1)\psi_{200}^*(r_2)\psi_{100}(r_2)\psi_{200}(r_1), \tag{7.29}
\]

chamada de \textit{energia de troca} corresponde aos termos de interferência da simetização e devem ser adicionados ou subtraídos em função do caráter de simetria. É interessante notar, que neste ponto, o spin não entra diretamente no hamiltoniano do hélio,

\[
\hat{H}^{S,A} = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V(r_1) + V(r_2) + V(|r_1 - r_2|) \pm \Delta E_{\text{exchange}}, \tag{7.30}
\]

mas somente através do caráter de simetria da função de onda espacial. Do outro lado, numa escala de energia bem menor, o spin entra pela interação \(\mathbf{L} \cdot \mathbf{S} \).

O potencial não é esfericamente simétrico, o termo \(r_{12} \) depende do ângulo entre \(r_1 \) e \(r_2 \). Assim, a função de onda total \(\Psi(r_1, r_2) \) não é separável em uma parte radial e outra angular, o que faz com que, diferentemente do hidrogênio, a equação de Schrödinger com o hamiltoniano \((7.20)\) não possua solução analítica.

\textbf{Exemplo 10 (TPIT para estados excitados do hélio)}: Considere o os dois elétrons de um átomo de hélio ocupando orbitais diferentes descritos por funções de onda denotadas por \(\psi_a(1) \equiv \psi_{n_1,\ell_1,m_1}(r_1) \) e \(\psi_b(2) \equiv \psi_{n_2,\ell_2,m_2}(r_2) \). Se aplicarmos o hamiltoniano sem o termo de interação entre elétrons, os estados totais \(\Theta = \psi_a(1)\psi_b(2) \) e \(\psi_a(2)\psi_b(1) \) possuem mesma energia \(E_a + E_b \). Para calcularmos a correção na energia, utilizamos o TPIT para estados degenerados. Temos que calcular o determinante secular \(\det(\langle n,\nu|H^{(1)}|n,\mu\rangle - E_{n,\mu}^{(1)}\delta_{\mu,\nu}) \). Os
Os termos \(J \equiv H_{11}^{(1)} = H_{22}^{(1)} \) são integrais de Coulomb. Já o termo \(K \equiv H_{12}^{(1)} \) é denominado integral de troca:

\[
K = \frac{e^2}{4\pi\varepsilon_0} \langle \psi_a(1) \psi_b(2) \rangle \frac{1}{r_{12}} |\psi_a(2)\psi_b(1)| .
\]

Assim como \(J \) e \(K \) são positivos, determinante fica:

\[
\begin{vmatrix}
J - E & K \\
K & J - E
\end{vmatrix} = 0 ,
\]

dando,

\[
E^{(1)} = J \pm K .
\]

Ou seja, os estados que antes eram degenerados com energia \(E = E_a + E_b \) são quebrados em dois estados com energias \(E = E_a + E_b + J \pm K \). E as autofunções correspondentes são:

\[
\psi^{S,A}(1,2) = \frac{1}{\sqrt{2}} [\psi_a(1)\psi_b(2) \pm \psi_b(1)\psi_a(2)].
\]

Esse resultado mostra que a repulsão entre os dois elétrons quebra a degenerescência (das funções separáveis em forma de produto) em estados com diferença de energia \(2K \). Note que as autofunções estão simetrizadas, o que é abordado na seção seguinte.

7.2.2.2 O espectro do hélio

Até agora vimos que, se os elétrons estão no mesmo orbital, temos um termo para energia \(E = 2E_a + J \) e, quando estão em orbitais diferentes, temos \(E = E_a + E_b + J \pm K \), com separação entre níveis de \(2K \).

Na prática, consideramos apenas a excitação de um elétron pois a energia para excitar os dois elétrons excede a energia de ionização do átomo de hélio. Para encontrarmos as regras de seleção para transição entre estados simétrico e assimétrico, calculamos o momento de dipolo da transição. Para um sistema de dois elétrons o momento de dipolo vale \(\mathbf{d} = -e \mathbf{r}_1 - e \mathbf{r}_2 \), que é simétrico pela permutação de dois elétrons. O momento de dipolo para transição fica:

\[
\mathbf{d}_\pm = -e \int \Psi^{S,A}(\mathbf{r}_1,\mathbf{r}_2)(\mathbf{r}_1 + \mathbf{r}_2)\Psi^{S}(\mathbf{r}_1,\mathbf{r}_2)dV_1dV_2 .
\]

Se permutarmos os elétrons, a integral acima muda de sinal, mas a integral não pode depender da nomenclatura das variáveis de integração, portanto deve ser nula. Não pode ocorrer a transição entre os estados simétrico e antissimétrico. Considerando a função de onda do spin, \(\Theta = \Psi^{S,A} \chi^S \), temos que as transições só são permitidas entre estados de singlete ou entre estados de tripleto. Ou seja, existe uma regra de seleção do spin postulando \(\Delta S = 0 \)\(^7\)\(^8\).

Nas primeiras observações do espectro do hélio, visto as diferenças do espectro de singlete e do espectro de triplcteo, acreditava-se que se tratava de diferentes átomos. Porém, análises químicas mostraram que era o mesmo elemento. Passaram a acreditar que existiam dois tipos de átomos de hélio, os quais foram denominados para-hélio e orto-hélio, como ilustrado na Fig. 7.1.

\(^7\)Além disso, transições entre os estados \(^1\)S_0 e \(^3\)S_1 são impossíveis, porque violam a regra de seleção do momento angular, \(\Delta L = \pm 1 \).

\(^8\)Podemos entender as regras de seleção da seguinte maneira: Enquanto a função de onda pode ser escrito...
7.3 Estrutura da casca eletrônica

A interação intereletrônica e a necessidade de antissimetrizar a função de onda dos elétrons ambas contribuem para aumentar excessivamente a complexidade de átomos multieletrônicos. O Hamiltoniano descrevendo um átomo multieletrônico de número atômico \(Z \),

\[\hat{H} = E_{\text{kin}} + V_{\text{ncl-ele}} + V_{\text{ele-ele}} = \sum_{i=1}^{Z} \frac{p_i^2}{2m} - \sum_{i=1}^{Z} \frac{Ze^2}{4\pi\varepsilon_0 |\mathbf{r}_i - \mathbf{r}|} + \sum_{i<j=1}^{Z} \frac{e^2}{4\pi\varepsilon_0 |\mathbf{r}_i - \mathbf{r}_j|} , \]

é extremamente complicado para resolvermos, mesmo para o caso mais simples \(Z = 2 \) devemos utilizar métodos de aproximação.

Note, que caso assumíssemos elétrons independentes \((V_{\text{ele-ele}} = 0) \), isto é, cada elétron se move independentemente dos outros dentro do potencial eletrostático gerado pelo núcleo e os outros \(Z - 1 \) elétrons, o problema seria facilmente solúvel: Resolveríamos a equação de Schrödinger para um estado produto de todas funções de onda dos elétrons e conheceríamos as autofunções e autoenergias individuais de cada elétron (tipo átomo de hidrogênio). Em princípio, deveríamos usar funções de onda anti-simétricas, mas como primeira abordagem poderíamos só respeitar o princípio fraco de Pauli, isto é, atribuir um conjunto individual e único de números quânticos para cada elétron. A energia total seria a soma da energia de cada elétron e os autoestados físicos associados seriam obtidos mediante a antissimetrização do produto tensorial do estado multieletrônico.

Exemplo 11 (Gás de Fermi): Considere um poço de potencial infinito que nós enchemos gradualmente com elétrons. O princípio de Pauli nós permite colocar no máximo dois elétrons em cada orbital,

\[\Psi = \psi_{1\uparrow}(x_1)\psi_{1\downarrow}(x_2)\psi_{2\uparrow}(x_3)\psi_{2\downarrow}(x_4) \cdot \ldots \]

Essa função de onda total satisfaz o princípio fraco de Pauli, mas obviamente não é anti-simétrica. A aproximação é boa, quando a interação entre os elétrons é desprezível. Caso contrário, precisamos considerar os termos de energia de troca.

Esse modelo, chamado modelo do gás de Fermi, é frequentemente utilizado para descrever o comportamento de elétrons que podem mover-se livremente dentro da banda de condução de um metal. Seja \(N \) o número de elétrons colocado no potencial sucessivamente enchendo todos os orbitais de número quântico \(n \) baixo para o número máximo \(n_{\text{max}} = N/2 \), se cada orbital pode aguentar dois elétrons com spins antiparalelos. Para um poço unidimensional de comprimento \(L \), a energia máxima, chamada de energia de Fermi é,

\[E_F \propto \frac{N^2}{L^2} . \]

Para um poço três-dimensionais de volume \(V \),

\[E_F \propto \left(\frac{N}{V} \right)^{2/3} . \]

como um produto, \(\Theta = \Psi(x)\chi(s) \), o caráter de simetria é preservado para as duas funções separadamente. Os auto-valores dos operadores \(\mathcal{P}_e \) e \(\mathcal{P}_s \), são então números quânticos bons. Mas isso só vale, quando o acoplamento \(\mathbf{L} \cdot \mathbf{S} \) é fraco. O operador elétrico dipolar de transição não age sobre o spin (o que impede o reacoplamento \(S = 1 \leftrightarrow S = 0 \) por radiação \(E1 \)) e também não age sobre o caráter de simetria dos orbitais (o que impede transições \(\Psi^\uparrow \leftrightarrow \Psi^\downarrow \)).

Em princípio, isso vale para cada espécie de átomos com dois elétrons de valência. Mas na realidade a influência do acoplamento \(\mathbf{L} \cdot \mathbf{S} \) vai crescendo com \(Z \), o que renda a interdúrion de intercombinação mais fraca. Nesse caso, só o operador \(\mathcal{P}_{x,s} \) dá bons auto-valores.
7.3.1 Modelo de Thomas-Fermi

Mesmo se o potencial sentido pelos elétrons é bem diferente do poço três-dimensional, podemos aproximadamente nós imaginar que o átomo é subdividido em pequenos volumes, todos enchidos com elétrons seguindo o modelo de gás de Fermi. Disso podemos calcular a distribuição da carga eletrônica, tal que a energia local média é homogênea e a nuvem eletrônica em equilíbrio. A distribuição, em torno, serve para determinar a forma do potencial eletrostático que, quando subdividido em pequenos volumes cheios de elétrons produz a mesma distribuição de carga. Esse princípio se chama *auto-consistência*.

As funções de onda (distribuições espaciais dos elétrons) determinadas por esse método frequentemente servem como ponto inicial para o método de Hartree discutido embaixo. Uma das predições importantes do *modelo de Thomas-Fermi* é que o raio médio de um átomo depende da carga nuclear como \(R \propto Z^{-1/3} \).

O modelo de Thomas-Fermi permite entender a configuração eletrônica dos estados fundamentais e fornece a base para o sistema periódico dos elementos. Nesse modelo, os elétrons são tratados como partículas independentes, de um lado formando um potencial elétrico radial efetivo, do outro lado sendo sujeitos à esse potencial. Em vez de requerer anti-simetria da função de onda, é necessário garantir que todos os elétrons se distinguem em pelo menos um número quântico. As funções de átomos complexos são parecidos as funções do hidrogênio. Podemos utilizar os mesmos números quânticos \(n, \ell, m_\ell \) e \(m_s \) para cada elétron.

No entanto, o potencial radial efetivo depende muito da espécies e é bem diferente do potencial coulombiano. Portanto, a degenerescência em \(\ell \) é quebrada. Em geral, os elétrons com pequenos \(\ell \) são ligados mais fortemente, porque eles tem uma probabilidade maior de ser perto do núcleo, onde o potencial é mais profundo (vide Fig. 7.7). O mesmo argumento explica, porque elétrons com pequenos \(n \) são ligados mais fortemente. Discutiremos estes efeitos com mais profundidade na Sec. 7.4.2 por uma comparação dos níveis de excitação do elétron de valência dos álcalis.

7.3.1.1 Abordagem TPIT

Assim, como primeira aproximação utilizamos os autoestados de elétrons individuais (aproximação orbital) e considerar \(V_{\text{ele-ele}}(|r_i - r_j|) \) como uma perturbação fazendo uso da *teoria de perturbação independente do tempo*. Entretanto, este termo não é pequeno o suficiente para justificar este procedimento, pois aproximando,

\[
V_{\text{ncl-ele}} \simeq \frac{Z^2e^2}{a_B} \quad \text{e} \quad V_{\text{ele-ele}} \simeq \frac{Z(Z-1)e^2}{2a_B}, \tag{7.33}
\]

percebemos, que \(V_{\text{ele-ele}}/V_{\text{ncl-ele}} \) varia entre \(\frac{1}{4} \) para \(Z = 2 \) e \(\frac{1}{2} \) para \(Z \gg 1/2 \). Desta forma é necessário o uso de métodos alternativos para descrever átomos multieletrônicos.

O *modelo de Thomas-Fermi* é um modelo semi-clássico que visa descrever, de modo aproximado, a energia total dos elétrons como um *funcional da densidade* de elétrons atômicos/moleculares. Tal modelo é a base para métodos mais sofisticados que visam a obtenção da estrutura eletrônica, como a *density functional theory* (DFT).

7.3.1.2 Gás de elétrons

Dividimos agora o átomo em pequenos volumes de lado \(L \) (células), contendo \(N \) elétrons não-interagentes uniformemente distribuídos e cujo número total é \(N_i \), e analisemos cada célula individualmente. O volume pode ser modelado pelo seguinte potencial: \(V(r) = 0 \) para \(0 \le r \le L \).
x, y, z ≤ L e V(r) = ∞ em todos outros lugares. Neste caso reconhecemos os possíveis estados \(\{ n_x, n_y, n_z \} \) com \(n_x, n_y, n_z = 1, 2, 3 \) e as energias de um único elétron

\[
E_{n_x, n_y, n_z} = \frac{\pi^2 \hbar^2}{2m_e L^2} (n_x^2 + n_y^2 + n_z^2) .
\] (7.34)

Para \(N \) elétrons no estado fundamental cada partícula ocupa o estados menos energético disponível, obedecendo o princípio de exclusão de Pauli e considerando-se o spin. A energia total é dada pela soma das energias dos \(N \) estados menos energéticos, e o estado físico final é dado pela antissimetriação do estado correspondente. A energia do \(N \)-ésimo elétron (o mais energético) é chamada de Energia de Fermi \((E_F) \)9.

É de interesse calcularmos o número de estados existentes \(n(E) \) cuja energia são menores que \(E \). Para isso escrevemos a energia da seguinte forma

\[
E_{n_x, n_y, n_z} = \frac{\hbar^2}{2m_e} k^2_{n_x, n_y, n_z} ,
\] (7.35)

onde \(k_{n_x, n_y, n_z} = \sqrt{k_x^2 + k_y^2 + k_z^2} = \sqrt{(\frac{n_x \pi}{L})^2 + (\frac{n_y \pi}{L})^2 + (\frac{n_z \pi}{L})^2} \). Cada trinca de valores \(k = (k_x, k_y, k_z) \) corresponde a um possível estado acessível ao sistema, e cada estado está associado a um elemento de volume \((\pi/L)^3 \) no espaço \(k \). Note que o número de estados \(n(E) \) com energia menor que \(E \) é dado pelo número de estados em que \(k ≤ \sqrt{2m_e E/\hbar^2} \). Isso corresponde a uma esfera de raio \(\sqrt{2m_e E/\hbar^2} \) centrada na origem, logo

\[
n(E) = \frac{2}{3} \left[\frac{4\pi}{3} \left(\frac{2m_e E}{\hbar^2} \right)^{3/2} \right] \frac{1}{(\pi/L)^3} = \frac{L^3}{3\pi^2} \left(\frac{2m_e E}{\hbar^2} \right)^{3/2} .
\] (7.36)

A Fig. 7.2 ilustra os possíveis estados no espaço \(k \) e a esfera com energia \(E \).

![Figura 7.2: Estados disponíveis para uma caixa de potencial.](image)

Com a expressão anterior somos capazes de calcular a energia de Fermi, pois a condição \(n(E_F) = N \) implica,

\[
E_F = \frac{\hbar^2}{2m_e} \left(\frac{3\pi^2 N}{L^3} \right)^{2/3} .
\] (7.37)

É interessante notar que para \(T = 0 \) K todos os estados abaixo de \(E_F \) são ocupados e todos aqueles acima estão desocupados. Ademais, definimos a densidade de estados \(\rho(E) \) onde \(\rho(E) \) é o número de estados com energias entre \(E \) e \(E + dE \). Assim, a densidade dos estados fica,

\[
\rho(E) = \frac{dn(E)}{dE} = \frac{L^3}{2\pi^2} \left(\frac{2m_e}{\hbar^2} \right)^{3/2} E^{1/2} = \frac{3N}{2 E_F^{3/2}} E^{1/2} .
\] (7.38)

9Note, entretanto, que para \(N \) grande (1 mol de elétrons) esse processo se torna inviável.
7.3.1.3 Energia de Thomas-Fermi

A energia cinética média dos elétrons com o sistema no estado fundamental é,

\[E_c = \int_0^{E_F} E \rho(E) dE = \frac{L^3}{2\pi^2} \left(\frac{2m_e}{\hbar^2} \right)^{3/2} \int_0^{E_F} E^{3/2} dE \]

\[= \frac{L^3}{2\pi^2} \left(\frac{2m_e}{\hbar^2} \right)^{3/2} \frac{2}{5} E_F^{5/2} \]

\[= \frac{\hbar^2 3^{5/3} \pi^{4/3}}{10m_e} L^3 \left(\frac{N}{L^3} \right)^{5/3} = C L^3 \rho^{5/3} , \]

onde \(\rho \equiv N/L^3 \) é a densidade de elétrons por unidade de volume. Logo,

\[N_t = \int \rho(r) d^3r . \]

Sendo assim, a densidade de energia cinética é dada por,

\[u_{\text{kin}}(r) = C \rho^{5/3} . \]

Portanto, a energia cinética total dos elétrons na camada eletrônica é,

\[T[\rho] = C \int \rho^{5/3} d^3r . \]

Os potenciais associados a interação \(e^-e^- \) e \(e^-p^+ \) também podem ser escritos como funcionais da densidade eletrônica, tal que,

\[V_{ep}[\rho] = -\frac{Ze^2}{4\pi\epsilon_0} \int \frac{\rho(r)}{r} d^3r \quad \text{e} \quad V_{ee}[\rho] = \frac{e^2}{2\pi\epsilon_0} \int \frac{\rho(r)\rho(r')}{|r-r'|} d^3r d^3r' . \]

Logo, a energia total (energia de Thomas-Fermi) pode ser escrita como um funcional da densidade eletrônica do átomo,

\[H_{\text{TH}}[\rho] = T[\rho] + V_{\text{ncl-ele}}[\rho] + V_{\text{ele-ele}}[\rho] . \]

7.3.1.4 Densidade eletrônica e equação de Thomas-Fermi

Levando-se em conta o princípio variacional, estamos interessados na densidade eletrônica \(\rho(r) \) que minimiza a energia de Thomas-Fermi. Podemos realizar este processo via multiplicadores de Lagrange, com a restrição de que o número de elétrons se mantenha constante no átomo. Assim,

\[\delta \left\{ H_{\text{TH}}[\rho] - \mu \left(\int \rho(r) d^3r - N_t \right) \right\} = 0 \]

\[\delta H_{\text{TH}}[\rho] - \mu \delta \rho(r) = 0 \quad \Rightarrow \quad \frac{\delta H_{\text{TH}}[\rho]}{\delta \rho(r)} = \mu . \]

Inserindo a energia de Thomas-Fermi (7.44) calculamos,

\[\mu = \frac{5}{3} C \rho^{2/3} - \xi_{ef}(r) \quad \text{com} \quad \xi_{ef}(r) = \frac{e^2}{4\pi\epsilon_0} \frac{Z}{r} - \frac{e^2}{4\pi\epsilon_0} \int \frac{\rho(r')}{|r-r'|} d^3r' . \]
7.3. ESTRUTURA DA CASCA ELETRÔNICA

Resolvendo pela densidade eletrônica,

\[\rho(r) = \left[\mu + \frac{3}{5C} \xi_{ef}(r) \right]^{3/2}. \] (7.47)

A expressão anterior descreve a densidade eletrônica do átomo no estado fundamental. É interessante notar que, como \(\delta H_{TH}[\rho]/\delta \rho(r) = \mu \), podemos identificar o multiplicador de Lagrange \(\mu \) como um potencial químico. Em particular, para átomos neutros não-interagentes têem-se \(\mu = 0 \), assim,

\[\rho(r) = \left(\frac{3}{5C} \right)^{3/2} \xi_{ef}(r)^{3/2}. \] (7.48)

Ademais, como para um átomo tanto o potencial quanto a densidade eletrônica deve possuir simetria esférica, podemos escrever

\[\xi_{ef}(r) = \frac{Z \chi(r)}{r}. \] (7.49)

Agora, é comum realizar a transformação de variável \(x = \alpha r \) (\(\alpha = \frac{2^{7/3} Z^{4/3}/(3\pi)^{2/3}}{1.1295 Z^{1/3}} \)) e utilizar unidades atômicas, em que \(\hbar^2/m_e = 1 \) tal que \(C = \frac{3^{5/3} \pi^{4/3}}{10} = 2.871 \) [1]. Assim, a ‘densidade eletrônica’ é,

\[\rho(x) = \frac{Z^2 2^5}{3^2 \pi^3} \left(\frac{\chi(x)}{x} \right)^{3/2}. \] (7.50)

Além disso, o potencial deve satisfazer a equação de Poisson \(\nabla^2 \xi_{ef} = 4\pi\rho \), resultando na equação de Thomas-Fermi:

\[\frac{d^2 \chi}{dx^2} = \frac{\chi^{3/2}}{x^{1/2}}. \] (7.51)

É importante notar que a equação anterior não depende do parâmetro \(Z \), sendo assim um resultado geral para qualquer átomo neutro. A função \(\chi(x) \) é determinada numericamente, mas podemos analisar seus valores assintóticos dado o comportamento esperado do potencial efetivo \(\xi_{ef}(r) \): para \(r \to 0 \) espera-se que \(\xi_{ef}(r) = \frac{Z}{r} \), assim \(\chi(0) = 1 \); já para \(r \to \infty \) espera-se que \(\xi_{ef}(r) = 0 \), assim \(\chi(\infty) = 0 \).

Com \(\chi(x) \) em mãos obtemos a densidade de carga \(\rho(x) \) e, portanto, somos capazes de calcular a energia total do átomo em questão. Assim, é possível mostrar que [1],

\[H_{TH}[\rho] = -0.7687Z^{7/3}. \] (7.52)

É importante ressaltar alguns pontos: (i) este é um resultado para átomos neutros; (ii) não há camadas eletrônica; (iii) não é levado em conta o efeito de partículas idênticas. O modelo de Thomas-Fermi-Dirac é um modelo mais refinado que lida com o item (iii) e, além disso, é mais próximo ao DFT.

7.3.2 Método de Hartree

Para calcular a maioria das propriedades de um átomo precisamos de potenciais mais realísticos. Os termos mais importantes são o potencial coulombiano entre o núcleo e os elétrons, \(V_{nel-ele} \), naturalmente sendo esférico, e os potenciais de interação entre os elétrons, \(V_{ele-ele} \), que tentamos aproximar por um potencial esférico e tratar os desvios causados pela aproximação depois.
Conhecendo o efeito da blindagem do núcleo pelas cargas eletrônicas, já sabemos as assimptotas (vide Fig. 7.7),

\[V_0 = -\frac{Ze^2}{4\pi\epsilon_0 r} \quad \text{para} \quad r \to 0 \quad \text{e} \quad V_0 = -\frac{e^2}{4\pi\epsilon_0 r} \quad \text{para} \quad r \to \infty. \]

(7.53)

Um potencial efetivo, \(V_0 \), construído para satisfazer esses limites serve como primeiro chute para estabelecer e resolver numericamente a equação de Schrödinger para cada elétron independentemente,

\[\hat{H}_i = \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_0 \right) \psi_i(r_i) = e_i \psi_i(r_i). \]

(7.54)

Com isso, calculamos todas as energias e auto-funções (só as partes radiais interessam) minimizando a energia total e respeitando o princípio fraco de Pauli, isto é, todos os estados são sucessivamente enchidos com elétrons. Para a função de onda total obtemos,

\[\left(\sum_{i=1}^{N} \hat{H}_i \right) \Psi_N = E_n \Psi_N \quad \text{com} \quad \Psi_N = \psi_1 \cdot \cdots \cdot \psi_N \quad \text{e} \quad E_n = \sum_{i=1}^{N} e_i. \]

(7.55)

Com as auto-funções calculamos as densidades de carga \(e|\psi_j(r_j)|^2 \). Integramos o campo para obter um potencial que representa uma estimativa melhorada para o campo eletrônico médio,

\[V_i \leftarrow -\frac{Ze^2}{4\pi\epsilon_0 r_i} + \sum_{j \neq i} \int d^3r_j \frac{e^2}{4\pi\epsilon_0 |r_i - r_j|^3} |\psi_j(r_j)|^2. \]

(7.56)

Substituímos esse potencial na equação de Schrödinger, e começamos todo o processo de novo. Esse método auto-consistente se chama método de Hartree. Fock melhorou esses cálculos usando funções de onda anti-simétricas para os elétrons de valência. Esse método se chama método de Hartree-Fock. A ideia do método de Hartree está visualizada no seguinte diagrama,
7.3.3 Método de Hartree Fock

O método de Hartree-Fock é um método utilizado para tratar sistemas atômicos/moleculares de muitos corpos que visa a obtenção da função da onda eletrônica do sistema. Ele é um refinamento do Método de Hartree (SCF: Self-Consistent-Field), pois leva em conta a antissimetria da função de onda. De maneira geral o método se baseia no princípio variacional e na suposição de que podemos escrever a função de onda global como um determinante de Slater, de onda espacial do elétron no estado \(i \). O método é realizado de maneira cíclica até convergência dos orbitais atômicos e suas respectivas energias, por este motivo é denominado como auto-consistente: a partir da suposição inicial da função de onda global é calculado o potencial efetivo em cada orbital e é obtido um novo conjunto de funções de onda que, por sua vez, geram um novo potencial efetivo; assim, este novo potencial é utilizado em um novo sistema de equações de Hartree-Fock. A Fig. 7.3 ilustra a característica cíclica do método.

\[\Psi(1, ..., Z) = \psi_i(1)\psi_j(2) ... \psi_Z(Z), \]

onde \(\psi_i(1) = \phi_i(r_1 \chi(\alpha)) = \psi_i^\alpha(r_1) \) representa o estado spin-orbital do elétron 1, ou seja, a função de onda espacial do elétron no estado \(i \) e com spin \(\alpha \). Entretanto, devido ao postulado de simetização o estado físico do sistema deve ser expresso pelo determinante de Slater,

\[\Psi(1, ..., Z) = \frac{1}{\sqrt{Z!}} \det [\psi_1(1)\psi_2(2) ... \psi_Z(Z)]. \]
Com isso em mãos utilizamos o princípio variacional para minimizar o valor esperado da energia no estado fundamental mediante alteração das funções \(\psi_k(n) \). Desta forma, os orbitais corretos são aqueles que minimizam a energia. O valor esperado é escrito como,

\[
E = \langle \Psi | \hat{H} | \Psi \rangle = \langle \Psi | \sum_{i=1}^{Z} \hat{h}_i | \Psi \rangle + \langle \Psi | \frac{1}{2} \sum_{i \neq j} \hat{V}_{ij} | \Psi \rangle .
\] (7.60)

É possível mostrar que,

\[
\langle \Psi | \sum_{i=1}^{Z} \hat{h}_i | \Psi \rangle = \sum_{i=1}^{Z} \langle \psi_i | \hat{h}_i | \psi_i \rangle \quad \text{e}
\]

\[
\langle \Psi | \frac{1}{2} \sum_{i \neq j} \hat{V}_{ij} | \Psi \rangle = \frac{1}{2} \sum_{i,j=1}^{Z} \left[\langle \psi_i \psi_j | \hat{V}_{ij} | \psi_i \psi_j \rangle - \langle \psi_j \psi_i | \hat{V}_{ij} | \psi_j \psi_i \rangle \right] .
\] (7.61)

Assim,

\[
E = \sum_{i=1}^{Z} \hat{h}_i | \Psi \rangle + \frac{1}{2} \sum_{i,j=1}^{Z} \left[\langle \psi_i \psi_j | \hat{V}_{ij} | \psi_i \psi_j \rangle - \langle \psi_j \psi_i | \hat{V}_{ij} | \psi_j \psi_i \rangle \right] .
\] (7.62)

A expressão anterior pode ser minimizada via multiplicadores de Lagrange, com o vínculo dado pela ortogonalidade dos estados

\[
\langle \psi_i | \psi_j \rangle = \delta_{ij},
\]

(7.63)

Assim, obtemos o seguinte conjunto de equações de Hartree-Fock:

\[
\{ \hat{h}_1 + \sum_i (2 \hat{J}_i - \hat{K}_i) \} \psi_k(1) = \epsilon_k \psi_k(1) \quad (7.64)
\]

\[
\hat{F} \psi_k(1) = \epsilon_k \psi_k(1) ,
\]

onde, \(\hat{F} = \hat{h}_1 + \sum_i (2 \hat{J}_i - \hat{K}_i) \) é o operador de Fock e \(\epsilon_k \) é a energia associada ao spin-orbital \(\psi_k \). O operador \(\hat{J}_i \), denominado \textit{operador de Coulomb}, representa o potencial médio sentido pela partícula 1 no orbital \(k \) devido ao elétron 2 no orbital \(i \):

\[
\hat{J}_i \psi_k(1) = \left\{ \int \psi_i^*(2)V_{12}\psi_i(2)dr_2 \right\} \psi_k(1) .
\] (7.65)

Já o operador \(\hat{K}_i \), denominado \textit{operador de troca}, é consequência do processo de simetrisação e, portanto, é um efeito puramente quântico, ou seja, sem análogo clássico:

\[
\hat{K}_i \psi_k(1) = \left\{ \int \psi_i^*(2)V_{12}\psi_k(2)dr_2 \right\} \psi_k(1) .
\] (7.66)

Uma vez com todas as funções de onda as energias dos orbitais podem ser obtidas da seguinte forma:

\[
\int dr_1 \psi_k^*(1) \{ \hat{h}_1 + \sum_i (2 \hat{J}_i - \hat{K}_i) \} \psi_k^*(1) = \epsilon_k \int dr_1 \psi_k^*(1) \psi_k(1) = \epsilon_k ,
\] (7.67)
ou seja,

\[\epsilon_k = \int dr_1 \psi_k^*(1) \hat{h}_1 \psi_k(1) + \sum_i (2 \hat{J}_{ki} - \hat{K}_{ki}) , \] (7.68)

onde,

\[\hat{J}_{ki} = \int dr_1 \psi_k^*(1) \hat{J}_i \psi_k(1) \] é a integral de Coulomb
\[\hat{K}_{ki} = \int dr_1 \psi_k^*(1) \hat{K}_i \psi_k(1) \] é a integral de troca.

Já a energia atômica total pode ser calculada por,

\[E = 2 \sum_k \epsilon_k - \sum_{k,i} (2 \hat{J}_{ki} - \hat{K}_{ki}) . \] (7.70)

Ademais, se assumirmos que se ao tirarmos um elétron do orbital \(\psi_k \) a distribuição eletrônica permanece inalterada é possível associar a energia \(\epsilon_k \) com a energia de ionização do elétron neste orbital. Tal igualdade é conhecida como teorema de Koopman,

\[I_k \simeq \epsilon_k . \] (7.71)

7.3.3.2 Equações de Hartree-Fock-Roothaan

Por fim, vale ressaltar que um refinamento do processo pode ser obtido se expandirmos cada spin-orbital em uma determinada base de funções (não necessariamente ortogonais), tais que,

\[\psi_k(n) = \sum_l C_{lk} \phi_l(n) , \] (7.72)

onde \(N \) é o número de funções na base. Assim, as equações de Hartree-Fock podem ser escritas como,

\[\hat{F} \psi_k(1) = \epsilon_k \psi_k(1) \implies \hat{F} \sum_l C_{lk} \phi_l(1) = \epsilon_k \sum_l C_{lk} \phi_l(1) \] (7.73)

\[\implies \sum_m C_{lk} \int dr_1 \phi_m^*(1) \hat{F} \phi_l(1) = \epsilon_k \sum_l C_{lk} \int dr_1 \phi_m^*(1) \phi_l(1) \]

\[\implies \sum_m F_{ml} C_{lk} = \epsilon_k \sum_l S_{ml} C_{lk} . \]

Em representação matricial a expressão anterior é dada pela equação de Hartree-Fock-Roothaan,

\[FC = SC \epsilon , \] (7.74)

onde \(\epsilon \) é a matriz diagonal contendo as energias orbitais.
CAPÍTULO 7. ÁTOMOS DE MÚLTIPELOS ELÉTRONS

7.4 O sistema periódico dos elementos

Camadas principais cheias \(n, \ell \) são isotrópicas, \(\Psi_N(r) = \Psi(r) \). Órbitas com pequenos \(n \) percebem menos blindagem, as órbitas deles são aproximadamente \(\bar{r}_n \approx \bar{r}_{H,n}/(Z-2) \). Órbitas com grandes \(n \) são blindadas, as órbitas deles são aproximadamente \(\bar{r}_n \approx n\alpha_B \). Seguinte o modelo de Bohr, as energias em potenciais \(-1/r\) são degeneradas à respeito de \(\ell \). O desvio do potencial coulombiano em comparação com essa lei, causado por blindagem em sistemas de muitos elétrons, quebra a degenerescência e diminui a energia consideravelmente para pequenos \(\ell \). Para grandes \(\ell \) o termo centrífugo domina a parte coulombiana e a diminuição é muito menor. Por exemplo, no átomo de sódio o orbital 3\(d \) chega a ser mais baixo do que o 4\(s \). Ao longo do sistema periódico dos elementos, as órbitas são consecutivamente enchidas com elétrons seguinte essas energias deslocadas.

![Figura 7.4: Ilustração da regra de Hund.](image)

É importante distinguir três sequências energéticas diferentes: 1. A Tab. 7.6 mostra, para um dado átomo, as órbitas excitadas do último elétron. 2. A sequência energética mostrada na Tab. 7.4 fala em qual órbita o próximo elétron será colocado, quando vamos para o próximo átomo na Tabela periódica 7.10. 3. A sequência energética dos elétrons interiores. Enquanto para os elétrons interiores achamos,

\[
E_{n,l} < E_{n,l+1} \ll E_{n+1,l} ,
\]

(7.75)
a sequência está parcialmente invertida para o último elétron. Mas isso é essencial, porque é o estado dos últimos elétrons que determinam a reatividade química do átomo. A sequência é ilustrada na Fig. 7.8.

Segue a regra de Hund o acoplamento \(\mathbf{L} \cdot \mathbf{S} \) é energeticamente favorável em comparação com o acoplamento \(\mathbf{j} \cdot \mathbf{j} \), o que significa que os spins dos últimos elétrons, isto é, os elétrons fora de sub-camadas \((n, \ell)\) cheias, preferem orientar os seus spins em paralelo para anti-simetria as
funções de onda espaciais e maximizing a distância entre os elétrons. Cada sub-camada da série ilustrada na Fig. 7.8 deve ser enchida na ordem indicada antes de colocar elétrons na próxima camada.

Gases nobres têm pequenos raios, altas energias de excitação e energias de ionização. O elétron de valência deve preencher a lacuna até números quânticos principais mais altos. Halogénios têm fortes eletroafinidades, pois a camada eletrônica exterior \(n_{\text{max}} \) é incompleta e portanto maleável, tal que um elétron se aproximando do halogênio percebe uma blindagem do núcleo parcialmente transparente. Álcalis são semelhantes ao hidrogênio e têm energias de excitação ópticas. O estado fundamental deles \(^2S_1/2 \) é determinado por um elétron de valência só no orbital \(\ell = 0 \). Diferentemente do hidrogênio, as energias de excitações dependem muito de \(\ell \), pois órbitas pequenas \(\ell \) tem mais probabilidade na região não blindadas \(-Z^2e^2/r \) do em órbitas com grandes \(\ell \), quem demoram mais tempo na região blindadas \(-e^2/r \). Com a mesma razão, energias que correspondem a maiores \(n \) são semelhantes do espectro de hidrogênio.

A estrutura de camadas inteiras dos átomos pode ser analisada por espalhamento de raios X. Elétrons desacelerados por átomos emitem um espectro contínuo chamado Bremsstrahlung, mas também podem expulsar elétrons das camadas interiores. Quando um buraco é recheado por cascatas de elétrons vindo de camadas superiores, o átomo emite um espectro de raio X específico (\(\approx 10^4 \, \text{eV} \)). As regras de seleção \(\Delta \ell = \pm 1 \) e \(\Delta j = \pm 1 \) desdobram as linhas in dois componentes. Espectros de raios X de elementos vizinhos no sistema periódico dos elementos são muito parecidos, pois as camadas interiores não são blindadas com um potencial aproximadamente \(\propto Z^2/r \). Portanto, a dependência \(Z \) das linhas é mais ou menos \(\omega \propto Z^2 \), como previsto pelo modelo do átomo de Bohr.

7.4.1 Modelo de camadas eletrônicas

Para poder dizer algo sobre a estrutura geral de elétrons múltiplos, consideramos o hamiltoniano de um sistema eletrônico múltiplo,

\[
\sum_i \frac{p_i^2}{2m} - \frac{Ze^2}{4\pi\epsilon_0 r_i} + \sum_{i>j} \frac{e^2}{4\pi\epsilon_0 |r_i - r_j|},
\]

consistindo em energia cinética, energia potencial do núcleo e interação entre elétrons \(H_{\text{ww}} \). O índice cita os elétrons e corre de 1 até o número de carga nuclear \(Z \). Negligenciamos a interação elétron-elétron \(H_{\text{ww}} \). Então, cada elétron percebe um átomo de hidrogênio com a solução \(\alpha \) substituída por \(Z\alpha \), porque o potencial de Coulomb do núcleo é agora,

\[
\frac{Ze^2}{4\pi\epsilon_0 r} = Z\alpha\hbar c \frac{\omega}{r}.
\]

Para as energias obtemos então:

\[
E = -\sum_i \frac{m_e e^2}{2} \left(\frac{Z\alpha}{n_i} \right)^2.
\]
CAPÍTULO 7. ÁTOMOS DE MÚLTIPLOS ELÉTRONS

Figura 7.5: Ordem periódica.

Isso só funciona para átomos com até 18 elétrons. Quando o camada 3p é completamente preenchida, a próxima a ser ocupada não é 3d mas a 4s. O novo esquema é ilustrado aqui.

As anomalias começando em Z = 18 surgem devido à interação elétron-elétron. Para entender isso, consideramos um elétron no campo médio de todos os outros elétrons. O elétron está então localizado em um potencial efetivo que transita entre dois potenciais de Coulomb para distâncias grandes e pequenas; para pequenas distâncias, o elétron vê apenas a carga puntual positiva do núcleo e o potencial é proporcional a Ze² / 4πε₀ r.

Para grandes distâncias, o núcleo e todos os outros elétrons formam uma pequena fonte de carga quase esférica chamada ‘core’ e podemos aproximar o potencial por

\[V(r) = -\frac{e^2}{4\pi\epsilon_0\, r} \quad (7.80) \]

O potencial verdadeiro transita de um para o outro potencial quando aumentamos a distância do núcleo:

Perto do núcleo, os elétrons blindam o núcleo menos do que para grandes \(r \). Assim, aqueles estados que têm uma baixa probabilidade perto do núcleo são energeticamente mais altos. Isto é,

\[E_{2s} < E_{2p} \quad \text{e} \quad E_{6s} < E_{6p} < E_{6d} \quad (7.81) \]

A degenerescência do momento angular orbital do modelo de Schrödinger é assim cancelada. O efeito de blindagem é, como pode ser visto no exemplo dos estados excitados do lítio, um grande efeito na gama de alguns eV.

A blindagem conduz de forma semelhante as anomalias de configuração no sistema periódico, como p.ex. no K ou no Ca. Desde que \(E_{4s} < E_{3d} \), o estado 4s é o primeiro a ser preenchido. Anomalias semelhantes também ocorrem em Rb (5s), Cs (6s) e Fr (7s). Nas terras raras o efeito de blindagem é ainda mais pronunciado. Aqui, a energia do estado 6s é abaixo mesmo da energia 4f. As camadas 6s, 5s, 5p e 5d protegem assim a camada 4f muito bem 10.

Um exemplo disto é o Nd:YAG (Neodímio em Yttrium Alumínio Garnet). Neste cristal, as transições ópticas no Nd dentro da camada 4f podem ser excitadas. No entanto, essas transições só são permitidas por perturbações do campo cristalino. A blindagem muito forte leva a uma longa vida do estado excitado. Como resultado, este cristal é exelente como um material a laser.

10
7.4.2 Alcalinos

Os alcalinos consistem em uma camada de gás nobre completa e um elétron de valência adicional. O seu espectro é, portanto, fortemente semelhante ao hidrogênio. Uma abordagem empírica é usada para descrever isso,

\[E_{n,l} = -\frac{1}{2} \mu_{EG} e^2 \frac{c^2}{n - \Delta(n,l)} , \]

onde \(\mu_{EG} \) é a massa reduzida em relação ao casco de gás nobre e \(\Delta(n,l) \) é o chamado defeito quântico. Ele é tabulado para a maioria dos estados alcalinos e é particularmente importante para estados de baixa energia. Para o sódio, os valores são, por exemplo:

<table>
<thead>
<tr>
<th>(L)</th>
<th>(n = 3)</th>
<th>(n = 4)</th>
<th>(n = 5)</th>
<th>(n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>1.37</td>
<td>1.36</td>
<td>1.35</td>
<td>1.34</td>
</tr>
<tr>
<td>p</td>
<td>0.88</td>
<td>0.87</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>d</td>
<td>0.10</td>
<td>0.11</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>f</td>
<td>-0.00</td>
<td>-0.01</td>
<td>-0.008</td>
<td></td>
</tr>
</tbody>
</table>

Para estados com um grande momento angular, o defeito quântico desaparece. Nesses es-
Os átomos podem ser bem estudados por espectroscopia de saturação.
7.4.3 Acoplamento LS e jj

No caso do hélio, vimos que o princípio de Pauli primeiramente determina a orientação relativa dos spins dos elétrons. Os spins dos elétrons individuais, portanto, somam para um momento angular total. Os momentos angulares orbitais também adotam uma certa orientação relativa. Ela é determinada pela interação de Coulomb residual não esfericamente simétrica. Uma certa combinação de momentos angulares orbitais leva a uma certa distribuição espacial dos elétrons e, portanto, a uma certa energia eletrostática.

O spin total e o momento angular orbital total, em seguida, acoplam para diferentes momentos angulares totais muito semelhantes ao acoplamento do spin e do momento angular orbital pela interação spin-órbita. Estados com diferentes momentos angulares totais possuem então as energias respectivas que o spin total adota no campo do momento angular orbital total.

![Diagrama de hierarquia de energias](Figura 7.9: Hierarquia de energias.)

Além disso, há as seguintes pequenas contribuições:

- $l_s \cdot l_j$
- $s_s \cdot s_j$
- correções relativísticas
- estrutura hiperfina

Esta descrição é chamada de acoplamento de Russel-Saunders ou acoplamento LS. Funciona enquanto o acoplamento spin-órbita for pequeno. Neste caso, vale a proibição de intercombinação, isto é, não pode haver transições eletromagnéticas entre estados com spin diferente (ver hélio metaestável).

Como $E_{LS} \approx Z\alpha^4 \approx Z^4$, para átomos pesados, o acoplamento do spin de um elétron ao seu momento orbital cresce fortemente com o peso. Para grandes Z, o acoplamento spin-órbita pode tornar-se maior, bem como a energia de simetria e de troca orientando mutuamente os spins, bem como a interação residual de Coulomb, acoplando mutuamente os momentos angulares orbitais. Nesse caso, a orientação de L_i em relação a S_i delivra mais energia do que a energia de troca e a energia residual custam. Portanto, o spin e o momento angular orbital de um elétron se acoplam primeiramente para um momento angular orbital total,

$$j_i = l_i + s_i .$$

(7.84)
O acoplamento jj puro existe apenas com núcleos muito pesados. Normalmente, temos um chamado acoplamento intermediário, que é uma mistura de acoplamento LS e jj. Isso leva à abolição da proibição da intercombinação. Quando o acoplamento é puro, temos as seguintes regras de seleção dipolar:

- acoplamento LS: $\Delta S = 0$, $\Delta L = \pm 1$, $\Delta \ell = \pm 1$
- acoplamento jj: $\Delta J = 0$, $\Delta j = 0, \pm 1$ para um e^-, $\Delta J = 0$ para todos os outros

Além disso temos para os dois acoplamentos: $\Delta J = 0$, ± 1, mas não tem $J, J' = 0$, $\Delta m_J = 0, \pm 1$ quando $\Delta J = 0$ mas não tem $m_J, m'_{J'} = 0$.

7.4.4 Resumo dos graus de liberdade de um átomo

O hamiltoniano total de um único átomo se compõe da energia cinética do núcleo e dos elétrons, de várias potenciais de interação entre o núcleo e os elétrons, de interações com vários tipos de campos eletromagnéticos externos.

$$ \hat{H} = -\frac{\hbar^2}{2m} \nabla^2_R + \sum_{i=1}^{N} \left(\frac{-\hbar^2}{2m} \nabla^2_{r_i} \right) + V(\mathbf{r}_1, \mathbf{s}_1, ..., \mathbf{r}_N, \mathbf{s}_N) + V_{ext} \quad (7.86) $$

É claro que, com a presença de outros átomos, outras interações podem gerar outras contribuições relevantes para o hamiltoniano.

As seguintes interações contribuem para o potencial V. As interações coulombianas,

$$ V_{ncd-elec} = -\sum_{i=1}^{Z} \frac{Ze^2}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}_i|} \quad \text{e} \quad V_{ele-elec} = \sum_{i<j}^{Z} \frac{e^2}{4\pi\epsilon_0 |\mathbf{r}_i - \mathbf{r}_j|} \quad (7.87) $$

a antisimetria da função de onda, isto é, integrais de intercâmbio,

$$ V_{sym} \quad (7.88) $$

as energias dos acoplamentos spin-órbita,

$$ V_{ls} = -\sum_{i=1}^{Z} \frac{1}{e^2m^2e^2} \frac{1}{|\mathbf{r} - \mathbf{r}_i|} \frac{dV_{cl}}{dr_i}(\mathbf{l}_i \cdot \mathbf{s}_i) \quad (7.89) $$

as energias dos acoplamentos spin-spin,

$$ V_{ss} = \sum_{i \neq j = 1}^{Z} \frac{e^2}{m^2} \left[\frac{\sigma_1 \cdot \sigma_j}{|\mathbf{r}_i - \mathbf{r}_j|^3} - 3 \frac{[\sigma_1 \cdot (\mathbf{r}_i - \mathbf{r}_j)][\sigma_j \cdot (\mathbf{r}_i - \mathbf{r}_j)]}{(\mathbf{r}_i - \mathbf{r}_j)^5} \right] \quad (7.90) $$

as energias dos acoplamentos órbita-órbita,

$$ V_{ll} = \sum_{i \neq j = 1}^{Z} c_{ij}(\mathbf{l}_i \cdot \mathbf{l}_j) \quad (7.91) $$.

Obtemos um novo hamiltoniano de estrutura fina da forma,

$$ H_{FS} = \mathbf{j}_i \cdot \mathbf{j}_i \quad (7.85) $$
interações entre o spin dos elétrons e o spin nuclear e entre o momento angular orbital dos elétrons e o spin nuclear,

\[V_{hfs} = \frac{A}{\hbar^2} \mathbf{J} \cdot \mathbf{I}, \]

(7.92)
correções relativísticas,

\[V_{rel}, \]

(7.93)
Além disso, campos externos estáticos deslocam os níveis de energia e podem influenciar o acoplamento interno dos momentos angulares e dos spins

\[V_{ext} = -d \cdot \vec{E}, -\vec{\mu} \cdot \vec{B}. \]

(7.94)

O que são os números quânticos bons depende das amplitudes relativas das interações intra-atômicas:

Caso 1: Estrutura fina com acoplamento \(\mathbf{L} \cdot \mathbf{S} \) mais desdobramento Zeeman da estrutura hiperfina: \(V_{ncl-ele}, V_{ele-ele}^r \gg V_{ele-ele}^a, V_{sym} \gg V_{ls} \gg V_{hfs} \gg V_B \) os números quânticos são \(|n_i, l_i, \mathbf{L}, \mathbf{S}, J, m_J, m_F \rangle \).

Caso 2: Estrutura fina com acoplamento \(\mathbf{j} \cdot \mathbf{j} \) mais desdobramento Zeeman da estrutura hiperfina: \(V_{ncl-ele}, V_{ele-ele}^r \gg V_{ls} \gg V_{ele-ele}^a, V_{sym} \gg V_{hfs} \gg V_B \) os números quânticos são \(|n_i, l_i, j_i, \mathbf{J}, \mathbf{F}, m_F \rangle \).

Caso 3: Estrutura fina com acoplamento \(\mathbf{L} \cdot \mathbf{S} \) mais hiperfina estrutura do desdobramento Zeeman: \(V_{ncl-ele}, V_{ele-ele}^r \gg V_{ele-ele}^a, V_{sym} \gg V_{ls} \gg V_B \gg V_{hfs} \) os números quânticos são \(|n_i, l_i, \mathbf{L}, \mathbf{S}, m_L, m_S, m_J \rangle \).

Caso 4: Estrutura fina com acoplamento \(\mathbf{L} \cdot \mathbf{S} \) mais desdobramento Paschen-Back da estrutura fina: \(V_{ncl-ele}, V_{ele-ele}^r \gg V_{ele-ele}^a, V_{sym} \gg V_B \gg V_{ls} \gg V_{hfs} \) os números quânticos são \(|n_i, l_i, \mathbf{L}, \mathbf{S}, m_L, m_S, m_J \rangle \).

\[
\begin{array}{c}
\text{estrutura grossa} \\
V_{ncl-ele} \text{ desdobramento em } n \\
\downarrow \\
V_{ele-ele} \text{ desdobramento em } l \\
\downarrow \\
V_{sym} \text{ desdobramento em } S \\
\downarrow \\
\text{estrutura fina} \\
V_{ee} \text{ desdobramento em } L \\
\downarrow \\
V_{ls} \text{ desdobramento em } J \\
\downarrow \\
\text{estrutura hiperfina} \\
V_{hfs} \text{ desdobramento em } F \\
\downarrow \\
\text{efeito Zeeman} \\
V_{ls} \text{ desdobramento em } m_F \\
\end{array}
\]

\[
\begin{array}{c}
\text{estrutura grossa} \\
V_{ncl-ele} \text{ desdobramento em } n \\
\downarrow \\
V_{ele-ele} \text{ desdobramento em } l \\
\downarrow \\
V_{sym} \text{ desdobramento em } S \\
\downarrow \\
\text{estrutura fina} \\
V_{ee} \text{ desdobramento em } L \\
\downarrow \\
V_{ls} \text{ desdobramento em } J \\
\downarrow \\
\text{estrutura hiperfina} \\
V_{hfs} \text{ desdobramento em } F \\
\downarrow \\
\text{efeito Zeeman} \\
V_{ls} \text{ desdobramento em } m_F \\
\end{array}
\]

7.5 Exercícios

7.5.1 Simetrização de bosons e fermions

7.5.1.1 Ex: Átomo de hélio

Consultando uma tabela de isótopos determine o caráter bosônico ou fermiônico das seguintes espécies atômicas: \(^{87}\text{Sr},^{86}\text{Sr},^{87}\text{Rb},^{39}\text{K} e^{40}\text{K}.\)
7.5.2 Hélio

7.5.2.1 Ex: Átomo de hélio

Compare a energia de ligação medida com a predição do modelo de Bohr considerando a interação entre os elétrons até primeira ordem TPIT.

7.5.2.2 Ex: Blindagem no hélio

O átomo de hélio (ou átomos tipo-hélio como o H−) possuem dois elétrons interagentes em sua composição, o que faz com que estes sistemas não possuam solução exata. Para contornar este problema lançamos mão de uma série de métodos aproximados com o intuito de calcular os seus auto-estados e suas respectivas auto-energias. Dentre esses métodos, um bastante utilizado, devido principalmente a sua facilidade e praticidade, é o método variacional, em que calculamos o estado fundamental de um dado problema através de uma função teste que não é solução do problema original. Este método, quando aplicado em um átomo de hélio, utiliza como função teste, a solução do problema sem interação coulombiana entre os elétrons, que sentem somente a interação com a carga original do núcleo. Entretanto, este método poderia ser melhorado ainda mais caso considerássemos uma carga efetiva no núcleo, devido a interação deste com os próprios elétrons, e depois sim obtendo a função teste. Obtenha esta correção no caso do hélio.

Interprete o resultado.

\[\int \frac{\sin \theta_2}{\sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos \theta_2}} d\theta_2 = \frac{\sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos \theta_2}}{r_1r_2} \quad \text{e} \quad \langle \frac{1}{r} \rangle = \frac{Z}{a_B}. \]

7.5.3 Estrutura da casca eletrônica

7.5.4 O sistema periódico dos elementos

7.5.4.1 Ex: Níveis de excitação eletrônica de alcalinos

Explique porque
a. o estado [Li] (2s2)S\textsubscript{J} tem energia menor do que o [H] (2s2)S\textsubscript{J};
b. o estado [Li] (2s2)S\textsubscript{J} tem energia menor do que o [Li] (2p2)P\textsubscript{J};
c. o estado [Na] (3d2)D\textsubscript{J} tem energia menor do que o [Na] (4p2)P\textsubscript{J}.

PERIODIC TABLE

Atomic Properties of the Elements

Frequently used fundamental physical constants

- Speed of light in vacuum: \(c = 299,792,458 \text{ m s}^{-1} \) (exact)
- Planck constant: \(h = 6.626 \times 10^{-34} \text{ J s} \)
- Elementary charge: \(e = 1.602 \times 10^{-19} \text{ C} \)
- Electron mass: \(m_e = 9.1094 \times 10^{-31} \text{ kg} \)
- Proton mass: \(m_p = 1.673 \times 10^{-27} \text{ kg} \)
- Fine-structure constant: \(\alpha = 1/137.036 \)
- Rydberg constant: \(R_H = 1.09737 \times 10^7 \text{ m}^{-1} \)
- Bohr radius: \(R_B = 3.2894 \times 10^{-15} \text{ m} \)

U.S. National Institute of Standards and Technology

For the most accurate values of these and other constants, visit www.physics.nist.gov

7.5. EXERCÍCIOS

For a description of the atomic data, visit physics.nist.gov/periodic

[Table containing atomic and chemical data for various elements]
Capítulo 8

Moléculas diméricas

Em sistemas de muitos corpos, as interações interatômicas devem ser consideradas. Essas interações são geralmente eletrostáticas, mas geralmente não podem ser dadas em forma de expressões fechadas. Por exemplo, a colisão de dois átomos pode acontecer em uma multidão de canais, isto é, potenciais de interação $V(r_i - r_j)$. As forças interatômicas não só governam colisões mas podem sustentar estados ligados moleculares. Isso introduz novos graus de liberdade nos sistemas de muitas partículas através de excitações possíveis de movimentos de vibração ou de rotação.

Figura 8.1: Exemplo de um spaghetti de potenciais interatômico: Os primeiros estados da molécula 85Rb.

Neste curso não remos além de dímeros homo- ou heteronucleares, isto é, moléculas que consistem de dois átomos iguais ou diferentes.

8.1 A ligação molecular

8.1.1 Ligação iônica e covalente

Existem duas possibilidades para ligar dois átomos, a ligação iônica e a ligação covalente. A ligação iônica é governada pelas grandezas eletroafinidade (EA), eletronegatividade (EN) e a energia de ionização (IE):

\[^{1}\text{Não estamos considerando aqui ligações metálicas nem de pontos hidrogênicos.}\]
Figura 8.2: Aproximações no tratamento de moléculas.

- **Energia de ionização**: Energia necessária para liberação de um elétron por um átomo neutro, p.ex. Na + 5.1 eV → Na⁺ + e⁻.

- **Eletroafinidade**: Energia liberada pela captura de uma elétron por um átomo neutro, p.ex. Cl + e⁻ → Cl⁻ + 3.8 eV.

- **Eletronegatividade**: Medida para estabilidade de um orbital de valência, p.ex. aquele do flúor (3.98) é mais estável do que aquele do césio (0.79), tal que o flúor segura melhor seus elétrons do que o césio.

Em curtas distâncias, a troca de um elétron entre os átomos pode diminuir a energia. A ligação então se faz pela atração coulombiana entre dois íons, e a energia de ligação pode ser estimada através da interação eletrostática.

Exemplo 12 (Ligação iônica no NaCl): Por exemplo, um átomo sódio e um de cloro ganham energia formando uma molécula,

\[
\text{Na} + 5.1 \text{ eV} \rightarrow \text{Na}^+ + e^- \\
\text{Na}^+ + \text{Cl}^- \rightarrow \text{NaCl} + 4.9 \text{eV} \\
\text{Na} + \text{Cl} \rightarrow \text{NaCl} + (3.8 - 5.1 + 4.9) \text{ eV} .
\]

As moléculas são polares é, portanto, tem um momento elétrico dipolar permanente. A ligação não tem direção preferencial, pois cada átomo é perfeitamente isotrópico. Portanto, esse tipo é bem adaptado para construção de redes cristalinas.

Para entender a **ligação covalente**, consideramos o exemplo H₂⁺ e estimamos a energia para cada distância R entre os núcleos. Nesse caso, em contraste aos átomos, a simetria esférica é quebrada e, portanto, a degenerescência energética a respeito á paridade é abolida. Para as funções de onda \(\psi(-x) = \pm \psi(x) \) as energias variam diferentemente com R. A função de onda par, que tem uma probabilidade aumentada do elétron de estar entre os núcleos é ligando, a função ímpar, que desaparece entre os núcleos, é anti-ligando. De fato, um elétron localizado no centro entre duas cargas positivas pode vencer a repulsão coulombiana entre os núcleos, a distância recíproca dos quais é o dobre. Obviamente, a energia não pode cair em baixo daquele
8.1. A LIGAÇÃO MOLECULAR

Figura 8.3: Esquema para (a) ligação iónica de NaCl é (b) covalente de H₂.

do estado fundamental do He⁺, sendo aproximadamente \(-4 \times 13.6\) eV. Com dois elétrons, como no caso da molécula neutra H₂, a orientação anti-paralela dos spins, ↑↓, permite colocar os dois elétrons no mesmo orbital, enquanto para orientação paralela, ↑↑, leva até anti-ligação. Cada elétron sem parceiro num orbital pode formar uma ligação covalente, por exemplo, o fósforo [P]=[Ne]3s²3p³ tem três orbitais disponíveis que correspondem á diferentes números quânticos magnéticos. A ligação covalente é direcional (hibridização sp¹, sp² ou sp³), o que torna-se essencial para estrutura de moléculas como CH₄.

8.1.2 Aproximação de Born-Oppenheimer e a molécula H₂⁺

A aproximação de Born-Oppenheimer em física molecular consiste em considerar, primeiro as posições dos núcleos como fixos. Isso nos permite estudar os estados estacionários dos elétrons sujeitos ao potencial criado pelos núcleos. O movimento não está tratado até depois, usando as energias eletrônicas. Mudando a distância internuclear \(R\), as energias eletrônicas (computadas para um \(R\) fixo) ficam as mesmas por causa da variação instantânea das funções de onda eletrônicas. (Essa variação súbita ocorre por causa da massa muito inferior do elétron em comparação com a massa dos núcleos. As energias eletrônicas não variáveis jogam o papel de energias potenciais das interações entre os núcleos [1].

8.1.2.1 Separação do centro das massas

Consideramos duas massas pesadas, \(M_{a,b} = M\) separadas por uma distância \(R\) e interagindo através de um potencial \(V_{nn}(R)\). Também tem uma massa leve \(m_e\) interagindo com as outras massas através do potencial \(V_{ne}(r)\). O hamiltoniano é

\[
\hat{H} = -\frac{\hbar^2}{2M} \nabla^2_a + -\frac{\hbar^2}{2M} \nabla^2_b + -\frac{\hbar^2}{2m_e} \nabla^2_e + V_{nn}(|R_a - R_b|) + V_{ne}(|R_a - R_e|) + V_{ne}(|R_b - R_e|) .
\] (8.2)

Primeiramente, transformamos para o sistema de centro das massas pesadas dado por \(X = \frac{M_a R_a + M_b R_b}{M} = R_a + R_b\). A distância das pesadas é \(R = R_a - R_b\), e a coordenada da massa leve a contar do centro de massa é \(r = R_a - \frac{1}{2} R - R_e\). Introduzindo a massa reduzida das pesadas \(M_r = \frac{M}{2}\),

\[
\left[-\frac{\hbar^2}{2M} \nabla^2_X + -\frac{\hbar^2}{2M_r} \nabla^2_R + V_{nn}(R) + -\frac{\hbar^2}{2m_e} \nabla^2_e + V_{ne}(|r + \frac{1}{2} R|) + V_{ne}(|r - \frac{1}{2} R|) \right] \Theta(X) \Psi(R, R_e) = T \Theta(X) \Psi(R, R_e) .
\] (8.3)
Figura 8.4: Sistema de duas massas pesadas e uma leve.

Aqui fizemos o ansatz para a função de onda total \(\Psi = \Theta(X)\Psi(R, R_e) \), assumindo que o centro das massas somente está influenciado pelas massas pesadas,

\[
\frac{-\hbar^2}{2M} \nabla_X^2 \Theta(X) = T\Theta(X) \tag{8.4}
\]

\[
\left[-\frac{\hbar^2}{2M} \nabla_R^2 + V_{nn}(R) + \frac{-\hbar^2}{2m_e} \nabla_r^2 + V_{ne}(|r + \frac{1}{2}R|) + V_{ne}(|r - \frac{1}{2}R|) \right] \Psi(R, R_e) = E\Psi(R, R_e) . \tag{8.5}
\]

8.1.2.2.2 Aproximação adiabática

A aproximação de Born-Oppenheimer agora consiste em assumir, que o movimento de \(m \), descrito por \(\psi \), não é afetado pelo potencial de interação das pesadas. Isso só vale, enquanto as pesadas são inertes na escala de tempo do movimento de \(m \). Por a mesma razão, o movimento das pesadas é independente da posição de \(m \), o que nos permite separar, \(\Psi(R, R_e) = \psi(R, r) \phi(R) \) e \(E = \varepsilon(R) + E_c \). Portanto, podemos calcular a segunda derivada,

\[
\nabla_R^2 \psi(R, r) \phi(R) = \phi(R) \nabla_R^2 \psi(R, r) + 2[\nabla_R \psi(R, r)] : [\nabla_R \phi(R)] + \psi(R, r) \nabla_R^2 \phi(R) \tag{8.6}
\]

\[
\simeq \psi(R, r) \nabla_R^2 \phi(R) ,
\]

e postular, que os dois primeiros termos sejam negligenciáveis em comparação com o terceiro. Assim, podemos separar a segunda equação (8.4) em duas partes, a primeira sendo,

\[
\left[-\frac{\hbar^2}{2m_e} \nabla_r^2 + V_{ne}(|r + \frac{1}{2}R|) + V_{ne}(|r - \frac{1}{2}R|) \right] \psi(r, R) = \varepsilon(R)\psi(r, R) . \tag{8.7}
\]

Resolvemos esta equação para o grau de liberdade eletrônico \(r \) escolhendo uma distância internuclear \(R \) fixa e substituímos na segunda expressão (8.4), dando,

\[
\left[-\frac{\hbar^2}{2m_e} \nabla_r^2 + V_{nm}(R) + \varepsilon(R) \right] \phi(R) = E\phi(R) . \tag{8.7}
\]

Colocando a distância interatómica \(R \) como um parâmetro fixo, a solução da Eq. (8.6) fornece os orbitais eletrônicos e as suas energias \(\varepsilon(R) \). O potencial de Born-Oppenheimer se compõe do potencial repulsivo eletrostático dos núcleos e da energia cinética do elétron, \(V_{nn} + \varepsilon(R) \). Inserindo este potencial interatómico completo na Eq. (8.7), podemos determinar a sua estrutura vibracional.

Exemplo 13 (A molécula \(H_2 \)): Para o caso da molécula \(H_2 \) inserimos o potencial de Coulomb,

\[
V_{ee}(r) = -\frac{e^2}{4\pi\varepsilon_0 r} \quad e \quad V_{ne}(R) = \frac{e^2}{4\pi\varepsilon_0 R} .
\]
A aproximação de Born-Oppenheimer permite a separação entre os movimentos nuclear, \[T_n = -\frac{\hbar^2}{2m_n} \nabla^2_n, \] e eletrônico, \[T_e = -\frac{\hbar^2}{2m_e} \nabla^2_e, \] pelo procedimento seguinte:

1. Escolhemos uma distância \(R \) internuclear (considerada fixa) e resolvemos a equação (8.6) para \(\psi \), isto é,

\[
[\hat{T}_e + \hat{V}_{ee} + \hat{V}_{ne}]\psi(r, R) = \varepsilon(R)\psi(r, R),
\]

fornecendo diversos orbitais eletônicos e a energia dos elétrons em função da distância internuclear \(R \), \[\varepsilon(R) = -\frac{\hbar^2}{2m_e} \kappa^2(R). \]

2. Em outras palavras, a presença dos elétrons gera uma energia adicional de interação entre os núcleos. O potencial completo de interação interatomica agora é,

\[
V_{mol}(R) = V_{nn}(R) + \varepsilon(R)(R).
\]

3. Inserimos a energia \(V_{mol} \) na equação (8.7) para \(\phi \),

\[
[\hat{T}_n + \hat{V}_{nn} + \varepsilon(R)]\phi_n(R) = E_n\phi_n(R),
\]

e resolvemos esta equação para obter os estados vibracionais ligados.

A Fig. 8.5 mostra um exemplo de potenciais nucleares efetivos para dois átomos, em função da distância \(R \) entre os núcleos. Cada curva corresponde a uma diferente solução da equação eletrônica, ou seja, a um estado eletrônico diferente. Em muitos casos, tais potenciais nucleares possuem uma região de equilíbrio estável. Os estados ligados localizados nessas regiões são estados **moleculares** de dois átomos.

![Figura 8.5: Potenciais nucleares efetivos, para a interação entre dois átomos de rubídio (Rb2).](image)

Na prática, o cálculo de potenciais adiabáticos de Born-Oppenheimer é difícil e faz objeto de teorias como o **modelo dos orbitais moleculares** ou o **modelo valence bond**\(^2\).

8.1.3 Combinación linear de orbitais atômicos e a molécula H\(_2\)

No seguinte discutiremos a estrutura eletrônica da molécula neutra mais simples: \(\text{H}_2 \). Para os estados eletrônicos baixos desta molécula, a aproximação de Born-Oppenheimer é totalmente

\(^2\)A aproximação de Born-Oppenheimer deixa de ser boa na presença de efeitos relativísticos ou de acoplamento spin-órbita.
CAPÍTULO 8. MOLÉCULAS DIMÉRICAS

satisfatória, isto é, queremos resolver uma equação de Schrödinger tipo (8.6), mas com dois elétrons. Assim, estamos interessados no Hamiltoniano eletrônico,

$$\hat{H} = -\frac{\hbar^2}{2m_e} (\nabla_i^2 + \nabla_j^2) + \frac{e^2}{4\pi\epsilon_0} \left(\frac{1}{r_{ab}} - \frac{1}{|r_i - R_a|} - \frac{1}{|r_j - R_b|} - \frac{1}{|r_i - R_a - r_j - R_b|} + \frac{1}{\rho^2} \right), \quad (8.8)$$

onde '1' e '2' denotam os dois elétrons e 'a' e 'b' os núcleos.

Não é possível resolver este problema de forma analítica. O procedimento padrão começa com a escolha de uma para base apropriada, isto é, uma base muito compacta que não dependesse da configuração da molécula. Ou seja, queremos a base composta de funções que não dependem da distância entre os dois núcleos, R_{ab}, para evitar fazer cálculos para diferentes comprimentos de ligação.

As funções de base mais naturais são os orbitais atômicos dos átomos de hidrogênio individuais. Quando o comprimento da ligação é muito grande, o sistema abordará o limite de dois átomos de hidrogênio não-interagentes. Neste caso, a função de onda eletrônica pode ser aproximada pelo produto de orbitais atômicos (AO) do átomo 'a' e do átomo 'b'. Portanto, a menor base que nos dá uma imagem realista do estado fundamental da molécula H₂ deve conter duas funções: $|1s_a\rangle$ e $|1s_b\rangle$. Para comprimentos de ligação finitos, é aconselhável permitir que os AOs se polarizem e se deformem em resposta à presença do outro elétron (e do outro núcleo). No entanto, as funções $|1s_a\rangle$ e $|1s_b\rangle$ não precisam ser exatamente as autofunções hidrogênicas. É suficiente requerer que elas sejam semelhantes aos orbitais 1s e centradas nos. Uma vez que a forma real dos orbitais ainda não é fixa, daremos todas as expressões em forma matricial abstrata, deixando a integração espacial para quando a forma dos orbitais for especificada. Isso é o método de combinação linear de orbitais atômicos (LCAO).

8.1.4 Teoria dos orbitais moleculares

Estamos agora em condições de discutir os princípios básicos do método do orbital molecular (MO), que é o fundamento da teoria da estrutura eletrônica das moléculas reais. O primeiro passo em qualquer abordagem do MO consiste na separação do hamiltoniano em duas partes para descrever os elétrons '1' e '2' separadamente e uma parte contendo para a interação entre eles:

$$\hat{H} = \hat{h}(1) + \hat{h}(2) + \hat{V}_{12} + \frac{e^2}{4\pi\epsilon_0} \frac{1}{R_{ab}} \text{ com}$$

$$\hat{h}(i) = -\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{e^2}{4\pi\epsilon_0} \left(\frac{1}{|r_i - R_a|} + \frac{1}{|r_i - R_b|} \right) \text{ e } \hat{V}_{12} = \frac{e^2}{4\pi\epsilon_0} \frac{1}{R_{12}},$$

onde $i = 1, 2$. Precisamos nós lembrar que, dentro da aproximação BO, R_{ab} é apenas um número. Escolhemos os hamiltonianos $\hat{h}(i)$ como a parte uni-eletrônica do hamiltoniano completo em representação matricial na base mínima:

$$\begin{pmatrix} \langle 1s_a|\hat{h}|1s_a\rangle & \langle 1s_a|\hat{h}|1s_b\rangle \\ \langle 1s_b|\hat{h}|1s_a\rangle & \langle 1s_b|\hat{h}|1s_b\rangle \end{pmatrix} \equiv \begin{pmatrix} \epsilon & \epsilon_{ab} \\ \epsilon_{ab} & \epsilon \end{pmatrix}, \quad (8.10)$$

definindo a energia uni-eletrônica média $\epsilon \equiv \langle 1s_a|\hat{h}|1s_a\rangle$ e o acoplamento não-diagonal (frequentemente chamado de integral de ressonância) $\epsilon_{ab} \equiv \langle 1s_a|\hat{h}|1s_b\rangle = \langle 1s_a|\hat{h}|s_b\rangle$. Podemos imediatamente diagonalizar esta matriz, os autovalores o os autoestados sendo:

$$\epsilon_{\pm} = \epsilon \pm \epsilon_{ab} \quad \text{e} \quad |\phi_{\pm}\rangle \propto \frac{1}{2} (|s_a\rangle \pm |s_b\rangle). \quad (8.11)$$
Os autoestados do hamiltoniano efetivo uni-eletrônico são chamado de *orbitais moleculares* (MO). Eles são funções uni-eletrônicas delocalizadas nas regiões espaciais da molécula.

Precisamos primeiramente normalizar os MOs, o que é mais complicado do que poderia parecer, pois os AOs não são ortogonais. Por exemplo, ao se aproximar os AOs dos átomos podem ter a mesma energia, de forma que a integral de sobreposição por

$$\langle \sigma \bar{\sigma} \rangle \langle 1s_a|1s_b \rangle = 1 \pm S .$$

Estas autofunções meramente mostram a simetria da molécula. Os dois átomos de hidrogênio são equivalentes e, portanto, os auto-orbitais devem dar peso igual à cada orbital $1s$. Assim, nossa escolha do hamiltoniano uni-eletrônico, na verdade, não importa muito, pois cada hamiltoniano é ortogonal e, portanto, os auto-orbitais devem dar peso igual à cada orbital $1s$.

O segundo passo na teoria MO consiste em construir a determinante à partir dos MOs correspondentes aos estados procurados. Para ilustração vamos olhar para o estado singlet mais baixo construído à partir dos orbitais moleculares. Notamos, que $h_{ab} < 0$, tal que $|\sigma\rangle$ tem energia inferior à $|\sigma^*\rangle$. Desprezando a interação o estados singlet mais baixo,

$$|\Phi_{MO}\rangle = |\sigma\rangle|\bar{\sigma}\rangle ,$$

Figura 8.7: Energia total em função da distância interatômica.
é o estado molecular fundamental para H₂. Para estimar a validade da aproximação, calculamos o valor esperado da energia, \(\langle |\sigma| \hat{H}|\sigma\rangle \), decompondo a função de onda em partes espaciais e de spin notando, que a parte de spin é normalizada:

\[
\langle |\sigma| \hat{H}|\sigma\rangle = \langle \sigma(1)|\langle \sigma(2)|\hat{H}|\sigma(1)\rangle|\sigma(2)\rangle \langle \Phi_{\text{spin}}|\Phi_{\text{spin}}\rangle = \langle \sigma(1)|\langle \sigma(2)|\hat{H}|\sigma(1)\rangle|\sigma(2)\rangle .
\] (8.14)

Assim, com (8.10) e,

\[
\langle \sigma(1)|\langle \sigma(2)|\hat{h}(2)|\sigma(1)\rangle|\sigma(2)\rangle = \langle \sigma(1)|\sigma(1)\rangle\langle \sigma(2)|\hat{h}(2)|\sigma(2)\rangle = \langle \sigma(2)|\hat{h}(2)|\sigma(2)\rangle \equiv \epsilon_\sigma
\]

\[
\langle \sigma(1)|\langle \sigma(2)|\hat{h}(1)|\sigma(1)\rangle|\sigma(2)\rangle = \langle \sigma(1)|\sigma(1)\rangle\langle \sigma(2)|\hat{h}(1)|\sigma(1)\rangle = \langle \sigma(1)|\hat{h}(1)|\sigma(1)\rangle \equiv \epsilon_\sigma
\]

\[
\langle \sigma(1)|\langle \sigma(2)|\hat{V}_{12}|\sigma(1)\rangle|\sigma(2)\rangle \equiv J_{\sigma} .
\] (8.15)

Juntando estes fatos, podemos escrever,

\[
\langle \Phi_{\text{MO}}|\hat{H}|\Phi_{\text{MO}}\rangle = \langle \Phi_{\text{MO}}|\hat{h}_1|\Phi_{\text{MO}}\rangle + \langle \Phi_{\text{MO}}|\hat{h}_2|\Phi_{\text{MO}}\rangle + \langle \Phi_{\text{MO}}|\hat{V}_{12}|\Phi_{\text{MO}}\rangle + \frac{1}{4\pi\epsilon R_{ab}} .
\] (8.16)

\[
= 2\epsilon_\sigma + J_{\sigma} + \frac{1}{4\pi\epsilon R_{ab}} .
\]

Cada um dos dois primeiros termos representa a energia de um único elétron (ou 1 ou 2) no campo produzido pelos núcleos (\(\hat{h}_1\)), enquanto o terceiro é a repulsão média dos dois elétrons. Note, que o primeiro e segundo termo ambos são positivos, tal que e a ligação deve vir da parte uni-eletrônica. Isto é a energia MO para o estado fundamental do H₂. Para um chute mais razoável das funções de base tipo 1s \(^3\) podemos determinar as grandezas desconhecidas de cima (\(\epsilon_\sigma e J_{\sigma}\)) numericamente e traçar a energia total como uma função de \(R_{ab}\) (curva azul pontilhada na Fig. 8.7). A função de energia adiabática exata determinada de dados experimentais (curva preta sólida) concorda bem em baixas energias. Resumindo os resultados com alguns números-chave notamos que a teoria MO prediz uma distância da ligação de 0.072 nm em concordância razoável com o valor exato de 0.074 nm. Podemos também comparar as energias de ligação,

\[
D_e = E_{H_2}(R_e) - \epsilon E_H .
\] (8.17)

A teoria dos MOs prevê uma energia de ligação de 5.0 eV em comparação com o valor experimental de 4.75 eV. Tendo em vista a simplicidade da função de onda e a ausência de parâmetros ajustáveis a concordância não é tão ruim. Infelizmente, longe da distância de equilíbrio, temos uma surpresa desagradável: a molécula não se dissocia em dois átomos de hidrogênio!

8.1.5 Ligação de valência

Para obter uma ideia do que está acontecendo perto da dissociação, expandimos o estado MO fundamental em termos de configurações AO:

\[
|\Phi_{\text{MO}}\rangle \propto |\sigma(1)\rangle|\sigma(2)\rangle|\Phi_{\text{spin}}\rangle
\]

\[
= \frac{1}{2(1+S)}(|1s_a(1)\rangle + |1s_b(1)\rangle)(|1s_a(2)\rangle + |1s_b(2)\rangle)|\Phi_{\text{spin}}\rangle
\]

\[
= \frac{1}{2(1+S)}(|1s_a(1)\rangle|1s_a(2)\rangle + |1s_a(1)\rangle|1s_b(2)\rangle + |1s_b(1)\rangle|1s_a(2)\rangle + |1s_b(1)\rangle|1s_b(2)\rangle)|\Phi_{\text{spin}}\rangle .
\]

\(^3\)Acontece que é mais conveniente ajustar a decomposição exponencial dos orbitais hidrogênicos a uma soma de gaussianos.
8.1. A LIGAÇÃO MOLECULAR

Os dois termos no meio da última linha, chamados de \textit{configurações covalentes}, são exatamente o que esperamos perto da dissociação: um elétron em cada átomo de hidrogênio. No entanto, o primeiro e o último termo (que são chamados de \textit{configurações iônicas}) correspondem a colocar dois elétrons em um átomo e nenhum no outro, o que nos dá \(H^+ \) e \(H^- \) na dissociação! Uma vez que o peso desses termos é fixo, é óbvio que obtemos a função de onda errada (e, portanto, a energia errada) ao dissociar essa molécula. Perto do ponto de equilíbrio, os termos iônicos contribuem significativamente para a verdadeira função de onda, tal que a teoria MO é boa neste ponto. Mas é sempre terrível na dissociação.

Uma alternativa à teoria MO representa a teoria da \textit{ligação de valência} (VB). Aqui, usa-se significativamente mais intuição física e descarta as configurações iônicas da função de onda MO. Assim, a função de onda VB do estado fundamental é:

\[
|\Psi\rangle \propto \frac{|1s_a(1)\rangle|1s_a(2)\rangle + |1s_b(1)\rangle|1s_a(2)\rangle |\uparrow(1)|\downarrow(2)\rangle + |\downarrow(1)|\uparrow(2)\rangle}{\sqrt{2}} \equiv |\Psi_{\text{space}}\rangle|\Psi_{\text{spin}}\rangle .
\]

A teoria VB pressupõe, que esta função de onda é uma boa aproximação da função de onda verdadeira para todas as distâncias de ligação e não somente para grandes distâncias \(R_{ab} \). Para verificar esta aproximação, podemos calcular a energia média para este estado VB. Primeiramente, normalizamos a função de onda VB,

\[
\langle \Psi | \Psi \rangle = \langle \Psi_{\text{space}} | \langle \Psi_{\text{spin}} | \Psi_{\text{space}} \rangle | \Psi_{\text{spin}} \rangle = \langle \Psi_{\text{space}} | \Psi_{\text{space}} \rangle
\]

\[= \frac{1}{2} \left((1s_a(1)\rangle|1s_b(2)\rangle + (1s_b(1)\rangle|1s_a(2)\rangle |\uparrow(1)|\downarrow(2)\rangle + |\downarrow(1)|\uparrow(2)\rangle \right) + (1s_b(1)\rangle|1s_a(2)\rangle |\downarrow(1)|\uparrow(2)\rangle + |\downarrow(1)|\uparrow(2)\rangle \right)
\]

\[= \frac{1}{2} (1 + S^2 + S^2 + 1) = 1 + S^2 .
\]
Portanto, a função de onda VB corretamente normalizada é:

$$|\Psi_{VB}\rangle = \frac{1}{2\sqrt{1 + S^2}} (|s_a(1)|s_a(2)) + |s_b(1)|s_a(2)) (|\uparrow(1)| \downarrow(2)) - |\downarrow(1)| \uparrow(2)) \right) .$$

(8.21)

Agora queremos calcular \(\langle \hat{H}_d \rangle\) para este estado. Notamos primeiramente, que a parte do spin não importa, pois o hamiltoniano é independente do spin:

$$\langle \Psi_{VB}\rangle \hat{H} |\Psi_{VB}\rangle = \langle \Psi_{spin}| \langle \Psi_{space}\rangle \hat{H} |\Psi_{space}\rangle |\Psi_{spin}\rangle = \langle \Psi_{space}| \hat{H} |\Psi_{space}\rangle .$$

(8.22)

O único remanescente do estado de spin é o fato que a função de onda espacial é simétrica, o que só é possível quando a parte de spin for antissimétrica. Tratando cada termo em \(\langle \hat{H} \rangle\) separadamente,

$$\langle \Psi|\hat{h}_1|\Psi\rangle = \frac{1}{2} \left(\langle s_a(1)|s_b(2)\rangle + \langle s_b(1)|s_a(2)\rangle \right) \hat{h}_1 (|s_a(1)|s_a(2)) + |s_b(1)|s_a(2))$$

(8.23)

$$= \frac{1}{2} \left(\langle s_a(1)|s_b(2)|s_a(1)|s_b(2)\rangle + \langle s_b(1)|s_a(2)|s_a(1)|s_b(2)\rangle \right)$$

$$+ \langle s_b(1)|s_a(2)|s_a(1)|s_b(2)\rangle + \langle s_b(1)|s_a(2)|s_a(1)|s_b(2)\rangle$$

$$= \frac{1}{2} (e + SH_{ab} + e + SH_{ab}) = \frac{e + SH_{ab}}{1 + S^2} .$$

Como os dois elétrons são idênticos, os elementos da matriz de \(\hat{h}_2\) são os mesmos como aqueles de \(\hat{h}_1\). O único termo restante é o valor médio da interação:

$$\langle \Psi|\hat{V}_{12}|\Psi\rangle = \frac{1}{2} \left(\langle s_a(1)|s_b(2)\rangle + \langle s_b(1)|s_a(2)\rangle \right) \hat{V}_{12} (|s_a(1)|s_a(2)) + |s_b(1)|s_a(2))$$

(8.24)

$$= \frac{1}{2} \left(\langle s_a(1)|s_b(2)|\hat{V}_{12}|s_a(1)|s_b(2)\rangle + \langle s_b(1)|s_a(2)|\hat{V}_{12}|s_a(1)|s_b(2)\rangle \right)$$

$$+ \langle s_b(1)|s_a(2)|\hat{V}_{12}|s_a(1)|s_b(2)\rangle + \langle s_b(1)|s_a(2)|\hat{V}_{12}|s_a(1)|s_b(2)\rangle$$

$$= \frac{1}{2} (e + SH_{ab} + e + SH_{ab}) .$$

O segundo e o terceiro termo são os mesmos. Eles são chamados de integrais de troca, pois os orbitais 'bra' tem ordem trocada em comparação com os 'ket':

$$K = \langle s_a(1)|s_b(2)|\hat{V}_{12}|s_a(1)|s_b(2)\rangle = \langle s_b(1)|s_a(2)|\hat{V}_{12}|s_a(1)|s_b(2)\rangle .$$

(8.25)

O segundo e o terceiro termo também são os mesmos. Eles são chamados de integrais de Coulomb, pois parecem devido à interação de Coulomb entre duas densidades de cargas:

$$J = \langle s_b(1)|s_a(2)|\hat{V}_{12}|s_a(1)|s_b(2)\rangle = \langle s_a(1)|s_b(2)|\hat{V}_{12}|s_a(1)|s_b(2)\rangle .$$

(8.26)

Portanto, temos o resultado,

$$\langle \Psi|\hat{V}_{12}|\Psi\rangle = \frac{J + K}{1 + S^2} .$$

(8.27)

Adicionando todos os termos, obtemos:

$$\langle \Psi_{VB}|\hat{H}|\Psi_{VB}\rangle = \langle \Psi_{VB}|\hat{h}_1|\Psi_{VB}\rangle + \langle \Psi_{VB}|\hat{h}_2|\Psi_{VB}\rangle + \langle \Psi_{VB}|\hat{V}_{12}|\Psi_{VB}\rangle + \frac{1}{R_{ab}}$$

(8.28)

$$= 2 \frac{e + SH_{ab}}{1 + S^2} + \frac{J + K}{1 + S^2} + \frac{1}{R_{ab}} .$$
Os termos de Coulomb e de troca são positivos. A repulsão nuclear é claramente positiva. Assim, os únicos termos que levam à ligação nesta imagem são a energia média de um elétron \(\epsilon \) e a integral de ressonância \(h_{ab} \). Se o primeiro termo é dominante, a ligação se deve à deslocalização, uma vez que um elétron localizado em um dos átomos apenas dará o valor atômico para \(\epsilon \), o que não implica um estado ligado. Se \(h_{ab} \) for grande, a ligação envolve algum caráter de ressonância, que pode ser conectado ao conceito familiar de ressonância entre diferentes estruturas de pontos de Lewis.

Uma avaliação numérica de todas as integrais dá a curva de potencial apresentada na Fig. 8.7 para a teoria do VB. Como esperado, esta função de onda VB simples dá o limite de dissociação correto, onde a teoria MO falha. Além disso, a exatidão do resultado VB simples é surpreendentemente bom mesmo perto do ponto de equilíbrio: A VB prevê uma distância de ligação de 0.071 nm (em comparação com a resposta correta de 0.074 nm) e \(D_e = 5.2 \) eV (em comparação com 4.75 eV). Assim, a função de onda VB também dá um bom acordo sem parâmetros ajustáveis. Mas, o mais importante é, que indica o caminho para melhorar a função de onda sempre que constatamos um erro óbvio: neste caso, vimos que a descrição da dissociação era fraca e construímos o ansatz VB para curar o problema. Esta abordagem de VB frequentemente é generalizada da seguinte maneira, quando se trata de moléculas poliatômicas. Escrevemos a função de onda como um produto de uma parte espacial e uma de spin:

\[
|\Psi\rangle = |\Psi_{\text{space}}\rangle|\Psi_{\text{spin}}\rangle.
\]

O principal pressuposto na teoria VB é que a parte espacial pode ser bem representada por um produto de funções de tipo atômico. Por exemplo, para a água, escreveríamos imediatamente uma configuração espacial mais apropriada como:

\[
|\Psi_{\text{space}}\rangle \simeq |1s_{H_1}\rangle|1s_{H_2}\rangle|1s_{O}\rangle|2s_{O}\rangle|2p_{zO}\rangle|2p_{xO}\rangle|2p_{yO}\rangle \cdot
\]

(8.30)

No entanto, há duas coisas erradas com esta função de onda. Primeiramente, sabemos que os orbitais atômicos híbridos em uma molécula. Portanto, precisamos fazer combinações lineares apropriadas dos AOs (neste caso híbridos \(sp^3 \)) para obter os AOs híbrizados. Nesse caso, os quatro híbridos \(sp^3 \) podem ser escritos simbolicamente como:

\[
|sp^3\rangle = c_{x,i}|2s\rangle + c_{y,i}|2p_x\rangle + c_{z,i}|2p_y\rangle + c_{z,i}|2p_z\rangle.
\]

(8.31)

e, portanto, uma configuração espacial mais apropriada é:

\[
|\Psi_{\text{space}}\rangle \simeq |1s_{H_1}\rangle|1s_{H_2}\rangle|1s_{O}\rangle|sp_{1O}^3\rangle|sp_{1O}^3\rangle|sp_{1O}^3\rangle|sp_{1O}^3\rangle|sp_{1O}^3\rangle|sp_{1O}^3\rangle.
\]

(8.32)

O outro problema com este estado é, que falta a simetria adequada para descrever fêrmions; o estado geral precisa ser antissimétrico. No caso de dois elétrons isso foi fácil de aplicar - singlets têm partes espaciais simétricas e tripletos antissimétricas. No entanto, no caso de muitos elétrons, as regras não são tão simples; na verdade, o tempo de computação numérica cresce exponencialmente com o número de elétrons.

Formalmente, deixaremos a derivação neste ponto, definindo um operador \(\mathcal{A} \) que 'antissimetriza' a função de onda. Neste caso,

\[
|\Psi_{\text{space}}\rangle \simeq \mathcal{A} \left[|1s_{H_1}\rangle|1s_{H_2}\rangle|1s_{O}\rangle|sp_{1O}^3\rangle|sp_{1O}^3\rangle|sp_{1O}^3\rangle|sp_{1O}^3\rangle|sp_{1O}^3\rangle \right].
\]

(8.33)

Em geral, os resultados da teoria VB são muito precisos para os pequenos sistemas, onde ela pode ser aplicada. Os comprimentos de ligação são um pouco curtos, e as energias de ligação tendem a
ser pequenas demais, mas os resultados são qualitativamente excelentes. Além disso, os orbitais atômicos hibridizados corretos caem diretamente fora do cálculo, dando uma boa introspecção qualitativa. Além disso, observe que as configurações atômicas não devem mudar (ou muito pouco), quando a geometria da molécula muda (uma vez que os orbitais dependem do átomo e não da estrutura molecular). Portanto, essas funções de ondas VB têm uma forte conexão com os estados diabáticos discutidos anteriormente. No entanto, a quantidade exponencial de tempo que se deve investir para fazer esses cálculos torna-los impraticáveis para a maioria de moléculas de interesse.

8.2 Estrutura rovibracional dos potenciais moleculares

A separação do movimento dos núcleos da dinâmica eletrônica feita na aproximação de Born-Oppenheimer levou às equações (8.6) e (8.7). Na seção precedente analisamos em detalhe a equação (8.6) no âmbito de entender o fenômeno da ligação molecular.

Na seção seguinte vamos analisar a equação (8.7), que determina o movimento dos núcleos. Separando as partes radiais e angulares do movimento vamos descobrir estados vibracionais e rotacionais.

8.2.1 As equações radial e angular

A interação entre dois átomos idênticos é descrito pelo seguinte hamiltoniano, onde \(M_r = (M_a^{-1} + M_b^{-1})^{-1} = M/2 \) a massa reduzida dos núcleos,

\[
\hat{H} = \frac{\mathbf{P}^2}{2M_r} + V_{mol}(R) \quad \text{com} \quad V_{mol}(R) = \frac{e^2}{4\pi\varepsilon_0 R} + V_{BO}(R).
\]

O potencial de interação \(V_{mol} \) se compõe de uma força de Coulomb internuclear repulsiva e de um potencial adiabático de Born-Oppenheimer devido à interação dos elétrons entre si e com os dois núcleos \(^4\). A energia cinética é aquela do movimento relativo (o movimento do centro das massas já foi separado na Sec. 8.1.2, tal que neste sistema inercial, a energia cinética translacional desaparece). Em coordenadas esféricas,

\[
\frac{\mathbf{P}^2}{2M_r} = -\frac{\hbar^2}{2M_r} \left[\frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial}{\partial R} \right) + \frac{1}{R^2} \frac{\hat{L}^2}{\hbar^2} \right].
\]

A parte angular, que foi discutida na Sec. 2.1.1, descreve uma rotação rígida dos átomos homonucleares em torno do seu centro de massas com a energia de rotação,

\[
V_\ell(R) = \frac{\mathbf{L}^2}{2M_r R^2} = \frac{\hbar^2 \ell (\ell + 1)}{2M_r R^2},
\]

também chamada de barreira centrífuga. A parte radial,

\[
\left[-\frac{\hbar^2}{2M_r} \frac{\partial^2}{\partial R^2} + V_\ell(R) + V_{\text{coulomb}}(R) \right] u(R) = Eu(R),
\]

onde \(u(R) = rR(R) \) é a função de onda radial do movimento nuclear. O potencial interatômico causa um movimento de vibração. Os estados vibracionais do potencial adiabático são quantizados e caracterizados por uma energia de vibração bem definida. Discutiremos a estrutura ro-vibracional nas seções seguintes.

\(^4\)Notamos aqui, que em grandes distâncias outras forças chamadas forças de van der Waals dominam a interação interatômica. Estas serão discutidas na Sec. 8.3.
8.2. ESTRUTURA ROVIBRACIONAL DOS POTENCIAIS MOLECULARES

8.2.1.1 Bandas rotacionais e vibracionais

Moléculas têm bem mais graus de liberdade do que átomos. Por exemplo, os átomos de uma molécula dimérica podem vibrar dentro do potencial de interação mútua. No sistema do centro de massas podemos imaginar estas vibrações como oscilações de um átomo com massa reduzida e com energia quantizada. A molécula pode girar e ter um momento de inércia. Esses graus de liberdade contribuem energias ao hamiltoniano da molécula, ou diretamente ou através de interações com outros graus. Por isso, os espectros das moléculas tem uma complexidade bem maior.

No entanto, os regimes de energias das maiores excitações são bem diferentes. A escala típica de energia de ligação (profundidade do potencial interatômico) é \(\Delta E \approx 20 \dots 200 \text{ THz} \) \((0.1 \dots 1 \text{ eV})\). As excitações eletrônicas ocorrem no regime de \(\Delta E \approx 100 \text{ THz} \) \((0.01 \text{ eV})\). O espaçamento entre excitações vibracionais tipicamente é de \(E_{v+1} - E_v \approx \text{THz} \). Finalmente, as excitações rotacionais ficam na escala de \(E_{v+1} - E_v \approx 100 \text{ MHz} \) \((10^{-6} \text{ eV})\). Como em temperatura ambiente (um gás de moléculas em equilíbrio \(T = 300 \text{ K} \)) a energia está numa escala de \(2.5 \times 10^{-2} \text{ eV} \), o grau de liberdade da excitação eletrônica está gelado, enquanto uma distribuição larga de estados vibracionais e rotacionais pode ser excitada (por exemplo, por colisões intermoleculares). A grande diferença de escalas facilita a separação delas e, portanto, a identificação da proveniência do estados observados em medidas experimentais.

8.2.2 Estados moleculares vibracionais

A energia potencial de uma molécula cresce, quando os núcleos são deslocados das suas posições de equilíbrio. Quando o deslocamento, \(x \equiv R - R_e \) é pequeno, podemos expandir a energia potencial,

\[
V_{\text{mol}}(x) = V_{\text{mol}}(0) + \frac{dV_{\text{mol}}(0)}{dx} x + \frac{1}{2} \frac{d^2V_{\text{mol}}(0)}{dx^2} x^2 + \ldots. \tag{8.38}
\]

A energia de equilíbrio não interessa e a primeira derivada desaparece no equilíbrio. Portanto,

\[
V_{\text{mol}}(x) \approx \frac{1}{2} k x^2 \quad \text{com} \quad k \equiv \frac{d^2V_{\text{mol}}(0)}{dx^2}. \tag{8.39}
\]

Usando a massa efetiva podemos escrever o hamiltoniano,

\[
\hat{H}_{\text{mol}} = -\hbar^2 \frac{d^2}{2m_1 \ dx^2} - \hbar^2 \frac{d^2}{2m_2 \ dx^2} + \frac{1}{2} k x^2 = -\hbar^2 \frac{d^2}{2Mr \ dx^2} + \frac{1}{2} k x^2. \tag{8.40}
\]

O espectro de energia desse grau de liberdade, portanto, é

\[
E_v = \hbar \omega (v + \frac{1}{2}) \tag{8.41}
\]

com \(\omega = \sqrt{k/M_r} \). Isto é, no fundo de potenciais profundos, os níveis de energia são equidistantes.

8.2.2.1 Vibrações anarmônicas no potencial de Morse

Para maiores deslocamentos não podemos mais desprezar os termos anarmônicos na expansão de Taylor. Uma melhor aproximação é o potencial de Morse. Este potencial (azul na Fig. 8.9),

\[^5\text{Estados em potenciais eletronicamente excitados (isto é, um dos elétrons de valência fica num orbital excitado) são ligados mais fracamente, porque os elétrons não são no orbital mais ligando.}\]

Figura 8.9: Muitos potenciais são aproximadamente harmónicos no centro, como p.ex. o potencial de Morse (azul). A curva vermelho mostra o potencial harmônico aproximado.

diferentemente do potencial harmônico (vermelho na Fig. 8.9), é caracterizado por um assíntota para distâncias interatômicas grandes. Por isso, ele é frequentemente usado como aproximação analítica aos potenciais moleculares,

\[V_{\text{morse}} = D_e (1 - e^{-a(r-r_e)})^2, \quad (8.42) \]

onde \(r \) é a distância interatômica, \(r_e \) a distância de ligação de equilíbrio, \(D_e \) a profundidade do potencial contando à partir do limite de dissociação e \(a \) um parâmetro controlando o alcance do potencial. No fundo do potencial podemos fazer a aproximação harmônica,

\[V_{\text{morse}}(r) \approx k^2 (r - r_e)^2, \quad (8.43) \]

vimos que ele é uma combinação de um potencial repulsivo de curto alcance e um potencial atrativo de longo alcance (em analogia com o potencial de Lennard-Jones).

O cálculo do espectro de energia desse potencial é mais difícil [10],

\[E_v = \hbar \omega (v + 1/2) - \hbar \omega \chi_e (v + 1/2)^2 - D_e, \quad (8.44) \]

com \(\omega \chi_e \equiv \frac{\hbar^2}{2M_e} \) e \(\omega \equiv \sqrt{k/M_e} \), mas o fato que existe uma expressão analítica é interessante para calibração de métodos numéricos. O segundo termo da expressão (8.44), proporcional à constante de anarmonicidade \(\chi_e \), torna-se dominante para altas excitações. O potencial é finito com uma energia de dissociação

\[D_0 = D_e - E_0. \quad (8.45) \]

O número de estados vibracionais é limitado \(v = 0, 1, \ldots, v_{\text{max}} \). Com \(E < 0 \), achamos

\[v_{\text{max}} < \frac{1}{\frac{1}{x_e} - \frac{1}{2}}. \quad (8.46) \]

Exemplo 14 (Potencial de Morse): Para resolver a equação de Schrödinger:

\[\left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + V(r)\right) \Psi(v) = E_v \Psi(v), \]

e conveniente introduzir novas variáveis:

\[x \equiv ar, \quad \lambda \equiv \frac{\sqrt{2mD_e}}{ah}, \quad \epsilon_v \equiv \frac{2m}{a^2\hbar^2} E_v, \]
uma vibração nuclear

um estado estacionário adaptado, minimizando a energia para essa distância. Isso equivale à dinâmica dos elétrons. A escala temporal para transições eletrônicas é aproximada de Born-Oppenheimer

o estado eletrônico da molécula, pois o espectro vibracional depende da estrutura eletrônica. A

8.2. ESTRUTURA ROVIBRACIONAL DOS POTENCIAIS MOLECULARES

137

água precisamos analisar com mais detalhes as regras de seleção impostas ao momento dipolar
térmico. No entanto, como as transições mais fortes são induzidas por migrações dipolares entre estados vibracionais e redistribuir as suas populações de maneira a estabelecer um equilíbrio
campos eletromagnéticos do tipo

8.2.2 Regras de seleção vibracionais

Os estados relevantes para transições vibracionais são especificados por \(|\epsilon, v\rangle \), onde \(\epsilon \) denota o estado eletrônico da molécula, pois o espectro vibracional depende da estrutura eletrônica. A aproximação de Born-Oppenheimer nós permite considerar as vibrações lentas separadamente da dinâmica dos elétrons. A escala temporal para transições eletrônicas é \(1/\Delta E_e = 10^{-16} \text{ s}^{-1} \) e para uma vibração nuclear \(1/\Delta E_v = 10^{-13} \text{ s}^{-1} \). Para cada distância dos núcleos os elétrons formam um estado estacionário adaptado, minimizando a energia para essa distância. Isso equivale à
formação de um potencial adiabático de interação entre os núcleos dentro do qual a distância dos núcleos pode vibrar. Para achar quais transições vibracionais são possíveis, precisamos calcular a matriz,

\[
\langle \epsilon', v' | \hat{d} | \epsilon, v \rangle = \langle v' | \hat{d} | v \rangle .
\]

(O. 8.47)

O momento dipolar, \(\hat{d} = \langle \epsilon | \hat{d} | \epsilon \rangle\), da molécula depende da distância dos núcleos, pois as órbitas eletrônicas \(|\epsilon\rangle\) dependem da distância. Portanto, podemos expandir,

\[
\hat{d} = \hat{d}_0 + \frac{1}{2} \frac{d^2 \hat{d}_0}{dx^2} \hat{x}^2 + \ldots
\]

(8.48)

Portanto, a matriz de transição é,

\[
\langle \epsilon', v' | \hat{d} | \epsilon, v \rangle = \hat{d}_0 \delta_{v,v'} + \frac{d\hat{d}_0}{dx} \langle v' | \hat{x} | v \rangle + \frac{d^2 \hat{d}_0}{dx^2} \langle v' | \hat{x}^2 | v \rangle + \ldots
\]

(8.49)

O primeiro termo desaparece, isto é, transições só podem acontecer, quando o momento dipolar varia com a distância. Por isso, dímeros homonucleares não fazem transições vibracionais.

Para moléculas heteronucleares com cargas eletrônicas que não dependem da distância dos átomos, o momento dipolar varia linearmente para pequenos deslocamentos. Nesse caso, só precisamos do segundo termo da expansão. Dentro da aproximação harmônica, o operador de posição pode ser exprimido por, \(\hat{x} \propto \hat{a} + \hat{a}^\dagger\). Portanto, só transições \(\Delta v = \pm 1\) são possíveis. No entanto, devido a anarmonicidades, termos superiores, \(\hat{x}^n \propto (\hat{a} + \hat{a}^\dagger)^n\) tornam-se influentes, e transições com \(\Delta v = \pm 2, \pm 3, \ldots\) ficam possíveis.

Assim, em potenciais anarmonicos, as regras de seleção vibracionais são substituídas pelo conceito da sobreposição das funções de onda chamada de fator de Franck-Condon.

A espectroscopia Raman é uma ferramenta muito útil para analisar espectros rovibracionais. Nesse método, um espalhamento inelástico dá origem às linhas Stokes e anti-Stokes em \(\Delta v = \pm 1, \pm 2\). O espectro do estado fundamental é assimétrico por causa da ausência do estado inferior. Em dímeros homonucleares, os spins nucleares têm um impacto importante sobre os espectros Raman. Considerações de paridade mostram que existem só linhas pares ou impares.

8.2.3 O princípio de Franck-Condon

As intensidade das possíveis transições moleculares são, qualitativamente, descritas pelo princípio de Franck-Condon, cujo enunciado clássico é o que se segue:

O salto de um elétron durante uma transição molecular ocorre num tempo muito pequeno comparado com a escala de tempo do movimento nuclear, de modo que, imediatamente após o salto, os núcleos permanecem praticamente nas mesmas posições e nas mesmas velocidades relativas de antes do salto [15].

Por isso, as transições são desenhadas verticalmente no esquema dos potenciais mostrado na Fig. ????. Para dar taxas consideráveis, as transições devem ocorrer quando as velocidades nucleares nos dois estados acoplados são idênticas, o que é o caso nos pontos de retorno clássicos. Nestes pontos, as funções de onda são máximas 6.

Com esse princípio de Franck-Condon, podemos determinar quais são as transições mais fortes entre níveis vibracionais de uma molécula, conforme representado na Fig. 8.10(direita). Em particular, devido à compatibilidade com frequências ópticas, nos interessamos por transições entre níveis vibracionais de diferentes estados eletrônicos.

6Note, que a presença de uma estrutura hiperfina pode modificar as regras de seleção.
8.2. ESTRUTURA ROVIBRACIONAL DOS POTENCIAIS MOLECULARES

Figura 8.10: (Esquerda, código: AM_Molecula_FourierGrid.m) Funções de onda moleculares num potencial para três estados vibracionais diferentes. (Direita) Representação do enunciado clássico do princípio de Franck-Condon. A transição (a) possui alta intensidade (ou probabilidade), pois nela tanto a posição quanto a velocidade relativa dos núcleos não se altera. Já as transições (b) e (c) são pouco prováveis, pois exige-se uma mudança na posição dos núcleos (caso b) ou na velocidade deles (caso c).

O cálculo exato das probabilidades de transições se dá pelo módulo quadrado do **momento de dipolo da transição** (TDM, transition dipole moment). O TDM é um elemento de matriz fora da diagonal do operador dipolo elétrico \hat{M}, dado por:

$$M_{AB} = \langle \Psi^{(A)} | \hat{M} | \Psi^{(B)} \rangle ,$$

(8.50)

sendo $|\Psi^{(A)}\rangle$ e $|\Psi^{(B)}\rangle$ dois estados moleculares.

Ainda dentro da aproximação de Born-Oppenheimer, podemos quebrar o operador momento de dipolo em dois termos (nuclear e eletrônico), conforme:

$$\hat{M}(r, R) = \hat{M}_e(r, R) + \hat{M}_n(R).$$

(8.51)

Assim, o TDM fica:

$$M_{AB} = \int \hat{M}_e \psi^{(A)*}_e \psi^{(B)}_e dR dr + \int \hat{M}_n \psi^{(A)*}_n \psi^{(B)}_n dR dr .$$

(8.52)

Como as funções eletrônicas de estados diferentes são ortogonais, segue que $\int \psi^{(A)*}_e \psi^{(B)}_e dr = 0$, anulando o segundo termo.

O olhando para o primeiro termo, devemos notar que o momento de dipolo eletrônico $\hat{M}_e(r, R)$ depende também das coordenadas nucleares como parâmetro. A formulação quântica do princípio de Franck-Condon consiste em afirmar que, *num estado molecular, o momento de dipolo eletrônico varia pouco com as coordenadas nucleares*. Dessa forma, junto com a condição da aproximação de Born-Oppenheimer, podemos quebrar o primeiro termo do TDM em integrais eletrônica e nuclear:

$$M_{AB} = \int \hat{M}_e \psi^{(A)*}_e \psi^{(B)}_e dR \int \psi^{(A)*}_n \psi^{(B)}_n dR .$$

(8.53)
Assim, temos uma expressão comparativa para a probabilidade da transição, dada por:

\[P_{AB} \propto |\mathbf{M}_{AB}|^2 = \left| \int \hat{\mathbf{M}}_e \psi_e^{(A)*} \psi_e^{(B)} \, d\mathbf{r} \right|^2 \left| \int \psi_n^{(A)*} \psi_n^{(B)} \, d\mathbf{R} \right|^2. \tag{8.54} \]

O segundo fator na equação (8.54) é o chamado fator de Franck-Condon. Quando estudamos as transições entre estados eletrônicos distintos, esse fator mede a intensidade da transição entre os seus níveis vibracionais. Ou seja, transições entre níveis vibracionais distintos terão probabilidades distintas, e quem mede isso é o fator de Franck-Condon.

Exemplo 15 (Moléculas ultrafrias): Existem diversas propostas para aplicações de moléculas ultrafrias, como espectroscopia de resolução ultra-alta [20], teste de leis fundamentais da física [12, 23], computação quântica [11] e outras [7].

Para criar uma amostra de moléculas aprisionadas no estado fundamental de vibração, um método possível consiste em primeiro produzir as moléculas a partir de átomos ultrafrios utilizando um processo chamado de fotoassociação, e depois bombear essas moléculas para o estado fundamental de vibração.

A fotoassociação consiste na excitação de um par de átomos livres para um estado ligado de um potencial eletrônico excitado, por meio da absorção de um fóton. Em seguida, o par decai por emissão espontânea, podendo retornar novamente à condição de dois átomos livres (o que não é desejável), ou então decair para um estado ligado do potencial eletrônico fundamental. Para moléculas de Rb₂, pode-se fazer fotoassociação com eficiência em determinadas frequências [21], utilizando-se o potencial \(A^3 \Sigma_u^+ \) como estado excitado (vide Fig. 8.11).

Logo após serem formadas, as moléculas geralmente estão em níveis de alta energia vibracional (em torno de \(\nu \approx 80 \)), pois estes são os níveis que melhor se conectam (alto fator de Franck-Condon) com o estado excitado. É preciso então transferir uma parcela considerável da população para o estado fundamental de vibração, e isso também é feito por um método que chamamos de "bombeamento óptico".

O resfriamento vibracional por bombeamento óptico ocorre com a incidência de uma luz banda larga na amostra molecular. Essa luz deve conter uma faixa de frequências que excite transições até níveis vibracionais do potencial nuclear excitado. Esses estados serão tais que, quando as moléculas decaírem por emissão espontânea, os fatores de Franck-Condon favorecem os estados de menor energia vibracional. Em outras palavras, a molécula é enviada para um estado excitado e, quando retorna, tem alta probabilidade de ir para um nível de menor energia vibracional. Após vários desses ciclos de absorção e emissão, há um efeito lúido de redução da energia vibracional da amostra ("resfriamento vibracional"), até que as moléculas de fato alcancem o estado vibracional fundamental.

8.2.4 Progressão rotacional

Os momentos de inércia nos três eixos do espaço são,

\[I_{qq} = \sum_i m_i r_i^2(q). \tag{8.55} \]

A energia cinética da rotação é

\[E_{rot} = \frac{1}{2} \sum \limits_{q=1,2,3} m_q \mathbf{\mathbf{\omega}_q}^2 = \frac{1}{2} \sum \limits_{q=1,2,3} I_{qq} \mathbf{\omega_q}^2 = \frac{J_x^2}{2I_{xx}} + \frac{J_y^2}{2I_{yy}} + \frac{J_z^2}{2I_{zz}}, \tag{8.56} \]

\(^7\) A maioria dessas aplicações exige, no entanto, que a amostra molecular ocupe majoritariamente um único estado quântico. Isso constitui um desafio experimental, visto que moléculas possuem mais graus de liberdade do que átomos, como rotação e vibração.
8.2. ESTRUTURA ROVIBRACIONAL DOS POTENCIAIS MOLECULARES

Figura 8.11: Esquema da fotoassociação para formar moléculas de Rb2. No processo a), o par de átomos livres absorve um fôton da radiação incidente, formando um estado ligado no potencial excitado. Em seguida, em b), a molécula recém-formada decai por emissão espontânea para estados ligados do potencial fundamental, ou ainda pode retornar a um estado de dois átomos livres.

com o momento angular $J_q = I_{qq} \omega_q$.

Muitas moléculas têm um eixo de simetria, tal que existem dois momentos de inércia diferentes, $I_{xx} \equiv I_{yy} = I_{yy}$ e $I_{zz} \equiv I_{zz}$. Interpretando os momentos angulares como operadores quânticos,

$$\hat{H} = \frac{\hat{J}^2}{2I_{zz}} + \left(\frac{1}{2I_{xx}} - \frac{1}{2I_{zz}} \right) \hat{J}_z^2.$$

(8.57)

Devemos, primeiramente, considerar a rotação da molécula em relação ao eixo de simetria da molécula. Esquecendo-se de campos externos calculamos a energia da molécula associada às observáveis \hat{J}^2 com o número quântico J e \hat{J}_z com o número quântico K. Achamos os auto-valores,

$$E(J, K, M_J) = \frac{h^2 J(J + 1)}{2I_{zz}} + \left(\frac{1}{2I_{xx}} - \frac{1}{2I_{zz}} \right) h^2 K^2 = BJ(J + 1) + (A - B)K^2,$$

(8.58)

com $J = 0, 1, \ldots$, $K = -J, \ldots, J$ e $M_J = -J, \ldots, J$ e introduzindo as constantes rotacionais, $A \equiv \frac{h^2}{2I_{zz}}$ e $B \equiv \frac{h^2}{2I_{xx}}$. Em seguida, analisamos esta equação no contexto da aplicação de um campo externo que define tanto a direção \hat{e}_z' no laboratório como a projeção do movimento angular \hat{J}^2 nesta direção, m_J. Isto é, temos dois eixos, o eixo internuclear \hat{e}_z e o eixo de rotação da molécula \hat{e}_z'.

Cada nível J, m_J é $2(2J + 1)$ vezes degenerado, pois $K = -J, \ldots, J$ e K pode ser positivo ou negativo. Cada nível J contém $(2J + 1)$ estados. Note, que para moléculas esféricas, $A = B$, e o grau de liberdade K desaparece. Vide Exc. 8.4.2.2.

A constante rotacional pode ser aproximada por,

$$E_{rot} = \frac{h^2 J(J + 1)}{2M_e \langle R^2 \rangle},$$

(8.59)

onde $\sqrt{\langle R^2 \rangle}$ é o valor de esperado para o ‘turning point’ exterior do nível vibracional. A constante rotacional para o estado vibracional do 87Rb que é 5.9 cm$^{-1}$ embaixo do limite de
dissociação é $B_v = \nu_J^{rot=1} - \nu_J^{rot=0} = 81$ MHz. Para ficar mais preciso precisaríamos calcular $(R^2)_{v'} = \langle \psi_v | R^2 | \psi_{v'} \rangle$.

Transições vibracionais acompanham-se de transições rotacionais simultâneas $\Delta J = \pm 1$. Por isso, as frequências de transições dependem da constante rotacional B_v, que em torno, depende do estado vibracional. As energias da molécula são,

$$E_{v,J} = \hbar \omega (v + 1/2) - \hbar \omega c_e (v + 1/2)^2 + \ldots + \hbar c B_v J (J + 1) - \hbar D_v J^2 (J + 1)^2 + \ldots \quad (8.60)$$

Sob influência de uma rotação rápida, os átomos da molécula são sujeitos à força centrifuga e se afastam mais.

Como em temperaturas ambientes muitos níveis rotacionais são populados, observamos experimentalmente muitas linhas conhecidas como ramo P quando $\Delta J = -1$, como ramo Q quando $\Delta J = 0$ e como ramo R quando $\Delta J = 1$. Vide Exc. 8.4.2.3.

8.2.4.1 Regras de seleção rotacionais

Para transições entre estados eletrônicos as regras de seleção são $\Delta r = 0, \pm 1$. Transições rotacionais podem ocorrer entre níveis $\Delta r = \pm 1$. $\Delta r = 0$ não é permitido, porque violenta a conservação de paridade. Note também, que o isótopo nuclear influencia os níveis ro-vibracionais via a massa reduzida.

Consideramos uma molécula linear no estado $| \epsilon, J, M_J \rangle$, onde ϵ denota o estado eletrônico e vibracional da molécula. Para achar quais transições são possíveis, precisamos calcular a matriz,

$$\langle \epsilon', J', M_{J}' | d | \epsilon, J, M_J \rangle = \langle J', M_{J}' | d_{\epsilon} | J, M_J \rangle \quad (8.61)$$

com $d_{\epsilon} = \langle \epsilon | d | \epsilon \rangle$. Aqui, aplicamos a aproximação de Born-Oppenheimer que permite separar a dinâmica dos elétrons e também as vibrações da molécula, porque esses movimentos são tão rápidos que são sempre em estado estacionário, seguindo adiabaticamente o movimento lento da rotação.

As regras de seleção podem, agora, ser derivadas do teorema de Wigner-Eckart,

$$\frac{\langle J', M_{J}' | d_{\epsilon} | J, M_J \rangle|^2}{|\langle J' \parallel d_{\epsilon} \parallel J, M_J \rangle|^2} = \frac{1}{2J' + 1} \left(\begin{array}{cc} J & 1 \\ m_J & \kappa \\ -m_{J}' & \end{array} \right) \quad (8.62)$$

Achamos $\Delta J = 1$ e $\Delta M_J = 0, \pm 1$. Vide Exc. 8.4.2.4.

8.2.5 Computação dos estados vibracionais

8.2.5.1 Energia de localização

Uma consequência da relação de incerteza de Heisenberg é, que uma certa energia de localização sempre é necessária para localizar uma partícula. Como exemplo, consideramos o potencial atrativo,

$$V = -\frac{C}{R^n} \quad (8.63)$$

O espaço disponível para a partícula é limitado pelos pontos de retorno clássicos, quem para uma dada energia é $r_t = \left(\frac{C}{\hbar} \right)^{1/n}$. O momento correspondente a essa energia é $k_t = \left(\frac{2m|E|}{\hbar^2} \right)^{1/2}$.
relação de incerteza de Heisenberg requer \(k_t r_t > 2 \), isto é, pelo menos a metade do comprimento de onda deve caber dentro do potencial (entre 0 e \(r_t \)) na altura do estado ligado. Portanto,

\[
|E|^{1-2/n} > \frac{2\hbar^2}{mC^{2/n}} .
\]

Para um potencial coulombiano, com \(n = 1 \) e \(C = e^2/4\pi\varepsilon_0 \), obtemos a energia do estado fundamental do átomo de hidrogênio,

\[
E > E_1 = -\frac{e^2}{4\pi\varepsilon_0 2a_B} ,
\]

mas não existe nenhum estado mais alto do que todos os outros. Isto é, todos as energias \(E_n = E_1/n^2 \) existem.

Para \(n = 2 \), não obtemos condição para a energia. Para o potencial de Casimir-Polder, \(n = 3 \), obtemos

\[
E < -\frac{8\hbar^6}{m^2C^2} .
\]

Isso significa, em contraste com o potencial coulombiano, que a energia de ligação deve ser inferior de um certo limite.

8.2.5.2 Método de LeRoy-Bernstein

O **método de LeRoy-Bernstein** permite estimar os níveis ligados mais altos. Só se aplica perto do limite de dissociação, onde a fórmula semicliásica de quantização é válida,

\[
v + \frac{1}{2} = \sqrt{\frac{8M_r}{\hbar^2}} \int_0^{R_1} dR \sqrt{E(v) - V(R)} .
\]

Inserindo o potencial

\[
V(R) = D_e - \frac{C}{R^n} ,
\]

rende

\[
E(v^*) = D_e - \left(\frac{n - 2)\Gamma \left(1 + \frac{1}{n} \right)}{2\Gamma \left(\frac{1}{2} + \frac{1}{n} \right)} (v^* + v_D) \right)^{2n/\pi - 2} \left(\frac{\hbar^{2n}}{(2\pi M_r)^n C^2} \right)^{1/\pi - 2} ,
\]

onde \(v^* \) é um número contando os níveis vibracionais inversamente começando no limite de dissociação.

![Figura 8.12: Estados vibracionais mais altos obtidos pelo método de LeRoy-Bernstein.](image-url)
8.2.5.3 Canal aberto

Para um dado potencial interatômico $V(R)$, desprezando a estrutura de spin [16], a função de onda relativa de um sistema de dois átomos satisfaz a equação de Schrödinger,

$$\left[-\frac{1}{2\mu} \Delta + V(R) \right] \psi(R) = E\psi(R) . \quad (8.70)$$

Separando as contribuições radiais e angulares, $\psi(R) \equiv Y(\vartheta,\phi)f(R)/R$, obtemos,

$$\left[-\frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + V(R) + \frac{l(l+1)}{2\mu R^2} \right] f(R) = Ef(R) . \quad (8.71)$$

Agora, introduzimos o vetor de onda local, $k(R) = \sqrt{2\mu}\left[E - V(R) \right] - l(l+1)/R^2$ e escrevemos,

$$f'' = -k^2 f . \quad (8.72)$$

Esta equação diferencial pode ser resolvida numericamente [vide Fig. 8.13(a)].

Figura 8.13: (Código: AM_Molecula_EstadoLigadoLiRb.m) (a) Computação numérica da função de onda relativa para uma colisão de baixa energia, $E \gtrsim 0$ e $\ell = 0$. A curva azul mostra o potencial interatômico Li-Rb (a)$^3\Sigma$, a curva vermelha ilustra a função de onda de Broglie relativa da molécula. O assimptoto desta função de onda extrapolado (curva verde) corta a abcissa em $a_s = -120 a_B$, o que é justamente o comprimento de espalhamento para colisões neste canal. (b) Computação numérica da função de onda para um estado vibracional. O potencial é uma interpolação (preto) entre um potencial de Morse de curto alcance (verde) e um potencial de longo alcance (azul). A curva vermelha ilustra a função de onda relativa para o nono estado vibracional (contando a partir de estado fundamental).

8.2.5.4 Estado ligado

Para estados ligados, precisamos satisfazer simultaneamente o problema de autovalores. Podemos por exemplo adivinhar um eigenvalor E, calcular a função de onda associada $f(R)$, verificar se diverge para $R \to \infty$ e variar E até não varia mais. A Fig. 8.13(b) mostra a função de onda de um estado vibracional obtida resolvendo a equação de Schrödinger e ajustando a energia até que a função para de divergir na área classicamente proibida.

8.2.5.5 Método da grade de Fourier

Um outro método numérico extremamente rápido para determinar o espectro de estados vibracionais de um potencial, o **método de grade de Fourier**, baseia-se na discretização do hamiltoniano ao longo do potencial interatômico. Escrevemos o hamiltoniano como

$$H \psi(R) = [T(R) + V(R)]\psi(R) = E\psi(R) . \quad (8.73)$$
Colocamos numa forma matricial usando o conjunto de funções da base $\phi_i(R_j) = \delta(R_i - R_j)$ com $i = 1, \ldots, N$, onde $R_i = R_0 + i(R_N - R_0)/N$. Este problema tem N autovalores E_i. O método de grade de Fourier agora avalia a energia cinética em cada ponto da rede. Inserimos os termos locais $H_{ii} = H(R_i)$ e não-locais $H_{ij} = H(R_i, R_j)$ dentro do hamiltoniano, bem como as energias potenciais $V_{ij} = V(R_i)\delta_{ij}$. A energia cinética é a transformada inversa de Fourier do espaço de momento $T_{rs} = T(k_r)\delta_{rs} = (k_r^2/2\mu)\delta_{rs}$ e fica [14],

$$H_{ij} = \frac{\pi^2}{4\mu(R_N - R_1)^2}(-1)^{i-j}\left(\frac{1}{\sin^2\frac{\pi(i-j)}{2N}} - \frac{1}{\sin^2\frac{\pi(i+j)}{2N}}\right) \quad \text{para} \quad i \neq j \quad (8.74)$$

$$H_{ij} = \frac{\pi^2}{4\mu(R_N - R_1)^2}\left(\frac{2N^2 + 1}{3} - \frac{1}{\sin^2\frac{\pi}{2N}}\right) + V(R_i) \quad \text{para} \quad i = j .$$

Para melhorar a função de onda, podemos interpolar

$$\psi(q) = \sum_{j=1}^{n} \psi(q_j) \text{sinc}\frac{\pi(q - q_j)}{\Delta q} . \quad (8.75)$$

O método pode ser estendido a canais acoplados $\sigma = A, B$ via,

$$H_{\{\sigma\},\{j\}} = T_{ij}\delta_{\sigma\tau} + V_{\sigma\tau}(R_i)\delta_{ij} . \quad (8.76)$$

O hamiltoniano tem a forma geral

$$H = \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} + \begin{pmatrix} V_A & 0 \\ 0 & V_B \end{pmatrix} + \begin{pmatrix} W_{AA} & W_{AB} \\ W_{BA} & W_{BB} \end{pmatrix} , \quad (8.77)$$

onde todas matrizes V_k e W_k são diagonais.

8.3 Forças de van der Waals e acoplamento ao spin

Os átomos individuais têm uma subestrutura complexa devido aos momentos angulares do movimento eletrônico, dos seus spins e do spin nuclear. Todos estes momentos angulares podem interagir, se acoplar e gerar novos termos de energia, que precisam ser tomados em conta na hora de calcular os vários potenciais de interação interatômica,

$$\hat{H} = \frac{P^2}{2M_r} + V_{\text{coulomb}}(R) + \sum_{k=1,2} \left(V^{(k)}_{hfs} + V^{(k)}_{\text{zeeman}} \right) + V_{\text{dipole,spin-spin}}(R) + V_{\text{dipole,spin-orbit}}(R) . \quad (8.78)$$

A interação de Coulomb para gases alcalis interagindo pode ser exprimido como:

$$V_{\text{coulomb}}(R) = V^{S=0}_{\text{coulomb}}\mathcal{P}_{S=0} + V^{S=1}_{\text{coulomb}}\mathcal{P}_{S=1} . \quad (8.79)$$

Os projetores $\mathcal{P}_{S=0,1}$ serão necessários para expandir o espaço de Hilbert para os graus de liberdade dos spins.

As forças de van der Waals incluem todas forças intermoleculares. São forças de longo alcance que ocorrem entre dipolos atômicos permanentes e induzidos $\sim 1/r^6$.

Note que o método de grade de Fourier pode ser melhorado usando uma grade com espaços ajustados ao gradiente do potencial [17, 26, 19].

10Elas também ocorrem em uma forma pura em ressonadores ópticos como efeito de Casimir. Como a frequência mais baixa numa cavidade $\omega = \sqrt{2\pi c}/L$, as energias do ponto zero dentro e fora da cavidade são diferentes. Isso causa uma força atrativa entre os espelhos da cavidade $\sim 1/r^3, 1/r^4$.

9Note, que o método de grade de Fourier pode ser melhorado usando uma grade com espaços ajustados ao gradiente do potencial [17, 26, 19].
CAPÍTULO 8. MOLÉCULAS DIMÉRICAS

Figura 8.14: (Código: AM_Molecula_EstadoFourierGrid.m) Computação numérica da função de onda usando o método da grade de Fourier. Usamos o potencial interatômico Li-Rb \(1^{11}\)II. (a) Potenciais de Morse de curto alcance (verde), de longo alcance (azul), de interpolação (preto) e de [18]. (b) Funções de onda vibracionais, (c) ponto de retorno exterior (vermelho) e centro de massa (verde), (d) progressão rotacional e (e) overlap de Franck-Condon com o décimo estado vibracional.

8.3.1 Modelos analíticos para potenciais de curto e longo alcance

Em geral, os potenciais são estimados por cálculos ab-inicio do tipo Hartree-Fock. Um potencial de curto alcance, ou potencial de Morse, pode ser aproximado por

\[
V_{\text{morse}} = D_m \left(1 - e^{-B_m (R-R_m)} \right)^2 - 1. \tag{8.80}
\]

Aqui, \(B_m\) é a largura do mínimo, \(R_m\) a posição do mínimo, \(D_m\) o comprimento. Um potencial de longo alcance pode ser escrito

\[
V_{\text{vdw}}(R) = D_e - \frac{C_6}{R^6} - \frac{C_8}{R^8} - \frac{C_{10}}{R^{10}}. \tag{8.81}
\]

\(D_e\) é a energia de dissociação. Os coeficientes de van der Waals \(C_k\), que determinam o comportamento em grandes distâncias, pode ser calculado com métodos diferentes com maior precisão. Para obter uma fórmula fechada, as partes de curto e longo alcance podem ser juntados por

\[
V = V_{\text{morse}} F + V_{\text{vdw}}(1 - F), \tag{8.82}
\]

onde \(F \equiv e^{-(R/R_t)^{10}}\).
8.3. FORÇAS DE VAN DER WAALS E ACOPLAMENTO AO SPIN

A situação é diferente para colisões de átomos idênticos em estados excitados, que tem um alcance muito maior por causa da interação ressonante entre dipolos. Nesse caso, um adicional potencial de Movre-Pichler dominado por um coeficiente \(C_3 \) surge,

\[
V_{vdw}^e = V_{mvre}^e + V_{disp}^e .
\]

(8.83)

Em contraste, colisões em estados excitados de espécies diferentes são puramente de curto alcance.

8.3.2 ACOPLAMENTO DE SPINS EM DÍMERES, NÚMEROS QUÂNTICOS MOLECULARES

Consideramos dois átomos alcalinos interagentes, cada um sendo descrito por um conjunto de números quânticos de momentos angulares:

\[
\begin{align*}
 l_i & \quad \text{angular do átomo individual} \\
 s_i & \quad \text{spin eletrônico} \\
 i_i & \quad \text{spin nuclear} \\
 l_i + s_i & = j_i \quad \text{momento angular total eletrônico} \\
 j_i + i_i & = f_i \quad \text{momento angular total} .
\end{align*}
\]

Quando os átomos se aproximam, em distâncias intermediárias, eles acoplam seus spins:

\[
\begin{align*}
 \ell & \perp \hat{e}_z \quad \text{rotação molecular} \\
 \Lambda & \equiv |M_L|\hat{e}_z \quad \text{projeção de } L \text{ sobre o } \hat{e}_z \text{ interatômico} \\
 \Sigma & \equiv M_S\hat{e}_z \quad \text{projeção de } S \text{ sobre o } \hat{e}_z \text{ interatômico} \\
 \Omega & \equiv \Lambda + \Sigma \quad \text{projeção de } L + S \text{ sobre o } \hat{e}_z \text{ interatômico} .
\end{align*}
\]

Em curtas distância, eles formam um dímero molecular descrito pelos números quânticos:

\[
\begin{align*}
 L & = l_1 + l_2 \quad \text{momento angular total eletrônico} \\
 S & = s_1 + s_2 \quad \text{spin eletrônico} \\
 I & = i_1 + i_2 \quad \text{spin nuclear} \\
 f & = f_1 + f_2 \quad \text{momento angular total ou } (L, S)k + I \\
 J & = \Omega + \ell \\
 F & = f + \ell
\end{align*}
\]

(8.86)

Os números quânticos acoplam como,

\[
\begin{align*}
 l_1 + l_2 & = L \quad \hat{e}_z \rightarrow \Lambda \\
 s_1 + s_2 & = S \quad \hat{e}_z \rightarrow \Sigma \\
 j_1 + j_2 & = j \quad \hat{e}_z \rightarrow \Omega + \ell = J \\
 i_1 + i_2 & = I \quad \text{=} = \text{=} = = \\
 f_1 + f_2 & = f \quad + \text{=} + \text{=} +
\end{align*}
\]

(8.87)

As várias opções como \(L, S \) e \(j \) são projetados sobre o eixo internuclear ou diretamente acoplam ao momento angular rotacional \(\ell \) são tratadas nos casos de Hund (a) até (e). O acoplamento de spin é descrito por símbolos de \(\{9j\} \), como mostrado embaixo.
8.3.3 Os casos de acoplamento de Hund

A força de acoplamento entre spins atômicos depende da distância entre os átomos. Devido à variedade de spins nos átomos existem muitas possibilidades como eles podem se acoplar. Estas foram classificadas por Hund em cinco casos.

8.3.3.1 Caso de Hund (a)

A interação molecular é tão forte, que L e S acoplam para o eixo \hat{z} em vez mutuamente. Este caso é análogo ao efeito de Paschen-Back,

$$L \rightarrow \Lambda \quad e \quad S \rightarrow \Sigma \quad (8.88)$$

Uma notação comum consiste em rotular os estados $\Lambda = \Sigma, \Pi, \Delta, ...$. Ou seja, no símbolo $X(2S+1\Lambda\Omega)_{\sigma}^{\pm}$, onde $\sigma = g, u$ é a simetria de inversão, $X, A, B, ...$ e $a, b, ...$ são as séries singleto e tripleto começando à partir dos níveis energeticamente mais baixos. Uma notação alternativa consiste em assinar rótulos ordenados por energia $X(1), (2), ...$ Finalmente, \pm é a simetria de reflexão. Por exemplo, $X^1\Sigma^+_g$.

8.3.3.2 Caso de Hund (b)

L é projetado sobre eixo \hat{z} antes de se acoplar ao ℓ. O momento angular resultante depois acopla ao S diretamente.

$$L \rightarrow \Lambda \quad ((L, \ell)k, S)J \quad (8.89)$$

8.3.3.3 Caso de Hund (c)

L e S acoplam juntos em vez de se projetar sobre o eixo \hat{z}. Este caso é análogo ao efeito Zeeman,

$$(L, S)j \rightarrow \Omega \quad (8.90)$$
Uma notação comum consiste em rotular os estados por \(\Omega = 0, 1, 2, \ldots \). Ou seja, no símbolo \(X(\Omega)^{\pm}_{\nu} \), a letra \(X = 1, 2, \ldots \) é um rótulo ordenado por energia. Por exemplo \(2(0^+_{y}) \).

8.3.3.4 Caso de Hund (d)

L não é projetado sobre o eixo \(\hat{e}_z \), mas se acopla diretamente ao momento angular rotacional. O momento angular resultante depois somente acopla ao S

\[
((L, \ell)k,)J .
\]

8.3.3.5 Caso de Hund (e)

L e S se acoplam mutuamente, como no caso (c), mas não são projetados sobre o eixo \(\hat{e}_z \), mas acoplam diretamente com \(\ell \), o que é quantizado,

\[
((L, S)[j, \ell])J .
\]

8.4 Exercícios

8.4.1 Ligação molecular

8.4.1.1 Ex: Modelo clássico da ligação covalente

Considere a molécula \(\text{H}_2^+ \) com os dois núcleos separados de 1 nm e um elétron localizado no meio entre os núcleos. Calcule a força eletrostática agindo sobre os núcleos.

8.4.1.2 Ex: Modelo clássico da ligação covalente

Calcule as energias do estado fundamental e do estado menos ligado do potencial \(V_n = -\frac{C}{r^n} \) para qualquer \(n \).

8.4.1.3 Ex: Colisão homonuclear

Consideramos o exemplo de colisões homonucleares \(^{85}\text{Rb}\). Para colisões em estados fundamentais no canal \(^3\Sigma^+ \), \(|f = 2, m_f = -2\rangle\), as partes de longo alcance do potencial é fixo por \(C_6 = 4550 \), \(C_8 = 550600 \) e \(C_{10} = 7.67 \times 10^7 \) \([9, 22]\), onde \(R_m = 9.8a_B \), \(D_m = 0.13 \), e \(B_m = 1/2.5a_B \). Os potenciais podem ser mesclados numa dada distância \(R_t = 27.6a_B \). Faz um plot do potencial.

8.4.1.4 Ex: Além da aproximação de Born-Oppenheimer para moléculas por Carlos M. de Oliveira Bastos

Para moléculas, a aproximação de Born-Oppenheimer pode falhar em algumas situações. Por isso, é comum a utilização de uma outra aproximação conhecida como Born-Huang. Para ilustrar essa aproximação, consideramos uma molécula diatômica no referencial do laboratório.

a. Escreva o hamiltoniano de muitos corpos, em unidades atômicas, para a molécula.

b. Se mudarmos o sistema de coordenadas para a posição do centro de massa dos núcleos da molécula, eliminamos a dependência com a translação global da molécula. O Hamiltoniano passa a ser dado por

\[
-\frac{\nabla^2_R}{2\mu_{AB}} - \sum_{i,j} \frac{1}{2M} \nabla_i \nabla_j - \sum_i \frac{\nabla^2_i}{2} + V
\]
sendo que as interações coulombianas estão incluídas no termo V. Escreva a equação de Schrödinger independente do tempo para essa molécula.

c. A aproximação Born-Huang consiste em supor que a função de onda total possa ser expandida em uma base de funções de ondas dos núcleos e dos elétrons, ou seja,

\[\Psi(r, R) = \sum_k |\chi_k(R)|\phi_k(r, R) \]

onde \(\chi \) e \(\phi \) são as funções de ondas dos núcleos e os elétrons respectivamente. Para a equação de Schrödinger calculada no item anterior, utilize a aproximação Born-Huang e obtenha o conjunto de equações acopladas

\[
\left\{ \sum_k \left[-\frac{1}{2\mu_{AB}} \left(\nabla_R^2 + \langle \phi_k | \nabla_R^2 | \phi_k \rangle + 2\langle \phi_k | \nabla_R | \phi_k \rangle \cdot \nabla_R \right) \right] - \sum_k \left[\frac{1}{2M} \left(\sum_{i,j} \langle \phi_i | \nabla_i \cdot \nabla_j | \phi_k \rangle \right) + \frac{1}{2} \sum_i \langle \phi_i | \nabla_i^2 | \phi_k \rangle - \langle \phi_i | V | \phi_k \rangle \right] \right\} |\chi_k\rangle = E \sum_k |\chi_k\rangle
\]

que inclui, ainda que aproximadamente, a energia cinética dos núcleos e elétrons. Dica: Utilize \(\nabla^2(\alpha\beta) = \alpha\nabla^2\beta + \beta\nabla^2\alpha + 2\nabla\alpha \cdot \nabla\beta \).

d. Faça uma breve comparação entre a aproximação de Born-Huang (e as equações acopladas obtidas na equação anterior) e a aproximação de Born-Oppenheimer.

8.4.2 Estrutura rovibracional dos potenciais moleculares

8.4.2.1 Ex: Transições entre estados vibracionais

Calcule o momento dipolar entre dois estados vibracionais arbitrários de (a) um potencial harmônico e (b) um potencial de Morse.

8.4.2.2 Ex: Espectro rotacional de moléculas diátomicas

Calcule o espectro rotacional para uma molécula diatómica.

8.4.2.3 Ex: Espectro ro-vibracional

Determine os espectros de frequência de transições ro-vibracionais para os ramos \(P \), \(Q \) e \(R \).

8.4.2.4 Ex: Espectro rotacional

Determine as regras e o espectro de transições rotacionais para uma molécula esférica.

8.4.2.5 Ex: Método da grade de Fourier

A transformação de Fourier rápida (FFT) é definida por,

\[
H_n = \sum_{k=0}^{N-1} e^{-2\pi i nk/N} h_k = \sum_{k=0}^{N-1} e^{-2\pi i nk/(N/2)} h_{2k} + e^{-2\pi i k/N} \sum_{k=0}^{N/2-1} e^{-2\pi i nk/(N/2)} h_{2k+1} = even + odd .
\]

a transformada inversa é,

\[
h_k = \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i nk/N} H_n .
\]
A transformada senis de um vetor real \(s_k \) é,

\[
S_n = \frac{2}{N} \sum_{k=1}^{N-1} s_k \sin \frac{\pi nk}{N}.
\]

Calcule a transformada inversa da matriz \(T_{rs} = k_r^2 \delta_{rs} \).

\subsection*{8.4.3 Forças de van der Waals e acoplamento ao spin}
Capítulo 9

Colisões

9.1 Teoria de espalhamento

Neste capítulo consideramos fenômenos de espalhamento por potenciais independentes do tempo satisfazendo \(rV(r \to \infty) \to 0 \), isto é, potenciais de curto alcance. O potencial pode ter regiões atrativas suportando estados ligados com energias \(E < 0 \). Aqui, no entanto, só consideramos estados \(E > 0 \). Como a situação é independente do tempo, \(\partial_t \hat{H} = 0 \), podemos considerar problemas independentes do tempo,

\[
\hat{H}\psi_k(r) = E_k\psi_k(r),
\]

(9.1)

com \(\hat{H} = p^2/2m + V(r) \) e \(E_k = \hbar^2 k^2/2m \). As condições de contorno são dadas pela geometria do espalhamento, tal que para grandes distâncias a função de onda se comporta como (vide Fig. 9.1),

\[
\psi_k(r) \sim e^{i k \cdot r} + f_k(\Omega) e^{i k_s r}.
\]

(9.2)

Para processos de espalhamento elásticos temos \(k_s = k \). A amplitude de espalhamento \(f_k(\Omega) \) depende da energia \(E_k \) e do ângulo sólido de espalhamento. Experimentalmente, espalhamos partículas individuais descritas por pacotes de ondas. Como a teoria de espalhamento é linear, podemos descrever os pacotes por superposições de soluções estacionárias \(\psi_k \).

![Figura 9.1: Espalhamento de luz incidente (vetor de onda \(k_0 \)) por um potencial \(V \).](image)

9.1.1 Equação de Lippmann-Schwinger

Para considerar p.ex. duas partículas envolvidas numa colisão podemos ir no sistema do movimento relativo (usando as massas reduzidas), fixar a origem do sistema de coordenadas numa das partículas e analisar a trajetória da segunda partícula dentro do potencial.

A teoria de espalhamento sendo baseada no método de Green, que nós já conhecemos da eletrostática, vamos primeiro lembrar o uso da função de Green para resolver problemas eletrostáticos.

\[\text{Note, que } k \text{ não é um número quântico, pois } \psi_k \text{ contem componentes de momento } \neq k. \]
Exemplo 16 (Método de Green na eletrostática): Da terceira equação de Maxwell obtemos,

\[\nabla^2 \phi(r) = -\varepsilon_0^{-1} \rho(r) . \]

Sendo definida por,

\[\nabla^2 G(r) = \delta^3(r) , \]

a função de Green fica,

\[G(r) = -\frac{1}{4\pi |r|} . \]

Com isso, achamos a solução da equação de Maxwell,

\[\phi(r) = (-G \ast \varepsilon_0^{-1} \rho(r)) (r) = -\frac{1}{\varepsilon_0} \int_V \rho(r_0) G(r - r_0) d^3 r_0 = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(x)}{|r - x|} d^3 x , \]

checada como lei de Poisson.

9.1.1.1 Método de Green na mecânica quântica

O procedimento chamado de método de Green pode ser utilizado para resolução de equação de Schrödinger com a condição de contorno (9.2). Começamos a partir da equação estacionária de Schrödinger reduzida (9.1) [24]. A equação de Schrödinger fica,

\[(\Delta + k^2) \psi_k(r) = \frac{2m}{\hbar^2} V(r) \psi_k(r) . \]

(9.3)

Esta equação não é um problema de autovalores comum, pois cada energia \(E_k \) gera uma solução. A equação (9.3) é uma equação diferencial inomogênea parcial com o lado esquerdo descrevendo a propagação livre e o lado direito descrevendo uma fonte que depende da solução. Tais equações diferenciais geralmente são resolvidas utilizando funções de Green. Escolhemos uma fonte puntiforme e resolvemos,

\[(\Delta + k^2) G(r, k) = \delta^3(r) , \]

juntamente com as condições de contorno. A solução adota a forma [4],

\[G(r, k) = -\frac{1}{4\pi} \frac{e^{ik|r|}}{|r|} , \]

(9.5)

tal que,

\[\psi_k(r) = e^{ikr} + \left(G \ast \frac{2m}{\hbar^2} V \psi_k \right) (r) = e^{ikr} + \frac{2m}{\hbar^2} \int_V d^3 r' G(r - r', k)V(r')\psi_k(r') . \]

(9.6)

A equação (9.6) se chama equação de Lippmann-Schwinger. É claro que esta equação não resolve, mas só reformula o problema tomando em conta as condições de contorno. Ela se presta bem para implementação de aproximações. Vide Exc. 9.3.1.1 e 9.3.1.2.

Agora vamos considerar o campo longe, \(r \to \infty \), para verificar o comportamento assimptótico e encontrar uma expressão para \(f_k(\Omega) \) em função de \(V(r) \). Para \(r \to \infty \) podemos aproximar

\[k|r - r'| = kr \sqrt{(\mathbf{e}_r - r'/r)^2} = kr \sqrt{1 - 2\mathbf{e}_r \cdot r'/r + (r'/r)^2} \approx kr - k' \cdot r' \approx kr , \]

(9.7)

com \(k' \equiv k\mathbf{e}_r \). Com isso a equação de Lippmann-Schwinger (9.6) fica,

\[\psi(r) \to e^{ikr} - \frac{2m}{\hbar^2} \int_V \frac{1}{4\pi |r - r'|} V(r') \psi(r') d^3 r' \]

\[= e^{ikr} - \frac{2m}{4\pi\hbar^2} \frac{e^{ikr}}{kr} \int_V e^{-ik' \cdot r'} V(r') \psi(r') d^3 r' \equiv \psi_m + f_k(\Omega) \frac{e^{ikr}}{r} , \]

(9.8)
9.1. TEORIA DE ESPALHAMENTO

dando, em comparação com a expressão (9.2), a amplitude de espalhamento,
\[f_k(\Omega) = \frac{2m}{i4\pi\hbar^2} \int_V e^{-i\mathbf{k}' \cdot \mathbf{r}'} V(\mathbf{r}') \psi(\mathbf{r}') d^3r' . \] (9.9)

À partir das funções de onda \(\psi_{in} \equiv e^{i\mathbf{k} \cdot \mathbf{r}} \) e \(\psi_s \equiv f_k(\Omega)e^{i\mathbf{k}r}/r \) podemos calcular as densidades de corrente,
\[J_{in} = \frac{\hbar}{2mi}(\psi_{in}^\dagger \nabla \psi_{in} - \text{c.c.}) = \frac{\hbar k}{m} \] \[J_s = \frac{\hbar}{2mi}(\psi_{s}^\dagger \partial_r \psi_{s} - \text{c.c.}) \hat{e}_r = \frac{\hbar k'}{m} \frac{1}{r^2} |f_k(\Omega)|^2 + O(r^{-3}) . \] (9.10)

O número \(dI(\Omega) \) de partículas espalhadas por segundo para o ângulo sólido \(d\Omega \) é simplesmente \(dI(\Omega) = |J_s|^2 d\Omega \). Com isso podemos calcular a seção eficaz diferencial definida pela razão entre \(dI(\Omega) \) e o número \(|J_{in}| \) de partículas incidentes por segundo,
\[\frac{d\sigma}{d\Omega} \equiv \frac{dI(\Omega)}{|J_{in}|d\Omega} = |f_k(\Omega)|^2 . \] (9.11)

Finalmente definimos a seção eficaz total,
\[\sigma = \int d\Omega |f_k(\Omega)|^2 . \] (9.12)

9.1.2 Pacotes de onda

Deixamos incidir o pacote de onda definido num tempo \(t = t_0 \),
\[\psi(\mathbf{r}, t_0) = \int \frac{d^3k}{(2\pi)^3} a_k e^{i\mathbf{k} \cdot \mathbf{r}} , \] (9.13)
sobre o potencial espalhador. A amplitude \(a_k \) seja concentrada em torne de \(\mathbf{k}_0 \), tal que o pacote se aproxima do espalhador com a velocidade \(\mathbf{v}_0 = \hbar \mathbf{k}_0/m \). A evolução temporal da função de onda \(\psi(\mathbf{r}, t) \) determina o sinal medido por um detector num tempo \(t > t_0 \) posterior. A nossa tarefa consiste em determinar \(\psi(\mathbf{r}, t > t_0) \). Os estados espalhados \(\psi_k \) resolvendo a equação de Schrödinger (9.1) são completos no espaço das funções de onda estendidas, e podemos escrever a evolução temporal como,
\[\psi(\mathbf{r}, t) = \int \frac{d^3k}{(2\pi)^3} A_k \psi_k(\mathbf{r}) e^{-iE_k(t-t_0)}/\hbar . \] (9.14)

No tempo \(t_0 \) os resultados (9.13) e (9.14) devem coincidir. Para verificar isso, escrevemos (9.13) substituindo a onda plana \(e^{i\mathbf{k} \cdot \mathbf{r}} \) usando a equação de Lippmann-Schwinger (9.6) com a função de Green (9.5), e depois comparamos os coeficientes,
\[\psi(\mathbf{r}, t_0) = \int \frac{d^3k}{(2\pi)^3} a_k \left[\psi_k(\mathbf{r}) + \frac{m}{2\pi\hbar^2} \int d^3r' e^{i\mathbf{k} \cdot \mathbf{r}' - \mathbf{r}/(\mathbf{r} - \mathbf{r}') V(\mathbf{r}') \psi_k(\mathbf{r}') \right] . \] (9.15)

O processo de espalhamento é ilustrado na Fig.9.2. Para simplificar o cálculo do segundo
Figura 9.2: Espalhamento de pacotes de onda por um potencial.

termo nesta equação, supomos que \(\psi_k \) seja suave, isto é, não haja ressonâncias, tal que podemos aproximar, \(\psi_k \simeq \psi_{k0} \). Com \(k \simeq k \cdot \hat{k}_{0} \) obtemos,

\[
\int \frac{d^3k}{(2\pi)^3} a_k e^{ik\cdot(r-r')} \psi_k(r') = \int \frac{d^3k}{(2\pi)^3} a_k e^{i\hat{k}_{0}\cdot(r-r')} \psi_{k0}(r') = \psi(\hat{k}_{0}\cdot|r-r'|, t_0) \psi_{k0}(r''). \quad (9.13)
\]

Aqui, \(\psi(\hat{k}_{0}\cdot|r-r'|, t_0) \) é o pacote incidente avaliado para direito, onde, por definição, \(\simeq 0 \). A expressão (9.15) portanto tem a forma,

\[
\psi(r,t_0) = \int \frac{d^3k}{(2\pi)^3} a_k \psi_k(r), \quad (9.17)
\]
e a comparação dos coeficientes com (9.14) dá, \(A_k = a_k \). Finalmente, avaliamos \(\psi(r,t) \) para o tempo de detecção \(t > t_0 \) para entender, que a análise estacionária acima realmente está fisicamente correta. Segundo (9.14) temos,

\[
\psi(r,t) = \int \frac{d^3k}{(2\pi)^3} A_k \psi_k(r)e^{-iE_k(t-t_0)/\hbar} \simeq \psi_0(r,t) + \int \frac{d^3k}{(2\pi)^3} a_k e^{ik\cdot r} f_k(\Omega)e^{-iE_k(t-t_0)/\hbar}. \quad (9.18)
\]

Portanto, \(\psi_0(r,t) \) descreve a evolução do pacote de onda sem espalhador,

\[
\psi_0(r,t) = \int \frac{d^3k}{(2\pi)^3} a_k e^{ik\cdot r} e^{-iE_k(t-t_0)/\hbar}. \quad (9.19)
\]

Se \(f_k \) é suave em torno de \(k = k_0 \), o que nos permite colocar esta amplitude \((f_k \simeq f_{k0}) \) em frente da integral, e com \(k \simeq k \cdot k_0 \) obtemos,

\[
\psi(r,t) \xrightarrow{t \gg} \psi_0(r,t) + \frac{f_{k0}(\Omega)}{r}\psi_0(k_0 r, t). \quad (9.20)
\]

O processo de espalhamento é mostrado na Fig. 9.2: Seguinte a última equação o processo de espalhamento envolve a superposição do pacote não espalhado e um pacote espalhado na direção \(\Omega \). Este último envolve a amplitude \(\Psi_0(k_0 r, t) \) de um pacote propagando para frente, que só precisa ser avaliado no tempo e na distância certa. Este pacote será depois multiplicado com a amplitude descrevendo a dependência angular \(f_{k0}; \) o ângulo, portanto, só aparece através desta amplitude e não na função de onda \(\psi_0 \). A análise acima não pode ser aplicada em duas situações:

- quando \(V \) é de longo alcance, p.ex., \(V = 1/r \),
- quando a energia incidente \(E_k \) é ressonante.
9.1.3 Aproximação de Born

A equação de Lippmann-Schwinger sugere a seguinte iteração perturbativa chamada de serie de Born [4],

\[
\psi(r) = \psi_i(r) + \left(G * \frac{2\pi}{i} V \psi \right)(r) \\
= \psi_i(r) + \frac{2\pi}{i} (G * V \psi_i)(r) + \left(\frac{2\pi}{i} \right)^2 [G * V (G * \psi_i)](r) \\
= \psi_i(r) + \frac{2\pi}{i} \int_V G(r - r')V(r')\psi_i(r')d^3r' \\
+ \left(\frac{2\pi}{i} \right)^2 \int_V G(r - r')V(r')G(r - r'')V(r'')\psi_i(r'')d^3r'd^3r'' .
\]

Na chamada aproximação de Born consideramos somente a primeira ordem e inserindo uma onda plana, \(\psi_i(r) = e^{ikz}/(2\pi)^{3/2} \), obtemos,

\[
\psi(r) = \frac{e^{ikz}}{(2\pi)^{3/2}} - \frac{m}{(2\pi)^{3/2}2\pi\hbar^2} \int_V e^{ik|r-r'|}V(r')e^{ikz'}d^3r' .
\]

(9.22)

O comportamento assimptótico, \(r \gg r' \), segue com (9.7) usando \(z' = r' \cdot \hat{e}_z \) e definindo \(k_s = k\hat{e}_r \) e \(k_i = k\hat{e}_z \),

\[
\psi(r) \simeq \frac{e^{ikz}}{(2\pi)^{3/2}} - \frac{m}{(2\pi)^{3/2}2\pi\hbar^2} \int_V e^{ik(r-r'/r)} \frac{1}{r}V(r')e^{ikr'}d^3r' \\
= \frac{e^{ikz}}{(2\pi)^{3/2}} + \frac{m}{(2\pi)^{3/2}2\pi\hbar^2} \int_V V(r')e^{ik[r_i-k_s] \cdot r'}d^3r' \\
\equiv \frac{1}{(2\pi)^{3/2}} \left(e^{ikz} + \frac{e^{ikr}}{r} f(k_i,k_s) \right) ,
\]

(9.23)

com

\[
f(k_i,k_s) = \frac{m}{2\pi\hbar^2} \int_V V(r')e^{ik[r_i-k_s] \cdot r'}d^3r' = -\frac{m}{2\pi\hbar^2} \langle k_s | V | k_i \rangle .
\]

9.1.4 Potenciais esféricos

Para potenciais de espalhamento esféricamente simétricos, \(V(r) = V(r) \), o hamiltoniano \(H = p^2/2m + V(r) \) comuta com os operadores de rotação \(U_\theta = e^{-i\theta L_z/\hbar} \) em torno de qualquer eixo \(\hat{e}_\phi \). Portanto, podemos separar o problema angular e decompor o problema de espalhamento seguinte as representações irreduzíveis do grupo de rotação. Esta decomposição em ondas parciais pode ser escrita,

\[
\psi_k(r) = \sum_{\ell=0}^{\infty} (2\ell + 1)i^\ell P_\ell(\cos \theta)R_\ell(r) ,
\]

(9.24)

onde o fator \((2\ell + 1)i^\ell \) é uma convenção facilitando o cálculo posteriormente. Inserindo este ansatz de separação das variáveis radiais e angulares na equação estacionária de Schrödinger (9.1), obtemos a equação de Schrödinger radial,

\[
\left[\frac{\partial^2}{\partial r^2} - \frac{\ell(\ell + 1)}{r^2} + k^2 \right] rR_\ell(r) = \frac{2m}{\hbar^2} V(r) rR_\ell = 0 ,
\]

(9.25)
onde \(\psi_{\mathbf{k}} \) deve satisfazer as condições de contorno (9.2). Felizmente, podemos expandir também a onda incidente por ondas parciais \(^2\),

\[
e^{ikz} = e^{ir\cos \theta} = \sum_{\ell=0}^{\infty} (2\ell + 1) i^\ell j_\ell(kr) P_\ell(\cos \theta) . \quad (9.26)
\]

Usamos agora o resultado (9.26) para encontrar as condições de contorno para as ondas radiais \(R_\ell \). No infinito temos \(rV(r) \to 0 \). Por isso,

\[
R_\ell(r) \to_{r \to \infty} \alpha_\ell [h_\ell^{(2)}(kr) + s_\ell h_\ell^{(1)}(kr)] , \quad (9.27)
\]

onde as funções de Hankel \(h_\ell^{(1,2)}(kr) \sim e^{\pm i(\rho-(\ell+1)\pi/2)} \) descrevem, respetivamente, ondas esféricas incidentes \((h_\ell^{(2)}) \) e saindo \((h_\ell^{(1)}) \).

Para determinar os coeficientes \(\alpha_\ell \) e \(s_\ell \) notamos primeiramente, que sem potencial, \(V(r) = 0 \), a solução da equação radial (9.25) é conhecida,

\[
R_\ell(r) = j_\ell(kr) = \frac{1}{2} [h_\ell^{(2)}(kr) + h_\ell^{(1)}(kr)] , \quad (9.28)
\]

tal que \(\alpha_\ell = \frac{1}{2} \) e \(s_\ell = 1 \). Para \(V(r) \neq 0 \) a onda incidente \(h_\ell^{(2)} \) é a mesma, mais não a incidente \(h_\ell^{(1)} \) resultando em \(s_\ell \neq 1 \). No entanto, a conservação do número de partícula requer, que o número de partículas entrando seja igual ao número de partículas saindo. Isto é, o fluxo radial total deve estar,

\[
0 = j_\ell'(kr) = \frac{\hbar}{2im} [R_\ell^* \partial_r R_\ell - R_\ell \partial_r R_\ell^*] = \frac{\hbar}{4mk^2r^2} [2|s_\ell|^2 - 1] , \quad (9.29)
\]

aproximando \(2R_\ell \approx e^{-i(kr+u_\ell)/kr} + s_\ell e^{i(kr+u_\ell)/kr} \). Portanto, \(|s_\ell| = 1 \), ou seja,

\[
s_\ell = e^{2i\delta_\ell(k)} , \quad (9.30)
\]

onde \(\delta_\ell(k) \) é a fase do espalhamento. A fase do espalhamento determina a solução do problema do espalhamento, porque fixa a amplitude de espalhamento: Avaluando a solução (9.24) no regime assimptótico pela fórmula (9.26),

\[
\psi_{\mathbf{k}}(\mathbf{r}) \sim \frac{1}{2} \sum_{\ell=0}^{\infty} (2\ell + 1) i^\ell P_\ell(\cos \theta)[h_\ell^{(2)}(kr) + e^{2i\delta_\ell} h_\ell^{(1)}(kr)]
\]

\[
= e^{ikr} + \frac{1}{2} \sum_{\ell=0}^{\infty} (2\ell + 1) i^\ell P_\ell(\cos \theta)[e^{2i\delta_\ell} - 1] h_\ell^{(1)}(kr) = e^{ikr} + f_\ell(\theta) e^{i\mathbf{k} \cdot \mathbf{r}} , \quad (9.31)
\]

obtemos a amplitude de espalhamento na forma \(^3\)

\[
f_\ell(\theta) = \frac{1}{\pi} \sum_{\ell=0}^{\infty} (2\ell + 1) P_\ell(\cos \theta) e^{i\delta_\ell} \sin \delta_\ell . \quad (9.32)
\]

\(^2\)Para o caso mais geral de vetores arbitrários \(\mathbf{k} \) e \(\mathbf{r} \), usamos o teorema de adição para \(Y_{\ell m} \) e exprimimos \(P_\ell(\cos \theta) \) por funções esféricas,

\[
e^{ikr} = 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} i^\ell j_\ell(kr) Y_{\ell m}^*(\Omega_k) Y_{\ell m}(\Omega_r) .
\]

\(^3\)Com \(h_\ell^{(1)} \sim (-i)^{\ell+1} \frac{\ell^{kr}}{kr} \).
Chamamos
\[
e^{2i\delta \ell} - 1 = \frac{e^{i\delta \ell} \sin \delta \ell}{k} \equiv f_{\ell}
\] (9.33)
de *amplitude da onda parcial* [28, 6].

9.1.5 Fase e comprimento de espalhamento

Resumindo, podemos dentro da aproximação de Born, exprimir o estado de qualquer tipo de partículas colidindo por potenciais isotrópicos como,

\[
\psi(r) \sim e^{ikr} + \frac{e^{ikr}}{r} f_{\ell}(\Omega).
\] (9.34)

A seção de choque pode ser escrita,

\[
\sigma = \int d\Omega |f_{\ell}(\Omega)|^2 = \frac{1}{k^2} \int d\Omega \sum_{\ell} (2\ell + 1) P_{\ell}(\cos \theta) \sin \delta_{\ell}^2
\] (9.35)

\[
= \frac{4\pi}{k^2} \sum_{\ell} (2\ell + 1) \sin^2 \delta_{\ell} = 4\pi \sum_{\ell} (2\ell + 1) |f_{\ell}|^2.
\]

A grandeza
\[
\sigma_{\ell} = \frac{4\pi}{k^2} (2\ell + 1) \sin^2 \delta_{\ell} = \frac{4\pi}{k^2} (2\ell + 1) |f_{\ell}|^2
\] (9.36)

se chama _seção eficaz parcial_. Obviamente, vale \(\sigma_{\ell} \leq \frac{4\pi}{k^2} (2\ell + 1)\). O deslocamento de fase \(e^{2i\delta_{\ell}}\) tem uma interpretação física simples: Consideramos a função,

\[
e^{i\delta_{\ell} j_{\ell}(kr + \delta_{\ell})} = \frac{e^{i\delta_{\ell}}}{2} [h_{\ell}^{(2)}(kr + \delta_{\ell}) + h_{\ell}^{(1)}(kr + \delta_{\ell})]
\] (9.37)

\[
\sim \frac{e^{i\delta_{\ell}}}{2} \left[\frac{(-i)e^{i(\delta_{\ell} - \delta_{\ell})}}{kr + \delta_{\ell}} + \frac{(+i)e^{-i(\delta_{\ell} + \delta_{\ell})}}{kr + \delta_{\ell}} \right] \xrightarrow{kr \gg \delta_{\ell}} \frac{1}{2} \left[h_{\ell}^{(2)} + e^{2i\delta_{\ell}} h_{\ell}^{(1)} \right] \sim R_{\ell}.
\]

Agora comparando o caso \(V = 0\) dando \(R_{\ell}(r) = j_{\ell}(kr)\) com o caso \(V \neq 0\) dando \(R_{\ell}(r) \sim e^{i\delta_{\ell} j_{\ell}(kr + \delta_{\ell})}\), percebemos, que um deslocamento positivo, \(\delta_{\ell} > 0\), puxa a função de onda para dentro do potencial, enquanto um deslocamento negativo, \(\delta_{\ell} < 0\), empurra a função de onda para fora, como ilustrado na Fig. 9.3.

Figura 9.3: Deslocamento de fase \(\delta_{\ell}(k)\) da função de onda espalhada. Um potencial atrativo (esquerda) aumenta a energia cinética e a função de onda oscila mais rápido, o que leva a um deslocamento de fase positivo. Do outro lado, um potencial repulsivo (direito) desacelera a oscilação da função de onda e produz um \(\delta_{\ell}(k)\) negativo.
9.1.6 Teorema óptico

Considere a amplitude para espalhamento para frente \(f(0) \) escrevendo sua parte imaginária como,

\[
\text{Im} \, f(0) = \frac{1}{4\pi} \sum_{k} (2\ell + 1) P_{\ell}(\cos \theta) \sin^2 \delta_{\ell} |_{\theta = 0} = \frac{1}{4\pi} \sum_{k} (2\ell + 1) \sin^2 \delta_{\ell} \equiv \frac{k}{4\pi} \sigma.
\] (9.38)

Com isso obtemos o teorema óptico,

\[
\sigma = \frac{4\pi}{k} \text{Im} \, f(0).
\] (9.39)

A razão mais profunda do teorema óptico e a conservação do número de partículas: O fluxo de partículas espalhadas, \((\hbar \omega / m) \sigma = I_{\text{col}}, \) deve ser extraído do fluxo incidente \(I_0\) por espalhamento, e portanto, falta na direção para frente. É a interferência da onda espalhada com a onda incidente, que diminui a onda não espalhada e, portanto, cria uma sombra do espalhador na direção a frente. As partículas faltando na sombra do espalhador são justamente aqueles que foram espalhadas. É isso a mensagem do teorema óptico, que sempre é válido, quando não têm processos aprisionando ou transformando partículas.

9.1.6.1 Aproximação de Born para a fase de espalhamento

O problema do espalhamento pode ser considerado resolvido, quando conhecemos a amplitude de espalhamento para frente \(f(0) \) escrevendo sua parte imaginária como,

\[
\text{Im} \, f(0) = \frac{1}{4\pi} \sum_{k} (2\ell + 1) P_{\ell}(\cos \theta) \sin^2 \delta_{\ell} |_{\theta = 0} = \frac{1}{4\pi} \sum_{k} (2\ell + 1) \sin^2 \delta_{\ell} \equiv \frac{k}{4\pi} \sigma.
\] (9.38)

Com isso obtemos o teorema óptico,

\[
\sigma = \frac{4\pi}{k} \text{Im} \, f(0).
\] (9.39)

9.1.6.2 Analiticidade de \(s_{\ell}(E) \)

Considere um potencial de curto alcance que desaparece para \(r > R_0. \) A solução radial fora do alcance do potencial então será dada por,

\[
R_{\ell}(r) = \frac{1}{2} [h_{\ell}^{(2)}(kr) + sk h_{\ell}^{(1)}(kr)].
\] (9.42)
enquanto para \(r < R_0 \) a solução \(R_\ell \) deve ser encontrada por integração da equação radial \((9.25)\).

A fase de espalhamento \(s_\ell \) deve ser escolhida de maneira que \(R_\ell \) e \(\partial_r R_\ell \) sejam contínuo em \(R_0 \).

O fator de normalização zera na derivada logarítmica, tal que,

\[
\gamma_\ell \equiv \partial_r \ln R_\ell |_{R_0} = \left. \frac{1}{R_\ell} \frac{\partial R_\ell}{\partial r} \right|_{R_0} = \frac{\partial h_\ell^{(2)} + s_\ell \partial \eta R_\ell (1)}{h_\ell^{(2)} + s_\ell \partial \eta R_\ell (1)} . \tag{9.43}
\]

Agora \footnote{Temos para as funções de Hankel esféricas: \(h_\ell^{(1,2)}(x) = j_\ell(x) \pm iy_\ell(x) \).}

\[
s_\ell - 1 = \left. \frac{2(\partial_r - \gamma_\ell) j_\ell}{(\gamma_\ell - \partial_r) h_\ell^{(1)}} \right|_{R_0} \tag{9.44}
\]

ou com \(s_\ell - 1 = \frac{2\eta}{\cot \delta_\ell - i} \) exprimindo \(\delta_\ell \) por \(\gamma_\ell \),

\[
\cot \delta_\ell = \left. \frac{(\partial_r - \gamma_\ell) n_\ell}{(\partial_r - \gamma_\ell) j_\ell} \right|_{R_0} . \tag{9.45}
\]

A seção eficaz parcial é,

\[
\sigma_\ell = \frac{4\pi}{k^2} (2\ell + 1) \sin^2 \delta_\ell = \frac{4\pi}{k^2} \frac{2\ell + 1}{1 + \cot^2 \delta_\ell} . \tag{9.46}
\]

Analisando as expressões para \(s_\ell(\cot \delta_\ell) \) e \(\sigma_\ell(\cot \delta_\ell) \) achamos, que

- para \(\cos \delta_\ell = i \) a fase de espalhamento \(s_\ell \) tem um polo e \(\sigma_\ell \to \infty \);
- para \(\cos \delta_\ell = 0 \) a fase de espalhamento é \(s_\ell - 1 \) e \(\sigma_\ell = 4\pi(2\ell + 1)/k^2 \) é máximo.

Os polos de \(s_\ell \) são justamente os estados ligados: Para um estado ligado vale assimptoticamente \(R_\ell(r) \sim h_\ell^{(1)}(ikr) \propto e^{-kr} \) com a energia de ligação \(E_B = -\hbar^2\kappa^2/2m \). A condição de continuidade é dada por,

\[
\gamma_\ell = \left. \frac{\partial h_\ell^{(1)}}{\partial \eta R_\ell (1)} \right|_{R_0} , \tag{9.47}
\]

e a inserção na condição de continuidade geral \((9.45)\) dá,

\[
\cot \delta_\ell = \frac{h_\ell^{(1)} \partial_r n_\ell - n_\ell \partial_r h_\ell^{(1)}}{h_\ell^{(1)} \partial_r j_\ell - j_\ell \partial_r h_\ell^{(1)}} = i . \tag{9.48}
\]

Da mesma maneira os cruzamentos de zero de \(\cot \delta_\ell \) correspondem justamente à ressonanças de espalhamento. Para ver isso, expandimos em torno de uma ressonância,

\[
\cot \delta_\ell(E) \simeq \cot \delta_\ell(E_r) - \frac{1}{\sin^2 \delta_\ell} \frac{d\delta_\ell}{d\xi} \left|_{E_r} \right. (E - E_r) = - \frac{d\delta_\ell}{d\xi} \left|_{E_r} \right. (E - E_r) \equiv - \frac{2}{\Gamma_r} (E - E_r) , \tag{9.49}
\]

definindo a largura \(\Gamma_r = \frac{2}{\partial_y \delta_\ell} \left|_{E_r} \right. \) do pico da ressonância na seção eficaz \(\sigma_\ell \) da forma,

\[
\sigma_\ell = \frac{4\pi}{k^2} (2\ell + 1) \frac{(\Gamma_r/2)^2}{(E - E_r)^2 + (\Gamma_r/2)^2} . \tag{9.50}
\]

Vide a Fig. 9.4,

\[
s_\ell - 1 = \frac{-i\Gamma_r}{E - (E_r - i\Gamma_r/2)} . \tag{9.51}
\]

A fase de espalhamento \(\delta_\ell \) cresce de \(\pi \). O valor \(\delta_\ell(E = 0) \) dá o número de estados ligados, \(\delta_\ell(0) = n_\ell \) ligado \(\pi \).

9.2 Colisões de átomos frios

Técnicas modernas desenvolvidas na área da ótica atômica permitem resfriar gases atômicos até temperaturas bem abaixo de 1 μK. Usamos as expansões $j_{\ell} \sim x^\ell/(2\ell+1)!$ e $n_{\ell} \sim (2\ell-1)!/x^{\ell+1}$ na equação (9.74), e obtemos para $kR_0 \ll 1$,

$$\cos \delta_{\ell} \simeq \frac{2\ell+1)!!(2\ell-1)!! \ell + 1 + R_0 \alpha_{\ell}(E)}{(kR_0)^{2\ell+1}} \ell - R_0 \alpha_{\ell}(E).$$ (9.52)

Uma aproximação grosseira leva a

$$\cos \delta_{\ell} = \frac{\cos \delta_{\ell}}{\sin \delta_{\ell}} \approx \frac{1}{\sin \delta_{\ell}} \approx \frac{1}{(R_0k)^{2\ell+1}},$$ (9.53)

ou seja,

$$\sin \delta_{\ell} \simeq (R_0k)^{2\ell+1}.$$ (9.54)

isto é, as fases de espalhamento diminuem, no regime de colisões frias, rapidamente com ℓ crescentes e colisões tipo $\ell = 0$ dominam,

$$k \cot \delta_0 \alpha_0\alpha_{\ell}(E) \simeq \frac{1 + R_0 \alpha_0(0)}{R_0^2 \alpha_0(E)}.$$ (9.55)

O comprimento de espalhamento s definido por,

$$a_s \equiv \frac{R_0^2 \alpha_0(E)}{1 + R_0 \alpha_0(0)} = \frac{\sin \delta_0}{k}$$ (9.56)

então é o único parâmetro relevante da colisão. Para $R_0 \alpha_0 \gg 1$ achamos $a \simeq R_0$. Por exemplo, para uma esfera dura temos $R_\ell(R_0) = 0$, $\alpha_\ell = \infty$, $a = R_0 > 0$ e $\cot \delta_0 = -1/kR_0$. Para pequenos kR_0 obtemos $\delta_0 \simeq -kR_0 < 0$ o que corresponde a um deslocamento de fase negativo para o potencial repulsivo, como esperado. A seção eficaz é,

$$\sigma_0 = \frac{4\pi}{k^2 1 + \cot^2 \delta_0} \simeq \frac{4\pi}{k^2 + 1/a_s^2}.$$ (9.57)

Em comparação a seção eficaz para momentos angulares mais elevados, $\sigma_{\ell} \propto \frac{\sin^2 \delta_{\ell}}{k^2}$ se comporta como,

$$\sigma_{\ell} \propto R_0^2(R_0k)^{4\ell} \rightarrow 0.$$ (9.58)
9.2. COLISÕES DE ÁTOMOS FRIOS

Em contraste achamos, que o espalhamento em energias baixas tem um caráter de onda s, sendo \(\sigma \) dominado por \(\sigma_0 \),

\[
\sigma(E = 0) = 4\pi a_s^2.
\]

(9.59)

Para uma esfera dura \((a = R_0) \) achamos uma seção eficaz \textit{quatro vezes maior} do classicamente esperado \((\sigma_{cl} = \pi R_0^2) \).

A função de onda relativa tende assimptoticamente para \(\psi(R) \overset{R \to \infty}{\longrightarrow} k_{dB}^{-1} \sin[k_{dB}(R - a)] \overset{T \to 0}{\longrightarrow} R - a \). Isso significa, que para temperaturas tão baixas que o comprimento da onda de Broglie do movimento relativo é muito mais longo que o alcance do potencial \(k_{dB}^{-1} \gg R_{\text{turning}} \), o espa\-lhamento se torne independente da temperatura, e o comprimento de espalhamento \(a \) é bem definido \(^5\).

Geralmente, um potencial de interação repulsivo corresponde a um comprimento de espa\-lhamento positivo e um potencial atrativo a um negativo. No entanto, se o potencial atrativo suporta estados ligados, o valor do comprimento de espalhamento depende da energia do último estado ligado a respeito do limiar de dissociação.

9.2.1 Estados ligados e ressonâncias em colisões frias

A chamada \textit{ressonância de Feshbach} é devida à uma coincidência energética entre um canal colisional e um estado molecular ligado. Elas permitem variar o comprimento de espalhamento \(a_s \) quase arbitrariamente mediante. Ele pode ser tão grande como a tamanho total da nuvem.

O impacto da ressonância de Feshbach pode ser entendida por uma perturbação do canal colisional levando à uma modificação da profundidade do potencial espalhador. Quando isso leva à travessa de um estado vibracional pelo contínuo, é obvio a modificação dramática do comprimento de espalhamento \(a_s \).

\(^5\)Em temperaturas nas quais a trajetória dos átomos é descrita por ondas de de Broglie a única diferença entre um átomo antes e depois de uma colisão elástica é o deslocamento de fase \(\delta_0 \) desta onda.
CAPÍTULO 9. COLISÕES

9.2.2 Colisões entre partículas idênticas

Consideramos colisões de duas partículas idênticas. Separamos em coordenadas de centro-de-massa $R = r_1 + r_2$ e relativas $r = r_1 - r_2$. Com isso, R fica simétrico e r antissimétrico em r_1 e r_2. Separamos a função de onda em partes orbitais e de spin,

$$\Psi(x_1, x_2) = e^{i \mathbf{P} \cdot \mathbf{R}} \psi(r) \chi(s_1, s_2).$$ \hspace{1cm} (9.60)

Para partículas indistinguíveis o resultado do espalhamento tem a forma assintótica,

$$\psi(r) \sim e^{ikr} + f(\theta) \frac{e^{ikr}}{r}.$$ \hspace{1cm} (9.61)

9.2.2.1 Bóson de spin 0

Para bóson de spin 0 temos $\chi = 1$ e, por causa da simetria de Ψ, vale $\psi(r) = \psi(-r)$. Por consequência, devemos simetrizar o resultado do espalhamento. Fazemos uso do fato, que a troca das partículas via $r \rightarrow -r$ em coordenadas polares corresponde à transformação $\theta \rightarrow \pi - \theta, r \rightarrow r$,

$$\psi \sim (e^{ikr} + e^{-ikr}) + [f(\theta) + f(\pi - \theta)] \frac{e^{ikr}}{r}.$$ \hspace{1cm} (9.62)

Para a seção eficaz diferencial obtemos,

$$\frac{d\sigma}{d\Omega} = |f(\theta) + f(\pi - \theta)|^2 = |f(\theta)|^2 + |f(\pi - \theta)|^2 + 2\Re[f^*(\theta)f(\pi - \theta)].$$ \hspace{1cm} (9.63)

Os dois primeiros termos são clássicos. O terceiro termo (de interferência) ocorre por causa da estatística quântica. Os ângulos aparecendo em (9.63) são ilustrados na Fig. 9.7. Para bósons, os termos de interferência dobram a seção eficaz em comparação com o caso clássico, quando $\theta = \pi/2$,

$$\frac{d\sigma}{d\Omega} = 4|f(\pi/2)|^2.$$ \hspace{1cm} (9.64)

Para o potencial isotrópico $V(r)$ usamos a representação por ondas parciais,

$$f(\theta) = \sum_{\ell} i^\ell f_\ell P_\ell(\cos \theta).$$ \hspace{1cm} (9.65)
Com $P_\ell(\cos \theta) = (-1)^\ell P_\ell(\pi - \cos \theta)$ obtemos,

$$f(\theta) - f(\pi - \cos \theta) = 2 \sum_{\ell \text{par}} i^\ell f_\ell P_\ell(\cos \theta), \quad (9.66)$$

e achamos, que somente **momentos angulares pares** aparecem.

9.2.2.2 Férmions de spin 1/2

No caso de férmions de spin $\frac{1}{2}$ duas situações são possíveis:

1. O estado de spin singlete $\chi_s = \frac{1}{\sqrt{2}}[(\uparrow \downarrow) - (\downarrow \uparrow)]$ é antissimétrico e consequentemente a parte orbital,

$$\psi(\mathbf{r}) = \psi(-\mathbf{r}) \quad (9.67)$$

deve ser simétrica. A seção eficaz é a mesmo como para bósons de spin 0,

$$\left. \frac{d\sigma}{d\Omega} \right|_s = |f(\theta) + f(\pi - \theta)|^2. \quad (9.68)$$

2. Os estados de spin tripletos,

$$\chi_s = \begin{cases}
\frac{1}{\sqrt{2}}(\uparrow \uparrow) + (\downarrow \downarrow) \\
\frac{1}{\sqrt{2}}(\uparrow \downarrow) - (\downarrow \uparrow)
\end{cases} \quad (9.69)$$

demandam uma função de onda orbital antisimétrica, $\psi(\mathbf{r}) = -\psi(-\mathbf{r})$, e obtemos uma amplitude de espalhamento, $f(\theta) \rightarrow f(\theta) - f(\pi - \theta)$, que somente contém **momentos angulares ímpares** ℓ. Com isso, a seção eficaz fica,

$$\left. \frac{d\sigma}{d\Omega} \right|_\ell = |f(\theta) - f(\pi - \theta)|^2 \theta = \pi/2 \quad 0 \quad (9.70)$$

Nota, que férmions polarizados somente espalham em canais de momentos angulares ímpares: átomos bosônicos frios mostram um **potencial de contato** (devido à colisões de onda s (9.66)), átomos fermiônicos frios polarizados somente interagem fracamente no canal p.

6 Para ℓ ímpar o polinômio de Legendre muda de sinal, e as contribuiçõeszeram.

7 Isso é analógico ao caso do hélio, onde a função espacial do estado $2s^2 \uparrow \uparrow$ é sempre antissimétrizada, mas para o estado $2s \uparrow 2p \uparrow$ existem orbitais espaciais simétricas.
No caso de conjunto estatisticamente misturado de fêrmions não-polarizados obtemos a média ponderada,
\[
\frac{d\sigma}{d\Omega} = \frac{3}{4} \frac{d\sigma}{d\Omega}_t + \frac{1}{4} \frac{d\sigma}{d\Omega}_s = |f(\theta)|^2 + |f(\pi - \theta)|^2 - \Re[f^*(\theta)f(\pi - \theta)]. \tag{9.71}
\]

9.2.2.3 Espectros moleculares
Aqui consideramos espectros rotacionais de baixas energias \(E_{\text{rot}} = \hbar^2 \ell(\ell + 1)/2\Theta \ll E_{\text{elettrônico}} \sim eV\). Em escalas de tempo devagares podemos considerar a casca eletrônica como rígida. Olhamos para dois exemplos de moléculas com núcleos bosônicos e fêrmônicos:
- Moléculas \((\text{C}^{12})_2\): os núcleos são bôsons de spin 0, por isso somente são permitidos \(\ell\) pares.
- Moléculas \(\text{H}_2\): os núcleos são fêrmions de spin \(\frac{1}{2}\), por isso temos para uma função de onda de spin, \(\chi = \chi_s: \ell = \text{par}, \text{hidrogênio para}, \chi = \chi_t: \ell = \text{impar}, \text{hidrogênio orto}\). \tag{9.72}

A transformação de hidrogênio orto em hidrogênio para é difícil (os núcleos sendo bem blindados), tal que observamos dois tipos de gases com,
\[
E_{\text{rot,para}} = 0, \frac{3}{\Theta}, \frac{10}{\Theta}, \frac{21}{\Theta}, \ldots \quad E_{\text{rot,orto}} = \frac{1}{\Theta}, \frac{6}{\Theta}, \frac{15}{\Theta}, \ldots \tag{9.73}
\]

9.2.3 Colisões de átomos quentes
Momentos angulares com \(\ell \leq kR_0\) deveriam contribuir muito para \(\sigma\), pois o parâmetro de colisão fica dentro de \(R_0\). Para uma esfera dura temos \(\alpha_{\ell} = \infty\) e \(\cot\delta_{\ell} = n_{\ell}(kR_0)/j_{\ell}(kR_0)\). Com as expressões assimptóticas de \(j_{\ell}\) e \(n_{\ell}\) obtemos \(\cot\delta_{\ell} \sim -\cot(kR_0 - \ell\pi/2)\), isto é, \(\delta_{\ell} \sim kR_0 + \ell\pi/2 (\mp\pi)\). Com estas fases de espalhamento podemos calcular a seção eficaz,
\[
\sigma \approx \frac{4\pi}{k^2} \sum_{\ell=0}^{kR_0} (2\ell + 1) \sin^2 \delta_{\ell} \tag{9.74}
\]
\[
\approx \frac{4\pi}{k^2} \sum_{\ell=0}^{kR_0} (\ell + 1) \cos^2[kR_0 - (\ell + 1)\pi/2] + \ell \sin^2(kR_0 - \ell\pi/2)
\]
\[
= \frac{4\pi}{k^2} \sum_{\ell=0}^{kR_0} \ell(\cos^2 + \sin^2) = \frac{4\pi}{k^2} \frac{kR_0(kR_0 + 1)}{2} = \frac{2\pi R_0^2}{\ell}, \tag{9.75}
\]
o que é o dobro do valor clássico.

9.3 Exercícios
9.3.1 Teoria de espalhamento
9.3.1.1 Ex: Método de Green
Mostre que, sabendo a solução de (9.4), isto é, conhecendo a função de Green, podemos escrever a solução do problema de espalhamento (9.3) como,
\[
\psi_k(r) = e^{ikr} + \frac{2m}{\hbar^2} \int d^3r' G(r - r', k)V(r')\psi_k(r').
\]
9.3. EXERCÍCIOS

Figura 9.8: (a) Estado ligado para $\ell = 0$. (b) Estado ligado para $\ell > 0$ num potencial incluindo a barreira centrífuga $\hbar^2 \ell (\ell + 1) / 2mr^2$. (c) Ressonâncias para $\ell = 0$ são largas e eventualmente não definidas com $\Gamma_r > E_r$. Uma ressonância definida com $\Gamma_r < E_r$ necessita que $|\partial E_0| \alpha$ seja grande. (d) Para $\ell > 0$ obtemos ressonâncias finas chamadas de ressonância de forma ou shape resonance, pois o decaimento do estado é suprimida pela barreira centrífuga.

9.3.1.2 Ex: Função de Green
Calcule a função de Green da equação (9.4).

9.3.1.3 Ex: Espalhamento de Rutherford
Considere o espalhamento de uma partícula da carga Q por uma distribuição de carga estática $\rho(r) = \rho_0 e^{-\alpha r}$ totalizando a carga total Q'. Derive à partir de (9.24) a fórmula (1.13) descrevendo o espalhamento de Rutherford.

9.3.2 Colisões de átomos frios
Referências Bibliográficas

Índice Remissivo

6j
símbolo, 89
absorção, 82
acoplamento jj, 34
acoplamento LS, 34
acoplamento intermediário, 118
acoplamento mínimo, 70
alargamento homogêneo, 91
alargamento inomogêneo, 91
Aristóteles, 4
auto-consistência, 104
bárion, 64
banho térmico, 86
Biot-Savart
lei de, 55
Bohr
Niels, 12
postulados de, 12
raio de, 21
Born
aproximação de, 9, 157
serie de, 157
Born-Oppenheimer
aproximação de, 125, 137, 142
potencial de, 126
boson, 96
Bremsstrahlung, 113
Casimir
efeito de, 145
casos de Hund, 148
catástrofe de radiação, 10
centrífuga
barreira, 134
Clebsch-Gordan
coefficiente de, 33
coefficientes de Einstein, 86
colisão de onda s, 163
colisão fria, 163
combinação linear de orbitais atômicos, 128
Compton
comprimento de onda, 57
conjunto completo de operadores comutados, 14
constante rotacional, 142
costantes rotacionais, 141
contato
potencial de, 165
corpo negro, 86
Coulomb
integral de, 99, 132
operador de, 110
potencial de, 56
covalente
configuração, 131
cruzamentos evitados, 67
cruzamentos reais, 67
Darwin
Sir Charles Galton, 57
defeito quântico, 66, 115
Demócrito, 4
densidade dos estados, 84, 105
density functional theory, 104
descida
operador de, 26
desdobramento hiperfino, 60
determinante de Slater, 97
diamagnético
termo, 70
dipolar
aproximação, 85
Dirac
equação de, 53
Paul, 27, 53
Paul Adrien Maurice, 13
dissociação
limite de, 136
eletroafinidade, 123
eletrodinâmica quântica, 83
eletronegatividade, 123
emissão, 82
emissão espontânea, 83
emissão estimulada, 83
energia de ionização, 123
energia de ligação, 143
energia de localização, 142
equação azimutal, 18
equação polar, 18
espalhamento
 amplitude de, 153, 155
 comprimento de, 162
estrutura fina, 53
 constante da, 53
estrutura hiperfina
 efeito Paschen-Back da, 74
 efeito Zeeman da, 73
exótico
 átomo, 63
fase do espalhamento, 158
fator de intervalo, 62
fator de Landé, 73
fator-g, 55
Fermi
 contato de, 60
 energia de, 103
fermion, 96
Feshbach
 ressonância de, 163
Fock
 Vladimir Aleksandrovich, 24
 fosforescência, 88
 fotoassociação, 140
Fourier
 método de grade de, 144, 145
Franck-Condon
 fator de, 138, 140
 princípio de, 138
função de onda, 13
functional da densidade, 104
gás de Fermi
 modelo do, 103
Gerlach
 Walter, 12
giromagnética
 razão, 55
grau de liberdade, 13
Green
 função de, 153
 método de, 154
hádron, 64
hélio, 98
hadrônico
 átomo, 64
harmônicos esféricos, 18
Hartree
 Douglas Rayner, 104
 método de, 108
Hartree-Fock
 equações de, 110
 método de, 108
Hartree-Fock-Roothaan
 equação de, 111
Heisenberg
 Werner, 13
hidrogênio muônico, 64
hiperfina
 estrutura, 59
integral de ressonância, 128
intercâmbio
 degenerescência de, 96
 simetria de, 96
intervalo
 regra de, 62
irreduzível
 elemento da matriz, 76
 elemento de matriz, 88
Koopman
 teorema de, 111
lépton, 64
Laguerre
 Edmond, 23
 equação diferencial associada de, 23
Lamb
 deslocamento de, 59
 Willis Eugene, Jr., 59
Landé
 fator de, 71
Larmor
 frequência de, 11
Legendre
 Adrien-Marie, 18
LeRoy-Bernstein
 método de, 143
ligação covalente, 124
ligação iônica, 123
Lippmann-Schwinger
 equação de, 154
Lorentz
 distribuição de, 91
<table>
<thead>
<tr>
<th>Termo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>117</td>
</tr>
<tr>
<td>acoplamento</td>
<td></td>
</tr>
<tr>
<td>méson</td>
<td>64</td>
</tr>
<tr>
<td>método variacional</td>
<td>46</td>
</tr>
<tr>
<td>magneton de Bohr</td>
<td>11, 55</td>
</tr>
<tr>
<td>magneton nuclear</td>
<td>60</td>
</tr>
<tr>
<td>massa reduzida</td>
<td>134</td>
</tr>
<tr>
<td>matrix</td>
<td></td>
</tr>
<tr>
<td>elemento de</td>
<td>82</td>
</tr>
<tr>
<td>mecânica das matrizes</td>
<td>13</td>
</tr>
<tr>
<td>mecânica das ondas</td>
<td>13</td>
</tr>
<tr>
<td>Mie</td>
<td></td>
</tr>
<tr>
<td>espalhamento de</td>
<td>35</td>
</tr>
<tr>
<td>moleculares</td>
<td></td>
</tr>
<tr>
<td>modelo dos orbitais</td>
<td>127</td>
</tr>
<tr>
<td>momento angular orbital</td>
<td>25</td>
</tr>
<tr>
<td>momento de dipolo da transição</td>
<td>139</td>
</tr>
<tr>
<td>momento de dipolo elétrico</td>
<td>85</td>
</tr>
<tr>
<td>momento de inércia</td>
<td>20</td>
</tr>
<tr>
<td>momento dipolar</td>
<td>27</td>
</tr>
<tr>
<td>momento magnético orbital</td>
<td>10</td>
</tr>
<tr>
<td>Morse</td>
<td></td>
</tr>
<tr>
<td>potencial de</td>
<td>135, 146</td>
</tr>
<tr>
<td>Movre-Pichler</td>
<td></td>
</tr>
<tr>
<td>potencial de</td>
<td>147</td>
</tr>
<tr>
<td>número quântico do momento angular</td>
<td>18</td>
</tr>
<tr>
<td>número quântico magnético</td>
<td>18</td>
</tr>
<tr>
<td>número quântico principal</td>
<td>22</td>
</tr>
<tr>
<td>nucleado</td>
<td></td>
</tr>
<tr>
<td>modelo</td>
<td>7</td>
</tr>
<tr>
<td>observáveis</td>
<td>13</td>
</tr>
<tr>
<td>onda parcial</td>
<td></td>
</tr>
<tr>
<td>amplitude da</td>
<td>159</td>
</tr>
<tr>
<td>orbital atômico</td>
<td>128</td>
</tr>
<tr>
<td>orbital molecular</td>
<td>129</td>
</tr>
<tr>
<td>método do</td>
<td>128</td>
</tr>
<tr>
<td>orto-hélio</td>
<td>102</td>
</tr>
<tr>
<td>pacote de onda</td>
<td>155</td>
</tr>
<tr>
<td>para-hélio</td>
<td>102</td>
</tr>
<tr>
<td>parciais</td>
<td></td>
</tr>
<tr>
<td>ondas</td>
<td>157</td>
</tr>
<tr>
<td>paridade</td>
<td>88</td>
</tr>
<tr>
<td>Paschen-Back</td>
<td></td>
</tr>
<tr>
<td>efeito</td>
<td>72</td>
</tr>
<tr>
<td>Paschen-Goudsmith</td>
<td></td>
</tr>
<tr>
<td>Pauli</td>
<td></td>
</tr>
<tr>
<td>matriz de</td>
<td>27</td>
</tr>
<tr>
<td>perturbação dependente do tempo</td>
<td></td>
</tr>
<tr>
<td>teoria de</td>
<td>81</td>
</tr>
<tr>
<td>perturbação independente do tempo</td>
<td></td>
</tr>
<tr>
<td>teoria de</td>
<td>41</td>
</tr>
<tr>
<td>planetário</td>
<td></td>
</tr>
<tr>
<td>modelo</td>
<td>9</td>
</tr>
<tr>
<td>Poisson</td>
<td></td>
</tr>
<tr>
<td>lei de</td>
<td>154</td>
</tr>
<tr>
<td>polinômios de Laguerre</td>
<td>23</td>
</tr>
<tr>
<td>polinômios de Legendre</td>
<td>18</td>
</tr>
<tr>
<td>potencial centrifugal</td>
<td>19</td>
</tr>
<tr>
<td>precessão de Thomas</td>
<td>56</td>
</tr>
<tr>
<td>princípio detalhado de balanço</td>
<td>83</td>
</tr>
<tr>
<td>princípio forte de exclusão de Pauli</td>
<td>97</td>
</tr>
<tr>
<td>princípio fraco de exclusão de Pauli</td>
<td>97</td>
</tr>
<tr>
<td>químico</td>
<td></td>
</tr>
<tr>
<td>potencial</td>
<td>107</td>
</tr>
<tr>
<td>quadrupolar</td>
<td></td>
</tr>
<tr>
<td>constante de interação elétron-núcleo</td>
<td>62</td>
</tr>
<tr>
<td>interação</td>
<td>62</td>
</tr>
<tr>
<td>quantização</td>
<td></td>
</tr>
<tr>
<td>primeira</td>
<td>12</td>
</tr>
<tr>
<td>Rayleigh</td>
<td></td>
</tr>
<tr>
<td>fração de</td>
<td>46</td>
</tr>
<tr>
<td>John William Strutt, 3. Baron</td>
<td>46</td>
</tr>
<tr>
<td>Rayleigh-Ritz</td>
<td></td>
</tr>
<tr>
<td>método de</td>
<td>47</td>
</tr>
<tr>
<td>reduzido</td>
<td></td>
</tr>
<tr>
<td>elemento de matriz</td>
<td>88</td>
</tr>
<tr>
<td>regra de Hund</td>
<td>112</td>
</tr>
<tr>
<td>regra de seleção</td>
<td>89</td>
</tr>
<tr>
<td>reservatório</td>
<td>86</td>
</tr>
<tr>
<td>ressonância de forma</td>
<td>167</td>
</tr>
<tr>
<td>rotação rígida</td>
<td>134</td>
</tr>
<tr>
<td>rotacional</td>
<td></td>
</tr>
<tr>
<td>constante</td>
<td>141</td>
</tr>
<tr>
<td>rotor rígido</td>
<td>20</td>
</tr>
<tr>
<td>Russel-Saunders</td>
<td></td>
</tr>
<tr>
<td>acoplamento de</td>
<td>117</td>
</tr>
<tr>
<td>Rutherford</td>
<td></td>
</tr>
<tr>
<td>Ernest</td>
<td>6</td>
</tr>
<tr>
<td>espalhamento de</td>
<td>6</td>
</tr>
<tr>
<td>Rydberg</td>
<td></td>
</tr>
<tr>
<td>átomo de</td>
<td>65</td>
</tr>
</tbody>
</table>
ÍNDICE REMISSIVO

série de, 65

Schrödinger
Erwin, 13
screening, 9
seção eficaz diferencial, 155
seção eficaz parcial, 159
seção eficaz total, 155
seção transversal de espalhamento, 6
secular
determinante, 45
equação, 44
seleção
regra de, 102
regras de, 88
shape resonance, 167
simetrizada
função de onda, 96
sistema periódico dos elementos, 112
Slater
John Clarke, 97
Sommerfeld
Arnold, 12
Arnold Johannes Wilhelm, 59
spin, 27
spin-órbita
interação, 55
Stark
deslocamento de, 67
efeito de, 76
efeito quadrático de, 76
Johannes Nikolaus, 76
Stark linear
efeito, 45, 76
Stark quadrático
efeito, 45
Stern
Otto, 12
Stern-Gerlach
experimento de, 27
subida
operador de, 26
teorema óptico, 160
Thomas
fator de, 56
Llewellyn, 56
Thomas-Fermi
ergênia de, 106
equação de, 107
modelo de, 104
Thomson
Joseph John, 6
transição dipolar magnética, 88
transição elétrica quadrupolar, 88
troca
energia de, 101
integral de, 102, 132
operador de, 110
unidades atômicas, 4
valência
ligação de, 131
valence bond
modelo, 127
van der Waals
coeficientes de, 146
força de, 134, 145
vibração, 134
virial
teorema, 24
Wigner
Eugene Paul, 76
Wigner-Eckart
teorema de, 76, 88, 142
Zeeman
desdobramento, 70
efeito, 11
Pieter, 70
Zeeman anômalo
efeito, 71
Zeeman normal
efeito, 71