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Quantum nondemolition (QND) measurement is actually a special type of measurement in quan-
tum system in which the uncertainty of the measured observable does not increase from its measured
value during the evolution of the system. This necessarily requires that the measurement process
preserve the physical integrity of the measured system, and moreover places requirements on the
relationship between the measured observable and the self-Hamiltonian of the system.

I. INTRODUCTION

Quantum mechanics tells us that, whenever a person
measures some property of a particle in a microworld, this
measurement will disturb the particle state somewhat in
unpredictable way. The more accurate the measurement
is, the bigger and more unpredictable the disturbance [2].
Most devices capable of detecting a single particle and
measuring its position strongly modify the particle’s state
in the measurement process, e.g. photons are destroyed
when striking a screen. A very careful measurement of
the east-west position of an electron, with imprecision
4x, can be guaranteed to disturb its east-west momen-
tum by not much more than 4p = ~/ (24x), where ~ is
the reduced Planck constant [1].

We need to keep in mkind that "nondemolition" does
not imply that the wave function fails to collapse. Much
of the investigation into QND measurements was moti-
vated by the desire to avoid the standard quantum limit
in the experimental detection of gravitational waves [3].
The general theory of QND measurements was laid out
by Braginsky, Vorontsov, and Thorne.

II. TECHNICAL DEFINITIONS

A. Gravit-wave antenna

Gravity-wave detectors consist of aluminum (or sap-
phire or silicon or niobium) bars, weighing between 10
kilograms and 10 tons, which are driven into motion by
passing waves of gravity, the motions are very tiny. For
the gravity waves that theorists predict are bathing the
earth, a displacement δx ∼ 10−19cm might be typical
[10]. And this displacement may oscillate, due to oscilla-
tions of the gravity wave, with a period P ∼ 10−3s. To
see the details of the gravity wave, one must thus make
repeated measurements of the bar’s position with pre-
cision 4x ≤ 10−19cm, and with time intervals between
measurements of τ ≤ 10−3s but one never before tried
to make measurements of such enormous precision as

∗Electronic address: abasalt@ifsc.usp.br

δx ∼ 10−19cm. If the bar is suspended freely like a pen-
dulum, as it is in some detectors, then over time intervals
τ ∼ 10−3s it will behave as though it were not suspended
at all. It will be as free to move horizontally as the elec-
tron described above and like the electron it will be sub-
ject to the laws of quantum mechanics: an "initial" mea-
surement of the bar’s east-west position with precision
4xi ∼ 10−19cm will inevitably disturb the bar’s east-
west momentum by 4p ≥ ~/24xi, and correspondingly
will disturb its velocity by 4v = 4p/m ≥ ~/2m4xi,
where m is the bar’s mass.

Figure 1: The AURIGA gravitational wave detector consists
of a 3-meter aluminum cylinder, cooled to a few thousandths
of a degree above absolute zero. The bar is kept carefully iso-
lated from other vibrations, to help measure tiny gravitational
disturbances - or possibly quantum-gravitational effects.

During the time interval τ ∼ 10−3s between measure-
ments, the mass will move away from its initial position
by an amount, 4xm = 4vτ ≥ ~τ/2m4xi, which is un-
predictable because 4v is unpredictable. Putting in val-
ues, we find 4xm ≥ 5 × 10−19cm which is somewhat
larger than the desired precision of our sequence of mea-
surements. If the next measurement reveals a position
changed by as much as 5× 10−19cm, we have no way of
knowing whether the change was due to a passing grav-
ity wave or to the unpredictable, quantum mechanical
disturbance made by our first measurement. In effect,
our first measurement plus subsequent free motion of the
bar has "demolished" all possibility of making a second
measurement of the same precision, 4x ∼ 10−19cm, as
the first, and of thereby monitoring the bar and detecting
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the expected gravity waves.
In principle one can circumvent this problem by mak-

ing the bar much heavier than 10 tons (recall that 4xm
is inversely proportional to the mass). However, this is
impractical. Another solution is to shorten the time be-
tween measurements (recall that 4xm is directly propor-
tional to τ). However, this will weaken the gravitational-
wave signal even more than it reduces the unpredictable
movement of the bar. Alternatively, find some way to cir-
cumvent the effects of the Heisenberg uncertainty prin-
ciple that is, some way to prevent the inevitable distur-
bance due to the first measurement, plus subsequent free
motion, from demolishing the possibility of a second ac-
curate measurement: a quantum nondemolition (QND)
method.

One QND method which could work in principle is
this: instead of measuring the position of the 10-ton bar,
measure its momentum with a small enough initial er-
ror, 4pi ∼ 10−9 gr.cm/s, to detect the expected gravity
waves. Thereby inevitably disturb the bar’s position by
an unknown amount4x ≥ ~(24pi) ∼ 5×10−19cm. Wait
a time τ ∼ 10−3s then make another momentum mea-
surement. As the bar moves freely between the measure-
ments, its momentum remains fixed. The uncertainty4x
in the bar’s position does not by free evolution produce
a new uncertainty 4pm in the momentum.

B. Quantum nondemolition measurement

Let Â be an observable for a system S with self-
Hamiltonian ĤS . The system S is measured by an ap-
paratus R which is coupled to S through interactions
Hamiltonian ĤRS for only brief moments. Otherwise, S
evolves freely according to ĤS . A precise measurement
of Â is one which brings the global state of S and R into
the approximate form

|ψ〉 ≈
∑
i

|Ai〉S |Ri〉R (1)

where |Ai〉S are the eigenvectors of A corresponding to
the possible outcomes of the measurement, and |Ri〉R are
the corresponding states of the apparatus which record
them. Allow time-dependence to denote the Heisenberg
picture observables:

Â(ti) = e−itĤS ÂeitĤS (2)

Mathematically, a sequence of measurements of Â are
said to be a QND measurements if and only if

[
Â(ti), Â(tj)

]
= 0 (3)

If this property holds for any choice of ti and tj , then
Â is called a continuous QND observable. If this only

holds for certain discrete times, then Â is said to be a
strobescopic QND observable. If Â is conserved during
the free evolution , dÂ/dt = 0, then it is guranteed to
satisfy Eq. 3 for all ti, tj and therefore to be continous
QND observable.

C. Free particle and Harmonic oscillator

For example, in the case of a free particle, the energy
and momentum are conserved and indeed continous QND
observables, but the position is not: x̂(t + τ) = x̂(t) +
p̂τ/m.

[x̂(t), x̂(t+ τ)] =
i~τ
m

(4)

On the other hand, for harmonic oscillator the position
and momentum satisfy the commutation relations

[x̂(t), x̂(t+ τ)] =
i~
mω

sinωτ (5)

[p̂(t), p̂(t+ τ)] = i~mω sinωτ (6)

Relations (5) and (6) imply that x̂ and p̂ are not con-
tinuous QND observables. However, if one makes the
measurements at times seperated by an integral numbers
of half-periods (τ = kπ/ω), then the commutators in Eqs.
5 and 6 vanish. This means that x̂ and p̂ are stroboscopic
QND observables [4, 5]. Stroboscopic QND measurments
of x̂ and p̂ drive the oscillator into a state where x is
known precisely. For example at t = kπ/ω, x̂ and p̂ are
known precisely but at other times are highly uncertain.
For an oscillator the conserved quantities which are QND
observables at all times, include the energy [6] and the
real and complex parts of the amplitude [7].

X̂1 = x̂(t) cosωt−
(
p̂(t)

mω

)
sinωt (7)

X̂2 = x̂(t) sinωt−
(
p̂(t)

mω

)
cosωt (8)

High precision measurement of X̂1and X̂2 are called
back-action-evading measurements [8, 9] because they en-
able the measured component of the amplitude X̂1 to
avoid back-action contamination by the measuring device
at the price of strongly contaminating the other compo-
nent X̂2.

4X14X2 ≥
~

2mω
(9)
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D. State-preparation measurement

Let Â be a QND observable which is monitored by a
sequence of perfect QND measurements at times t0, t1,
t2, ... Since Â(t0) and Â(tj) commut, one can perform a
state-preparation measurementat time t0 which puts the
system into a simultaneous eigenstate |ψ0〉 of the observ-
able Â(t0), Â(t1), Â(t2) and so on. From the results of
the first measurement, one can compute the eigenvalues
A(t0), A(t1), A(t2), ... Later as the system evolves freely,
its state |ψ0〉 remains fixed in time, while its observable Â
evolves through the values Â(t0), Â(t1) and so on. Subse-
quent perfect measurements of Â at times t1, t2, ... must
give the known eigenvalues A(t1), A(t2) and must leave
the state of the system |ψ0〉 unchanged.

If Â is a continuous QND observable, then the QND
measurements can be made continuously, and each mea-
surement can last as long or as short a time as one wishes.
If Â is a stroboscopic QND observable, then each mea-
surement must be made very quickly (stroboscopically)
to avoid contamination.

E. QND measurement error

ecause of this back action, the measurement error must
always exceed an ultimate quantum limit. We shall de-
rive that limit under the special assumption that in the
Heisenberg picture Â and Ĉ are time-independent (either
because they are constants of the motion such as X̂1, and
X̂2, or because they are time) evolving observables eval-
uated at some fixed moment of time. We assume that
the "readout observable" of the last quantum stage, Q̂R,
which couples into the first classical stage, is expressible
as

Q̂R = f
(
αÂ+ βĈ

)
(10)

Where

[
Â, Ĉ

]
= 2iγ~ (11)

with γ a real number. The time evolution of the read-
out observable Q̂R is embodied in the function f and/or
in the real parameters α and β. Typically,α and β will be
sinusoidal functions of time which are used to code and
separate the Â and Ĉ signals. We assume that the first
classical stage (usually an amplifier) is equally sensitive
to signals at the Â and Ĉ frequencies. Then no matter
how accurately the first classical stage monitors Q̂R, it
must give errors in Â and Ĉ related by

4A =

(
β

α

)
4C (12)

Where α and β are the rms values of α and β. These
relative errors imply the ultimate quantum limit

4A ≥
[(

β

α

)
γ~
]1/2

(13)

III. APPLICATION: PHOTONS COUNTING

In a way, the quantum world seems to know when it’s
being watched. When physicists make measurements on
photons and other quantum-scale particles, the measure-
ments always disturb the system in some way. Although
an ideal disturbance should still enable physicists to make
multiple measurements and get the same result twice,
most real measurements cause a greater disturbance than
this ideal minimum, and prohibit physicists from making
repeated measurements.

Figure 2: In the Serge Haroche laboratory in Paris, in vacuum
and at a temperature of almost absolute zero, the microwave
photons bounce back and forth inside a small cavity between
two mirrors. The mirrors are so reflective that a single pho-
ton stays for more than a tenth of a second before it’s lost.
During its long life time, many quantum manipulations can
be performed with the trapped photon without destroying it.

In a recent study, physicists have demonstrated a new
way to make one of the ideal measurements (QND mea-
surements) allowing physicists to detect single particles
repeatedly without destroying them. In the latest tech-
nique, developed by a team of physicists from Yale Uni-
versity, Princeton University, and the University of Wa-
terloo, the scientists have shown how to measure the
number of photons inside a microwave cavity in a way
that preserves the photon state 90% of the time; in other
words, the method is 90% QND. The physicists explain
that, unlike previously reported QND methods, the new
technique is strongly selective to chosen photon number
states, which could make it useful for applications such
as monitoring the state of a photon-based memory in a
quantum computer.
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