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Preface

Atomic, molecular and optical (AMO) science and engineering is at the inter-
section of strong intellectual currents in physics, chemistry and electrical engi-
neering. It is identified by the research community responsible for fundamental
advances in our ability to use light to observe and manipulate matter at the
atomic scale, use nanostructures to manipulate light at the subwavelength scale,
develop new quantum-electronic devices, control internal molecular motion and
modify chemical reactivity with pulsed light.

This book is an attempt to draw together principal ideas needed for the
practice of these disciplines into a convenient treatment accessible to advanced
undergraduates, graduate students, or researchers who have been trained in one
of the conventional curricula of physics, chemistry, or engineering but need to
acquire familiarity with adjacent areas in order to pursue their research goals.

In deciding what to include in the volume we have been guided by a simple
question: “What was missing from our own formal education in chemical physics
or electrical engineering that was indispensable for a proper understanding of
our AMO research interests”? The answer was: “Plenty!”, so this question was
a necessary but hardly sufficient criterion for identifying appropriate material.
The choices therefore, while not arbitrary, are somewhat dependent on our own
personal (sometimes painful) experiences. In order to introduce essential ideas
without too much complication we have restricted the treatment of microscopic
light-matter interaction to a two-level atom interacting with a single radiation
field mode. When a gain medium is introduced, we treat real lasers of practical
importance. While the gain medium is modelled as three- or four-level systems,
it can be simplified to a two-level system in calculating the important physical
quantities. Wave optics is treated in two dimensions in order to prevent elab-
orate mathematical expressions from obscuring the basic physical phenomena.
Extension to three dimensions is usually straight-forward; and when it is, the
corresponding results are given.

Chapter 1 introduces the consequences of an ensemble of classical, radiating
harmonic oscillators in thermal equilibrium as a model of black-body radiation
and the phenomenological Einstein rate equations with the celebrated A and B
coefficients for the absorption and emission of radiation by matter. Although
the topics treated are “old fashioned” they set the stage for the quantized os-
cillator treatment of the radiation field in Chapter 5 and the calculation of the
B coefficient from a simple semiclassical model in Chapter 2. We have found in

vii
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teaching this material that students are often not acquainted with density matri-
ces, essential for the treatment of the optical Bloch equations (OBEs). Therefore
chapter 3 outlines the essential properties of density matrices before discussing
the OBEs applied to a two-level atom in Chapter 4. We treat light-matter inter-
action macroscopically in terms of dielectric polarization and susceptibility in
Chapter 4 and show that, aside from spontaneous emission, light-matter energies
and forces need not be considered intrinsically quantal. Energies and forces are
derived from the basic Lorentz driven-oscillator model of the atom interacting
with a classical optical field. This picture is more “tangible” than the formal-
ism of quantum mechanics and helps students get an intuitive grasp of much, if
not all, light-matter phenomena. In Chapter 7 and its appendices we develop
this picture more fully and point out analogies to electrical circuit theory. This
approach is already familiar to students with an engineering background but
perhaps less so to physicists and chemists. Chapter 5 does quantize the field
and then develops “dressed states” which put atom or molecule quantum states
and photon number states on an equal footing. The dressed-state picture of
atom-light interaction is a time-independent approach which complements the
usual time-dependent driven-oscillator picture of atomic transitions and forces.
Chapters 6 and 7 apply the tools developed in the preceding chapters to optical
methods of atom trapping and cooling and to the theory of the laser. Chapter
8 presents the fundamentals of geometric and wave optics with applications to
typical laboratory situations. Chapters 6, 7, and 8 are grouped together as “Ap-
plications” because these chapters are meant to bring theory into the laboratory
and show students that they can use it to design and execute real experiments.
Problems and examples complement extensively the formal presentation.

Special acknowledgment is due to Professor William DeGraffenreid, for his
skill and patience in executing all the figures in this book. It has been a pleasure
to have him first as a student then as a colleague over the past five years. Thanks
are due also to students too numerous to mention individually who in the course
of teacher-student interaction at the University of Maryland and at 1’Université
Paul Sabatier, Toulouse revealed and corrected many errors in this presentation
of light-matter interaction.

We have tried to organize key ideas from the relevant areas of AMO physics
and engineering into a format useful to students from diverse backgrounds work-
ing in an inherently multidisciplinary area. We hope the result will prove useful
to readers and welcome comments, and suggestions for improvement.

John Weiner, Toulouse
P.-T. Ho, College Park
August, 2002
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Light-Matter Interaction:
Fundamentals






Chapter 1

Absorption and Emission of
Radiation

1.1 Radiation in a Conducting Cavity

1.1.1 Introduction

In the age of lasers it might be legitimately asked why it is still worthwhile to
bother with classical treatments of the emission and absorption of radiation.
There are several reasons. First, it deepens our physical understanding to
identify exactly how and where a perfectly sound classical development leads
to preposterous results. Second, even with narrow-band, monomode, phase-
coherent radiation sources the most physically useful picture is often a classical
optical field interacting with a quantum mechanical atom or molecule. Third,
the treatment of an ensemble of classical oscillators subject to simple boundary
conditions prepares the analogous development of an ensemble of quantum os-
cillators and provides the most direct and natural route to the quantization of
the radiation field.

Although we do not often do experiments by shining light into a small hole
in a metal box, the field solutions of Maxwell’s equations are particularly simple
for boundary conditions in which the fields vanish at the inner surface of a closed
structure. Before discussing the physics of radiation in such a perfectly con-
ducting cavity, we introduce some key relations between electro-magnetic field
amplitudes, the stored field energy, and the intensity. A working familiarity
with these relations will help us develop important results that tie experimen-
tally measurable quantities to theoretically meaningful expressions.

1.1.2 Relations among classical field quantities

Since virtually all students now learn electricity and magnetism with the ratio-
nalized mks system of units, we adopt that system here. This choice means that
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we write Coulomb’s force law between two electric charges ¢, ¢’ separated by a
distance r as )
1
F = 949 (1.1)
4meg \ 13

and Ampere’s force law (force per unit length) of magnetic induction between
two infinitely long wires carrying electric currents I, I’ separated by a distance

T as 7| )
d|F wo (11
L A il 1.2

dl 271'(7’) (1.2)

where €y and pg are called the permittivity of free space and the permeability
of free space, respectively. In this units system the permeability of free space is
defined as u
0 _ 107
— =10 1.3
g (1.3)
and the numerical value of the permittivity of free space is fixed by the condition

that )
=c? (1.4)
€o o

Therefore we must have )

=10""¢? 1.5
47eg ¢ (1.5)

The electric field of the standing wave modes within a conducting cavity in
vacuum can be written
E = ]5)067“)15

where Eq is a field with amplitude Fy and a polarization direction e. The
Eg field is transverse to the direction of propagation and the polarization vec-
tor resolves into two orthogonal components. The magnetic induction field
amplitude associated with the wave is By and the relative amplitude between
magnetic and electric fields is given by

1
By = EEO = yeopoEo (1.6)

The quantity k is the amplitude of the wave vector and is given by

27

k
A

with A the wavelength and w the angular frequency of the wave. For a travelling
wave the E and B fields are in phase but as a standing wave they are out of
phase.

The energy of a standing-wave electromagnetic field, oscillating at frequency w,
and averaged over a cycle of oscillation, is given by

11 s 1
U,==- /[ = E — |B|" | dV
o= 3 5 (P i)
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and the spectral energy density by

aw, 1 R
- E — B
== 1 (el + = BP)

From Eq. 1.6 we see that the electric field and magnetic field contribution to the
energy are equal. Therefore

- 1
mzi/mw%v (1.7)

and )
Pu = 5c0 ‘E‘z (1.8)

When considering the standing-wave modes of a cavity we are interested in the
spectral energy density p,,, but when considering travelling-wave light sources
such as lamps or lasers we need to take account of the spectral width of the
source. We define the energy density p as the spectral energy density p,, inte-
grated over the spectral width of the source.

w0+A‘" d
p= Pwdw = / pdw
wgf% wo 7%
SO .
_ 4
W —_ — 1«9
po =~ (1.9)

Another important quantity is the flow of electromagnetic energy across a
boundary. The Poynting vector describes this flow, and is defined in terms

of E and B by
1
I=—(ExB)
Ho
Again taking into account Eq.1.6 we see that the magnitude of the period-

averaged Poynting vector is

1
IzideF (1.10)

The magnitude of the Poynting vector is usually called the intensity of the light,
and it is consistent with the idea of a flux being equal to a density multiplied
by a speed of propagation. Just as for the field energy density, we distinguish a
spectral energy flux I,, from the energy flux I integrated over the spectral width
of the light source. -

= dI

L= dw
From Eq.1.8 for the spectral energy density of the field we see that in the
direction of propagation with velocity ¢ the spectral energy flux in vacuum

would be )
%:ﬁwzideV:E (1.11)
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which is the same expression as the magnitude of the period-averaged Poynting
vector in Eq. 1.10. The spectral intensity can also be written as

= 1 €0 2
I,==,/—|E 1.12
o=gy B (1.12)

where the factor
Ho
€0

is sometimes termed “the impedance of free space” Ry because it has units
of resistance and is numerically equal to 376.7 ohms, a factor quite useful for
practical calculations. Equation 1.12 bears an analogy to the power dissipated
in a resistor,

W=_-—

2 R

with the energy flux I interpreted as a power density and |E|2, proportional
to the energy density as shown by Eq. 1.8, identified with the square of the
voltage. That the constant of proportionality can be regarded as 1/R then
becomes evident.

Problem 1.1 Show that ’:—3 has units of resistance and the numerical value
s 376.7 ohms.

1.2 Field Modes in a Cavity

We begin our discussion of light-matter interaction by establishing some basic
ideas from the classical theory of radiation. What we seek to do is calculate
the energy density inside a bounded conducting volume. We will then use this
result to describe the interaction of the light with a collection of two-level atoms
inside the cavity.

The basic physical idea is to consider that the electrons inside the conducting
volume boundary oscillate due to thermal motion and, through dipole radiation,
set up electro-magnetic standing waves inside the cavity. Because the cavity
walls are conducting the electric field E must be zero there. Our task is twofold:
first to count the number of standing waves that satisfy this boundary condition
as a function of frequency; second, to assign an energy to each wave, and thereby
determine the spectral distribution of energy density in the cavity.

The equations that describe the radiated energy in space are,

1 0%E
’E= 1.1
v c? Ot? (1.13)
with
V-E=0 (1.14)
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Standing-wave solutions factor into oscillatory temporal and spatial terms. Now
respecting the boundary conditions for a three-dimensional box with sides of
length L we have for the components of E,

E,(z,t) = Egze™ " cos(kyx) sin(kyy) sin(k, z) (1.15)
E,(y,t) = Egye” "' sin(k,z) cos(kyy) sin(k,z)
E.(z,t) = Ey.e “sin(k,x) sin(kyy) cos(k, z)

where again k is the wave vector of the light, with amplitude

2
k|=— 1.1
K== (1.16)

and components

™

ko= n=012,.. (1.17)

and similarly for k,, k.. Notice that the cosine and sine factors for the £, field
component show that the transverse field amplitudes E,, E, have nodes at 0
and L as they should and similarly for £, and £,. In order to calculate the
mode density we begin by constructing a three-dimensional orthogonal lattice
of points in k space as shown in Fig. 1.1. The separation between points along
the kg, ky, k. axes is T, and the volume associated with each point is therefore

3
v=(2)
L
Now the volume of a spherical shell of radius |k| and thickness dk in this space
is 4rk2dk. However the periodic boundary conditions on k restrict k,, ky, k. to
positive values so the effective shell volume lies only in the positive octant of

the sphere. The number of points is therefore just this volume divided by the
volume per point,

L (4nk2dk 1 2
number of k points in spherical shell = % = §L3 K Cjk
T 7r
L

(1.18)
Remembering that there are two independent polarization directions per k point,
we find that the number of radiation modes between k and dk is,

. . s k2dk
number of modes in spherical shell = L°— (1.19)
T
and the spatial density of modes in the spherical shell is
number of modes in shell k2dk
e =dp(k) = - (1.20)
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Figure 1.1: Mode points in k space. Left panel shows one half the volume
surrounding each point. Right panel shows one eighth the volume of spherical
shell in this k space.

We can express the spectral mode density, i.e. mode density per unit k, as

) _ =5 (121)
and therefore the mode number as
L2
prdk = ;dk (1.22)

with pg as the mode density in k-space. The expression for the mode density
can be converted to frequency space, using the relations,

_ 2 2my w

k = — = — 1.23
A c c ( )
and
v _ ¢
dk ~ om
So that
pvdv = prdk
and 2
ppdy = sy dv (1.24)
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Rayleigh-Jean Planck
Distribution Distribution
(T=300K) (T=300K)
2.51 2.5+
2.0 2.0
i 2
|2 1.5 Ig 1.54
— 20 — 20
Z 2
EO_UJ 0.5 D__QUJ 0.5
0.0+ 0.0
0 2 4 6 8 0 2 4 6 8
Frequency (1013 Hz) Frequency (10'3 Hz)

Figure 1.2: Left panel: Rayleigh-Jeans black-body energy density distribution as
a function of frequency, showing the rapid divergence as frequencies tend toward
the ultraviolet (the ultraviolet catastrophe). Right panel: Planck black-body
energy density distribution showing correct high-frequency behavior.

The density of oscillator modes in the cavity increases as the square of the
frequency. Now the average energy per mode of a collection of oscillators in
thermal equilibrium, according to the principal of equipartition of energy, is
equal to kgT where kg is the Boltzmann constant. We conclude therefore that
the energy density in the cavity is

B 8mvlkgTdy

. (1.25)

pg’ (v)dv

which is known as the Rayleigh-Jeans law of blackbody radiation; and,
as Fig.1.2 shows, leads to the unphysical conclusion that energy storage in
the cavity increases as the square of the frequency without limit. This result is
sometimes called the “ultraviolet catastrophe” since the energy density increases
without limit as oscillator frequency increases toward the ultraviolet region of
the spectrum. We achieved this result by multiplying the number of modes
in the cavity by the average energy per mode. Since there is nothing wrong
with our mode counting, the problem must be in the use of the equipartition
principle to assign energy to the oscillators.
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1.2.1 Planck mode distribution

We can get around this problem by first considering the mode excitation prob-
ability distribution of a collection of oscillators in thermal equilibrium at tem-
perature, T. This probability distribution P; comes from statistical mechanics
and can be written in terms of the Boltzmann factor e~ /%57 and the partition
o0
function ¢ = 3 e~¢/ksT
i=0
—e; kT
p ot
q
Now Planck suggested that instead of assigning the average energy kg7 to every
oscillator, this energy could be assigned in discrete amounts, proportional to the
frequency, such that

1
€ = (Tll —+ i)hl/

where n; = 0,1,2,3... and the constant of proportionality h = 6.626 x 10734
J-sec. 'We then have

—hv/2kpT ,—n;hv/kgT —hv/kgT\"™i
p=—° < - Oo(e ) (1.26)
e—hV/QkBT Z e—nihl//kBT Z (e—}w/kBT)ni
ni:O ni:O
— (e—hu/kBT)"i (1 _ e_hy/kBT> (1.27)

0 .
where we have recognized that (e‘h”/kBT)nl =1/ (1— e "/ksT)  The
'I’Li=0
average energy per mode then becomes

o0 o0
—hy T4 —hy hl/
- ZPM _ Z (e h /kBT) (1 _eh /kBT> (ni)hw = ST ]

i=0 n;=0
(1.28)
and we obtain the Planck energy density in the cavity by substituting & from
Eq. 1.28 for kT in Eq. 1.25

8mh 1
Pl _ 3
Pe W)y = v

This result, plotted in Fig.1.2, is much more satisfactory than the Rayleigh-
Jeans result since the energy density has a bounded upper limit and the distri-
bution agrees with experiment.

dv (1.29)

Problem 1.2 Prove Eq. 1.28 using the closed form for the geometric series,

o0

— Uz g . —
> (e7™M/keT)™ and 255 = n;s" ! where s = e~hv/keT
ni:0

Problem 1.3 Show that Eq. 1.29 assumes the form of the Rayleigh-Jeans law
(Eq. 1.25) in the low-frequency limit.
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1.3 The Einstein A and B coefficients

Let us consider a two-level atom or collection of atoms inside the conducting
cavity. We have N7 atoms in the lower level £y and N, atoms in the upper level
FEs. Light interacts with these atoms through resonant stimulated absorption
and emission, Fs — E7 = hwy, the rates of which, Bisp,,, B21p.,, are proportional
to the spectral energy density p,, of the cavity modes. Atoms populated in the
upper level can also emit light ’spontaneously’ at a rate As; which depends
only on the density of cavity modes (i.e. the volume of the cavity). This phe-
nomenological description of light absorption and emission can be described by
rate equations first written down by Einstein. These rate equations were meant
to interpret measurements in which the spectral width of the radiation sources
was broad compared to a typical atomic absorption line width and the source
spectral flux I, (Watts/m?Hz) was weak compared to the saturation intensity of
a resonant atomic transition. Although modern laser sources are, according to
these criteria, both narrow and intense, the spontaneous rate coefficient As; and
the stimulated absorption coefficient Bi are still often used in the spectroscopic
literature to characterize light-matter interaction in atoms and molecules.

These Einstein rate equations describe the energy flow between the atoms
in the cavity and the field modes of the cavity, assuming of course that total
energy is conserved.

dN- dN.
—% = ——2 = —NBiapy + NoBa1pw + NaAzy (1.30)
dt dt
At thermal equilibrium we have a steady-state condition dfl\th = - dé\f = 0 with

pow = piP so that
A

it —
w
(%‘) Bz — Ba1

and the Boltzmann distribution controlling the distribution of the number of
atoms in the lower and upper levels,

N _ 91 —(m-BohT
Ny g2
where g1, go are the degeneracies of the lower and upper states, respectively. So

Az
Az = L7 (1.31)
%ehwo/kT) Biy — Boy (%ehwo/kT) Bu g

pi;h: (

But this result has to be consistent with the Planck distribution, Eq. 1.29

Sh o 1

pgl(]/) dv = 3 1) m dv (132)
h 1
Pl _ 3
g (W)dw = 38 Y0 ho ke T 1 dw (1.33)
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Therefore, comparing these last two expressions with Eq. 1.31, we must have

B
%Fz —1 (1.34)
and 4 8ok
21 ™
o A hw?
21 0

These last two equations show that if we know one of the three rate coefficients,
we can always determine the other two.

It is worthwhile to compare the spontaneous emission rate As; to the stim-
ulated emission rate Bsj.

A2t hwo/kT g
Bo1pth

which shows that for hiwg much greater than kT (visible, UV, X-ray), the spon-
taneous emission rate dominates; but for regions of the spectrum much less
than kT (far IR, microwaves, radio waves) the stimulated emission process is
much more important. It is also worth mentioning that even when stimulated
emission dominates, spontaneous emission is always present. We shall see (v.i.
Appendix 7.B that in fact spontaneous emission “noise” is the ultimate factor
limiting laser line narrowing.

1.4 Light Propagation in a Dielectric Medium

So far we have assumed that light either propagates through a vacuum or
through a gas so dilute that we need consider only the isolated field-atom in-
teraction. Now we consider the propagation of light through a continuous
dielectric (nonconducting) medium. Interaction of light with such a medium
permits us to introduce the important quantities of polarization, susceptibility,
index of refraction, extinction coefficient, and absorption coefficient. We shall
see later (v.i. section 4.1.1 and Chapter 7) that the polarization can be usefully
regarded as a density of transition dipoles induced in the dielectric by the oscil-
lating light field, but here we begin by simply defining the polarization P with
respect to an applied electric field E as

P = exE (1.37)

where x is the linear electric susceptibility, an intrinsic property of the medium
responding to the light field.

It is worthwhile to digress for a moment and recall the relation between the
electric field E, the polarization P and the displacement field D in a material
medium. In the rationalized MKS system of units the relation is

D= 6(]E—|—P (138)
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Furthermore, for isotropic materials, in all systems of units, the so-called “con-
stitutive relation” between the displacement field D and the imposed electric
field E is written

D=cE

with € referred to as the dielectric constant of the material. Therefore,
D = 60(1 + X)E
and
e =¢o(1+x)

The susceptibility x is often a strong function of frequency w around reso-
nances and can be spatially anisotropic. It is a complex quantity having a real,
dispersive component x’ and an imaginary absorptive component x”.

x=x"+ix"

A number of familiar expressions in free space become modified in a dielectric

medium. For example,
ke\?
(—) =1 ; free space
w

ke\? . .
— | =1+ x ; dielectric
w

In a dielectric medium % becomes a complex quantity which is conventionally

expressed as

ke ,
— =nN+1K
w

where 7 is the refractive index and k is the extinction coefficient of the dielectric
medium. The relations between the refractive index, the extinction coefficient
and the two components of the susceptibility are

772_52:1+X/
277“:XH

Note that in a transparent dielectric medium

”=1+x=— (1.39)

In a dielectric medium the travelling wave solutions of Maxwell’s equation be-
come,
E = Eoei(kz—wt) N Eoe[iw(%—t)—w%z]

the relation between magnetic and electric field amplitudes:

By = \/eopoEy — By = v/eopo (n+ik) Ep
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the period-averaged field energy density:
_ 1 _ 1
P = 360 Ef> — p, = 560772 E|? (1.40)

Now the light-beam intensity in a dielectric medium is attenuated exponentially
by absorption:

- 1 - 1 1 wi _
I, = —eoc|E|2 — I, = —eon? |E\2 ) = —eoenBre 27 = TIpe 5 (1.41)
2 2 7 2
where 1
Iy = §eoan§ (1.42)
is the intensity at the point where the light beam enters the medium, and
K=2Y% Y (1.43)
c ne

is termed the absorption coefficient. Note that the energy flux I, in the dielectric
medium is still the product of the energy density

po = geon? [BP
and the speed of propagation ¢/n. Note also that, although light propagating
through a dielectric maintains the same frequency as in vacuum, the wavelength
contracts as
Nl

14

1.5 Light Propagation in a Dilute Gas

We are often very interested in the attenuation of intensity as a light beam passes
through a dilute gas of resonantly scattering atoms. Equation 1.41 describes
this attenuation in terms of the material properties of a dielectric medium, but
what we seek is an equivalent microscopic description in terms of the rate of
atomic absorption and reemission of light. The Einstein rate equations tell us
the time rate of absorption and emission, but what we would like to find is an
expression which relates this time rate of change to a spatial rate of change along
the light path. We consider a light beam propagating through a cell containing
an absorbing gas and assume that, along the light-beam axis, absorption and
reemission have reached steady state. We start with the expression for the
Einstein rate equations, Eq. 1.30, and write

0 = —Ni1Bi2pw + NoBa1p, + NaAoy

where p,, here refers to the energy density of the light beam averaged over a
period of oscillation (v.s. Egs.1.7,1.8). We use the result from Eq. 1.34 to write

NyAg1 = po [N1B12 — N2 Bo1] = p, B2 [Nl — Na 3_1} (1.44)
2
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At steady state the number of excited atoms is

PuwB12a Ny

Ny = —Peli2i
2T Ag + Z—;ﬁwBu

(1.45)
Now when considering propagation through a dilute gas we have to be careful to
take into account correctly the index refraction of the dielectric medium. The
expression for the energy density p,, in terms of the field energy and the cavity
volume must be modified according to Eq. 1.40, so that

po (vacuum) — p,n? (dielectric) (1.46)

In order to use the Einstein rate coefficients , which assume propagation at
the speed of light in vacuum, we have to ’correct’ the energy density p,, in the
dielectric medium before inserting it into Eq.1.45. Therefore g, in Eq.1.45
must be replaced by p,,/n?.

N2Az = 22y, {Nl - NQQ—l] (1.47)
n 92

If we multiply both sides of Eq.1.47 by Awg, the left hand side describes the
rate of energy scattered out of light beam in spontaneous emission,

No Az hwg (1.48)

and the right side describes the net energy loss from the beam, i.e. the difference
between the energy removed by stimulated absorption and the energy returned
to the beam by stimulated emission,

AUy pu

e LR (1.49)

g2

1.5.1 Spectral line shapes

Light sources always have an associated spectral width. Conventional light
sources such as incandescent lamps or plasmas are broad-band relative to atomic
or molecular absorbers, at least in the dilute gas phase. Even if we use a very
pure spectral source, like a laser tuned to the peak of an atomic resonance at wy,
atomic transition lines always exhibit an intrinsic spectral width associated with
an interruption of the phase evolution in the excited state. Phase interruptions
such as spontaneous emission, stimulated emission, and collisions are common
examples of such line broadening phenomena. The emission or absorption of
radiation actually occurs over a distribution of frequencies centered on wq, and
we have to take into account this spectral distribution in our energy balance.
Rather than using Eq. 1.48, we more realistically express the rate of energy loss
by spontaneous emission as,
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where L (w — wp) is the atomic absorption line-shape function, usually normal-
ized such that [ L(w—wp)dw = 1. A common line-shape function in atomic
spectroscopy is the Lorentzian,
A dw
L(w — wp)dw = 2—21 RIS
T (w—wo)T+ ()

with spectral width equal to As;. The differential L(w — wp)dw can be regarded
as the probability of finding light emitted in the frequency interval between w
and w+dw. In fact we shall encounter the Lorentzian line shape again when we
consider other contributions to the spectral width such as strong-field excitation
(power broadening) or collision broadening. More generally therefore we can
write the normalized Lorentzian line-shape function as,
!
L(w — wp)dw = X dw (1.50)

2 (w—wo)® + (%)2

where v’ may be a composite of several physical sources for the spectral line
width. Sometimes we are more interested in the spectral density distribution
function which is simply the line-shape function without normalization. For
an atomic line broadened to a width ~/,

dw
(w—wo)® + (%)2

Note that L(w —wp)dw is unitless while F'(w — wg)dw has units of the reciprocal

F(w—wp)dw =

of angular frequency or (2rH z)_1 . Now, with p,, = dp(w)/dw, and generalizing
Eq. 1.49, the corresponding net energy loss from the light beam is,

dU dp(w'") B1a g1 /
S 220N - N oL (w —
i / )5, . 2, hwL (w — wp) dw'dw

where the integral over w’ takes into account the spectral width of the light
source and the energy density attenuation is

~ —
ap _ _ / dp(') Bra [Nl — Nggl] hwl (w — wp) dw'dw (1.51)

dt dw' 12V go

where V is the cavity volume. If we assume that the light beam propagates
along z and convert the time dependence to a space dependence,

dp _dp _dl

%4 c= - (1.52)

then from inspection of Eqs.1.40 and 1.41 we see that

c

I = 1.53
” (1.53)
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and substituting Egs. 1.53 and 1.52 into 1.51, we finally obtain

_ wot+ 55
dI d] (w') Blg a1 ’
— =— — |Ny — No=—= | hwF (w — dw'd 1.54
dz / dw" eV ! 292 (W = wo) dw'dew ( )
WO—%

Now if the light only weakly excites the gas so that No << N; we have

)
dl dl (W) Bia /
@ 212 B F (w — 1.
- / R nhwF (w — wp) dw'dw (1.55)
UJ()—AQ—M

where n = N/V ~ N;/V is the gas density. In a weak light field and a
dilute gas, we can we obtain a simple expression for the intensity behavior by
approximating the spectral distribution of the absorption with a Lorentzian
spectral distribution function peaked at wy with a width As;.

wot 45 oo 1 o
/ th(w—wo)dw:ﬁwo/ 5 dw = hwy——

8 oo (w—wp)® + (4) An

o~ 2

Then Eq.1.55 becomes, with some rearrangement,

(1.56)

1

dj |:Blg 27Thu)0:|
— === ndz
Ao en
The term on the right in brackets has units of area and can be thought as an

expression for the cross section of absorption of resonant light. Using Eq. 1.36,
we can express this cross section as,

g2 TG
op = = — 1.57
0= o (1.57)
so that Eq. 1.56 can be written as
dI
& = _oynd
i oondz
and 7
— = e 70n*0 1.58
r=c (159)

where zq is the total distance over which the absorption takes place. Equation
1.58 is the familiar integral form of the Lambert-Beer law for light absorption.
It is quite useful for measuring atom densities in gas cells or beams. Comparing
Eqs. 1.43 and 1.58 we see that the absorption coefficient K can be written as
the product of the absorption cross section and the gas density,

2wk w

c nc
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Problem 1.4 Suppose a light beam enters a gas-filled cell with intensity Iy at
position zg. Show that at high power such that Baip, > Az the intensity in
the beam decreases linearly with distance such that

wot 552
I— IO = 7—’/7,142171 / (Z — Zo)

wo—

1.6 Further Reading

A thorough discussion of the various systems of units in electricity and mag-
netism can be found in

e J. D. Jackson Classical Electrodynamics, John Wiley and Sons, Inc., New
York (1962). This book is currently in its third edition.

For the approach to mode counting in a conducting cavity and to light propa-
gation in a dilute dielectric medium, we have followed

e R. Louden The quantum theory of light, 2nd edition, chapter 1, Clarendon
Press, Oxford (1983)

Early history of the quantum theory and the problem of black-body radiation
may be found in

e J. C. Slater, Quantum Theory of Atomic Structure vol. I, chapter 1,
McGraw-Hill, New York, 1960



Chapter 2

Semiclassical Treatment of
Absorption and Emission

2.1 Introduction

In the previous chapter we introduced the Einstein A and B coefficients and
associated them with the Planck spectral distribution of blackbody radiation.
This procedure allowed us to relate the spontaneous and stimulated rate coeffi-
cients, but it did not provide any means to calculate them from intrinsic atomic
properties. The goal of the present chapter is to find expressions for the rate
of atomic absorption and emission of radiation from quantum mechanics and to
relate these expression to the Einstein coefficients. As for all physical observ-
ables, we will find that these rates must be expressed in terms of probabilities
of absorption and emission. Various disciplines such as spectrometry, spec-
troscopy, and astrophysics have developed their own terminologies to express
these absorption and emission properties of matter, and we shall point out how
many commonly encountered parameters are related to the fundamental transi-
tion probabilities and to each other. We restrict the discussion to the simplest
of all structures: the two-level, nondegenerate, spinless atom.

2.2 Coupled Equations of the Two-Level System

We start with the time-dependent Schrodinger equation,

- dv
HY (r,t) =ih— 2.1
(r,0) = ih" (2.)

and write the stationary-state solution of level n as,
W, (r,1) = e Bt/ (1) = ety (r)
The time-independent Schrodinger equation then becomes,

ﬁAwn (I‘) = Endjn (I‘)

19
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where the subscript A indicates ’atom’. Then for the two-level system we have,
Hatpy = Byipy = hwihy
H atpy = Eotpy = hwathy

and write,

hw():h(wz—wl):Eg—El

Now we add a time-dependent term to the Hamiltonian which will turn out to
be proportional to the oscillating classical field with frequency not far from wy,

H=H\+V(t) (2.2)

With the field turned on, the state of the system becomes a time-dependent
linear combination of the two stationary states,

v (I‘, t) =C4 (t) ’(/)18_iw1t + Oy (t) wge_iWQt (23)

which we require to be normalized,
[ 0P = e + e =1

Now if we substitute the time-dependent wave function (Eq. 2.3) back into
the time-dependent Schrédinger equation (Eq. 2.1), multiply on the left with
Pre1t and integrate over all space, we get

. - . dC
Cy / PV rdr + Coe—ioot / Ui Viiade = in

From now on we will denote the matrix elements | z/J{f/wl dr and [ djff/wgdr as
Vi1 and Vi5 so we have,

- dc
C1Vi1 + Cae™ ™MV = ih—dtl (2.4)
and similarly for Cs,
. dC
C1e"“" Va1 + CaVag = iﬁd—; (2.5)

These two coupled equations define the quantum mechanical problem and their
solutions, C'y and C5, define the time evolution of the state wave function, Eq.
2.3. Of course any measurable quantity is related to |V (r, t)|2 ; consequently
we are really more interested in |C]* and |C5|* then the coefficients themselves.

2.2.1 Field coupling operator

A single-mode radiation source, such as a laser, aligned along the z-axis, will
produce an electromagnetic wave with amplitude Ey, polarization &, and fre-
quency w,

E = éFycos (wt — kz2)
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with the magnitude of the wave vector, as expressed in Eq. 1.23,

= Q—W and cu:27ﬂ/:27rE = ke.

k
A A

Now if we take a typical optical wavelength in the visible region of the spectrum,
say, A = 600 nm ~ 11000 ay, it is clear that these wavelengths are much longer
than the characteristic length of an atom (~ ag). Therefore over the spatial
extent of the interaction between the atom and the field the kz term (~ kag)
in the cosine argument will be negligible, and we can consider the field to be
constant in amplitude over the scale length of the atom. We can make the
dipole approximation in which the leading interaction term between the atom
and the optical field is the scalar product of the instantaneous atom dipole d,

defined as
d=—er= —lej (2.6)
J

(where the r; are the radii of the various electrons in the atom) and the electric
field E equation 2.6 defines a classical dipole. The corresponding quantum

mechanical operator is
d=—er=—e E I
J

and R R
V=-d-E

Note that the operator V has odd parity with respect to the electron coordinate
r so that matrix elements V1; and V52 must necessarily vanish, and only atomic
states of opposite parity can be coupled by the dipole interaction. The explicit
expression for Vs is

V12 = 6E0’f‘12 cos wt

with
g = /¢;‘ D Fj-é | vadr (2.7)
J
The transition dipole moment matrix element is defined as

H12 = €712 (28)

Equation 2.7 describes the resultant electronic coordinate vector summed over
all electrons and projected onto the electric field direction of the optical wave.
It is convenient to collect all these scalar quantities into one term,

_ 2Bo _ eBori

_ Lot (2.9)

0
0 h hi

so finally we have
Via = R)g cos wt
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2.2.2 Calculation of the Einstein B, coefficient

Now we can go back to our coupled equations, 2.4, 2.5, and write them as

- dcC
Qo coswt e 0t Cly = j—+ (2.10)
dt
and o
i d
Qp coswt "0y = d—t2 (2.11)

We take the initial conditions to be Ci(t = 0) = 1 and C3(t = 0) = 0 and
remember that |Cy (£)|* expresses the probability of finding the population in
the excited state at time t. Now the time rate of increase for the probability
of finding the atom in its excited state is given by

Ca ()

t

but the excitation rate described by the phenomenological Einstein expression
(Eq. 1.30) is just given by
Bi2py, dw

To find the link between the Einstein B coefficient and V32, we equate the two
quantities,
Ca(t)?

Biop(w) dw = ” (2.12)

and seek the solution Ca(t) from Eq.2.11 and the initial conditions. In the
weak-field regime where only terms linear in 2o are important,

O 1 — ei(w0+w)t 1— ei(wo—w)t
Calt) = 70 wo +w * wo — w (2.13)

If the frequency of the driving wave w approaches the transition resonant fre-
quency wy, the exponential in the first term in brackets will oscillate at about
twice the atomic resonant frequency wg (~ 10 sec™1), very fast compared to
the characteristic rate of weak-field optical coupling (~ 10% sec™!). There-
fore over the time of the transition, the first term in Eq. 2.13 will be negligible
compared to the second. To a quite good approximation we can write,

Q1 — ei(wo—w)t

The expression for Cy(t) in Eq.2.14 is called the rotating wave approzimation
or RWA. We now have

5 sin? [(wo —w) %]

Co(t))? = |02 ‘
Ca ()] = 1€ (o — o)

(2.15)
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and when w — wy, application of L’Hopital’s rule yields,
2 1 2,2
Ca(t)” = 1%t

Once again, in order to arrive at a practical expression relating \Cg(t)\z to
the Einstein B coefficients we have to take into account the fact that there is
always a finite width in the spectral distribution of the excitation source. The
source might be, for example, a “broad-band” arc lamp or the output from
a monochromator coupled to a synchrotron, or a “narrow-band” monomode
laser whose spectral width would probably be narrower than the natural width
of the atomic transition. So if we write the field energy as an integral over
the spectral energy density of the excitation source in the neighborhood of the
transition frequency,

wo—&-%Aw
1
560E§ = / Puwdw (2.16)
wo—%Aw

where the limits of integration, wy + %Aw, refer to the spectral width of the
excitation source, and recognize from Eq. 2.15 that

€E07“12)2 sin® [(wo —w) §] (2.17)

Cat)? = () e

we can then substitute Eq. 2.16 into Eq. 2.17 to find

9o o wo-i-%Aw 5 .

2 sin” [(wg —w) =

cor =gt [ e o=)3) g
€ ok 2 (wo —w)

For conventional “broad-band” excitation sources we can safely assume that the
spectral density is constant over the line width of the atomic transition and take
pwdw outside the integral operation and set it equal to p(wg). Note that this
approximation is not valid for narrow-band monomode lasers. Let us assume
a fairly broad-band continuous excitation so that ¢ (wgp —w) >> 1. In this case

w0+%Aw 5
/ sin” [(wo —w) £] o — mt

(wo — w)” 2

wg—%Aw

and the expression for the probability of finding the atom in the excited state

becomes

e2mri,
thz

Remembering that Eq. 2.12 provides the bridge between the quantum mechan-

ical and classical expressions for the rate of excitation we now can write the

|Ca(t)* = p(wo)t (2.18)
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Einstein B coefficient in terms of the quantum mechanical transition moment,

Co(t)|? e*nr?
B12,0(UJO):‘ 2( )l _ 12

t 32 p () (2.19)

or

2 2
€Ty

60h2

By =

Now only two details remain to obtain the final result: first, assuming the atoms
move randomly within a confined space, we have to average the orientation of
the dipole moment over all spatial directions with respect to the light field
polarization. Equation 2.7 defined r12 to be the projection of the transition
moment in the same direction as the electric field polarization. Second, in real
atoms ground and excited levels often have several degenerate states associated
with them, so we have to take into account the degeneracies g; and gs of the
lower and upper levels respectively. The value of 7%, averaged over all angles
of orientation is simply

1
<|7“12|2> =17, (cos® 0) = §T%2

so we have finally
e2mriy

B =
127 T3 h2

(2.20)

or in terms of the matrix element of the transition moment, from Eq. 2.8,

2

T
By = 2.21
27 3eoh? (221)

Furthermore we know that the Einstein B coefficient for stimulated emission is
related to the coefficient for absorption by

g1B12 = g2 Ba1

so that
g1 g1 THI
Byy = =B ==
21 % 12 72 3eoh?
and we also have from Eq.1.36
32
g1 WoHi2
Ay = &= —= 2.22
2 g2 3mephc (2.22)

Thus the expressions for the rates of absorption, stimulated and spontaneous
emission are all simply related in terms of universal physical constants, the
transition frequency wg, and fi2.
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2.2.3 Relations between transition moments, line strength,
oscillator strength, and cross section

In addition to the Einstein coefficients As1, Ba1, B2, the transition dipole mo-
ment amplitude p12, and the absorption cross section oo, (w), three other quan-
tities, the oscillator strength f , the line strength S, and the spectral absorption
cross section o, are sometimes used to characterize atomic transitions.

2.2.4 Line strength

The line strength S is defined as the square of the transition dipole moment
summed over all degeneracies in the lower and upper levels.

S12 =821 = Z |<¢1,m1 |/L| ¢27m2>|2 (223)

mi,ma

The line strength becomes meaningful when we have to deal with real atoms
degenerate in the upper and lower levels. In such cases we have to extend our
idea of w12 to consider the individual transition dipole matrix elements between
each degenerate sublevel of the upper and lower levels. For a nondegenerate
two-level atom the p1o and As; are simply related,

wg 2
Ay = ———= 2.24
21 3meohc® Hi2 ( )
If the lower level were degenerate, calculation of the rate coefficient for sponta-
neous emission would include the summation over all possible downward radia-
tive transitions. In this case u?, is defined as the sum of the coupling matrix
elements between the upper state and all allowed lower states,

13y =D (W1my 1l o) (2.25)

mi1

Now it can be shown that the rate of spontaneous emission from any sublevel
of a degenerate excited level to a lower level (i.e. the sum over all the lower
sublevels), is the same for all the excited sublevels.! This statement reflects the
intuitively plausible idea that spontaneous emission should be spatially isotropic
and unpolarized if excited-state sublevels are uniformly populated. Therefore
insertion of u?, from Eq.2.25 in Eq.2.24 would produce the correct result even
if the upper level were degenerate. However, it would be tidier and notationally
more symmetric to define a 12, summed over both upper and lower degeneracies,

iy =Y 1(W1m, |1 Y2m,)? (2.26)

mima2

1The rate of spontaneous emission from multilevel atoms is properly outside the scope of
a discussion of the two-level atom. The properties of spontaneous and stimulated emission
are usually developed by expanding the transition moment in terms of spherical tensors and
the atom wave functions in a basis of angular momentum states. One can then make use of
angular momentum algebra, such as the 3j symbols, to prove that spontaneous emission is
spatially isotropic and unpolarized.
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Insertion of ji2, from Eq.2.26 in Eq.2.24 must therefore be accompanied by a
factor g% to correct for the fact that all excited sublevels radiate at the same rate.

So, with fi?, defined as in Eq. 2.26, the correct expression relating the transition
dipole between degenerate levels to spontaneous emission rate becomes,

1 wg _9

Ay = ————
21 2 360hC3M12

The line strength defined in Eq. 2.23 is therefore related to As; by

3eghc?
S12 = S21 = g2 03 Ay
wo

2.2.5 Oscillator strength

For an atom with two levels separated in energy by Awg, the emission oscillator
strength is defined as a measure of the rate of radiative decay As; compared to
the radiative decay rate v, of a classical electron oscillator at wq

1Ay
fa1 = 35

In the case of degeneracies, the absorption oscillator strength is then defined as

g2 g2 Ao
f12 = ——J21 — 5 —
g1 391 e

In real atoms, S «— P transitions behave approximately as classical oscillators;
and the factor of % in the definition compensates for the three-fold degeneracy of
P levels. Thus an S «— P transition, behaving exactly as a classical oscillator,
would be characterized by an emission oscillator strength of fo; = —% and an
absorption oscillator strength f12 = 1. The classical expression for ~. is

e2wd

e = 6megmec?
so in terms of the As; coefficient and fundamental constants the absorption
oscillator strength is given by

2megmec®
fr2 = An——5—

ew;
Oscillator strengths obey certain sum rules that are useful in analyzing the
relative intensities of atomic spectral lines. For example one-electron atoms
obey the following sum rule,

S =1 (2.27)
k

where the summation is over all excited states, starting from the ground state.
Alkali atoms are approximately one-electron systems, and the oscillator strength



2.2. COUPLED EQUATIONS OF THE TWO-LEVEL SYSTEM 27

of the first S — P transition is typically on the order of 0.7 to 0.95. The sum rule
tells us that most of the total transition probability for excitation of the valence
electron is concentrated in the first S — P transition and that transitions to
higher levels will be comparatively much weaker. Another sum rule exists for
excitation and spontaneous emission from intermediate excited states j,

ijiJFijkzl (2.28)

1<j k>j

If the atomic spectrum can be ascribed to the motion of z electrons, then Eq.
2.28 can be generalized to

iji+2fjk:Z (2.29)

i<j k>j

which is called the Thomas-Reiche-Kuhn sum rule. In the multielectron form
(Eq. 2.29) this sum rule is most useful when Z is the number of equivalent
electrons, i.e. electrons with the same n,l quantum numbers. Note also that
the fj; terms are intrinsically negative. Oscillator strengths are often used in
astrophysics and plasma spectroscopy. They are sometimes tabulated as log g f
where

g1fi2 = —gofor = gf

2.2.6 Cross section

The spectral absorption cross section o, is associated with a beam of light prop-
agating through a medium that absorbs and scatters the light by spontaneous
emission. It is simply the ratio of absorbed power to propagating flux in the
frequency interval between w and w + dw.

Ouw = % (2.30)
From Egs. 1.34 and 1.36 we write
P(w) = hwB12pw, (2.31)
M%%Azlf@
and from Eqgs. 1.10 and 1.11
I(w) = cpu

so the ’spectral’ cross section, which has units of the product of area and fre-

quency (e.g. m?sec™!) is
go 22

_91 w?

Aoy (2.32)

Ow

from which we recover the “real” absorption cross section oo, (w) (with units
of area) by multiplying o, by a line shape function L (w —wp). The subscript
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a’ denotes absorption. Assuming a normalized Lorentzian line shape function

with width A21 3
A21 1

L(w—wy) =—" 5 (2.33)
2T (w—wo)” + (%)
and replacing w by wg in Eq.2.32 we obtain
2 A3 1
ooa(w) = 2522 (2.34)

gwg 2 (w—w0)2+(%)2

The substitution of wy for w is justified because the spectral cross section is
sharply peaked around wg. The total absorption cross section, appropriate to
broad-band excitation covering the entire line profile, is obtained from multiply-
ing o, in Eq. 2.32 by the spectral distribution function F'(w—wy) and integrating
over the spectral width,

+oo 9 +o0 d
™ C 7T' C w
00q = 92 A21F (w wo) d 92 Agl / 5 A B)
Joo wg g1 @5 o (w—wo)” + ()
(2.35)

The result is

g2 2m3c% go A2
Opg = =5 ==L (2.36)
g1 Wy g1 2

consistent with Eq. 1.57. One obtains the emission cross section by substituting
B21 = g—;Blg for Blg in Eq231

= —00a
wo g2

We present here a table that summarizes the various relations among these
quantities used to characterized the absorption and emission of radiation. The
quantity in the left-most column is equal to the entry multiplied by the quantity
in the top-most column.
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Table 2.1: Conversion factors between Einstein A,B coefficients, transition dipole moment, oscillator strengths, line strength,
and cross section. The quantity in the left-most column is equal to the entry multiplied by the quantity in the top-most column.
Note that quantities refer to nondegenerate two-state transitions. Degeneracies of upper and lower levels are indicated by g1
and gs, respectively. Note also that o,, is the 'spectral’ cross section
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2.3 Further Reading

For the calculation of the Einstein B coefficient from atomic properties we have
followed the development in

e Louden, R. The quantum theory of light, 2nd edition, chapter 2, Clarendon
Press, Oxford (1983)

A comprehensive discussion of absorption and emission in real atoms, gas-phase
laser action, and atomic spectroscopy with laser sources can be found in

e Corney, A. Atomic and Laser Spectroscopy, Clarendon Press, Oxford (1977)

Useful older tables of line strengths and oscillator strengths for atoms from H
to Ca can be found in

o Atomic Transition Probabilities, Vols. I, II, National Standard Reference
Data Series, National Bureau of Standards (NSRDS-NBS 4,22 ), U.S.
Government Printing Office, Washington, D.C. 20402. These tables have
evolved into a continually updated data base available on the National In-
stitute of Standards and Technology (NIST) web site at http://physics.nist.
gov/PhysRefData/

A thorough discussion of the theory of absorption and emission of radiation
from multilevel (real) atoms can be found in

e Sobelman, I. 1., Atomic Spectra and Radiative Transitions, Springer Ver-
lag, Berlin (1977)



Chapter 3

The Optical Bloch
Equations

3.1 Introduction

So far we have concentrated on small-amplitude, broad-band, phase-incoherent
light fields interacting weakly with an atom or a collection of atoms in a dilute
gas. Equations 2.19 and 2.20 provide formulas from which we can calculate the
probability of finding a two-level atom in the excited state, but these expressions
were developed by averaging over the spectral line width, ignoring any phase re-
lation between the driving field and the driven dipole, and assuming essentially
negligible depopulation of the ground state. For the first half of the twentieth
century these assumptions corresponded to the light sources available in the
laboratory, usually incandescent, arc, or plasma discharge lamps. After the in-
vention of the laser in 1958, monomode and pulsed lasers quickly replaced lamps
as the common source of optical excitation. These new light sources triggered
an explosive revolution in optical science, the consequences of which continue to
reverberate throughout physics, chemistry, electrical engineering, and biology.
The characteristics of laser sources are far superior to the old lamps in every
way. They are intense, highly directional, spectrally narrow, and phase coher-
ent. The laser has spawned a multitude of new spectroscopies, new disciplines
such as quantum electronics, the study of the statistical properties of light in
quantum optics, optical cooling and trapping of microscopic particles, control
of chemical reactivity, and new techniques for ultrahigh-resolution imaging and
microscopies.

We are obliged therefore to examine what happens when our two-level atom
interacts with these light sources, spectrally narrow compared to the natural
width of optical transitions, with well-defined states of polarization and phase,
and intensities sufficient to depopulate significantly the ground state. We seek
an equation that will describe the time-evolution of well-defined two-level atoms
interacting strongly with a single mode of the radiation field. =~ Our initial

31
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thought might be to use the Schrodinger equation since it indeed describes the
time-evolution of the state of any system defined. If we were only interested
in stimulated processes, such as absorption of the single-mode wave incident on
the atom, then the Schrodinger equation would suffice. The problem is that we
want to describe relaxation as well as excitation processes, because in most re-
alistic situations the atoms reach a steady state where the rate of excitation and
relaxation equalize. Spontaneous emission (and any other dissipative process)
therefore must be included in the physical description of the time-evolution of
our light-plus-atom system. Now, however, we no longer have a system restricted
to a single light-field mode (state) and two atom states. Spontaneous emission
populates a statistical distribution of light-field states and leaves the atom in a
distribution of momentum states. This situation cannot be described by a sin-
gle wave function but only by some distribution of wave functions, and we can
only hope to calculate the probability of finding the system among the distri-
bution of state wave functions. The Schrodinger equation therefore no longer
applies, and we have to seek the time evolution of a system defined by a density
operator which characterizes a statistical mixture of quantum states. The op-
tical Bloch equations describe the time evolution of the matrix elements of this
density operator, and therefore we must use them in place of the Schrodinger
equation. In order to appreciate the origin and physical content of the optical
Bloch equations we begin by reviewing the rudiments of density matrix theory.

3.2 The Density Matrix

3.2.1 Nomenclature and properties

We define a density operator p
p= ZPi |vhi) (Wil (3.1)
i

where |1;) is one of the complete set of orthonormal quantum states of some sys-
tem, and we have a statistical distribution of these orthonormal states governed
by the probability P; of finding |1);) in the state ensemble. The probability P;
of course lies between 0 and 1; and >, P, = 1. Note that the density operator
acts on a member of the ensemble |1);) to produce the probability of finding the
system in [1);) ,

p i) = ZPz‘ i) (Pili) = P; |9i) (3.2)

If all the members of the ensemble are in the same state, say, |1x) then the
density operator reduces to

p = Vi) (Vi

and the system is said to be in a pure state with P, = 1. From Eq. 3.2 we find
the diagonal matrix elements of the density operator to be the probability of
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finding the system in state |¢;)

<1/’z| P |1/Jz> =b

and, assuming all [¢;) to be orthonormal, the off-diagonal elements are neces-
sarily zero. Furthermore

> Wil =1

%

3.2.2 Matrix representation

The next step is to develop matriz representations of the density operator by
expanding the state vectors |¢;) in a complete orthonormal basis set,

) =D eniln) = ) (n|s) (33)
where the closure relation is

> In)(nl=

and
<n‘¢z> = Cnj

is the projection of state vector |¢;) onto basis vector [n). Now we can write
a matrix representation of the density operator in the basis {|n)} from the
definition of p in Eq. 3.1 by substituting the basis set expansion of |1);) and (1|
in Eq. 3.3,

p= ZPi i) (il = Z P; Z In) (nfi) (Yilm) (m| (3.4)
= Z P Z 677/7/ mi
The matrix elements of p in this representation are,

with the diagonal matrix elements
(nlpln) = ZP |cm| (3.6)

and

(nlplm ZPCm Cmi ZP Z (mli) (iln) = (m|p|n)
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which means that the p operator is Hermitian. For a simple system like our
two-level atom that, without spontaneous emission, can be described by a single
wave function, Eqgs. 3.4, 3.5, and 3.6 reduce to,

p = Z Cm‘Cfm ‘n> <m‘ (37)
(nlplm) = cpich (3.8)
(nlpln) = Jenil®

The sum of the diagonal elements of the representation matrix is called the
trace, and it is a fundamental property of the density operator because it is
invariant to any unitary transformation of the representation.

Tr p= Z (n|p|n) (3.10)

n

From the definition of the density operator, Eq. 3.1 we can write Eq. 3.10 as

Trp= Z Pi (nfts) (i|n)

ni

Then reversing the two matrix element factors and using the closure relation
Trp—ZP (i|n) (nl;) ZP (Yilhi) =

which shows that the trace of the representation of the density operator is equal
to unity, independent of the basis for the matrix representation.
The ensemble averages of observables are expressed as

0) =" P (il O )

but R A
pO =" P;|yhi) (¥:] O

and in the basis {|n)}
(n| pO |m) = (n| ZP [¢3) (9] O |m)

:Zpi (nlai) (5] O |m) :ZPi (¥iln) (m| O [s)

where have assumed that the operator of the physical observable O is Hermitian
and that the representation of the product of two Hermitian operators pO is
Hermitian. Now along the diagonal we have

{n pO |n) = ZPi (tiln) (n] O i)
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With the closure condition on the basis set {|n)} we then have

T (n]pOln) = 3 P (il O 3} = (O) (3.1)

Equation 3.11 says that an ensemble average of any dynamical observable O can
be calculated from the on-diagonal matrix elements of the operator pO. Since
the trace is independent of the basis, any unitary transformation that carries the
matrix representation from basis {|n)} to some other basis {|t)} leaves the trace
invariant. Using the definition of a unitary transformation one can easily show
that the trace of a cyclic permutation of a product of operators is invariant. For
example,

Tr [ABC] = Tr [CAB] = Tt [BAC]

and in particular,

0] = [04] - (0)

3.2.3 Review of operator representations

We will see that the optical Bloch equations (Egs. 4.49-4.52) are a set of coupled
differential equations relating the time dependence of different matrix elements
of a density operator. It seems worthwhile, therefore, to review commonly
encountered “representations” of the time dependence of operators, quantum
states, and ensembles of quantum states. The optical Bloch equations present
somewhat different forms depending on the representation in which they are
expressed.

The Schrédinger representation of the time evolution of a quantum system
is expressed by the familiar Schrodinger equation

A 9(e1)) = i (e.0) (312)

in which all the time dependence resides in the state functions, and the op-
erators that stand for the dynamical variables (energy, angular momentum,
position, etc.) are independent of time. In the Heisenberg representation all
the explicit time dependence resides in the operators and the state functions are
time-independent. The interaction representation is a hybrid of the Schrédinger
and Heisenberg representations appropriate for hamiltonians of the form

H=Hy+V(t)
where Hy is a time-independent Hamiltonian of the unperturbed system and

V(t) is a time-dependent coupling interaction, often a perturbing oscillatory
field.
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Time evolution operator

Recall from elementary quantum mechanics the time evolution operator, U(t, tg)
which acts on the ket space of a quantum state to transform it from initial time
to to later time t¢.

U(t, to) [t(x,to)) = [1h(x,t)) (3.13)

Here are a few properties of the time evolution operator. Note first that
Ulta, to) = Ulta, t1)U(t1,10)

where ty < t; < t3. Note also that the time-reversal operation
[(r,to)) = Ulto, t) [¢(r,1))

together with multiplication from the left by U~1(t,to) of Eq.3.13 implies

Ulto,t) = U™ (t, o)

The conjugate time-evolution operator acts on the bra space,

(@(r,t)| = (W (r,to)| UT (¢ to) (3.14)

If the Hamiltonian is time independent, then we can see from a formal integra-
tion of Eq. 3.12 that

Ult,ty) = e~Ht=to)/h (3.15)
and . -
Ut (t, ty) = et t—to)/h (3.16)
so that from Eqgs.3.13 and 3.14
[(r,0)) = e M (o) (3.17)
and .
(®(r,t)| = (W(r,to)| e 10/ (3.18)

From Eqgs. 3.15,3.16 U'U is a time-independent constant which we set equal to
unity for normalization
UT(t,t0)U(t, t0) = 1

from which we obtain the unitarity property by multiplication of U~1(¢,y) from
the right
UT(ta tO) = Uﬁl(t,to) (319)

The unitarity property is important because it can be used in similarity trans-
formations to change the representation of operators from one basis to another.
If |¢;(r,t)) is an eigenstate of the Hamiltonian then it can be shown that

Ut to) | (x,t)) = e HEt0/B g (r 1))
= e BT/ |y (rt)) = eI |y (x 1))

and similarly for UT(¢,to) operating in the bra space.
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Heisenberg representation

We express the Heisenberg representation of operators and quantum states
through a unitary transformation of the Schrodinger representation. Starting
from

lo(r)) = UT(t,t0) [¢(r,1)) (3.20)
we examine the time-dependence of |¢(r)) by differentiating both sides of Eq. 3.20

Olp(r)) _ dU'(t to) tip o Ol0(rt))
_ 21
Now from the definitions of H and U, Egs. 3.12,3.13
dU 1
—=—H .22
dt  ih v (3.22)
and :
du 1 -
— =—-_U'H 2
dt ihU (3.23)

where we assume that the Hamiltonian operator is hermitian, H = H'. Substi-
tuting dd—Lf from Eq. 3.23 and w from the Schrédinger equation (Eq. 3.12)
into 3.21 we see that

9 p(r))

ot

or, in other words, the operation of UT(t,%y) on |1 (r,t)) removes any time de-
pendence of the wave function |¢(r)). By unitarity, and from Eq. 3.20 we also
have

=0

U(t,to) lp(r)) = [(rt))

Now we can write the matrix element for any operator O

{W(r,0)] O [e(r.t)) = ((r)| U (¢, 1) OU . to) |io(r))

We see that the matrix element of the operator O in the Schrodinger repre-
sentation with time-dependent basis {|u(r,t))} is equal to the matrix element
of the operator Ut(t,t0)OU (t,ty) in the Heisenberg representation with time-
independent basis {|¢(r))}. More succinctly we can write

Onr = U'(t,t0)OsrU(t, to) (3.24)

and
Ul(t, t0)OurU'(t,t0) = Osr (3.25)

where the subscripts H R and SR mean “Heisenberg representation” and “Schrédinger
representation” respectively.

Just as the Schrodinger equation expresses the time evolution of a quantum
state operated upon by the Hamiltonian in the Schrédinger representation, the
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Heisenberg equation expresses the time evolution of an operator in the Heisen-
berg representation acting on time-independent quantum states,

dO o d R
ih dIZR = iho [UT(t,tO)OSRU(t,tO)}

_ [dUt . . dU
= ih [WOSRU(tatO) + UT(t;tO)OSRE}

Substituting from Egs. 3.22,3.23, and 3.25 we find

ithd;IR = —HU(t,t)OurU' (t,t0) + U(t,t0)OnrUTH  (3.26)
dOHR P [~ o~
= alf 2
dt h[ ’OHR] (3.27)

Thus the time rate of change of an operator in the Heisenberg representation
18 given by the commutator of that operator with the total Hamiltonian of the
system. Note that if an operator representing a dynamical variable commutes
with the Hamiltonian in the Schrédinger representation, it will also commute
with the Hamiltonian in the Heisenberg representation, and therefore for the
complete set of commuting observables,

_dOnr
ih i

- [OHR,E@ —o.
From Eqs. 3.15,3.16 we can also write
OHR _ 6iﬁ(t7to)/hOASR67ifI(t7to)/h (3.28)

or
el (t=t0) /RO - i H(—t0) /B — O

and if {|)(r,t))} and {|¢(r))} are bases of eigenstates of H we have for any two
states n,m

(n(rt)] e MO UM g () = (3.20)
BB (g (1,0)| O [ (x.1)) - = (3.30)
(on ()] O |om(r)) (3:31)

Thus the matrix elements of an operator in the Schrodinger and Heisenberg
representations are related by a simple phase factor.

Interaction representation The interaction representation treats prob-
lems where the total Hamiltonian is composed of a time-independent part and
a time-dependent term.

H = Hy+ V(t)
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Analogous to Eq. 3.17 we define a time-evolution operator in terms of the time-
independent part of the total Hamiltonian,

[Brt) = o=/ M () (3.32)

and A A
O(t) — eiHo(t—to)/hée—iHo(t—to)/ﬁ (333)

Now we seek the time-dependence of quantum states and operators in the in-
teraction representation. From Eq. 3.32 we can get the inverse relation,

(r, t) = e~ iHo(t—to)/h M(r’t>

and substitution into the Schrodinger equation (Eq. 3.12) yields

2 tea)y = D i)

We see that in the interaction representation only the perturbation term of the
Hamiltonian controls the time evolution. Taking the time derivative of both
sides of the defining equation for the operator O in the interaction representation
(Eq. 3.33) results in

dt h
So we see that the time derivative can be expressed in the form of a commutator,
similar to the Heisenberg equation (Eq. 3.27) except that only the unperturbed
term of the Hamiltonian is in the argument of the commutator operator. It is
also clear that, similar to Eq. 3.28, we have

do i [I?IO,O}

Orp = ez’I:IO(t—tg)/hOSRe—iﬁo(t—tU)/ﬁ

Note that the transformation between the interaction and Schrédinger repre-
sentations only involves Hy in the exponential factors and not H. It is also
clear that the off-diagonal matrix elements between the two representations are
related by a simple phase factor

e MER B ()] Osip [ (0.0)) = (9n(0)] Ot lom(®))  (3:34)

—i/h(En—Eny)t

where the eigenvalues F,,, F,, in the exponential factors, e are the

energies of the unperturbed Hamiltonian Hy.
3.2.4 Time dependence of the density operator

Going back to the definition of the density operator (Eq.3.1) we can express
its time dependence in terms of time-dependent quantum states and the time-
evolution operator,

p(t) = Z Py i(t)) (i (t)] (3.35)
= ZPiU(t7tO) i (to)) (¥i(to)| UT (¢, to)
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and writing

plto) = ZPi [9i(t0)) (¥i(to)]
we see immediately that
p(t) = U(t,to)plto)U' (1, to) (3.36)
and for the common case of a time-independent Hamiltonian,
p(t) = efifl(tfto)/hp(to)eifl(tfto)/h

Now we find the time derivative of the density operator by differentiating both
sides of Eq. 3.36 and substituting Eqgs. 3.23 and 3.22 for the time derivatives of
U and UT. The result is

d‘;_(tt) = % [o(t), | (3.37)

The commutator itself can be considered an operator, so we can write

Lolt) =+ [p(t), B (3.38)

where L is called the Liouville operator and Eq. 3.37 is called the Liouville equa-
tion. The Liouville equation describes the time evolution of the density operator,
which itself specifies the distribution of an ensemble of quantum stales subject
to the Hamiltonian operator H. Although the Liouville equation resembles the
Heisenberg equation in form, Eq.3.35 shows that p(¢) is in the Schrodinger
representation.

Now we can transform the density operator to the interaction representation

ﬁ(t)IR _ eif{(](tftg)/h p(t)SR 67iI:IO(t7tg)/h (339)

and seek the time rate of change of p(t) analogous to the Liouville equation.
Taking the time derivative of both sides of Eq.3.39 and substituting Eq. 3.27
dp

for &£ results in

dp(t) i -
—=—~t,Vt} 3.40
22 = 5, V() (3.40)
Equation 3.40 shows that the time evolution of the density operator in the in-
teraction representation depends only on the time-dependent part of the total
Hamiltonian. For a two-level atom interacting perturbatively with a light field,
the Hamiltonian is

I:I:fIA+V(t):fIA+ﬂ-Eocoswt

where H, is the atomic structure part of the Hamiltonian and V(¢) is the
transition dipole interaction with the classical oscillating electric field. The
interaction representation is the natural choice for this type of problem.
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3.2.5 Density operator matrix elements

Since the optical Bloch equations are coupled differential equations relating the
matrix elements of the density operator, we need to examine the time depen-
dence of these matrix elements, based on what we have established for the
density operator itself. We start with the Liouville equation (Eq.3.37) and
take matrix elements of this operator equation,

dp(t)

(m| ==

1 N N
In) = = (m| [p(6), H| [n) = = (m] [p(t), Ha+ V] In) ~ (3.41)
1 ] -
=+ (B — Ep) (mlp()In) + 5 (m] [ 0(6), V] [n)
h h
where |m) and |n) are members of a complete set of basis vectors {|k)}that
are also eigenkets of H4 and span the space of H. Now we insert the closure

relation ), |k) (k| into the commutator on the left side of Eq. 3.41,

(m| [p(t)yﬂ [n) = (mlp(t) k) (k| V [n) — (m| V [k) (K| p(t) [n) ~ (3.42)

k

For our two-level atom the complete set only includes two states, |1(t)) = [1)
and [2(t)) = e~"°"|2) . Furthermore the matrix elements of the dipole coupling
operator V are only off-diagonal, (1] V' |2) and (2| V'|1) with V hermitian, i.e.

(<1| 14 \2)) = (2| V*|1). The commutator matrix elements in Eq. 3.42 simplify
to

(11 o0, V] 1) = (1112 @17 1) = (117 2) 21 1)
= p12Va1 — Vi2pa1
similarly
@1 [o(0. 7] 2) = (200 11) Q17 2) = 217 [1) 11 02
= p21V12 — Va1p12
for the off-diagonal matrix elements,
(U [p(8), V] 120 = Qo 10 (17120 = (17 12) (21 p 12)
= Via (p11 — p22)

and

Q2lp(t), V1) = 2l p|2) 2|V 1) = 2|V [1) (1] p|1)
=Va (P22 - P11)
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so that Eq. 3.41 takes the form

d )

% =3 [p12Va1 — Vigpai] (3.43)

d )

% =3 [p21Vi2 — Vai1pi2]

d . )

o2 iwop12 + = [Viz (p11 — p22)] (3.44)
dt h

d . )

% = —iwgpo1 + 7 (Va1 (p22 — p11)]

and we see that

dpia _ dpn
dt dt

The set of equations 3.43 constitute the optical Bloch equations in the Schrodinger
representation. They do not include loss terms from spontaneous emission. We
transform the optical Bloch equations to the interaction representation by re-
placing the Liouville equation (Eq.3.37) with Eq.3.40 and taking the matrix
elements,

% = % [P12Vo1 — Vizpai] (3.45)
% = % [p21Vi2 — Va1 p12] (3.46)
% = % [Viz (P11 — p22)]
% = % [Va1 (P22 — p11)]

The interaction representation simplifies the expressions for the time dependence
of the coherences by eliminating the first term on the right side. Transforming
to the interaction representation removes the time dependence of the basis vec-
tors spanning the space of our two-level atom.

We have established the optical Bloch equations from the Liouville equa-
tion, the fundamental equation of motion of the density operator, and we have
seen how a unitary transformation can be used to “represent” these equations
in either the Schrodinger, Heisenberg or interaction representations. So far the
optical Bloch equations do not include the possibility of spontaneous emission.
We will discuss how to include this effect in Section 4.2.

We show in Section 4 how we can supplement this somewhat formal de-
velopment by constructing the optical Bloch equations for a two-level system,
starting from the expansion coefficients of our two-level wave function, Eq. 2.3.
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3.2.6 Time evolution of the density matrix

The equation of motion of the density matrix is given by the Liouville equation,as
discussed in Section 3.2.4 (Eq.3.37),

dp(t) i ~
) _ X o H} 3.47
L= () (3.47)
and the time-dependence of the matrix elements for any two-level system sub-
ject to some off-diagonal coupling V315 between the ground and excited levels

separated by an energy Awg, is given by

dpll )
st L Vor — V; 3.48
dt 3 [,012 21 12/’21] ( )
d . i
% = wWwop12 + 5 [Viz (p11 — p22)]
d . 1
% = —wop21 + 7 [Va1 (p22 — p11)]
dpaa 1t dp11
—_— == Via — V5 = —— 3.49
dt A [,021 12 21/)12] di ( )
These equations can be written matrix in form,
% . 0 Va1 V12 0 P11
| 2L Vi hwo 0 =Vas ) o (3.50)
L2l | —Var 0 —hwy Vo P21
% 0 —Vo1 4+Vio 0 P22
or as a vector cross product
ag
—_— == Q 3.51
Y- s (351)
where
B =i (p21 + p12) + i (p21 — p12) + k (p22 — p11) (3.52)
and
1. . o
Q= ﬁ 1 (Vél + Vlg) + 7 (Vél — Vlg) + khwg (353)
so that
d 1
d—f =1y lihwo (p12 — p21) + (Va1 — Vi2) (p22 — p11)]
1
+ I3 [fwo (p21 + p12) — (Va1 + Viz) (p22 — p11)]

\V]

+ f{ﬁ [i (Va1p12 — Vigpa1)]
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The vector 3 is called the Bloch vector, and its cartesian components are often
expressed as

up = p21 + P12 (3.54)
ug =i (p12 — p21)
uz = P11 — P22

In the case of a real coupling operator Vio = V55, and the explicit equations of
motion for the Bloch vector components become

dB,

% = —wols (3.55)
ag, 2

g wou + hV12U3

ag. 2

= hV12U2

We have introduced the Bloch vector here to complete the formal presentation
of the density matrix theory. The physical content and the usefulness of the
Bloch vector will become clearer when we use this formalism to analyze electric
and magnetic dipole couplings.

3.3 Further Reading

There are many excellent presentations of density matrix theory. For optical
and collisional interactions, two quite useful books are:

o Weissbluth, M. Photon-Atom Interactions, Academic Press, Boston, 1989

e Blum, K. Density Matriz Theory and Applications Plenum Press, New
York, 1981



Chapter 4

Optical Bloch Equations of
a Two-Level Atom

4.0.1 Coupled differential equations

Now that we have established the language of density matrix theory, let us con-
sider first the density matrix of our two-level atom in a pure state (and without
spontaneous emission) in the {¥;, Uy} representation. We recall Eq. 2.3, the
time-dependent wave function of our two-level system,

U(r,t) = C1(t)Tq(r,t) + Co(t)Ua(r, t) (4.1)
= Cr(t)r (x)e™ ™" + Ca(t)ha(r)e 2"
and Egs. 2.10, 2.11 describing the optical coupling,

, dc'

hQg cos wt e 0t 0y = Zd—tl
, dC:

RO cos wte™0tCy = Zd—t2

We take the time-dependent form of the quantum state, ¥,,(r,t) = 1, (r)e~“nt
and write ¥y (r,t) and Wo(r,t) as the basis states for the representation of the
density operator p,. Then following Eq. 3.7 we write

pi1 = |C1f° (4.3)
paz = |Caf®
p12 = C1C5
pa1 = CoCY

which we form into a density matrix as
P11 P12
P21 P22

45
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Remembering the interpretation |Cy,|* as the probability density of finding the
atom in level n, the trace (sum of the diagonal elements) is equal to unity,

p11tp22 =1
These diagonal terms are called populations. We also have
p21 = pia

The off-diagonal terms are called coherences.
Now we differentiate Egs. 4.3 on both sides with respect to time,

dp11 dcy  dCy
B Mt WS o 4.4
a Ot o (4.4)
dp2 ., dC3  dCy .
a O ta O
dp12 ., dC3 dCy .
a O ta @
dpa1 ., dCT  dCy .
a Ot o

and if we substitute Eqs. 2.10, 2.11 for % and %7 , make the rotating wave

approximation, set Q0§ = Q¢ and define the detuning Aw = w — wyp, we find

dpaa RN —iAwt dp11

P22 .20 1 iAw o iAw _ 4P 4.
g =i [T e ] dt (4.5)
dpiz Q0 jnwn dp3,

=i—e" " (p11 — pa2) =

dt 2 dt

Equations 4.5 describe the time-evolution of the on-diagonal and off-diagonal
density matrix elements and constitute our first expressions for the optical Bloch
equations not including spontaneous emission. For arbitrary initial conditions
the solutions for pss and p1o are not simple, but if we start with a collection
of atoms in the ground state with the coupling light turned off, then the initial
conditions are

p11 =1 p22 =10 p12 =0

and the solution for the final excited state population is

02 Q
p2=1—p11 = Q—g sin? <§t) (4.6)

pr2 = phy = eiA“t% sin (%t) [Aw sin <%t> + i cos (%t)] (4.7)

Q=1/(Aw)? + Q2 (4.8)

and

with
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where Q is called the Rabi frequency. For the special (but frequent) case of
on-resonance excitation w = wg

Q
p22 = sin’ 7Ot (4.9)

with the on-resonance Rabi frequency,
Q=0Q (4.10)

while the on-resonance coherence becomes
Qot Qot
p12 = isin <20) cos <20) = isin (Qot) (4.11)

Notice that the on-resonance coherence oscillates with frequency €y while the
populations oscillate with frequency %0 These Rabi frequencies, Egs. 4.8, 4.10,
are analogous to the coupling of two spin states by an oscillating magnetic field
(see Appendix4.D. Equations 4.6 and 4.7 constitute the solutions to the optical
Bloch equations for a two-level system. They describe the time-evolution of
the populations and coherences of a two-level atom coupled by a single-mode
optical field. However they do not include spontaneous emission, an omission
which we address in Section 4.2.

Equations 4.5 were obtained in the interaction representation of the two-level
atom density matrix in which the time evolution of the system is driven by the
time dependence of the coupling operator, V(t) = hQg coswt. With the help of
Eq.3.34 we can see that in order to switch to the Schrodinger representation,
we can invoke the transformation, pi13 = p12e™°t. The result is

dp L. ? it [ ~ ~
oz _ wpi2 + E[VQBZWS(PH — p22)]

dt

and we see that the time dependence of the coherence matrix element contains
the extra iwgpi2 on the right, as in Eq. 3.44.
4.0.2 Atom Bloch vector

Following Eqs.3.50 and 3.51 we can write the time-dependence of the atom
density matrix elements in the form of a matrix equation,

dpi1 0 hQ __ hQq 0
2

dt D) P11
R .
AR T
dpa o _h  h P
dt 2 2

or as a vector product involving the Bloch vector 8 and the torque vector €2,
first introduced in Section 3.2.6

ag
%7—ﬁxﬂ
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where the Bloch vector 8 can be expressed in terms of the circular or cartesian
matrix elements (v.i. Appendix 4.A) of the atom density matrix as

B =1 (p21 + p12) + 7 (p21 — p12) + k (p22 — p11) (4.12)
((o7)+ (") +3i[(o7) = (o")] +k({(cT07) — (070™))

i(00) +3(0y) +k(o2)

I
)

with,
9B 0 (0,) - 3180 (02) + D (0)] + K ()
and the torque vector €2 is written as
Q= % [zmo - RhAw] (4.13)

Note that the length of the torque vector is just the Rabi frequency first intro-

duced in Section 4,
‘1/2

(@] ==+ (aw)’

Now with the expressions for the three time-dependent components of the Bloch
vector

dB:

pra Aw (o)

d

% = 00 (02) — Aw ()
ag.

(Z =Q <Uy>

and with the initial condition that at time t = 0, 3,(0) =0, 8,(0) =0, 8, = —f
we can solve for the time evolution of the Bloch vector components,

By = |5|% (cosQt — 1) (4.14)

Qo .
By = |’8|ﬁ sin Qt

1+ <%)2 (cos Qt — 1)]

The time dependence of the three components of the atom Bloch vector provides
a useful illustration of the atom-field interaction. On-resonance coupling, Aw =
0,0 = Qp, is the easiest to describe, with the situation depicted in Fig.4.1.

From Egs. 4.14 we see that the Bloch vector initially points in the —z direction,
which from Eq.4.12 obviously means that all the population is in the ground
state. As time advances the Bloch vector begins to rotate counterclockwise in
the z — y plane At t = 7/2Q¢ the Bloch vector is aligned along +y, and at
t = w/Qp it points upward along +z. All the population has been transferred

ﬂz:7|ﬁ|
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—>|_‘<— s —> - 1
T=— T _
t Qo Qo >

Figure 4.1: Panels (a),(b),(c) precession of Bloch vector about torque vector
(Aw = 0) for a single atom. Panels (d), (e), (f) Bloch vector for an ensemble of
atoms rotated to +y axis with 7 /2 pulse, followed by inhomogeneous broadening
interval 7p, m pulse, superradiant photon echo relaxation to ensemble ground
state.
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to the excited state. The Bloch vector continues to rotate (or nutate) about
the torque vector € (which, as can be seen from Eq.4.13, points along +x
when Aw = 0) with a frequency proportional to the strength of the atom-
field coupling through €y. From Eq.4.9 we see that the population oscillates
between the ground and excited states with a frequency (/2 as the energy fiwg
alternately exchanges between the atom and the field. A resonant pulse of light
of duration such that 7 = 7/2Qq is called a “pi-over-two-pulse.” After a /2
pulse the difference between the excited and ground state population is zero
and the time-dependent state function has equal components of each stationary
state,

P(t) = cos (%t) 11 + sin (%t) g — %
The equal mixing of ground and excited states results in a wave function with
maximal transition moment, and we remember from Eq.2.22 that the rate of
spontaneous emission increases with the square of transition dipole moment.
Now if we consider an ensemble of atoms sufficiently dilute such that we can
neglect collisional (irreversible) decoherence but sufficiently dense such that the
mean distance between atoms is less than a resonance wavelength, then the
transition dipoles of the individual atoms will couple to produce an ensemble
dipole moment. If a 7/2 pulse is applied to this ensemble, whose members are
all initially in the ground state, the collective Bloch vector will nutate to +y as
in the case of the single atom. However, inhomogeneous broadening due to the
thermal motion of the atoms will lead to subsequent dispersion of the individual
atom Bloch vectors in the z — y plane. The time evolution of the collective
Bloch vector after the 7/2 pulse will be,

[¥1 + o]

Bz = —|B| sin Awt
By = |B| cos Awt
ﬂz =0

where Aw reflects the inhomogeneous phase dispersion. If now after a time 7 a
7 pulse is applied to the ensemble, the distributed Bloch vectors will under go
a phase advance of m — 2Aw7 and continue to time-evolve as

Bz = |B]sin[Aw (t — 7))
By = —|B| cos [Aw (t — 7)]
/Bz =0

After a second time interval 7 the individual Bloch vectors will all point toward
—y and the collective transition dipole is again maximal. The phasing of
the individual dipoles produces a cooperative spontaneous emission from the
ensemble which is called the photon echo. The signature of the photon echo is
twofold: first the appearance of a pulse of fluorescence after a delay 7 from the
end of the applied 7 pulse and second a fluorescence rate varying as the square of
the excited state population. This unusual behavior arises from the individual
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dipole coupling and results in rapid depopulation of the excited state with a
fluorescence lifetime much shorter than that of the individual atoms. This
collective phasing of individual dipoles is called superradiance. It is important
to bear in mind that the photon echo does not illustrate a recovery of coherence
from an irreversible process. It only works for inhomogeneous broadening,
due to a well-defined distribution of atomic kinetic energy, in which the time
evolution of the individual members of the atom ensemble have not undergone
random phase interruptions.

4.1 Spontaneous Emission

4.1.1 Susceptibility and polarization

Everything we have developed up to this point involves the coupling of one op-
tical field mode to a two-level atom. In fact for this situation the Schrédinger
equation is perfectly adequate to describe the time evolution of the system be-
cause it can always be described by a wave function, i.e. a pure state. With the
inclusion of spontaneous emission the system can only be described by a prob-
ability distribution of final states, and therefore the density matrix description
becomes indispensable.

Equations 2.10, 2.11 do not take into account the fact that the excited state is
coupled to all the supposedly empty modes of the radiation field as well as to the
applied laser frequency w. In order to take spontaneous emission into account we
are first going to go back to Section 1.5 to recalculate the absorption coefficient
K (Eqgs. 1.43,1.59) starting from the relation between the susceptibility and the
polarization, Eq. 1.37. In order to get a new expression for the susceptibility we
are going to write the polarization in terms of a collection of individual two-level
transition dipoles. We will use the solutions for the coefficients of our coupled
two-level atom, Eqgs. 2.10,2.11. However, we will modify the expression for C,
by adding a term which reflects the spontaneous emission of the upper state.
The resulting expression for the susceptibility (and therefore the absorption
coefficient) will reflect the finite 'natural’ lifetime of the upper state. For the
present discussion we are only concerned with the time-dependence of the real
optical wave which we write,

1 ) .
E(t) = Egcoswt = EEO [t + e

and then consider how to write the polarization in terms of the susceptibility
when the field contains the two conjugate frequencies, +w. Substituting in
Eq. 1.37, we have

P(t) = %GoEO [X(w)ei“t + X(—w)e_iwt] (4.15)

The polarization can also be expressed in terms of the density of transition
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dipoles in a gas of two-level atoms,

N N
P(t) = —dia(t —(d 4.16
(t) = 37di2(t) — 7 (du2) (4.16)
where d is the transition dipole of a single atom, N/V is the atom density, and
the quantum mechanical expectation value for the transition dipole moment is
the vector version of Eq. 2.7

(dyg) = —e/mzrjq/dT

We will use the interpretation of the polarization P as the density of transition
dipoles extensively in the theory of the laser (v.i.Chapter 7, section 7.2.1). Now
from Eq.2.3

(dio) = —e | CiC% <1/)1 P ¢2> e ot 4 C5Cy <¢2 > ¢1> elwot
7 J

To make the notation less cumbersome we define

(Tmn) = <wm er wn>

so then we have
(di2) = —€ [CCa (r12) e ™0 + C5C (ray) €] (4.17)

Now in principle all we have to do is substitute the solutions for the coupled
equations relating C7,Cy from Egs.2.10, 2.11 into Eq.4.17 which in turn can
be inserted into Eq. 4.16 to obtain an expression for the polarization in terms of
atomic properties and the driving field. However, the solution for Cs, Eq.2.13,
does not take into account spontaneous emission. We are now going to make
an ad hoc modification of Eq.2.11 to include a radiative loss rate constant -,

- dC:
QF coswt ety — inCy = id—; (4.18)
This term by no means “explains” spontaneous emission. It simply acknowl-
edges the existence of the effect and characterizes its magnitude by ~. If the
coupling field is shut off (Qf = 0)

. .dC
—iyCy =1 7;
and

Co(t) = Co(t = 0)e



4.1. SPONTANEOUS EMISSION 53

Now the probability of finding the atom in the excited state is
|Co ()] = |Ca(t = 0)[* e

and the number of atoms N3 in the excited state of an ensemble N is
Ny = N |Cy(t)]> = NYe 2

where NY is the number of excited state atoms at ¢ = 0. If we compare this
behavior to result obtained from the Einstein rate expression, Eq. 1.30 we see

immediately that!
A21 = 2’)/ =T (419)

Now the steady-state solution for our new, improved Cy(t) coefficient is

Cy(t) = —%QZ {

ei(wo-i-w)t ei(wo—w)t :|

— + -
Wwot+w—1y wyp—w—1y

and we take the weak-field approximation for C;(t) ~ 1. These values for Cy, Cy
substituted back into Eq.4.17 for transition dipole yields

e2 lr 2E eiwt e iwt
(di2) = [r12)|” Eo — + .
2h wo+w—1y  wy—w— 1y
—iwt iwt
T - ] (4.20)
wo+w+1vy wo—w+ry

which in turn we insert in Eq. 4.16. After replacing |<r12>|2 with its orientation-
averaged value, % [(ry2) |?, we have for the polarization vector

7N62

1 1 )
P(t)=—— ’E —iwt 4.21
®) V6h|<r12>‘ OKwo—w—ierwo—i-w—i—iy)e * (421)

1 1 )
( — + , ) e“"t} (4.22)
wo+tw—1y Wwo—w-+1y

Comparing this result to Eq. 1.37 we identify x(w), the susceptibility in terms
of the atomic properties and the driving field frequency,

X(w) = Ne?fria)| ( 1 ) (4.23)

3eghV wop—w—1y wo+w+iy

Separating the real and imaginary parts we have,

3eghV wo —w)?+v2  (wo+w)?+~2

(e s |

INote that it is customary in laser theory (Chapter 7) to use I' for the sum over all
dissipative processes (spontaneous emission, collisions, etc.)
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In any practical laboratory situation w will never be more than several hundred
GHz detuned from wq 50 |wp — w| < 10 Hz. Since optical frequencies w ~ 101°
Hz, it is clear that the second term on the right side of Eq. 4.23 will be negligible
compared to the first term. Therefore we can drop the second term and write
the susceptibility as

o Ne?[(ro)* 1
X(w) = 3eghV wo —w — iy (4.25)

B N62|<I‘12>|2 wo — w + iy

4.26
3e0hV  (wy — w)? + 42 (4.26)
Nu? A r/2
S R AR / . (4.27)
3eghV (Aw)” + (T'/2) (Aw)” + (T'/2)
hQZ A r/2
= " 02 —_ D) w 2 +Z 2 / 2 (428)
3e0Eg | (Aw)® + (T'/2) (Aw)” + (I'/2)
Identifying the real and imaginary parts
X(w) = x"+ix"
we can, from Eq. 1.43, finally express the absorption coefficient as
Nu? r/2
K= 2\ (w) = D220 2/ - (4.29)
) SeoheV 7 (Aw)? + (T/2)
The factor r/o
/ = L(w — wp)

. [(Aw)Q + (r/2)2]

is our familiar Lorentzian line-shape factor, and it governs the frequency de-
pendence of the absorption coefficient. We see that K exhibits a peak at the
resonance frequency wg and a width of I". The factor of 7 inserted into the nu-
merator and denominator of the right member of Eq. 4.29 permits normalization
of the line-shape factor

/Oo L/2 dw =1
—oo [ (Aw)® + (1/2)%]

We have also assumed in Eq.4.29 that the gas is sufficiently dilute that n ~ 1
and that the line shape is sufficiently narrow to replace w with wq so that

w wWo
%
cn c
The absorption cross section also exhibits the same line shape since from Eqs. 1.59
and 4.29 we have 5
T 1439w r/2

3eohe [(Aw)2 +(r/2)?

00q = (430)
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consistent with our earlier expression for the frequency dependence of the of the
absorption cross section, Eq.2.34. We can also write the imaginary component
of the susceptibility in terms of the cross section using Egs. 1.59 and 4.29

/ c N

= — —00q 4.31
wo VUO ( )

4.1.2 Susceptibility and the driving field

At moderate intensities much of the physics of atom-light field interaction can
be gleaned from the simple model of a harmonically bound electron driven by an
external classical oscillating field. We illustrate the use of this “driven charged
oscillator” model in this section. We shall see it again when we discuss optical
cooling and trapping (Chapter 6), and it is the underlying model of most of
laser theory (Chapter 7). Let us return to the expression of the polarization in
terms of the susceptibility (Eq.4.15),
1 ) )
P(t) = yeoBo Dr()e™ + x(~w)e ']
with
x(w) =x"+ix"
Substitution of the real and imaginary parts of the susceptibility into the po-
larization produces

P(f) = 5o {[X' () + X" (@] € + [ (~w) +ix"(-w)] ) (432)

Equation 4.24 shows that the real part of the susceptibility is symmetric in w
while the imaginary part is antisymmetric,

X (—w) =xX'(w)
X' (~w) = =x"(w)
so that the real polarization can be written
P.(t) = eoEq [X'(w) coswt — X (w) sin wt] (4.33)

Equation 4.33 shows that the real, dispersive part of the susceptibility is in phase
with the driving field while the imaginary, absorptive part follows the driving
field in quadrature. As the optical field drives the polarizable atom, we can
examine the steady-state energy flow between the driving field and the driven
atom. The polarization P(t) is just the density of an ensemble of dipoles,

P(t) = (%) ds (4.34)

This polarization interacts back with the light field that produced it. Imagine
we have a linearly polarized light beam of circular cross section with radius r,
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frequency w, with well-defined (gaussian) “edges” in the transverse plane, but
propagating along z as a plane wave. Later (v.i. Chapter 8 section 8.4) this
beam will be called the fundamental Hermite-Gaussian beam. We write the
travelling wave in its complex form as

E(r, z,t) = Eo(r)e! == (4.35)
and the complex polarization? as
P = eoxE = eo(x' +ix")Ege’ k==t (4.36)

We now write the polarization as the sum of a dispersive component and an
absorptive component.
P= Pdis + Pabs (437)

with

Pyis = €oX Eoe' "7

and
kz—wt)

Pabs = iGOXI/EOGi(
The energy density within a transparent dielectric, isotropic material with no
permanent dipole moment, interacting with the electric field of this light beam
is given by

Eais(t) = —Re[P]-Re[E*]
= —eEj [} cos®(kz — wt) — X" sin(kz — wt) cos(kz — wt)]

Optical cycle averaging yields

(Eass = —3 OB () (4.35)

Equation 4.38 should be interpreted as the energy associated with a collection
of driven atom transition dipoles interacting with the driving E-field. Since the
polarization is a density of dipoles, the interaction energy is really an energy
density.

We can write an expression for the light force acting on this collection of
transition dipoles by first taking the spatial gradient of the interaction energy
and then again taking the optical cycle average.

Fdis = Re [—V (_Pdis . E*)]
Re [P4is VE*] (4.39)
1
= 3 coX' VE? (4.40)

(4.41)

2Note that the real and complex forms of the polarization are related by Py = % (P+P*).
We will see these forms again in the theory of the laser, Chapter 7, section 7.2.1.
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Averaging over the optical cycle,

(Fuis) = %Re[Pdis]Re[VE*} (4.42)
= ieox’VEg(r) (4.43)

The spatial gradient of the E-field is in the transverse plane of the propagating
light wave. The direction of the force depends on the sign of x’, the dispersive
part of the polarization, and the sign of the field gradient. If the light beam is
tuned to the red of resonance, Eq. 4.28 shows that x’ is positive, and the force is
in the same direction as the gradient which is negative in the transverse plane.
The atoms will be attracted transversely towards the interior of the light beam
where the field is highest. Along the longitudinal direction the field gradient
(and therefore the force) is negligible so the atoms are free to drift along z
while being constrained transversely. We will see in Chapter 6 that a potential
can be derived from this “dipole-gradient” force so we can think of the light
beam as providing an attractive potential tube along which the atoms can be
transported. Tuning to the blue reverses the force sign, and the atoms will be
ejected from the light beam. Field gradients can also be created by focusing
a laser beam, by standing light waves or by generating evanescent fields near
dielectric surfaces.

If the light is tuned very near a resonance, the energy of the driving field
will be absorbed. We therefore write this absorptive interaction energy as

Eaps = —Im[P] - Re[E"] (4.44)
and the cycle average
1
() s = —5 X" () (1.45)
We can associate a light force with this absorbed energy as well,
Fabs = Re [—V (_Pabs . E*)]
= Re[PuwsVE"] (4.46)

Taking the optical cycle average we have,

(Faps) = %Re[P}[ReVE*] (4.47)
= %eox”(w)Egk:lA{ (4.48)

where k is the unit vector in the propagation direction. Here we consider the
light beam as a plane wave of infinite transverse extent propagating along the z
axis. The only spatial gradient therefore is in the phase of the travelling wave,
and the force is in the direction of light beam propagation. In taking the gra-
dient of the interaction energy (Egs.4.39, 4.46) we have dropped the E* VP
term. The reason is that from Maxwell’s equations the polarization gradient of
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a neutral dielectric over spatial dimensions larger then atomic dimensions must
be zero. Since the gradient of the field amplitudes extend over the dimensions of
the light beam or, at the very smallest, the wavelength of light, the polarization
gradient, whose characteristic scale length is of the order of the atomic dipole
moment, can be safely ignored. Returning to Eq.4.48, we see that the mag-
nitude of this force depends on the light intensity along z (v.s. Eq.1.10) and
the magnitude of x”', proportional to the cross section for light absorption (v.s.
Eq.4.31). This force is sometimes called the “radiation pressure” force. We will
discuss it again in terms of the cross section for classical radiation of an oscil-
lating electron in Appendix 7.A; section 7.A.2. The atom absorbs light energy
from the field and will re-emit it by spontaneous emission. In fact, due to spon-
taneous emission, the magnitude of this force does not increase indefinitely with
light intensity, but “saturates” when the rate of stimulated absorption becomes
equal to the rate of spontaneous emission. Of course both the dipole-gradient
and radiation pressure forces are present whenever a light beam of frequency
w passes through matter with susceptibility y(w). Because of the frequency
dependence of the dispersive and absorptive components of the susceptibility,
however, (v.s. Eqs.4.27, 4.28) the dipole-gradient force dominates with light
tuned far off-resonance and the radiation pressure force is most important with
the light tuned within the natural width of the absorbing transition. Both the
dipole-gradient force and the radiation pressure force are of great importance
for the cooling and manipulation of atoms. We will examine their properties in
more detail in Chapter 6.

It is also worthwhile to consider how the average power of the field-atom
interaction is distributed between the dispersive and absorptive parts of the
susceptibility. The power density applied to the polarizable atom from the
driving electric field is given by

dpP

@:E'E(t)

We need only consider the time dependence of the light field so we take E(t) =
FEy coswt and the expression for o becomes

p = eoEjw [X' sinwt coswt — x cos® wt]

Averaging over an optical cycle results in

1
() = —5 coBRux’ (@)

and again from Eq. 4.28 close to resonance

(p) = 75?0 nhw

We see that the energy of the field flows to the absorptive part of the atomic
response to the forced oscillation. Under conditions of steady-state excitation,
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the energy density flowing to an ensemble of atoms from the field must be
balanced by the energy reradiated from the atoms. An ensemble of N classical
permanent dipoles in volume V| oscillating along a fixed direction, radiates
energy density at the rate

<%> _ 4“”3/"%2 N
T Amwep3c3 V
and at steady state,
1 dwipuiy, N
2 e Blwoy! = 2wk Y
9 COBOWOX = 033 V

or, the incoming resonant energy flux absorbed must equal the flux radiated ,

1 dwdp2y, N
- E2 " _ o012 -V
9 OF0X 4dmeg3c2 V

Finally from Eq.4.31 we have

Wg”fz 3 2
Tmegdc®  32m°pYy  hwoAo

I 2. g\a.2p2 1 2
seobge  3N*egLy  SeocE]

00a =

which shows once again (c¢f. Eq.2.30) that the absorption cross section is simply
the ratio of the power emitted to the incoming flux. Cross sections and rate
equations figure importantly in the theory of the laser, and we shall have occa-
sion to revisit the use of a “cross section” as an interaction strength parameter
in Chapter 7

4.2 Optical Bloch Equations with Spontaneous
Emission

In order to find the optical Bloch equations including spontaneous emission, we
insert the phenomenological —iyCy term into Eq.2.11 so that now we have

Qf cos (wt) e“0tCy —iyCy = de_Ct'g
and the resulting density matrix elements become
% = —Z'%e_i(mu)tpm + i%eim‘w)tpm — 29p22 (4.49)
% = i%fi(m))tpm - i%ei(Aw)tpm + 29pa2 (4.50)
% = i%ei(Aw)t (p11 — p2z) — VP12 (4.51)
AR (p11 = p22) — VP21 (4.52)

dt 2
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The oscillatory factors are eliminated from Eqs. 4.49-4.52 by substituting

p12€" A9t = 515 and pore A = py1 with the resulting equations
d QL Qo - d
% = —170P12 + 270/)21 — 2vp22 = —% (4.53)
dp 0 - . - dps
% = 270 (p11 — p22) — yP12 — i (Aw) p12 = Zil (4.54)

Now setting the time derivatives to zero to get the steady-state solutions yields,

319 (455)
P22 = .
(Aw)® +92 + § ]
and . .

(B + 72+ § [l
We see that both the populations and coherences now have a frequency de-
pendence with a Lorentzian denominator similar to but not identical with the
Lorentzian line shapes we had previously found for the susceptibility x, the ab-
sorption coefficient K, and the absorption cross section oo, (Egs. 4.25, 4.29, and
2.34). Now the denominators exhibit an extra 1 |Q* term which makes the
“effective” widths of pao and pia

1/2
Leyp=2 <(F/2)2 + % |902> (4.57)

We can insert these new forms for pi1o and pa1 = pj, from Eq.4.56 into
our previous expressions for the transition dipole (u12) (Eqs.4.17,4.20); and
then obtain new expressions for the polarization P(t) (Egs.4.16, 4.22); and the
susceptibility x (Eq.4.27). The modified expression for the susceptibility is,

_ Ny, _ Aw +
3eghV (Aw)2 + (F/2)2 + % |QO|2

— 12 2) (4.58)
(Aw)” + (T/2)" + 5 Q0]

X

From the imaginary component of the susceptibility we obtain the new absorp-
tion coefficient

w 71']\762 Irio 2 wo Lﬂ_
K=—x"(w)= lrva)| T (4.59)
<n BeohcV (Aw)” + (T/2)" + 3 Qo]
and the absorption cross section
2 2 I
000 = e |<I‘12>‘ Wo 2m (460)

Beohc  (Aw)? + (I/2)% + L[
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The important new feature is the “effective width” I'cyy which appears in x, K,
and 0g,. Since Qo = p12-Eg /A it is clear that the effective width depends on the
electric field amplitude and hence the intensity of the applied light field. The
additional width of the absorption or emission line profile due to the intensity
of the exciting light is called power broadening.

4.3 Mechanisms of Line Broadening

4.3.1 Power broadening and saturation

Equation 4.57 shows that as the power of the exciting light increases, the frac-
tional population in the excited state saturates at a limiting value of pos = %
This property is analogous to Eq. 1.45 which shows similar saturation behavior
when the two-level atom is subject to broad-band radiation. Note that Egs.
4.58, 4.59, and 4.60, all with the same line shape factor, all exhibit the same

saturation characteristic. The saturation parameter defined by

110,12
s= 2l (4.61)
(Aw)™ +(I'/2)
indexes the “degree of saturation”. When the narrow-band excitation light

source is tuned to resonance, the saturation parameter is essentially a measure
of the ratio of the on-resonance stimulated population-transfer frequency 2g to
the spontaneous rate As;. At resonance and with the saturation parameter

equal to unity,

Q= %r (4.62)

We can use Eq. 4.62 to define a “saturation power” I,,; for an atom with tran-
sition dipole p12. From 1.42 we have

27

Ey =14/ —

€pC
so, using the conversion factor between 15 and As; entered in Table 2.1, we
have
Qn 212ch
" ge 3TAS
A useful formula for practical calculations is

2.081 x 1010
Isat(mW/cm2) . x

(4.63)

sat

g2 7(us) A3 (nm)

Note that from Eq. 4.55 and Eq. 4.62, using this definition of “saturation”, S =1
and pgg = 1/4. Some authors take the criterion for saturation to be S = 2 in
which case Q¢ =T and pag = 1/3.

Problem 4.1 Calculate the saturation power Isq: for Na 3s 251/2 — 3p2P3/2
and for Cs 65251/2 «— 6p 2P3/2 in units of mW/cm?
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4.3.2 Collision line broadening

The theory of atomic collisions covers a vast domain including elastic, inelastic,
reactive and ionizing processes. In low-pressure gases at ambient or higher
temperature we need consider only the simplest processes: long-range van der
Waals interactions which result in elastic collisions.  The criterion of “low
pressure” requires that the mean free path between collision be longer than
any linear dimension of the gas volume. Collisions under these conditions can
be modelled with straight-line trajectories during which the interaction time is
short and the time between collisions is long compared to the radiative lifetime
of the atomic excited state. Under these conditions the collisional interaction
of the radiating atom can be characterized by a loss of coherence due to a phase
interruption of the atomic excited-state wave function. The term “elastic”
means that the collision does not affect the internal state populations so that
we need consider only the off-diagonal elements of the density matrix,

dpiz 0 i wot
a2 C

(011 - P22) - 7/P12

where 7/ is the sum? of the spontaneous emission v and the collisional rate, Yeor,
7, =7+ Yeol (464)

and the inverse of the collision rate is just the time between phase interruptions
or the time 7., “between collisions.” Now for hard-sphere collisions between
atoms of mass m (with reduced mass u = m/2) and radius p in a single-species
gas sample with density n, standard analysis of the kinetic theory of dilute gases
shows that the time between collisions is

B
Tcol = Sl:zf
and the collision frequency is just
_ KT\ "/?
Teol = Yeol = 8p2n<7) (465)

Now we can relate this simple result of elementary gas kinetics to the rate
of phase interruption by reinterpreting what we mean by the collision radius.
When an excited atom, propagating through space, undergoes a collisional en-
counter, the long-range interaction will produce a time-dependent perturbation
of the energy levels of the radiating atom and a phase shift in the radiation,

n= /Oo [w(t) — wol dt = /_Z Aw(t)dt

— 00

3The reader is cautioned that the meaning of terms ~, 7/, I' can change with context. In
an atomic physics context I' usually means the spontaneous emission rate of an atom. In an
engineering context I' often denotes a phenomenological decay constant that is a sum over
various decay processes (v.i. Chapter 7). In the present context we are using 7' as sum of
two identifiable decay processes.
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The long-range van der Waals interaction is expressed as
Ch

AE=hAw=—"7—/9#¥——
FE = hAw |:b2+(vt)2:|n/2

where b is the impact parameter of the collision trajectory and v is the collision
velocity. The phase shift then becomes

n= %/OO %dt
o0 [b2 + (vt)ﬂ

The integral is easily evaluated for the two most frequently encountered cases:
n = 6 and n = 3, nonresonant and resonant van der Waals interactions, respec-
tively. The phase shifts become

27 Cs
m6(0) = 35 18y
and
4 03
b) = —— =~

Now, if instead of using the hard-sphere criterion, we define a “collision” as an
encounter which provokes at least a phase shift of unity, we have a new condition

for the collision radius,
b — (2 G}
¢~ \3h v

b_( 47'[' %)1/2
> \3v3h v

and, taking the average collision velocity of a homogeneous gas sample at tem-

perature T,
| 8kT
V=4 —
T

we find the collision frequency 7o,

2/5
Ve = 4n (\/577206> / (47rk;T>3/10
c6 p— —_— —_—

and

3h u

=4n z v mCs
Ve3 3 h

and
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Substituting the generalized 7’ from Eq. 4.64 for « in the optical Bloch equa-
tions Eqs. 4.53,4.54 we find the steady state solutions

%Qg(w — Wy — ’L"}/)

(w—wo)® +72+ 1 (%) If*

i(w—wo)t

p12 =¢€

and
i (%) |2/
(w=wo)® +72+3 (Z) 1]’

The effective (radiative plus collision) line width becomes

1 ")’I 9 1/2
r 2{7’%—(—) Qo ]
ff 3\ 5 €2

When the optical excitation is sufficiently weak that power broadening can be
neglected compared to collision broadening, the second term on the right can
be dropped, and the effective width becomes

P22 =

Topp=2(7+ Yeot) (4.66)

Equations 4.57 and 4.66 express the limiting line widths for power broadening
and collision broadening, respectively. Note that the susceptibility, absorption
coefficient, and absorption cross section all retain the Lorentzian line shape, but
with a width increased by the collision rate. Since every atom is subjected to the
same broadening mechanism, collision broadening is an example of homogeneous
broadening.

Problem 4.2 At what pressure does the broadening due to collisions between
ground-state sodium atoms equal the spontaneous emission line width of the
resonance transition?

4.3.3 Doppler broadening

Doppler broadening is simply the apparent frequency distribution of an ensemble
of radiating atoms at temperature 7. The radiation appears shifted due to the
translational motion of the atoms. For each individual atom

Avw=w—-—wyg=k-v=Fkuv,

where k is the light wave vector and v the atom velocity. This Doppler shift dis-
tribution of a gas ensemble in thermal equilibrium maps the Maxwell-Boltzmann
probability distribution of velocities,

2 me?(Aw)?

P(v,)dv, ~ e BT dv, =e 28" —dw (4.67)
wWo




4.3. MECHANISMS OF LINE BROADENING 65

This distribution of frequencies is Gaussian with a peak at w = wp and a full
width at half-maximum (FWHM) of

(2kBTln2>1/2
2o | =12
mc

Another conventional measure of the width of this distribution is 20, twice the
“standard deviation” used in the theory of the distribution P (¢) of random
measurement errors ¢,

Ple) = ——e—<2/20 (4.68)

2ro

from which we can associate a spectral standard deviation

o 2(4)0 kBT
¢ m

20

The two measures of the width differ by a small factor

FWHM

o = (2n2)"? = 1.177
(o

From Egs. 4.67 and 4.68 we see that the normalized Doppler line shape function
is
1 m _7nc2(w—wQ)2

= ——/7—me 0*BT d 4.69
Var\ ket T W (4.69)

Figure 4.2 compares the Gaussian line shape of Eq.4.69 to the Lorentzian line
shape, Eq. 1.50

D(w — wp)dw

N dw
27 (w —wo)* + (3)°

associated with natural, power, and collision broadening. It is clear that for the
two line shapes of equal width, the Gaussian profile dominates near line center
and the Lorentzian is more important in the wings. Because the Doppler width
is a property of the ensemble of atoms, with the Doppler shift of each atom
having a unique but different value within the Maxwell-Boltzmann distribution
, this type of broadening mechanism is called heterogenous broadening.

L(w — wp)dw = (4.70)

Problem 4.3 Calculate the Doppler width for the resonance transition of an
ensemble of sodium atoms at 400 C

4.3.4 Voigt profile

Of course in many practical circumstances both homogeneous and heterogeneous
broadening contribute significantly to the line shape. In such cases we may
consider that the radiation of each atom, homogeneously broadened by phase-
interruption processes such as spontaneous emission or collisions, is Doppler
shifted within the Maxwell-Boltzmann distribution at temperature T. The line
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Spectral Probability Density

-30 -15 0 15 30
(o - mo) [MHZz]

Figure 4.2: Spectral probability distribution (probability MHz~!). The area
under both curves normalized to unity. Gaussian distribution (solid line) and
Lorentzian distribution (dashed line).

profile of the gas ensemble must therefore be a convolution of the homogeneous
and heterogenous line shapes. This composite line shape is called the Voigt
profile,

V(w—wg) = /00 L(w — wo — W) D(w — wp)dw' (4.71)

— 00

/
5 dw

rY /OO 67(“"7“)0)2/202
2270 J oo (w — wy — ) + (3)

Although there is no closed analytic form for this line shape, it is easily evaluated
numerically.

Problem 4.4 Calculate and plot the effective Lorentzian profile, the Gaussian
profile, and the Voigt Profile for the resonance absorption line of sodium gas at
a temperature of 420 C and a pressure of 700 mTorr.

4.4 Further Reading

In this chapter we introduced spontaneous emission as a de facto loss term in
the optical Bloch equations. A more serious treatment that gets most of the
'right answer’ is the Weisskopf-Wigner theory of spontaneous emission. The
original reference is

e V. F. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930)

but a more accessible discussion can be found in
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e Sargent, M. III, Scully, M. O., Lamb W. E. Jr., Laser Physics, Addison-
Wesley, Reading,(1974)
An updated and expanded discussion appears in

e Scully, M. O., Zubairy, M. S. Quantum optics, Cambridge University
Press, Cambridge (1997)

The time-dependence of the Bloch vector, superradiance, and photon echoes
are treated in many engineering text books on quantum electronics and physics
texts on quantum optics. Some examples of good treatments are,

e Yariv, A. Quantum Electronics, 3rd edition, Wiley, New York (1989)

e Sargent, M. ITI, Scully, M. O., and Lamb, W. E. Jr., Laser Physics, Addison-
Wesley, Reading, 1974

e Nussenzveig, H. M., Introduction to Quantum Optics, Gordon and Breach,
London, (1973)

Power broadening and elementary collision broadening are discussed in many
places. In addition to the two books cited above discussions can be found in

e Louden, R. The quantum theory of light, 2nd edition, chapter 2, Clarendon
Press, Oxford (1983)

e Weissbluth, M. Photon-Atom Interactions,Chapter VI, Academic Press,
Boston (1989)

e Yariv, A. Quantum FElectronics, 3rd edition John Wiley & Sons, New York,
(1989)

For a deeper discussion of collision broadening and line shape analysis,

e Mitchell, A. C. G, and Zemansky, M. W. Resonance Radiation and Excited
Atoms Cambridge University Press, Cambridge, 1934

e S. Y. Chen and M. Takeo, Rev. Mod. Phys. 29, 20 (1957)

e R. E. M. Hedges, D. L. Drummond, and A. Gallagher, Phys. Rev. A 6,
1519 (1972)

e A. Gallagher and T. Holstein, Phys. Rev. A 16 2413 (1977)
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4.A Pauli Spin Matrices

In this appendix we illustrate the properties of the density operator applied to a
spin % system. We will see that the density matrix “tool box” used to describe
the two-level spin system is in fact applicable to any two-level problem and
will help us analyze the unifying principles behind seemingly disparate physical
phenomena.

We again start with a two-level system, but this time we imagine two states

= (1) mim=(g)

which form a basis set spanning the space in which any arbitrary normalized
state wave function may be expressed as

) =ala)y +b18); (@) = lal® +[b° =

We have the usual orthonormal properties of the basis states

(ala) = (8]F) = 1 and (a|f) =0

and now we introduce the Pauli spin matrices together with the identity matrix,

I
Jo 1 [0 —i
Te=191 0%~ | i o0

and note that

Q
n
Il
| — |
O =
I o
—_
_ 1
~
Il
| — |
O =
= O
—_
—
i
\]
[\
—

2 _ _
o, =1 n=uc,y,z2

It is true that any 2 x 2 matrix can be represented by a linear combination of
the Pauli spin matrices and I. For example the 2 x 2 matrix representing the
density operator p in the |a) , |3) space,

p= [ Paa Pof ] =mol + mio, + maoy, + mso, (4.73)
PBa PBB )

By inspection of the form of the Pauli spin matrices, Eq.4.72, we can easily
work out that

_ [ mo +mg My —ims (4.74)
mi+1tmg Mg — M3
and therefore from Eq.3.11 we have
Trlpo,] = (0,) = 2my (4.75)
Tr[poy| = (oy) = 2ma (4.76)
Trpo.] = (0.) = 2m3 (4.77)
Tr(pl] =(I) =1=2myg (4.78)
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Substituting these values back into 4.74 gives us

L[ 140 (0w —iloy)
=3 | (o) +iloy)  1-(02) (4.79)

and using Eq. 4.73 the density matrix can be expanded in terms of the cartesian
matrix elements and Pauli spin operators,

p= 5T +{0)0a+ (o) 0y + (02) 0] (4.80)

Now it is evident from comparing Eqs. 4.73 and 4.79 that

(02) = Paa — Ppp (4.81)
<O'x> = PaB T PBa

(04) = = (950 — Posp) = i (P — P

i
The set of three matrices defined in Eq. 4.81 are often called the cartesian com-
ponents of the Pauli spin matrices. Notice that the average value of the z
component of the Pauli spin operator represents the population difference be-
tween the excited and ground states of the two-level system.

In addition to the cartesian spin matrices often it is quite useful to introduce
a new set of ’circular’spin matrices o1, , o, by defining o™, and o~ as linear
combinations of o, and o,.

1 0 1
+_ 2 . _
a 2(z+zay)[0 0} (4.82)
,_1( o) = 0 0
o —2% ) =19
from which see we that
1 0
+ - _
oo _[0 0} (4.83)
0 0
+ _
oo [O 1}

Note from Eqs. 4.82 that the x, y components of the spin matrix can be expressed
in terms of the +, — components as

op=0"+0o" (4.84)

oy =1 (0_ — 0+)
Inspection of the matrix for o, (Eq.4.72) and Egs. 4.83 allows us to write

o,=20"0c —1
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Just as Eq.4.79 expresses the density matrix in terms of the matrix elements
(op) with n = z,y, z, so we can express the density matrix in terms of matrix
elements of the ’circular’ components (), (¢7),(cto™),{c7c™)

(o
p::[<a+a_) éa‘) } (485

(0*)  {o70™)
with the expansion
1  _ 1 IR R
p:§I+ <aa>f§ o.+(ct)o  + (o7 )0 (4.86)
It is worth noting the obvious but useful fact that
<O'_U+> =1- <O’+O'_>
We will find that in various circumstances it will be convenient to express the
density matrix either in terms of the Pauli cartesian spin matrices (Eq.4.80) or
in terms of the ’circular’ spin matrices (Eq.4.86).

Finally, notice that o, 0~ have the interesting property of either provoking
transitions between the levels of the spin % system,

](?)<é>w> (4.87)
J(3)-(1)-w

1(5)= () (49
1(1)-(5)
4.B Pauli Spin Matrices and Optical Coupling

We can express the Hamiltonian of our two-level atom in terms of the Pauli spin
operators for the two-level system. We start with Eq. 2.2

ﬁ:ﬁAJrV
where we now write

. hw,

HA = TOJZ

Then
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and o
2 W

so that the energy difference between the two atomic levels is still

Hall)=—

AE = Fy — E; = hwg

This choice for the energy levels allows us to write Hy as simply proportional
to 6., but it means that we must write the time-dependent state function for
the two level atom as

1 i <0t —i20¢
=— 2" 1) +e 2|2 }
v=5 2)
We write the light field as circularly polarized, propagating along the positive z
axis with the electric field oscillating at frequency w and rotating in the clockwise

direction. .
V= TO [0 coswt + oy sin wt]

Then from Eq.4.84 we can write

V _ % (6“”07 + €7th0'+)

and taking matrix elements of V we find, using Eqs. 4.87 and 4.88,

Q

Vig = %ewt (4.89)
o

Var = TOe*m (4.90)

Now our two-level atom Hamiltonian has the form, in terms of the Pauli spin
matrices,

N h ) )
H= 3 [woo + Qo (P~ + e o) (4.91)
The matrix elements of this Hamiltonian operator in our two-level basis become
h wo Qoeiwt
= 5 Qoeiiuﬁ —Wwo

4.C Time Evolution of the Optically Coupled
Atom Density Matrix

Now that we have constructed the Hamiltonian in terms of the Pauli spin oper-
ators, Eq.4.91, we insert it and the density matrix operator (Eq.4.85) into the
Liouville equation, Eq. 3.37, to obtain the time evolution of the density matrix.
The equations of motion for the time dependence of the atom density matrix
can be written down directly from Eq. 3.41
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1 _ & (grom) =i [ (07) — ' ()] (1.92)
12 _ & (om) =iw (o) 4150 [2(0%0™) ~ 1]

o1 _ (o) = i (o) — i [2(o*0™) ~ 1]

dp d _ Qo —iwt / _—

Aoz _ (1 (o)) =i [et (o) — et o)

Now we can easily get the time dependence of the cartesian components by
taking the appropriate linear combinations from the Eqs. 4.84,

d d _ .

o7 (o) = % [(0) + (c7)] = 4wo (o) — (0-) Qo sinwt
d d o, _

7 (oy) = o [(67) = (%) = —wo (02) — (02) Qg coswt

d d _ :
7 (0,) = 7 [(20707) — 1] = Qo [(0) coswt + (o) sinwt]

We can gain insight into the time-dependence of the atom density matrix by

re-expressing the Hamiltonian in a coordinate frame rotating about its z axis at

the same frequency and in the same propagation direction as the optical wave.

The prescription that transforms the atom Hamiltonian to the rotating system

is,

001
ot

Hp = OHO™ —ihO (4.93)

where the operator O is defined
O = eiwto=/2 (4.94)

and Hp, signifies the Hamiltonian in the rotating frame. It can be shown easily
that the resulting form of the transformed Hamiltonian is

N 1 1
Hop = §h(w0 —w)o, = —§hAwaz

with the detuning Aw = w — wy and

- 2
Ve=— (0" 40"
n =20 (5 o)
This transformation is useful because it eliminates the explicit time dependence
in the Hamiltonian. Notice that as usual we have chosen the definition of the
detuning so that frequencies to the red of resonance yields a negative Aw while
blue detuning results in a positive Aw. Now we can rewrite Eqs. 4.92 as
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B gy i (o) (o) 4
ds_fz = 4 () :—iAw<a—>+i%[2<o+U‘>—1]

% = 4 (o) =+iAw<a+>—i%[2<U+U_>_1]

Y g =2 () (o)

and the cartesian components of the spin density matrices as
d R d + _
(%) = @let) +leT)] = -Aw(oy)
d . _
Z{o)) =iflloT) — (") =+Aw(ox) - Qo)
d
S(of) =4 l20tom) —1] =0(o)

where the superscript R indicates expressions in the rotating frame.

Finally we can write the set of optical Bloch equations, Eq.4.95, in the
rotating frame in terms of a matrix as we did in Eq. 3.50

d Q Q —
2 S R s
G| % Aw 0 =S (o)
don | T e g Ap | (o)
o o =% % 0 [l

and recast them in terms of a Bloch vector precessing about a torque vector, as
we did previously (Eq. 3.51).

% =-03xQ
with
B=2[(e")+ (o) +7i[(c7) = (oT)] + Kk [(07o+) = (oF07)]
and A
Q=20+37(0) — kAw
so that
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or
s
dt
We see again that in the rotating frame, the on-resonance, (Aw = 0), Bloch
vector 3 precesses in the j—R plane around the torque vector € pointed along
the 7 axis.

= —i[Aw (0,)] = 7 [Aw (o) — Qo (02)] — k[ (0)] (4.96)

4.D Pauli Spin Matrices and Magnetic-Dipole
Coupling

We discuss in this appendix another example of how the Pauli spin matrices
can be used as the underlying structure to describe the physics of coupling and
time evolution in a two-level system. The procedure to be followed parallels the
electric dipole case. We first set up the Hamiltonian in the laboratory frame,
then in the frame rotating at the Larmor frequency wg. From the Hamiltonian in
the rotating frame and the Schrodinger equation we can express the probability
of transition from the initial, ground spin state |8) to the final, excited spin
state |a).
Analogous to the interaction energy of an electric charge dipole er with an
electric field E,
w=—-p-E (4.97)

the interaction energy of a magnetic dipole with a magnetic field is*
k=-m-B (4.98)

and the magnetic moment is written in terms of the Bohr magneton pup and the
Pauli spin operator o
eh

1

The constant + is called the gyromagnetic ratio; and, due to the choice of nega-
tive sign for the electron charge, the magnetic dipole direction must be defined
opposite to the electron angular momentum direction. Analogous to Eq.1.38
relating the displacement field D to the electric field E and polarization P, there
exists a relation between the magnetic field H, the magnetic induction field B
and the magnetization M,

H-= iB -M (4.100)

Ho

Just as we write the polarization as an ensemble density of the average electric
transition dipole,

P=" (4 (4.101)

4Note that Eqgs.4.97, 4.98 involve permanent dipoles. The interaction energy involving
induced dipoles contains an extra factor of 1/2 (v.s. Eq.4.38)
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so we can write the magnetization as an ensemble density of the average mag-
netic dipole

N yh N

M = — = - —

ylm =5y

Furthermore, just as we have for the energy of interaction W between P and E

(o) (4.102)

W=-P-E
so we have the energy of interaction K between M and B
K=-M-B (4.103)

Passing to quantum mechanics, the Hamiltonian operator representing this in-
teraction energy, in vacuum, is clearly

N 1
Hy = 5’7713002

and the Schrodinger equation for the two spin states |a) and |8) becomes

ol 3) = S7hBol5) (1.104)
Hola) = —%7530|a> (4.105)

with the energy difference
AE = 4By = wo (4.106)

Now we couple these two states with the classical oscillating magnetic field,
circularly polarized in the x — y plane and propagating in the z direction,

b1 = b1 (Zcoswt + jsinwt) (4.107)

The Hamiltonian becomes
A 1
H = §’yh [Boo, + by (0 coswt + oy, sinwt)] (4.108)
1 ) )
= 575 [BOO'Z + by (e“"ta'*' + e_“"ta_)] (4.109)

and if we change to the coordinate system rotating at w by using the same
transformation operator employed in Egs. 4.93,4.94 the Hamiltonian becomes

A 1
Hp = E'yh[(Bo—%) o, + by (0’++0‘_) (4.110)
1 1
= ih(wo —w)o, + §’yhb10w (4.111)

1 1
—§hAwBUZ + 5’7%101- (4.112)
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In the last line we have defined the “detuning” of the frequency w of b; from
the precession frequency wg of a magnetic moment about the constant magnetic
field Bp as Awp. Now we seek the probability of finding the system in the
excited state at some time t in the representation spanned by the two basis
states |a) and |3)

[1(t)) = calt) la) 4 cp(t) [B)

by solving the Schrodinger equation
(fir— B) [w(t) = 0

subject to the initial condition that, at the time ¢y when the coupling field
by is switched on, the system occupies the ground spin state (cg(to) = 0 and
¢a(to) = 1). The probability of finding the system in the spin state |3) at time
tis

(vb1)? e | o= 780 + (b l/: 4.113
(@ =B+ () (4119)

ealt) = 5

We define a spin Rabi frequency €2p analogous to the optical Rabi frequency €2,

Q% = (w—~Bo)* + (vb1)? (4.114)
And so )
b Q
lcs(t)]® = pps = o ;) sin? =2 ¢ (4.115)
0 2
When the oscillating magnetic field is tuned to the resonance frequency wg we
have
bi)t QY
|65(t)|2 = ppp = sin’ 4l 21) = sin? 7Bt

These results are analogous to the solutions of the optical Bloch equations ex-

pressed in Eq. 4.6,
Q> ., /0
P22 = |QOQ| sin? (525)

4.E Time Evolution of the Magnetic-dipole-coupled
Atom Density Matrix

Once again, just as in the case of the electric dipole moment, the equation of
motion of the density matrix is given by the Liouville equation.
dp(t) i .
L= 2 o), 11| 4116
22 == o), (4.116)
We switch to the rotating frame by invoking the transformation Eqs. 4.93,4.94
and write the time-dependence of the density matrix elements in the rotating
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frame with the help of Eq.3.43. In the rotating frame the coupling matrix
elements become

1
Vag = Vga = §’yhb1
and we have

dpga 1

oo = b (a) (4.117)
dffﬂ _ _Z.A;UB [<gm>—i<oy>]+i%b1<0z> (4.118)
d’fa = iA;"B [<0x>+i<ay>]—i’y7bl<az> (4.119)
% _ févmm (4.120)

Note that here we have the expressed time-dependence of the density matrix
using cartesian matrix elements while in Eq.4.95 we used the circular matrix
elements. Now we can find the time-dependencies of the matrix elements of
the cartesian components of ¢ by taking appropriate linear combinations of
Eqs. 4.117-4.120.

dil(jtw> - % [(pag + ppa)] = —AwE {oy) (4.121)
d<daty> = Z% [(Pap — P[m)] = Awg (0,) — vb1 {0,)
d <Clat2> = % (poza - pﬁﬁ) = ’Ybl <O'y>

The time-evolution of the quantum two-level magnetic spin system (Egs. 4.121)
is very similar to the classical spin precession. The similarity is hardly surprising
since any quantum semiclassical theory only uses classical fields. It does mean,
however, that the precessing vector model carries over from the classical to the
quantum description of a magnetic moment interacting with a strong constant
magnetic field By and a rotating magnetic field b.

Finally we can once again write the set of optical Bloch equations, Eq.4.95,
in the rotating frame in terms of a matrix as we did in Eq. 3.50

% =—0xQ
with
B =1i{os) —Jjloy) — k(o)
and )
Q =1ivyb; — kAwp
so that

% = [~ Awp (0,)] = J[Awp (04) — b1 ()] + k[ (02)]
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The motion of the Bloch vector in two-level magnetic dipole coupling corre-
sponds to the motion of the Bloch vector in two-level electric dipole coupling as
is evident from Eq.4.96. The Bloch vector precesses about €2 which, with by
tuned to the Larmor precession frequency, points in the Z direction.



82



Chapter 5

Quantized Fields and
Dressed States

5.1 Introduction

So far we have only expressed the optical field as a classical standing or travelling
wave while regarding our two-level atom as a quantum mechanical entity sub-
ject to the time-dependent, oscillatory perturbation of the wave. This approach
leads quite naturally to populations and coherences oscillating among the states
of the atom. However, for strong-field problems involving a significantly mod-
ified atomic energy spectrum, a nonperturbative, time-independent approach
can be fruitful. Time-independent solutions to the atom-field Schrédinger equa-
tion are called dressed states. They were first used to interpret the “doubling” of
molecular rotation spectra in the presence of intense, classical RF fields. The
semiclassical approach is adequate for a wide variety of phenomena and has
the virtue of mathematical simplicity and familiarity. However, sometimes it is
worthwhile to consider the field as a quantum mechanical entity as well, and
the atom-field interaction then becomes an exchange of field quanta (photons)
with the atom. This approach leads us to express the photon-number states
and the discrete states of the atom on an equal footing and to write the state
functions of the atom-plus-field system in a basis of product photon and atom
states. Diagonalization of the dipole coupling terms in the system Hamiltonian
between the photon-atom states also gives rise to time-independent, dressed-
state, solutions of the full quantal Schrédinger equation.

Since the photon-atom product state basis is usually encountered in contem-
porary research literature, we will begin this chapter with the development of
the quantized light field and then express the atom-field interaction in fully
quantized form. Then we will examine some illustrative examples of how the
dressed-state picture can provide useful insights to light-matter interactions. In
appendix 5.A we will show how semiclassical dressed states can also be obtained.
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5.2 Classical Fields and Potentials

The essential idea behind field quantization is the substitution of a set of quan-
tum mechanical harmonic oscillators for the classical oscillators discussed in
Section 1.1. In order to carry out this quantization in the simplest way, how-
ever, we introduce two new quantities: the scalar potential ¢ and the vector
potential A. The conventional starting point is Maxwell’s equations which we
write as

0B

1 OE
VXB_C_ZE—FMOJ
V-E=2

€0
V-B=0

where J is the current density and o is the charge density. The vector potential
is related to the magnetic and electric fields by two key equations. The vector
potential is defined in terms of the magnetic field by

B=VxA (5.1)

and is related to the scalar potential and the electric field by

E=-V¢—-— — 5.2
o (52)
Now it is a standard result from electromagnetic theory that A and ¢ can
be specified in different forms while leaving the physically observable fields E
and B invariant. These forms or gauges are related by what are called gauge
transformations. One particularly useful gauge is defined such that

V-A=0

This condition puts the electromagnetic field into the Coulomb gauge. With
the choice of the Coulomb gauge the second and third Maxwell’s equation can
be expressed as

Ay L[PA oo
VA + S | S 5 V0| = ol (5.3)
and o
~V%p=— (5.4)

€0
These two equations determine the vector and scalar potentials if the actual
current and charge density distributions of the problem are specified. Equation
5.4 is particularly simple since it involves only the scalar potential field, and the
formal solution is the familiar Poisson’s equation,

1 0(7’/) 3,/
= d
9(x) dmeg ) |r—1/| "
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In order to obtain an equation involving only the vector field and the current
density we use Helmholtz’s theorem to write the current density as the sum of
transverse and longitudinal components,

J=Jr+Jg

where the terms 'transverse’ and ’longitudinal’ are defined by the following two
conditions,

V- -Jr=20
VXJLZO

Then it can be shown that the longitudinal component of J is associated entirely
with the scalar potential,

0
Jr =e0=-V
L=¢op, ¢
and therefore from Eq. 5.3 we have
1 02A
c? Ot?
which shows that the transverse component of J is associated only with the
vector potential. In free space where there are no currents, Eq. 5.5 becomes

1 92A

and we seek plane-wave solutions to this equation in the form

A= {Ar(t)e™ + Af(t)e ™}
k

—V2A + = podr (55)

~V?A +

Now we subject these plane-wave components to periodic boundary conditions
corresponding to the cavity boundary conditions of Section 1.2
2TV,
km = i m=ay,2
where, as earlier, V' = L3 is the cavity volume. Note that each Ay and A} must
satisfy Eq.5.6 independently and V2A;, = —k%?A;. Then we can write Eq.5.6
for each Aj component as

l D?Ax(t)

2
A g Ak
R Ax(t) + 2 Ot?

=0
or, with wy = ck,

%Ay (t)
ot?
The same equation obtains for Aj. It is obvious from Eq.5.7 that the free-
space time dependence of the vector potential is just an oscillatory factor with

frequency wy

WiA(t) + =0 (5.7)

Ay (t) = Ayeter—wrt) (5.8)
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The factor Ay represents the amplitude and polarization direction of the vector
potential wave. The amplitude is complex and can be written in terms of a
real and imaginary part. We choose the form for these parts by introducing
the generalized momentum and position coordinates for the Hamiltonian of the
classical oscillator for the kth mode,

Ay = S (WeQk +1Py) ég (5.9)

VAdegVw?

Note that P, and () are scalars and the vector property of Ayx comes from the
polarization unit vector 5. As we saw when we were counting cavity modes
in Section 1.1.2 there are two independent polarization directions per mode.
Now we are going to express the energy of the kth mode in terms of Ay (t) and
Aj(t). We remember from Eq. 1.7 that the total period-averaged energy of the
electromagnetic field can be written in terms of the electric field as

— 1
U:§/60|E|2dv

and this total energy is the sum of the energies of the component modes. There-
fore we can write for each component,

_1
Us =3 /eo |Ex|>dV (5.10)

Now for each kth component, from the definition of the vector potential in terms
of the electric field and the scalar potential, Eq. 5.2, and remembering that there
are no electric charges in the cavity (¢ = 0) ,we can write

By, = iwy { Ae(rment) - pgemilermat | (5.11)

and that therefore the period-averaged field energy is

- 1
Uk = 2 /60 |Ei?dV = 2¢0VwiAy - Af (5.12)

The final step is to substitute the transformation Eq. 5.9 for Ak and A} in Eq.
5.12. The result is

S|
U, = 5 (P2 +wiQ}) (5.13)

which of course is the standard form for the one-dimensional classical harmonic
oscillator. The terms P, and Q) are the canonically conjugate 'momentum’
and ’position’ variables of the classical harmonic oscillator Hamiltonian. In
terms of the ordinary momentum p = mwv and position ¢ the Hamiltonian for
each independent polarization direction is
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with w = 4/ % where k is the oscillator force constant. The variables are simply
mass-weighted by

q— UEQ and p — V2mP
m

but since there is no mass associated with modes of the electromagnetic field,
the expression of the energy in terms of the more abstract P and @ is more
appropriate. The total energy for the cavity is the sum over the k£ modes and
the two independent polarization directions €%,

U=2> Uy=> P+wiQ}
k k

It should be noted that the cavity mode components of the magnetic field can
also be constructed from the vector potential components using Eq. 5.1 such
that

By = ik x { Apelermint — pjeiliermwn | (5.14)

5.3 Quantized Oscillator

Now our task is to transform the classical expression Eq.5.13 to its quantum
mechanical counterpart. In order to carry out this transformation in the most
convenient way we have to invest some time in the development of an opera-
tor algebra involving the operators corresponding to the classical P and @ of
Eq.5.13.  We use the usual correspondence principal to go from variables to
operators in order to form the quantum mechanical Hamiltonian of the one-
dimensional oscillator
P—pand Q — g

which is then given by
S SV .
H= 5 (p2 +w2q2>

where ¢ and p are the conjugate position and momentum operators, respectively.
They obey the usual commutator relation conjugate variables

4,9 = ih

Now we define two new operators that are linear combinations of p and ¢,

4= \/%(wq—i—iﬁ) (5.15)
L1
a' = (wg — ip)

|

These operators are called the annihilation operator (@) and the creation oper-
ator (a') for reasons which will become evident shortly. From these definitions
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it is easy to show that

1

ata 1 (a2 252 | s oaa s 1
@'a = 5 (p° + W4 +iwgp — iwpq) (5.16)
1 /(. 1
=— (H-Zhw
i (- )
and
ait = 2 (4 tho (5.17)
hw 2

Evidently from Egs. 5.16 and 5.17 the commutator relation for annihilation and
creation operators is
[a,a"] = aa’ —a'a=1 (5.18)

and the oscillator Hamiltonian can be expressed in terms of the product of
creation and annihilation operators as

. 1 1
H:m(&Td+§> :m(ﬁ+§) (5.19)
where we have defined the number operator n as
n=ala (5.20)

Now we will denote the eigenstates of the harmonic oscillator |n) so that
A A 1
H|n)=hw(a'a+ 3 [n) = E, |n) (5.21)

and investigate the effect of the @ and a' operators on |n). First we multiply
Eq.5.21 from the left by a which gives

hw (aaTa + %) In) = Ena|n)

and then substitute aa’ = 1 + afa from the commutation relation, Eq.5.18.
The result is

1
hiw [(1 +a'a + 5) aln) = E,a |n>}
which, from Eq.5.19 can be written as
Haln) = (B, — hw) a|n)

Clearly a|n) is an eigenstate of the oscillator Hamiltonian with eigenvalue E,, —
Tw. So the effect of the annihilation operator on |n) is to transform it to an
new eigenstate with energy lower by an amount fww. One might say that a
has annihilated a quantum of energy Aw in the quantized oscillator. The new
eigenstate is denoted

alny=1In—-1)
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with eigenvalue
E,—hw=E,

Similar reasoning, but starting with left multiplication by a' of Eq.5.21, leads
to the anticipated effect of at on |n),

Hal|n) = (B, + hw) a' |n)

We see that a' operating on |n) creates a new eigenstate of the oscillator Hamil-
tonian whose eigenenergy is increased by a quantum fw. The corresponding
notations are

aljn) = |n+1)

and
Ep+hw=Ey 4y (5.22)

Of course the quantized oscillator states are orthogonal, and if we impose the
usual normalization conditions,

(nln) =1
we find the following results,

aln) = Vi |n— 1)
at [n) =+/(n+1) |n+1)

Having established the normalization constants, we can appreciate why 7 is
called the number operator. Notice the effect of the number operator on |n).
From Eq.5.20,

n|n) = a'a|n) = n|n) (5.23)

We see that the oscillator states |n) are eigenstates of 7 with eigenvalues equal
to the number of energy quanta in the state above the zero point.

Repeated applications of @ to the eigenstates of the oscillator lower the
energy in steps of fiw until the energy reaches the zero point. Thus there will
be a state such that

Hall) = (By — hw) a[1) = H|0) = E |0)

But from Eq. 5.21
N i L
H|0) = hw G'a+ |0) = Ey|0)

and taking into account from Eq. 5.23 that

We see that
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so evidently the zero-point energy is

Ey =+

It is now clear that the set of eigenvalues of the one dimensional quantized
harmonic oscillator consists of a ladder of energies equally spaced by Aw, the
bottom rung of which is positioned at the zero-point energy,

1
En:<n—|—§>h¢u; n=0,1,2,3,...

5.4 Quantized Field

The quantization of the radiation field proceeds quite straightforwardly from
the classical expressions for the vector potential field modes, Egs. 5.9 in two
steps. First we substitute the operators ¢, pr for the classical variables Qy, Py,

1 A 1
A= — (w +iPy) € — A = —— (Wipqr + 1Pk ) €
Kk \/m( kQk k) Ek K \/W( kqr + iPr) €k
1 - 1
A= — (w —iP,) ép — Al = —— (wWiqr, — 1Pk ) €
k \/m( ka k) k k \/m( L4k pk) k

then the expressions for the annihilation and creation operators, Eq. 5.15

. 1 h
A, = G 01 ) E) = Q€ 5.24
k T (WrQr + iDr) Ex SegVan, K (5.24)
R 1 h
Ar — S iaya ] At
b 4egVw? (ol = ) € 2egVeoy, *F

We see from Equation 5.24 that individual cavity-mode components k of the
quantized vector potential field operators bear a very simple relation the anni-
hilation and creation operators of that mode. From Eqs.5.11 and 5.14 we can
construct the electric and magnetic field operators for the cavity modes,

N Aw ) )
Ek, — k {dkez(k.rfwkt) o dzrefz(k-rfwkt)} ék (525)

and

N hw . .
B, =i/ 260?/ {ake“k'f*w) — g} emiller—wit) } k x & (5.26)

We can calculate the period-averaged energy of the kth mode in the cavity by
invoking the quantized field equivalent of Eq.5.10,

Uk:%o/< 1B - By [n)
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which yields, when substituting Eq.5.25 and taking into account the two or-
thogonal polarization directions,

Up = hwk(% +n) (5.27)

The total energy of the field is just the sum over modes,
. 1
U= 2}; hwr (5 +n)

This result is of course exactly what Planck had suggested (although strictly
speaking his suggestion was the quantization of the oscillators in the walls of
the conducting sphere, not the field), to account for the spectral intensity dis-
tribution radiating from a black body. We see now that it follows naturally
from the quantization of the field modes in the cavity (v.s. Section 1.26).

5.5 Atom-Field States

5.5.1 Second quantization

Now that we have a clear picture of the quantized field with mode energies
given by Eq.5.27 and photon number states given by the eigenstates of the
quantized harmonic oscillator, |n) , we are in a position to consider our two-level
atom interacting with this quantized radiation field. If we exclude spontaneous
emission and stimulated processes for the time being, the Hamiltonian of the
combined system of atom plus field is

where H 4 is the Hamiltonian of the atom,
. hwo
Aa= =" 0+ 20 ) o (529)

with [1),]2) the lower and upper atomic states, respectively; Hp the Hamilto-
nian of the quantized field, expressed by Eq.5.19, and H [ the atom-field inter-
action. For the noninteracting Hamiltonian, H = Hy+ Hp, the eigenstates are
simply product states of the atom and the photon number states,

Ny 1) |n) = IV, [Lim) (5.30)
N [2) |n) = N2 [2im) (5.31)

where Nip, N, are as yet undetermined normalization constants. Figure 5.1
shows how the product eigenenergies consist of two ladders offset by the detuning
energy hAw. We have written the atom Hamiltonian operator Eq.5.29 as a
sum over pairs of state operators, a form closely related to the definition of the
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Atom-Field
Field States Atom States Product States  Dressed States

. : 12,N+1)

: 3 ) S |
__In+1) hA®] |1;n+1) 4 o)
1 F~~o_ 1N+ |

[2)
10 = 10 12,N)
[2;n-1) | .-~ ?
v n ; :
v Im hoy, hAo] 115 & Ny Q.
ho ho 12,N-1)
1D 12n2) | .- 3
L nao] [1:n1) v hQ
: : Tee N1

Figure 5.1: Left: photon number states and the two stationary states of the two-
level atom. Middle: double ladder showing the product-state basis of photon
number and atom states. Right: Dressed states constructed from diagonalizing
the full Hamiltonian in the product-state basis.
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density matrix operator, Eq. 3.1; but also reminiscent of the sum over creation
and annihilation operators used to construct the field Hamiltonian Eq. 5.25.
In fact, we can use operator pairs to move up and down the ladder of atom
levels in a way analogous to the use of creation and annihilation operators to
move up and down the ladder of quantized field levels. The usefulness of this
point of view arises from the fact that atom-field interaction terms H; can
then also be expressed as a sum over ordered, sequential field-atom raising and
lowering operators. The various terms in the sum can be easily visualized
by simple diagrams which suggest a straight-forward procedure for handling
multilevel atoms and nonlinear atom-field interactions. The expression of the
atom Hamiltonian in this form is called second quantization, a discussion of
which is worth a brief digression.

We assume that we have already solved the Schrodinger equation for the
atom and that we know all the eigenfunctions and eigenenergies. Therefore for
any state we can write A

Halj) = hwy13)
That accomplishment is referred to as first quantization. We can now write
‘unity’ formally as a closure relation on this complete set of atom eigenfunctions,

> i) =1
i
and then write H4 by inserting it between two expressions of 'unity’
Ha =Y li) (il Ha Y 13) (3] = hw; 13) G (5.32)
C J

Now we take the dipole operator defined in Egs. 2.7,2.8 and surround it with
closure sums in the same way,

=310 G 30 1) G = 1) G (53

Note that p can have (in fact will only have) off-diagonal elements. Now we use
Egs. 5.25 and 5.33 together in the atom-field interaction Hamiltonian H; = u-E

] . h’(’uk 1z ~i(ker—w At —i(kr—w N\ /o
Hi=iY > (250‘/) Lij - €k {ake (er—wit) _ gt gmilk kt)} l3) (5]
ki

and for our two-level atom interacting with a single-mode field we just have

X B \ /2 _ _
=i pig - e {anet 0Tt — gl Tt | (1) (2] + 12) (1))
260‘/

Writing out the four terms explicitly we have

i (e N[ (@O ) @] et et [2) (1))
I 2€0V Hij k _ (&Le—z(k‘r—wkt) |1> <2| + &Ee—z(kr—wkt)) ‘2) <1‘
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a b
" —n 7, @
—t— m—— _ 1

c) d)
Ity ———— 1 12 In+ty ——— —F 12
Iny o I —L

Figure 5.2: Four terms of the atom-field interaction. Terms (b) and (c) conserve
energy while (a) and (d) do not.

and operating each term on our product atom-field states, Egs. 5.30, 5.31 we see
that

e |2;n) — |1;n — 1) The atom deexcites with absorption of a photon.
e |1;n) — |2;n — 1) The atom is excited with the absorption of a photon.
e |2;n) — |I;n + 1) The atom deexcites with emission of a photon.

e |1;n) — |2;n+ 1) The atom is excited with emission of a photon.

Obviously only the second and third terms respect energy conservation and can
serve as the initial and final states of a real physical process. The first and fourth
terms can be used to couple intermediate states in higher order processes such
as multiphoton absorption or Raman scattering processes. Figure 5.2 diagrams
the four terms. Focusing on the second and third terms, we can simplify the
notation by identifying |2) (1| with o™ and |1) (2| with o~ from Eqs. 4.87

X Bow \ M2 . .
Hr=i (25()]‘{/) 12 - €k [&ke‘(k'r_“’“t)a"' — &Le_’(k'r_“”“t)o_}

Evaluating the matrix elements H ;1 for the general atom-field state

Y =Ny |l;n—1) e " £ Ny |1;n) e ™10 4 Ny |2;n — 1) e 20 4 N |2;n) e 2!
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we see that

R . hu]k 1/2 NfN4€i[(k'r7(wk+w0)t] + NS*NQGi[(ka(wkfwo)t]
(Y| Hy|y) =i (250‘/) U12-E { Ny Nae—iller—(@r—wo)t] _ Nz, =illker—(witewo)]
We see that neglecting the 'unphysical’ first and fourth terms is equivalent to
making the rotating wave approximation (RWA) and that the coupling between

the two basis states |1;n) and |2;n — 1) is really all we have to consider. The
problem reduces to diagonalizing a nearly-degenerate (Aw << wp) two-level
Hamiltonian operator in which the amplitude of the off-diagonal elements is

given by
hy o\ .
2~ \2g,v ) H127Ek

and as usual

0= [(Aw)z + Q%} i

The eigenenergies of this two-level H=H A +H F—f—f[ 1 diagonalized Hamiltonian
are
h h
Ey = = |win n_1] £ =Q
+= 5 [Win + wan—1] 5
where hwny,, iwsy,—1 are the product basis state energies fiwi + Awgn and hws +
hwy (n — 1)

5.5.2 Dressed states

The atom-field products states provide a natural set of basis states for the
Hamiltonian of Eq.5.28. The states resulting from the diagonalization of the
Hamiltonian in this basis are called 'dressed states’. As indicated in Fig. 5.1 the
closely lying doublets of the double-ladder basis 'repel’ under the influence of
the H; coupling term in Eq. 5.28. The mixing coefficients reduce to the familiar
two-level problem. From Fig 5.1,

|1, N) =cosf|1;n) +sinf|2;n — 1)
|2, N) =cosf|2;n—1) —sinf|1,;n)

with
Qo
tan20 = —
Aw
where Aw and Qg have their usual meanings and the separation between mem-

bers of the same dressed state manifold is

R =i [(Aw)2 + Qg} i
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Blue Detuning Red Detuning
[1,N) |2,N+1)
D+ 1) =—" T ~— 2 ——" T >—
nA®w  BQ nA®  KQ
| — e | —
C 2Ny TNH
i Laser - '« Laser -
Spot Spot

Positon —»

Figure 5.3: Left diagram shows product and dressed states for blue detuning.
Note that population is in the upper level and the atom is subject to a low-field
seeking (repulsive) force when entering the laser spot. Right diagram is similar
but for red detuning. Population is in the lower level and the atom is subject
to a high-field seeking (attractive) force when entering the laser spot

5.5.3 Some applications of dressed states

Dipole gradient potential

We have seen in Section 4.1.2 how the real (dispersive) term of the susceptibility
X' interacting with the spatial gradient of the electric field amplitude Ey can
give rise to a net, period-averaged force on the atom (Eq.4.43). The frequency
dependence of x’, changing sign at zero detuning, means that the resulting
conservative force attracts the atom to the space of high field amplitude when
the frequency is tuned below wy and repels it to low field when tuned above.
Integration over the relevant space coordinates results in an effective optical
potential well or barrier for the atom. The qualitative behavior of the dipole
gradient potential and its effect on atom motion is very easy to visualize in
the dressed-states picture (see Section 6.2 and especially Eq.6.8 for a more
quantitative description). Figure 5.3 shows what happens as an atom enters a
well-defined optical field space — the zone of a focused laser spot, for example.
Outside the zone the atom-dipole coupling A2 is negligible and the ’dressed
states’ are just the atom-field product states. As the atom enters the field, €2
becomes nonzero, the atom-field basis states combine to produce the dressed-
state manifold, and the product-state energy levels 'repel’ and evolve into the
dressed-state levels. Assuming that the laser is sufficiently detuned to keep
the absorption rate negligible, the population remains in the ground state. We
can see at a glance that blue (red) detuning leads to a repulsive (attractive)
potential for the atom populated in the ground state. Furthermore, since Af) is
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directly proportional to the square root of the laser intensity, it is obvious that
increasing this intensity (optical power per unit area) leads to a stronger force
on the atom (|F| ~ VgQ).

Problem 5.1 Consider an external monomode (TEMyy) laser focused on a
cloud of cold Na atoms at a temperature of 450 uK. For a detuning of 600
MHz and a focused spot diameter of 10u, calculate the laser intensity (W/cm?)
required to produce a potential well sufficient to contain the atoms. The transi-
tion moment (a.u.) of Na is 2.55.

Ultracold collisions

Ultracold collisions provide an interesting example of how light can control the
outcome of inelastic or reactive collisions. Here we discuss a specific example,
photoassociation, that illustrates the utility of the dressed-state point of view.
The top panel of Fig. 5.4 shows the (undressed) schematic potential curves rel-
evant to the discussion. Two ground-state atoms form a relatively flat ground
molecular state characterized by the electrostatic

Cs

Vi(r) = — 75

dispersion or ’van der Waals’ potential at long range. Two other molecular
states arise from the interaction of an excited atom with ground state atom.
The leading interaction term is the resonant dipole-dipole potential term,

Voa(R) = %8
which gives rise to an attractive and a repulsive potential. The inverse R 3 de-
pendence of the resonant dipole interaction means that the associated potentials
modify significantly the asymptotic level even at internuclear distances where
the ground-state van der Waals potential is still relatively flat.  In simplest
terms photoassociation involves the approach of two slow identical atoms in the
ground state. An optical single-mode field, detuned to the red of the atomic
resonance, is applied to the space of the colliding particles. ~When the two
atoms approach to an internuclear distance R¢ such that the applied field en-
ergy hiwce just matches the potential difference Va(Re) — Vi (Re) the probability
to transfer population from the ground molecular state to the excited molecular
is maximal. This 'molecular resonance’ point is sometimes called the Condon
point. The conventional approach to calculating this probability parallels the
procedure worked out in Section 2.2 for the two-level atom. First we would solve
the time-independent molecular Schrodinger equation to obtain the molecular
wave functions. Then write down the coupled differential equations relating the
time dependence of the expansion coefficients of the relevant molecular wave
functions, solve for the coefficients and take the square of their absolute value.
Finally the transition probability would have to integrated over a zone AR to
the right and left of the Condon point where the transition probability would be
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Figure 5.4: Top panel: Molecular states resonantly coupled by laser field at
Condon point R¢. Bottom panel: Same molecule state coupling represented as
an avoided crossing in the dressed state basis.

non-negligible. The dressed-state picture allows this rather laborious program
to be reduced to essentially a two-level curve-crossing problem. The bottom
panel of Fig. 5.4 illustrates photoassociation in the dressed-states picture. The
basis states are now product molecule-field states, and we approximate the
molecular states themselves as products of atomic states. This approximation
is justified by the long-range, weak perturbative influence of the van der Waals
and resonant dipole interactions. Labelling the atom ground and excited state
|1) and |2) respectively, we have

[1;n) = (1) [1) n)
and for the field-molecule excited state

20— 1) = |2)[1) [n — 1)
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The two molecular curves intersect at the Condon point and couple optically
with the applied field. This optical coupling produces an ’avoided’ crossing
around R¢ and mixing of the molecule field basis states. The well-known and
celebrated Landau-Zener (L-Z) formula expresses the probability of crossing
from one adiabatic molecular state to the other as a function of the strength of
the interaction, the relative velocity of the colliding partners and the relative
slopes of the two curves. The L-Z probability is given by

2 ((1;n] o |2;m — 1))]
v (%AVH(RC»

PLZ = exp [

where v is the relative radial velocity of the approaching particles and %AVH (Re)
is the difference in the slopes of the two non-interacting potentials at the Condon
point. Dipole-field interaction operator 2y should be taken with the molecular
transition dipole. A reasonable approximation is to take the molecular tran-
sition moment as twice the atomic moment and average over all space. The

result is
22 ((1;n] Qoar 250 — 1))
v (| 4z AVi2(Re)|)

where Qg,; denotes the atomic dipole-field interaction operator. For the case
of an essentially flat Vi potential crossing Vo(R) = —% the absolute value of
the derivative of the slope difference is

Przmot = exp l

5y
R

AVia(Re)

4
dR

Problem 5.2 Consider an external laser focused on a cloud of cold, confined
Na atoms at a temperature of 450 uK. For a detuning of 600 MHz, calculate
the laser intensity (W/cm?) required to produce a photoassociation probability
of 25 %. The transition moment (a.u.) of Na is 2.55.

5.6 Further Reading

The treatment of field quantization and second quantization presented here is
quite conventional and can be found in many books. Here are a few examples
drawn from the standard references.

e Louden, R. The quantum theory of light, 2nd edition, chapter 4, Clarendon
Press, Oxford (1983)

o Weissbluth, M. Photon-Atom Interactions, chapter IV, Academic Press,
Boston, 1989

e Scully, M. O. and Zubairy, M. Quantum Optics, chapter I, Cambridge
Press, Cambridge (1997)



100 CHAPTER 5. QUANTIZED FIELDS AND DRESSED STATES

An excellent presentation of dressed states with a quantized field can be found
in

e Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G., Atom-Photon Inter-
actions, Chapter VI, Wiley-Interscience, New York (1992)

Semiclassical dressed states were first used by Autler and Townes to describe
line doubling in molecular rotational absorption spectra under the influence of
intense radio frequency excitation.

e S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955)

In Appendix5.A We have followed the treatment of semiclassical dressed states
by Boyd in

e Boyd, R. W. Nonlinear Optics, Chapter 5, Academic Press, Boston (1992)
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5.A Semiclassical dressed states

Semiclassical dressed states exhibit the curious property of being stationary-
state solutions of the semiclassical Schrodinger equation but are not energy
eigenstates of the semiclassical Hamiltonian, Eq. 2.2. Because the semiclassical
Hamiltonian is explicitly time dependent, its eigenvalues must be also. This
situation contrasts with the quantized field treatment where the all terms in the
Hamiltonian, Eq.5.28 are time independent, and the stationary states of the
system are also eigenstates.

We return to Eq. 2.3,
U (r,t) = Cy (t) Pre” " 4+ Oy (t) thoe ™2t (5.34)

and Eqgs. 2.10, 2.11 describing the time evolution of the states of our two-level
atom, coupled by a classical dipole radiation field. Invoking the rotating wave
approximation, we write these two equations as

Q0 i(w—wo)t _ .dCy

5 Co=1i pm (5.35)
and

QS —i(w—wo)t _ .dCy

- ¢ Cr=i p (5.36)

We will now solve these coupled equations by first writing a trial solution for
C] as

C) = Ke™ ™ (5.37)
From the second of the coupled equations, and with Aw = w — wy we have
dCs . —iAt QS —iAwt
7 _ K At 20 1Aw .
o iKe 5 ¢ (5.38)

Taking the derivative of the trial solution for Cy

dc' -
— % = —iAKe M
dt
Now substituting the time derivative of the trial solution into Eq.5.35 we can

express Cy as

20K _,
02 _ Q_Oe—z(Aw-‘r)\)t (539)
and again taking the time derivative yields
dCy 20K
2 (A A —(Aw+A)t
7 i (Aw + )—QO e

Setting the right members of Eqs.5.38 and 5.39 equal, results in a quadratic
equation in the trial function parameter A,

12 _

M4 (Aw) A T

0
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with roots A ) s
_ 8w 1 2 2
A=-5 i2[(Aw) +|QO|}

We define 2 in the relation
Q? = (Aw)® + [

and identify 2 and €y with the Rabi frequency and on-resonance Rabi frequency,
respectively, discussed earlier in Eqs.4.8 and 4.10. We then express the two
roots A succinctly in terms of the detuning and the Rabi frequency as

1
A= - %50 (5.40)

Now we substitute Eq. 5.40 into Eq. 5.37, separate the constant K into two parts,
K, , K_ and associate each part with corresponding root Ay , A_. The result
is a general expression for the time evolution of C1(¢).

Cy(t) = eHAw/2)t [K+e_i% + K_ei%} (5.41)

Again taking the time derivative of Cy(t) yields
dCr _ iaw/2), Aw Q| e Av Q] o
o R IR Y R R Y

which, when substituted into Eq.5.35, results in an expression for the time
evolution of Ca(t)

Ca(t) = —e~i(Aw/2)t [K+ (M> e KL (Aw i Q) ei%‘] (5.42)
Qo Qo

Now from Eq. 5.41 we can form the unnormalized probability amplitude of find-
ing the system in the lower state

|C1]? = K2 + K2 + 2K K_ cos ()
and if we choose some convenient time, say, t = 0, then we see that
|C1? =K2 + K2 42K, K_ =1
Clearly K, and K_ are not independent and must satisfy
Ki+K_ =1

We are free to choose the value of one of these constants. Inspection of Eq. 5.42

shows that if we take K, = 1 and K_ = 0, Cy(¢) will depend on time only in

a phase factor, and consequently the probability of finding the system in the
2 . S

upper state |C|” will be time independent

2 Aw —Q 2
< _< Qo >
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For the lower state
C =1
We write the system wave function, Eq. 5.34, as
U, =N [Cﬂpl(r)e_“’lt + ngg(r)e_“”t]

which, upon substitution of C5, becomes

v, =N {%(T)e_i[wl_%mwm]t + (%) wz(r)e_i[“”%@w—“)]t]
0

with N the normalization constant. We could just as well have chosen Ky =0
and K_ =1 in which case we would have

V=N [wﬂr)e—l‘[w—%(ﬂw—mlf T (%*“) w2(r)e—i[w2+émw+ﬂ>]t]
0

The two possible system states can be compactly written
U, =N {%(r)ei[‘”lém“’im]t + (—Aw * Q) ¢2(r)ei[“2+5(A“¢Q)]t}
The task now is to determine the normalization constant N from
(oo}
/ Uiv. dr=1
0

Taking into account the orthonormality of v, s when carrying out the inte-
grations on ¥y we find

Qo
(02 + (Aw F 02)]/*

1/2
N
Q 12(2F Aw)

so finally the normalized system wave function becomes

Ny =

or alternatively

_ D Q 2 —ifw1— 1 (AwxQ)|t Q¥ Aw]'? —i[wa+ 3 (AwTQ)|t
Y==7q {m} vilr)e T

We have in effect a linear combination of two new ’dressed states’ whose mixing
coefficients are time-independent and given by

_ QO Q 1/2
Gi=7g [2(Q:|:Aw)]
~ |:Q:FALU:| 1/2

=4
2 20
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and whose energies are give by
~ 1
hwl —h|:u)1 _i(AWiQ)]
~ 1
hwo :h|:W2+§(Aw:FQ):|
The probability of finding the system in the upper or lower dressed states is

given by
o = (%) e
1 mla) [2(0FAw)

’52‘2 - [Q;FQAW]
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Chapter 6

Forces from Atom-Light
Interaction

6.1 Introduction

A light beam carries momentum, and the scattering of light by an object pro-
duces a force on that object. This property of light was first demonstrated
through the observation of a very small transverse deflection (3 x 107 rad)
in a sodium atomic beam exposed to light from a resonance lamp. With the
invention of the laser, it became easier to observe effects of this kind because
the strength of the force is greatly enhanced by the use of intense and highly
directional light fields. Although these results kindled interest in using light
forces to control the motion of neutral atoms, the basic groundwork for the
understanding of light forces acting on atoms was not laid out before the end
of the decade of the 1970s. Unambiguous experimental demonstration of atom
cooling and trapping was not accomplished before the mid-80s. In this chapter
we discuss some fundamental aspects of light forces and schemes employed to
cool and trap neutral atoms.

The light force exerted on an atom can be of two types: a dissipative, spon-
taneous force and a conservative, dipole force. The spontaneous force arises
from the impulse experienced by an atom when it absorbs or emits a quantum
of photon momentum. As we saw in Section 2.2.6, when an atom scatters light,
the resonant scattering cross section can be written as

_ 07\

o
0 g2 2

where )¢ is the on-resonant wavelength. In the optical region of the electromag-
netic spectrum the wavelengths of light are on the order of several hundreds of
nanometers, so resonant scattering cross sections become quite large, ~ 107°
cm?. Each photon absorbed transfers a quantum of momentum £k to the atom
in the direction of propagation. The spontaneous emission following the absorp-

109
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s

~
Vo= /N y{f

PA= MV, PA= MV,- hkL <pA>= mv,- hkL

Figure 6.1: Left: atom moves to the right with mass m, velocity v 4 and absorbs
a photon propagating to the left with momentum hk;. Center: Excited atom
experiences a change in momentum ps = mv4 — hky. Right: Photon isotropic
reemission results in an average momentum change of atom, after multiple ab-
sorptions and emission, of (pa) = mva — hikp,

tion occurs in random directions; and, over many absorption-emission cycles, it
averages to zero. As a result, the net spontaneous force acts on the atom in
the direction of the light propagation, as shown schematically in the diagram
of Fig.6.1. The saturated rate of photon scattering by spontaneous emission
(the reciprocal of the excited-state lifetime) fixes the upper limit to the force
magnitude. This force is sometimes called radiation pressure.

The dipole force can be readily understood by considering the light as a clas-
sical wave. It is simply the time-averaged force arising from the interaction of
the transition dipole, induced by the oscillating electric field of the light, with
gradient of the electric field amplitude. Focusing the light beam controls the
magnitude of this gradient, and detuning the optical frequency below or above
the atomic transition controls the sign of the force acting on the atom. Tuning
the light below resonance attracts the atom to the center of the light beam while
tuning above resonance repels it. The dipole force is a stimulated process in
which no net exchange of energy between the field and the atom takes place.
Photons are absorbed from one mode and reappear by stimulated emission in
another. Momentum conservation requires that the change of photon propaga-
tion direction from initial to final mode imparts a net recoil to the atom. Unlike
the spontaneous force, there is in principle no upper limit to the magnitude of
the dipole force since it is a function only of the field gradient and detuning.
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6.2 The Dipole-Gradient Force and the Radia-
tion Pressure Force

We can bring these qualitative remarks into focus by considering the amplitude,
phase, and frequency of a classical field interacting with an atomic transition
dipole in a two-level atom. What follows immediately is sometimes called the
Doppler cooling model. It turns out that atoms with hyperfine structure in the
ground state can be cooled below the Doppler limit predicted by this model; and,
to explain this unexpected sub-Doppler cooling, models involving interaction
between a slowly moving atom and the polarization gradient of a standing wave
have been invoked. We will sketch briefly in section 6.3 the physics of these
polarization gradient cooling mechanisms.

Remembering that the susceptibility is a density of transition dipoles, we
can use Eqgs. 4.43, 4.48, and 4.58, to write the basic expressions for the dipole-
gradient force Fr and the radiation pressure force F¢ per atom as

1 w3 Aw
Fr=-¢VE: |22 (- 6.1
T Beoh | (Aw)? + (0727 + 393 oy
and
1 ool r/2
Fc = - eoE2kk | 112 / 5 (6.2)
2 3eoh \ (Aw?) + (T'/2)" + $02

We use the notation Fr and F¢ to indicate that the dipole gradient force (and

associated potential) is often used to trap atoms, and the radiation pressure

force is often used to cool them. Note that in Eqs.6.1, 6.2 we have used the

orientation-averaged square of the transition moment matrix element, p?,/3.
With the definition for the on-resonance Rabi frequency (Eq.2.9),

E
Qo = MLFLO
we can rewrite Eqgs.6.1,6.2 as
1 Aw
Fr= 6 RV Qg D) 1 (T/2) + Q2 (6.3)
and s
Fc = éhkl“ I (132())2 Y k (6.4)

The saturation parameter, first introduced in Eq. 4.61,
95
(Aw)? +(1/2)*

allows the dipole-gradient force and the radiation pressure force to be written

1 1
F - _—)iAWC e .



112 CHAPTER 6. FORCES FROM ATOM-LIGHT INTERACTION

and
1 S

Fc = 6th" T
Equation 6.6 shows that the radiation pressure force “saturates” as S increases;
and is therefore limited by the spontaneous emission rate. The saturation pa-
rameter essentially defines an index for the relative importance of the terms
that appear in the denominator of the line shape function for the atom-light
forces. The spontaneous emission rate is an intrinsic property of the atom, pro-
portional to the square of the atomic transition moment; while the square of
the Rabi frequency is a function of the exciting laser intensity. If S <« 1, the
spontaneous emission rate is fast compared to any stimulated process, and the
exciting light field is said to be weak. If S > 1, the Rabi oscillation is fast
compared to spontaneous emission and the field is considered strong. Setting S
equal to unity defines a “saturation” condition for the transition,

(6.6)

Qut = V2 (g) (6.7)

and the line-shape factor indicates a saturation “power broadening” of a factor
of /2.

The dipole-gradient force Fr can be integrated to define an attractive (or
repulsive) potential for the atom:

UT:—/FTdr:hATwln

1+ %] (6.8)
(Bu) +(T/2)

or in terms of the saturation parameter
hA
Up = —/FTdr - Tw In [l + 9] (6.9)

Note that the dipole-gradient force and potential (Egs. 6.5, 6.9) do not saturate
with increasing light-field intensity. Usually Fr and Ur are used to manipulate
and trap atoms with a laser light source detuned far from resonance to avoid
absorption. In this case S < 1 and the trapping potential can be written

1 hog
T 6 2hAw

Ur

Often the transition moment can be oriented by using circularly polarized light.
In that case all the previous expressions for Fr, F¢, and Uy must be multiplied
by 3. From now on we will drop the orientation-averaging and just use u?, for
the square of the transition moment.
From the previous definitions of I,$g, and Qg, (Egs.1.10, 2.9, 6.7) can
write
I
L T2/2

(6.10)
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and

(6.11)

RkD l I/l
RN

2 | (229) 4 I/l +1

Now if we consider the atom moving in the +z direction with velocity v, and
counterpropagating to the light wave detuned from resonance by Awy,, the net
detuning will be

Aw = Aw + kv, (6.12)
where the term kv, is the Doppler shift. The force F_ acting on the atom will

be in the direction opposite to its motion. In general,

RkI I/1,
Fp=+—— /2 L
(2(Awlfk1)z)) + I/Isat +1

5 (6.13)

Suppose we have two fields propagating in the £z directions and we take the
net force F = F, + F_. If kv, is small compared to I' and Aw, then we find

p o arc L kv, (28w /T)

Lsat [1+ 7L + aw/T)?] ’

(6.14)

This expression shows that if the detuning Aw is negative (i.e. red-detuned from
resonance), then the cooling force will oppose the motion and be proportional to
the atomic velocity. Figure 6.2 plots this dissipative restoring force as a function
of v, at a detuning Aw = —T" and I/Is,+ = 2. The one-dimensional motion of
the atom, subject to an opposing force proportional to its velocity, is described
by a damped harmonic oscillator. The Doppler damping or friction coefficient
is the proportionality factor,

o = ARk (24w/T)

2
Tsar [1 4 =+ (2Aw/T)?

(6.15)

and the characteristic time to damp the kinetic energy of the atom of mass m

to 1/e of its initial value is,
m
T=— 6.16
20td ( )
However, the atom will not cool indefinitely. At some point the Doppler cooling
rate will be balanced by the heating rate coming from the momentum fluctua-
tions of the atom absorbing and re-emitting photons. Setting these two rates
equal and associating the one-dimensional kinetic energy with %k gT, we find

1 2
g7 — 0L+ (20w/T)

1 2|Aw|/T (6.17)
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Figure 6.2: One dimensional Doppler radiation pressure force vs. atom velocity
along z-axis for a red detuning of one natural line width and a light intensity of
2154+ The full line plots the exact expression for the restoring force (Eq.6.13).
The dashed line plots the approximate expression (linear in velocity dependence)
of Eq.6.14.

This expression shows that T is a function of the laser detuning, and the mini-
mum temperature is obtained when Aw = —g. At the this detuning,

r
kT = hy (6.18)

which is called the Doppler-cooling limit. This limit is typically, for alkali atoms,
on the order of a few hundred microkelvin. For example the Doppler cooling
limit for Na is 7" = 240 microkelvin. In the early years of cooling and trapping,
prior to 1988, the Doppler limit was thought to be a real physical barrier, but
in that year several groups showed that in fact Na atoms could be cooled well
below the Doppler limit. Although the physics of this sub-Doppler cooling in
three dimensions is still not fully understood, the essential role played by the
hyperfine structure of the ground state has been worked out in one-dimensional
models which we describe in the following Section.

6.3 Sub-Doppler Cooling

Two principal mechanisms which cool atoms to temperatures below the Doppler
limit rely on spatial polarization gradients of the light field through which the
atoms move. These two mechanisms, however, invoke very different physics, and
are distinguished by the spatial polarization dependence of the light field. A key
point is that these sub-Doppler mechanisms only operate on multilevel atoms;
and, in particular, it is essential to have multiple levels in the ground state.
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Figure 6.3: Upper line shows the change in polarization as a function of distance
(in wavelength units) for the “linperplin” standing wave configuration. Lower
figure shows a simplified schematic of the Sisyphus cooling mechanism for the
J1 /2 «— J3/5 two-level atom.

Therefore, strictly speaking, the subject of sub-Doppler cooling lies outside the
scope of the two-level atom. Nevertheless, due to its importance for real cooling
in the alkali atoms, for example, we include it here. Two parameters, the friction
coefficient and the velocity capture range, determine the significance of these
cooling processes. In this Section we compare expressions for these quantities
in the sub-Doppler regime to those found in the conventional Doppler cooling
model of one-dimensional optical molasses.

In the first case two counterpropagating light waves with orthogonal polar-
ization form a standing wave. This arrangement is familiarly called the “lin-
perp-lin” configuration. Figure 6.3 shows what happens. We see from the figure
that if we take as a starting point a position where the light polarization is
linear (e1), it evolves from linear to circular over a distance of A\/8 (o_). Then
over the next \/8 interval the polarization again changes to linear but in the
direction orthogonal to the first (e3). Then from A/4 to 3A/8 the polarization
again becomes circular but in the sense opposite (o) to the circular polariza-
tion at A/8, and finally after a distance of A\/2 the polarization is again linear
but out of phase with respect to (e1). Over the same half-wavelength distance
of the polarization period, atom-field coupling produces a periodic energy (or
light) shift in the hyperfine levels of the atomic ground state. To illustrate the
cooling mechanism we assume the simplest case, a J, = % — J = % transi-
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tion. As shown in Fig.6.3 the atom moving through the region of z around
A/8, where the polarization is primarily o_, will have its population pumped
mostly into J, = —% . Furthermore the Clebsch-Gordan coefficients controlling
the transition dipole coupling to J. = % impose that the J, = —% level cou-
ples to o_ light three times more strongly than does the J, = —I—% level. The
difference in coupling strength leads to the light shift splitting between the two
ground state shown in Fig.6.3. As the atom continues to move to + z, the
relative coupling strengths are reversed around 3\/8 where the polarization is
essentially 0. Thus the relative energy levels of the two hyperfine ground states
oscillate ’out of phase’ as the atom moves through the standing wave. The key
idea is that the optical pumping rate, always redistributing population to the
lower-lying hyperfine level, lags the light shifts experienced by the two atom
ground state components as the atom moves through the field. The result is
a “Sisyphus effect” where the atom cycles through a period in which the effec-
tively populated atomic sublevel spends most of its time climbing a potential
hill, converting kinetic energy to potential energy, subsequently dissipating the
accumulated potential energy, by spontaneous emission, into the empty modes
of the radiation field, and simultaneously transferring population back to the
lower lying of the two ground-state levels. The lower diagram in Fig. 6.3 illus-
trates the optical pumping phase lag. In order for this cooling mechanism to
work the optical pumping time, controlled by the light intensity, must be less
than the light shift time, controlled essentially by the velocity of the atom. Since
the atom is moving slowly, having been previously cooled by the Doppler mech-
anism, the light field must be weak in order to slow the optical pumping rate so
that it lags the light-shift modulation rate. This physical picture combines the
conservative optical dipole force, whose space integral gives rise to the potential
hills and valleys over which the atom moves, and the irreversible energy dissi-
pation of spontaneous emission required to achieve cooling. We can make the
discussion more precise and obtain simple expressions for the friction coefficient
and velocity capture by establishing some definitions. As in the Doppler cooling
model we define the friction coefficient ayp; to be the proportionality constant
between the force F' and the atomic velocity v.

F = —QplV (6.19)

We assume that the light field is detuned to the red of the J, — J. atomic
resonance frequency,

Awp = w — wp (6.20)

and term the light shifts of the J; = i% levels A4 respectively. At the position
z=A/8, A_ =3A, and at z = 3)\/8, AL = 3A_. Since the applied field is red-
detuned, all A’s have negative values. Now in order for the cooling mechanism
to be effective the optical pumping time 7, should be comparable to the time
required for the atom with velocity v to travel from the bottom to the top of a
potential hill, /\T/‘l,
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A4
or
I~ kv (6.22)

where I = 1/7, and A\/4 ~ 1/k, with k = 2T the magnitude of the optical wave
vector. Now the amount of energy W dissipated in one cycle of hill climbing and
spontaneous emission is essentially the average energy splitting of the two light-
shifted ground states, between, say, z = A\/8 and 3A/8 or W ~ —RA. Therefore
the rate of energy dissipation is

aw
— = -T"hA 6.23
o (6.23)
But in general the time-dependent energy change of a system can be always
be expressed as dd—VtV = F - v so in this one-dimensional model and taking into
account Eq. 6.19 we can write,
aw
— = —quv? = -TI"hA (6.24)
dt
so that LAA L2RA
R (6.25)

Note that since A < 0, ayyy is a positive quantity. Note also that at far detunings
(Aw >>T) Eq. 6.8 shows that

h 4AwL
Problem 6.1 Verify that in the limit of large detuning Eq. 6.8 — 42?:4;

It is also true that for light shifts large compared to the ground state natural
line width (A >>T"), and at detunings far to the red of resonance (Awy, 2 4I")

Aw?
LI =—k
so the sub-Doppler friction coefficient can also be written
k2hAwL
Oélpl = —T (626)

Equation 6.26 yields two remarkable predictions: first, that the sub-Doppler
“lin-perp-lin” friction coefficient can be a big number compared to ay. Note
that from Eq.6.15, with I < I, and Awp, > T,

1 r\?
~ —hk?
d 2 <AwL>
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Figure 6.4: Comparison of slope, amplitude, and ’capture range’ of Doppler
cooling and Sisyphus cooling.

and

Qipl ~ 1 AwL 4

Qq - 2 ( r )
and second, that ay,; is independent of the applied field intensity. This last
result differs from the Doppler friction coefficient which is proportional to field
intensity up to saturation (c¢f. Eq. 6.15). However, even though a;, looks
impressive, the range of atomic velocities over which it can operate is restricted

by the condition that,
I ~ kv

The ratio of the capture velocities for Doppler vs. sub-Doppler cooling it there-
fore only.
4A

AwL

Figure 6.4 illustrates graphically the comparison between the Doppler and the
“lin-perp-lin” sub-Doppler cooling mechanism.The dramatic difference in cap-
ture range is evident from the figure. Note also that the slopes of the curves
give the friction coefficients for the two regimes and that the within the narrow
velocity capture range of it action, the slope of the sub-Doppler mechanism is
markedly steeper.

The second mechanism operates with the two counterpropagating beams cir-
cularly polarized in opposite senses. When the two counterpropagating beams
have the same amplitude, the resulting polarization is always linear and orthogo-
nal to the propagation axis, but the tip of the polarization axis traces out a helix
with a pitch of A. Figure 6.5 illustrates this case. The physics of the sub-Doppler
mechanism does not rely on hill-climbing and spontaneous emission, but on an

'Ulpl/vd ~
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Figure 6.5: Polarisation as a function of distance (in wavelength units) for the
07,0~ standing wave configuration.

imbalance in the photon scattering rate from the two counter-propagating light
waves as the atom moves along the z axis. This imbalance leads to a velocity-
dependent restoring force acting on the atom. The essential factor leading to
the differential scattering rate is the creation of population orientation along the
z axis among the sublevels of the atom ground state. Those sublevels with more
population scatter more photons. Now it is evident from a consideration of the
energy level diagram (v.s. Fig.6.3) and the symmetry of the Clebsch-Gordan
coefficients that J, = % — Jo = % transitions coupled by linearly polarized
light cannot produce a population orientation in the ground state. In fact the
simplest system to exhibit this effect is J; =1 < J. = 2, and a measure of the
orientation is the magnitude of the (J,) matrix element between the J, = £1
sublevels. If the atom remained stationary at z = 0, interacting with the light
polarized along y, the light shifts Ag, A4 of the three ground state sublevels
would be

A=A, = %AO (6.27)

and the steady-state populations 4/17, 4/17, and 9/17 respectively. Evidently
linearly polarized light will not produce a net steady-state orientation, (J,). As
the atom begins to move along z with velocity v, however, it sees a linear polar-
ization precessing around its axis of propagation with an angle ¢ = —kz = —kuvt.
This precession gives rise to a new term in the Hamiltonian, V' = kvJ,. Fur-
thermore, if we transform to a rotating coordinate frame, the eigenfunctions
belonging to the Hamiltonian of the moving atom in this new ’inertial’ frame
become linear combinations of the basis functions with the atom at rest. Eval-
uation of the steady-state orientation operator, J,, in the inertial frame is now
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nonzero,

40 hkv
(o) = 17 Ay
Notice that the orientation measure is only nonzero when the atom is moving. In
Eq. 6.28 we denote the populations of the |£) sublevels as 11 ,and we interpret
the nonzero matrix element as a direct measure of the population difference
between the |£) levels of the ground state. Note that since A is a negative
quantity (red detuning), Eq. 6.28 tells us that the IT_ population is greater than
the II; population. Now if the atom travelling in the 4z direction is subject
to two light waves, one with polarization o_ (o) propagating in the —z (+2)
direction, the preponderance of population in the |—) level will result in a higher
scattering rate from the wave travelling in the —z direction. Therefore the atom
will be subject to a net force opposing its motion and proportional to its velocity.
The differential scattering rate is

= R[4, — 4] (6.28)

40 kv _,
AL

and with an Ak momentum quantum transferred per scattering event, the net
force is

40 hk2ol’
= — 6.29
17 Ay ( )
The friction coefficient g, is evidently
40 r’
= ——hk*— (6.30)

Gep = 7971 AL

which is positive quantity since Ag is negative from red detuning. Contrasting
oep With oy we see that o, must be much smaller since the assumption has
been all along that the light shifts A were much greater than the line widths I".
It turns out, however, that the heating rate from recoil fluctuations is also much
smaller so that the ultimate temperatures reached from the two mechanisms are
comparable.

Although the Doppler cooling mechanism also depends on a scattering im-
balance from oppositely travelling light waves, the imbalance in the scattering
rate comes from a difference in the scattering probability per photon due to
the Doppler shift induced by the moving atom. In the sub-Doppler mechanism
the scattering probabilities from the two light waves are equal but the ground-
state populations are not. The state with the greater population experiences
the greater rate.

6.4 The Magneto-optical Trap (MOT)

6.4.1 Basic notions

When first considering the basic idea of particle confinement by optical forces
one has to confront a seemingly redoubtable obstacle—the optical Earnshaw
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theorem (OET). This theorem states that if a force is proportional to the light
intensity, its divergence must be null because the divergence of the Poynting
vector, which expresses the directional flow of intensity, must be null through a
volume without sources or sinks of radiation. This null divergence rules out the
possibility of an inward restoring force everywhere on a closed surface. How-
ever the OET can be circumvented by a clever trick. When the internal de-
grees of freedom (i.e. energy levels) of the atom are taken into account, they
can change the proportionality between the force and the Poynting vector in a
position-dependent way such that the OET does not apply. Spatial confinement
is then possible with spontaneous light forces produced by counterpropagating
optical beams. The trap configuration that is presently the most commonly em-
ployed uses a radial magnetic field gradient produced by a quadrupole field and
three pairs of circularly polarized, counterpropagating optical beams, detuned
to the red of the atomic transition and intersecting at right angles at the point
where the magnetic field is zero. This magneto-optical trap (MOT) exploits the
position-dependent Zeeman shifts of the electronic levels when the atom moves
in the radially increasing magnetic field. The use of circularly polarized light,
red-detuned by about one I results in a spatially dependent transition probabil-
ity whose net effect is to produce a restoring force that pushes the atom toward
the origin.

To make clear how this trapping scheme works, consider a two-level atom
with a J = 0 — J = 1 transition moving along the z direction. We apply
a magnetic field B(z) increasing linearly with distance from the origin. The
Zeeman shifts of the electronic levels are position-dependent,

pp dB -

AwB

h dz

where pp is the Zeeman constant for the net shift of the transition frequency in
the magnetic field. The Zeeman shifts are shown schematically in Fig.6.6. We
also apply counterpropagating optical fields along the +z directions carrying
oppositely circular polarization and detuned to the red of the atomic transition.
It is clear from Fig. 6.6 that an atom moving along +z will scatter ¢~ photons at
a faster rate than ot photons because the Zeeman effect will shift the AM; =
—1 transition closer to the light frequency. The expression for the radiation
pressure force, which extends Eq. 6.2 to include the Doppler shift kv, and the
Zeeman shift, becomes
hk ik
Flz == —71—‘ dB ) 3 1 5"
(Aw + kv, + 82 - 4B 2)" + (T/2)° + 5 [Qo|

(6.31)

In a similarly way, if the atom moves along —z it will scatter o+ photons at a
faster rate from the AMj; = +1 transition.
hk

3 1920

_ Ik 2

F2z—+2r — ~ up  dB . 3"
(Aw — kv, — B2 . 45 ) (T/2) 119

(6.32)



122 CHAPTER 6. FORCES FROM ATOM-LIGHT INTERACTION

< P

>
o
(0]
c m
T .- ° ) im—
NN\ «a
mj= 0
| Z
0 |

Figure 6.6: Left: Diagram of the Zeeman shift of energy levels in a MOT
as an atom moves to away from the trap center. Restoring force becomes
localized around resonance positions as indicated. Right: Schematic of a typical
MOT setup showing six laser beams and antihelmholtz configuration producing
quadrupole magnetic field.

The atom will therefore experience a net restoring force pushing it back to
the origin. If the light beams are red-detuned ~ I'; then the Doppler shift of
the atomic motion will introduce a velocity-dependent term to the restoring
force such that, for small displacements and velocities, the total restoring force
can be expressed as the sum of a term linear in velocity and a term linear in
displacement?,

Fyor = Fi. + Fo, = —az — Kz. (6.33)

From Eq. (6.33) we can derive the equation of motion of a damped harmonic
oscillator with mass m,

. 2. K
P+ 22 2= (6.34)
m m

The damping constant « and the spring constant K can be written compactly
in terms of the atomic and field parameters as

16]A| (2)* (k/T)

a = hkT ; —
2@ [ e

(6.35)

INote that this development makes the tacit assumption that it is permissable to add
intensities, not fields. Strictly speaking, if phase coherence is preserved between the counter-
propagating beams, the fields should be added and standing waves will appear in the MOT
zone. For many practical MOT setups, however, the phase-incoherent treatment is sufficient.
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and

16 A/| (Q)? (L)

K = hiT 2 -
[1 42 (Q’)Q} [1 + ‘*(L)QQ}

(6.36)
T+2()

where ', A’ and
wo  [(u/h) ()]

dz r

are I' normalized analogues of the quantities defined earlier. Typical MOT
operating conditions fix ' =1/2, A’ =1, so a and K reduce to

a ~ (0.132) hk? (6.37)

and
dB
K ~ (1.16 x 10'%) Ak - —.
( ) k- ——

The extension of these results to three dimensions is straightforward if one
takes into account that the quadrupole field gradient in the z direction is twice
the gradient in the x,y directions, so that K, = 2K, = 2K,. The velocity
dependent damping term implies that kinetic energy F dissipates from the atom
(or collection of atoms) as

(6.38)

E/Ey=¢ '

where m is the atomic mass and Fy the kinetic energy at the beginning of
the cooling process. Therefore the dissipative force term cools the collection
of atoms as well as combining with displacement term to confine them. The

damping time constant
m

T:%

is typically tens of microseconds. It is important to bear in mind that a MOT
is anisotropic since the restoring force along the z axis of the quadrupole field
is twice the restoring force in the zy plane. Furthermore a MOT provides a
dissipative rather than a conservative trap, and it is therefore more accurate to
characterize the maximum capture velocity rather than the trap “depth”.

Early experiments with MOT-trapped atoms were carried out initially by
slowing an atomic beam to load the trap. Later a continuous uncooled source
was used for that purpose, suggesting that the trap could be loaded with the
slow atoms of a room-temperature vapor. The next advance in the development
of magneto-optical trapping was the introduction of the vapor-cell magneto-
optical trap (VCMOT). This variation captures cold atoms directly from the
low-velocity edge of the Maxwell-Boltzmann distribution always present in a
cell background vapor. Without the need to load the MOT from an atomic
beam, experimental apparatuses became simpler; and now many groups around
the world use the VCMOT for applications ranging from precision spectroscopy
to optical control of reactive collisions.
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6.4.2 Densities in a MOT

The VCMOT typically captures about a million atoms in a volume less than a
millimeter diameter, resulting in densities ~ 10 cm~2. T'wo processes limit the
density attainable in a MOT: (1) collisional trap loss and (2) repulsive forces
between atoms caused by reabsorption of scattered photons from the interior
of the trap. Collisional loss in turn arises from two sources: hot background
atoms that knock cold atoms out of the MOT by elastic impact, and binary
encounters between the cold atoms themselves. The “photon-induced repulsion”
or photon trapping arises when an atom near the MOT center spontaneously
emits a photon which is reabsorbed by a another atom before the photon can exit
the MOT volume. This absorption results in an increase of 2hk in the relative
momentum of the atomic pair and produces a repulsive force proportional to the
product of the absorption cross section for the incident light beam and scattered
fluorescence. When this outward repulsive force balances the confining force,
further increase in the number of trapped atoms leads to larger atomic clouds,
but not to higher densities.

6.4.3 Dark SPOT

In order to overcome the “photon-induced repulsion” effect, atoms can be opti-
cally pumped to a “dark” hyperfine level of the atom ground state that does not
interact with the trapping light. In a conventional MOT one usually employs
an auxiliary “repumper” light beam, copropagating with the trapping beams
but tuned to a neighboring transition between hyperfine levels of ground and
excited states. The repumper recovers population that leaks out of the cycling
transition between the two levels used to produce the MOT. As an example
Fig. 6.7 shows the trapping and repumping transitions usually employed in a
Na MOT.The scheme, known as a dark Spontaneous-Force Optical Trap (dark
SPOT), passes the repumper through a glass plate with a small black dot shad-
owing the beam such that the atoms at the trap center are not coupled back
to the cycling transition but spend most of their time (~ 99%) in the “dark”
hyperfine level. Cooling and confinement continue to function on the periphery
of the MOT but the center core experiences no outward light pressure. The
dark SPOT increases density by almost two-orders of magnitude.

6.4.4 Far off-resonance trap (FORT)

Although a MOT functions as a versatile and robust ’reaction cell’” for studying
cold collisions, light frequencies must tune close to atomic transitions, and an
appreciable steady-state fraction of the atoms remain excited. Excited-state
trap-loss collisions and photon-induced repulsion limit achievable densities.

A far-off resonance trap (FORT), in contrast, uses the dipole force rather
than the spontaneous force to confine atoms and can therefore operate far from
resonance with negligible population of excited states. The FORT consists of a
single, linearly polarized, tightly focused Gaussian-mode beam tuned far to the
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Figure 6.7: Hyperfine structure in sodium atom showing the usual cooling,
pumping, and repumping transitions.

red of resonance. The obvious advantage of large detunings is the suppression
of photon absorption. Note from Eq.6.2 that the spontaneous force, involving
absorption and reemission, falls off as the square of the detuning while Eq. 6.8
shows that the potential derived from dipole force falls off only as the detuning
itself. At large detunings and high field gradients (tight focus) Eq. 6.8 becomes

A 2
U ~ [$2] ,
4Aw

(6.39)

which shows that the potential becomes directly proportional to light intensity
and inversely proportional to detuning. Therefore at far detuning but high
intensity the depth of the FORT can be maintained but most of the atoms
will not absorb photons. The important advantages of FORTSs compared to
MOTs are: (1) high density (~ 10*? em~2) and (2) a well-defined polarization
axis along which atoms can be aligned or oriented (spin polarized). The main
disadvantage is the small number of trapped atoms due to small FORT volume.
The best number achieved is about 10* atoms.

6.4.5 Magnetic traps

Pure magnetic traps have also been used to study cold collisions, and they are
critical for the study of dilute gas-phase Bose-Einstein condensates (BECs) in
which collisions figure importantly. We anticipate therefore that magnetic traps
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will play an increasingly important role in future collision studies in and near
BEC conditions.

The most important distinguishing feature of all magnetic traps is that they
do not require light to provide atom containment. Light-free traps reduce the
rate of atom heating by photon absorption to zero, an apparently necessary
condition for the attainment of BEC. Magnetic traps rely on the interaction
of atomic spin with variously shaped magnetic fields and gradients to contain
atoms. The two governing equations are

U=—ps-B= —gsg‘Bs-Bz —gs;;BMsB (6.40)
and
F = f%MSVB. (6.41)

If the atom has nonzero nuclear spin I then F = S + I substitutes for S in Eq.

(6.40), the g-factor generalizes to

F(F+1)+S(S+1)—-I(I+1)
2F(F+1

gr = 9gs (6.42)

and

F = —QF:B MpVB. (6.43)

Depending on the sign of U and F, atoms in states whose energy increases
or decreases with magnetic field are called “weak-field seekers” or “strong-field
seekers,” respectively. One could, in principle, trap atoms in any of these states,
needing only to produce a minimum or a maximum in the magnetic field. Un-
fortunately only weak-field seekers can be trapped in a static magnetic field
because such a field in free space can only have a minimum. Even when weak-
field seeking states are not in the lowest hyperfine levels they can still be used
for trapping because the transition rate for spontaneous magnetic dipole emis-
sion is ~ 10719 sec™! . However, spin-changing collisions can limit the maximum
attainable density.

The first static magnetic field trap for neutral atoms used an anti-Helmholtz
configuration, similar to a MOT, to produce an axially symmetric quadrupole
magnetic field. Since this field design always has a central point of vanishing
magnetic field, nonadiabatic Majorana transitions can take place as the atom
passes through the zero point, transferring the population from a weak-field
to a strong-field seeker and effectively ejecting the atom from the trap. This
problem can be overcome by using a magnetic bottle with no point of zero field.
The magnetic bottle, also called the Ioffe-Pritchard trap, was recently used to
achieve BEC in a sample of Na atoms pre-cooled in a MOT. Other approaches to
eliminating the zero field point are the time-averaged orbiting potential (TOP)
trap and an optical “plug” that consists of a blue-detuned intense optical beam
aligned along the magnetic trap symmetry axis and producing a repulsive po-
tential to prevent atoms from entering the null field region. Trap technology
continues to develop and the recent achievement of BEC will stimulate more
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robust traps containing greater numbers of atoms. At present ~ 107 atoms can
be trapped in a Bose-Einstein condensate loaded from a MOT containing ~ 10?
atoms.

6.5 Further Reading

The optical dipole-gradient force and the “radiation pressure” force are discussed
in many books. A clear and careful discussion can be found in

e Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G., Atom-Photon Inter-
actions, Chapter V, Wiley-Interscience, New York (1992)

A semiclassical development of the radiation pressure force and laser cooling
can be found in

e S. Stenholm, Rev. Mod. Phys. 58, 699-739 (1986)

An interesting discussion of the dipole-gradient force and the radiation pressure
force presented as aspects of the classical Lorentz force acting on a harmonically
bound electron can be found in

e S. C. Zilio and V. S. Bagnato, Am. J. Phys. 57, 471-474 (1989)
We have followed the 1-D sub-Doppler cooling models developed in

e J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B, 6, 2023-2045
(1989)

A more detailed and quantitative discussion of these models with comparison
to experiment can be found in

e Lett, P. D., Phillips, W. D., Rolston, S. I., Tanner, C. 1., Watts, R. N.,
and Westbrook, C. 1., J. Opt. Soc. Am. B, 6, 2084-2107 (1989)

An excellent review of cooling and trapping neutral atoms, including a detailed
discussion of magnetic trapping can be found in,

e Metcalf, H. and van der Straten, P., Physics Reports 244, 203-286 (1994)
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Chapter 7

The Laser

7.1 Introduction

Once derided as “a solution looking for problems,” the laser has come into its
own. In daily life, we depend on lasers in telecommunications, in medicine,
in audio and video entertainment, at the checkout counter at the supermarket.
In the laboratory, the laser has revolutionized many fields of research from
atomic and molecular physics to biology and engineering. Just as varied as
the applications of lasers are their properties. The physical dimensions vary
from 100 pm (semiconductor lasers) to the football stadium size of the Nova
laser at the Lawrence Livermore National Laboratory in Livermore, California.
The average output power ranges from 100 uW to kW. The peak power can
be as high as 10'® W, and the pulse duration can be as short as 107! sec.
Wavelengths range from the infrared to the ultraviolet. Yet behind the infinite
variety, the operating principle of all lasers is essentially the same. The laser
is an oscillator working in the optical region. Like the electronic oscillator, the
laser consists of two main components: a gain medium and a resonator. The
gain medium consists of excited atoms that amplify the signal i.e., the optical
field, by stimulated emission, as described in Chapters 1 and 2. Gain is obtained
when the atoms are, on average, excited to the upper level more than the lower
level, so that the excess energy between the two levels can be given to the
optical field by stimulated emission. The resonator provides frequency-selective
positive feedback which feeds part of the amplified field back to the gain medium
repeatedly. Part of the field exits the resonator as output of the laser. The field
inside the resonator cannot be amplified indefinitely, because by conservation
of energy, the amplification of the gain medium has to decrease when the field
is high enough, i.e., the gain saturates. Free running, the laser reaches a steady
state when the saturated gain is equal to, and compensates for, the loss of the
field through output and other possible causes like absorption in the resonator
components.

The most distinctive feature of the laser is what is called coherence. Co-
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herence refers to the degree to which one can predict the field of the beam. If,
with the knowledge of the optical field at one point, one can predict the field
at a later time at the same place, the beam is said to be temporally coher-
ent. In this sense, a purely monochromatic field is perfectly coherent. Laser
beams are highly monochromatic, with a frequency width that has been nar-
rowed to as little as 107'% of the center frequency. Monochromaticity is a
result of the extreme frequency discrimination afforded by the combination of
stimulated emission and resonator feedback. The field emitted by stimulated
emission bears a definite phase relationship to the field which stimulates the
emission. Because the field inside the laser resonator builds up by repeated
stimulated emission, the final field reached is in phase with the initial starting
field. However, the initial starting field comes from spontaneous emission, whose
frequency can spread over a wide range. Because of the frequency-selective feed-
back of the resonator, the one frequency at the peak of the resonance with the
highest feedback extracts the most energy from the gain which it saturates.
The saturated gain is exactly equal to the loss at the peak of the resonance.
Frequencies which deviate even slightly from the resonance will see a net loss
and the field cannot build up. The final field, however, is subject to many noisy
perturbations like thermal fluctuations of various kinds, vibrations, and spon-
taneous emissions from the gain medium. These perturbations ultimately add
noise to the laser field and are responsible for the small but finite frequency
width of the laser field. The fundamental limit to the finite frequency width
comes from spontaneous emission, which cannot be entirely eliminated from the
lasing transition. The spontaneously emitted field, being random in nature, can
be either in phase with the laser field, or in quadrature. The in-phase sponta-
neous emission affects the amplitude of the laser field and is suppressed by gain
saturation. The in-quadrature component of spontaneous emission only changes
the phase, not the amplitude, of the laser field, and is therefore not suppressed
by the saturated gain . It is this random phase fluctuation which gives the laser
field its finite frequency width. It is important to recognize that in a laser,
the optical field and the atoms are inseparably coupled by the feedback of the
resonator. In fact, all the atoms participating in the lasing action interact with
the common optical field and oscillate together as a giant dipole (called the
macroscopic polarization), It is this collective action that results in a frequency
width much narrower than the “natural” width allowed in uncoupled atoms,
despite the constant dephasing and decay processes in a laser.

The laser beam is also spatially coherent: we can predict the field at another
place with the knowledge of it at one place. Spatial coherence is a direct result
of the resonator. An optical resonator can be designed so that one spatial
mode suffers less loss than any other. The spatial mode with the least loss (or
highest Q) ultimately oscillates whereas the others are suppressed, again by the
mechanism of gain saturation.

In this chapter, we will adapt the fundamental equations governing a two-
level system developed in Chapters 2, and 4 to the laser oscillator. The difference
between the previous situation of an isolated two-level atom and the present
one of the laser oscillator is in the electromagnetic field. In Chapter 2, we only
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considered the electromagnetic wave at the point where it interacts with the
atom. The displacement of the electron under the electric field is small compared
to the wavelength. In a laser oscillator, the electromagnetic field is confined
in an optical resonator, and is a standing wave. The volume of interaction
extends over many wavelengths. We will consider the homogeneously broadened
medium in detail, and only single mode operation. Multi-mode operation and
inhomogeneous broadening are only briefly discussed.

7.2 Single Mode Rate Equations

The optical Bloch equations for a two-level atom (Chapter 4) will be devel-
oped further. These equations will be summed statistically over all the atoms
interacting with the optical field in the resonator, and damping terms will be
introduced phenomenologically. After this operation, elements of the density
matrix in these equations become macroscopic physical quantities. The diag-
onal elements become the number of atoms per unit volume in the lower and
upper states, and the off-diagonal elements, multiplied by the interaction ma-
trix element p , become the macroscopic polarization P. The result is a set of
coupled equations for the population densities and polarization. To complete
the description, one more equation for the optical field is derived directly from
the classical Maxwell’s equations. The complete set of equations describe the
motion of three physical quantities: population inversion, polarization, and the
electric field. To reduce the number of equations, the polarization is integrated
and expressed in terms of the other two quantities under the assumption that
the populations vary slowly compared to the polarization. The resulting two
equations describing the dynamics of population inversion and light intensity
are called the “rate equations”.

Optical fields in a resonator will be discussed in detail in Chapter 8. They
are counter-propagating Gaussian beams. The exact spatial distribution of the
Gaussian beams is not needed here. Instead, we will approximate the beam
inside the resonator with a plane standing wave.

It is fruitful to approach the rate equations from a classical point of view.
Quantum mechanics is used solely to describe the atoms leading to the macro-
scopic polarization and the gain. In Appendix 7.A, the macroscopic polarization
from a group of classical harmonic oscillators is first derived, then by physical
argument, converted into the polarization of a group of atoms. In the process,
several physical quantities are introduced heuristically: the classical electron
radius, the classical radiative lifetime, the quantum radiative lifetime, and the
interaction cross section. The cross section deserves special attention. We have
already introduced the absorption and emission cross sections in our discussion
of the two-level atom (v.s. Chapter 2, section 2.2.6). The strength of interac-
tion between the optical field and the atoms is given by the interaction matrix
element g (v.s. Chapter 2, section 2.2.1). Instead of u, the equivalent, but per-
haps physically more appealing quantity, the interaction cross section o can be
used. This is more than just a change of notation. The concept of cross section
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appears throughout physics, chemistry, and engineering to quantify the strength
of an interaction or process. In fact, in many calculations involving lasers, only
the relevant cross sections and the population decay times are needed.

It is also interesting to examine the classical electronic oscillator whose am-
plification is provided by a negative resistance. This is carried out in Appendix
7.B, where the equations for the voltage amplitude and phase are shown to be
identical in form to those derived for the laser field amplitude and phase. By
introducing an external voltage source, which can represent either an injecting
signal, or noise, two important subjects can be conveniently discussed: injection
locking and phase noise that ultimately limits monochromaticity in an oscillator

7.2.1 Population Inversion

The mathematical description of atom-field interaction using the optical Bloch
equations has been developed in Chapter 4. The density matrix equations
(Egs. 4.5) are reproduced below:

dpo1 Eq Ci(w—wo)t _ P12
_ = ——(— Hw—w = — 71
dt ¢ on (—p22 + p11)e dat (7.1)
dpa2 HEo o ito—wo)t ~iw—wo)ty — _ P11

_ i(w—w _ i(w—w — 79
p iy (pare p1ze ) pn (7.2)

The factor appearing in the above equations, pFy/h, called the Rabi frequency,
quantifies the rate by which the density matrix elements change under the elec-
tric field. In fact, instead of the optical Bloch equations, if the equations for
wave function coefficients C'; and C are integrated directly, it can be found that
|C2| and |C3| oscillate with a frequency pEy/h (Chapter 2, section 2.2.2 and
Chapter 4, section 4.1). The diagonal and off-diagonal elements are coupled
via the electric field. We will first eliminate the off-diagonal elements.
Equations 7.1,7.2 are now to be considered as statistically averaged over
the atoms. The statistically averaged ps; describes the phase correlation or
coherence between the two eigenstates of the atom, but this correlation can
be degraded. As in the treatment for the individual two-level atom (section
4.2), this degradation is here treated phenomenologically by a dephasing rate
constant I'.  Equation 7.1 then become
% + F,O21 = ’L"L;—Ehb(pgg - pn)ﬁil(wiwg)t (73)
where the matrix elements are understood to have been statistically averaged.
Dephasing can be caused by many processes: collision, decay of populations
including spontaneous emission!, interaction with surrounding host molecules.
Since it includes decay, I' is at least as large as the population rate of change
(including both decay and changes induced by the field); often, in fact, it is much

INote that T here, when identified with spontaneous emission, is equivalent to the ~ in
section 4.2
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larger. In such cases, we can treat the populations as constant and integrate
Eq. 7.3 to obtain?

PE0 _p22 = P11 —igo-wo)t (7.4)

P2 = o (@ —wo) 4T

p21 depends on the difference pss — p11, not pao or py1 individually. To amplify
the optical field, the atoms must be, on average, excited more to the upper
level than the lower level, i.e., p22 > p11. This condition is called population
inversion. The gain is proportional to the population difference, it is therefore
desirable, and often achievable, to have pas >> p11. Then pag — p11 2 pas.
This is realized in many lasers, whose gain media and levels are chosen such
that the decay rate of the lower level is much faster than that of the upper
level, and the rate excitation to the upper level much greater than to the lower
level?. Unless the intensity of light in the medium is so strong that the lower
level is significantly populated by stimulated emission, we can approximate the
population inversion, Ny(pa2 — p11) = AN by Nypee, where Ny is the total
atomic density. Statistically averaging Eq. 7.2, we have:

%AN + AT—]IV = Rpump + Z'M2—Etho(pQ1€Z(w7w°)t — proe w0l (7.5)
where T} is the decay time constant of AN. An additional term Rpym, was
introduced on the right-hand side to represent pumping. Pumping is the excita-
tion process whereby the atoms are excited to the upper level. There are many
methods of pumping, each appropriate to a particular laser system. Common
pumping methods include optical excitation by either coherent or incoherent
sources, electric currents, and discharge. In general, lasers are inefficient de-
vices, with under 1% of the total input energy converted into light. There
are two reasons. The main reason is the inefficiency of the pumping process.
For example, in flashlamp pumping, most of the lamp light is not absorbed by
the atoms because of its broad spectrum; in fact, most of the lamp light does
not even reach the atoms because it is difficult to focus the spatially incoherent
lamp light. The second reason is the energy levels of the atoms. It is impos-
sible to achieve population inversion by interaction with only two levels of the
atom: at least one more level must be involved. The photon energy, which is
equal to the energy difference between the two levels in the stimulated emission
process, is less than the energy difference between the highest and lowest energy
levels involved in the whole pumping process. The ratio of the energy of the
stimulated-emission transition to the energy of the pumping transition is called
the quantum efficiency, which can be smaller than 0.1. We substitute ps; from
Eq. 7.4 into Eq. 7.5 to obtain

d AN 1 [ uEy\> r
—AN . ump — = | T AN——m— .
a~t T Ryump = 3 ( h ) (w—wp)?+TI? (7.6)

2We emphasize the importance of not confusing I' in Eq. 7.4 with use of I" for the rate of
spontaneous emission (v.s. Chapter 4, Eq.4.19)
30ne exception is the erbium-doped fiber, discussed below.
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We will cast the last term on the right-hand side into another form. To do
that, let us digress and revisit the macroscopic polarization. The expectation
value of the transition dipole moment d of one atom is

d= /\Il*(—em)\IIde = —p(pare” ot + prae™ot)

Let P be the component of the polarization P in the direction of the electric
field which induces the dipole moments. Then P = Ny (d) where Ny is the total
atomic density* and the angular brackets denote statistical average:

P = 7N0,u(p21€7iw0t -+ p12€iw0t) (77)

where it is understood that the density matrix elements have been statistically
averaged®. It is significant that the average over many atoms does not van-
ish. It means that atoms are radiating in synchronism. The synchronism is
established by the common driving electric field. The electric field, in turn, is
produced by the collective radiation from the atoms. Another manifestation
of the collective radiation is the generation of the laser beam: the radiation
pattern of a single dipole is donut-shaped, the beam is the result of coherent
superposition of many dipole fields.

The polarization P is a real quantity. We define a complez polarization P

P = —2Ngupare” " (7.8)

so that )

The complex polarization P can be calculated by substituting ps; from Eq.7.4:

ANMQ Eoe—iwt
h (w—w,) +il
= egox Eoe ™! (7.9)

P:

where we have, again, the susceptibility®

2 2 .
1 AN I (w—wp) —il

_ L w—wo) 1t 7.10

X(@) goh (W —wo) +1il' &,k (W—w,)2+T? ( )

= X+’ (7.11)

Back to Eq. 7.6, we can substitute 42 and the Lorentzian by x”' and obtain:

dAN AN X" rceo o
it = Rt g (TEO) . (7.12)

4The use of Ng and AN for atomic density here differs slightly from the notation N/V
used in Eqgs. 4.16, 4.22 and subsequent expressions for the susceptibility in Chapter 4.
5Note that Eq. 7.7 is the macroscopic analog of Eqgs.4.16,4.17 and that Eqgs. 4.3 enable the

identification of p12 with C]C2 and p21 with C2C7 in the two-level atom
6Note the difference of a factor of two in the I' term between Egs. 7.10 and 4.27
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Note that )

v _ _AlNos r (7.13)

eoh (w— w0)2 +I?

is negative for positive AN. The power exchange between the field and the
atoms is via x”, the imaginary part of the susceptibility. It means that it is the
in-quadrature component of the dipole that is accounts for the power exchange
with the field. The exchange comes from the familiar expression for power,
force times velocity. The force is electron charge times the electric field. If
the power is to be nonzero after averaging over one cycle, then the velocity
must be in phase with the field. Since the velocity is the time-derivative of
electron displacement, the two quantities are in quadrature, which means that
the displacement is in quadrature with the field. Since the dipole moment is
simply electron charge multiplied by displacement, The last term on the right-
hand side of Eq.7.12 describes the rate of change of the population inversion
due to stimulated emission. The factor in brackets, (cgo/2) E3, is the light
intensity I averaged over one cycle. We re-write that term as

X7 (0 pay _ x
. ( : EO) = —o(w)AN—— (7.14)
where o(w) is the transition cross section”
1
o) = —=X"(W) 5w (7.15)

The concept of interaction cross section is an important one, and is further dis-
cussed in Appendix 7.A. It is a fictitious area which characterizes the strength
of the interaction in question. The radiative transition rate, the left hand side
of Eq. 7.14, is equal to a product of three terms: the cross section, the popula-
tion inversion, and the photon flux I/hw. From Egs.7.12,7.13,7.14 it follows
that the cross section can be written in terms of a “peak cross section” and a
unitless line shape form factor. The peak cross section is

wu? 1
CGOh I

and the form factor expressing the spectral width of the cross section in terms
of the “peak” value is

FQ
— (7.16)
(w—wp)” 4+ T2
such that
1+ (w—wp)?/T?
If we now substitute the expression for x? in terms of the spontaneous emission
rate, (Eq.2.22) we can write the peak cross section as

302 Ay
5o = 220 A2
27 o

"Compare Eq.7.15 and Eq.4.31 for the absorption cross section in terms of the suscepti-
bility in a two-level atom

(7.17)

o(w)

(7.18)
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Note that if the only source of dissipation is spontaneous emission, the 2I" in
the denominator of Eq.7.18 is just As;, and the peak cross section is simply
%
=5
It is worth pointing out that o(w) in Eq.7.17 is not the same as the “spectral”
cross section,(v.s. Eq.2.32)

(o) (719)

_ 92 A2
g1 4
which has units of the product of area and frequency and is the relevant expres-
sion from which integration over the Lorentzian line shape F(w — wp) yields a
cross section in units of area. As discussed in Chapter 2, section 2.2.6 the result

of this integration over the “natural” line width is

Ow 21

92 T
g1 2

There are two reasons why oy and og, are not identical: first, Eq.7.19 does
not include averaging over random orientations of the transition dipole while
Eq. 7.20 does. The effect of this averaging is just to multiply Eq. 7.19 by a factor
of 1/3. Second, Eq. 7.19 is the cross section at line center while Eq. 7.20 is inte-
grated over the whole line shape. It is not difficult to show that these two cross
section expressions are consistent by converting the peak cross section (Eq. 7.19)
to a “spectral gradient cross section” by dividing the peak by the spectral width
and then integrating it over the form factor, Eq.7.16. The result is equivalent to
Eq. 7.20. It is remarkable that the intrinsic cross section of all dipole transitions
are, within a numerical factor on the order of unity, equal to the wavelength
squared. In deriving the expressions for the peak cross section (Egs. 7.18, 7.19)
and its frequency dependence (Eq.7.17) we have assumed that the electric field
and the transition dipole are aligned along the axis of quantization. In many
cases, however, the atoms transition dipoles are randomly oriented, and as much
as two thirds of them can be aligned relative to the electric field in such a way
that their dipole moments are zero. In that case, the average peak cross section
is only one third of the expressions given above. We follow Professor Siegman’s
notation (see the reference to Siegman’s book at the end of this chapter) and
replace the factor 3 by 3*, whose value can range from 1 to 3. Furthermore, we
have arrived at these expressions assuming that the atoms are in vacuum. If
they are in a material of refractive index n, then we must divide the wavelength
by n. The final expression for the peak cross section is then

3* A% [ Ag

Equation 7.12, now rewritten in the final form below, is one of a pair of equations
commonly known as the laser rate equations:

dAN AN 1
7 + Tl = Rpump - O’(W)AN% (722)

(7.20)

00a =
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7.2.2 Field Equation

The fields in an optical resonator are fields of the modes of the resonator. The
field of a mode has a definite spatial pattern whose amplitude oscillates in time
at the mode frequency. When an atomic medium is introduced into the other-
wise empty resonator, the modes are changed in two ways. The permittivity
of the medium changes the phase velocity of light and therefore changes the
mode frequency and the wavelength inside the medium. The lasing transition
provides further changes: with population inversion, amplification is possible to
compensate for the loss in the resonator; and the susceptibility of the lasing tran-
sition changes the mode frequency so that the final oscillation frequency must be
determined taking the dynamics of the lasing action into account. Most laser
resonators are formed of spherical mirrors, and the fields inside are counter-
propagating Gaussian beams, the subject Chapter 8. Near the axis of the
Gaussian beam, however, the fields very closely resemble plane waves. In this
chapter, we will use two counter-propagating plane waves for the field, with the
boundary condition that they vanish at the mirrors. This boundary condition
results in a standing wave and simplifies the mathematics. Light must exit
from one of the mirrors to provide an output, and it may be attenuated in the
resonator by absorption or scattering. These losses are accounted for by a fic-
titious, distributed loss instead, again for mathematical simplicity.

The second of the rate equations is derived directly from Maxwell’s equations,
two of which are reproduced below,
oD

OH
VXE——MOE,VXH—J—FE

The equations say that a time varying magnetic field acts as a source for the
electric field and vice versa. The displacement field D consists of two parts,
the electric field and the macroscopic polarization:

D:€0E+P

Normally in a laser gain medium, there is no conduction current varying at
the optical frequency. To account for the loss of the field in the resonator, we
introduce a fictitious conductivity o, so that

J=0.E

We will see how to relate this fictitious conductivity to real losses later.
Eliminating the magnetic field from the two Maxwell’s equations, assuming little
transverse variation of the fields, and approximating

0°P 9
FER
we obtain the wave equation for the electric field:
0E 1 0°E

—V2E + pooe— + = pow?P (7.23)

ot | 2 o2
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A
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Mode Volume

Pumped Volume

Figure 7.1: The laser resonator with gain medium . The resonator mode volume
and the gain overlap. The ratio of the overlapping gain volume to the mode
volume is the filling factor s.

We have assumed that E and P are polarized in only one direction (z, say),
and vary only in the propagation direction (z). We now use a simple model
of the resonator. It consists of a pair of perfectly reflecting mirrors located at
z =0 and z = L where the total electric field vanishes (Fig. 7.1). We write E in
the form

_ Eo—(t) —iwt—1i¢p(t) Eo—(t) iwt+i¢p(t)
E(z,t)=U(?) 5 € + 5 €

where
U(z) =sin(Kz)

with K = nw/L to satisfy the boundary conditions at the mirrors, and n is an
integer. The boundary conditions yield the mode resonance frequency

c
Q=Kc=2nr 5T

There are infinitely many modes, with their angular frequencies separated by a
multiple of ¢r/L. The interval between two adjacent modes is usually smaller
than I', the transition width. The mode with frequency closest to the peak of
the gain, at wg, extracts the most energy from the medium and we assume that
this mode alone oscillates. The amplitude Ey(t) has been chosen to be real,

and a time varying phase ¢(t) is allowed.
The pumped atomic medium overlaps with the mode volume. In the overlap-
ping region, the medium partially fills a fraction s of the mode volume (Fig. 7.1).
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It is described by the polarization, which, in terms of susceptibility x, is

Eo(t) _jui—i
P(z,t) =V (2)eo | x (w) %e‘l‘”tﬂd’(” +c.c.

The spatially varying function V(z) is equal to U(z) inside the medium and
zero outside. We now take the time derivatives of E and P, substitute into
Eq. 7.23, multiply the whole equation by U(z) and integrate over z from 0 to
L. The fields are almost monochromatic, therefore in the conduction current
term OE /Ot ~ —iwE. In the term 9?E/d%t, however, the leading term -w?FE
is almost completely cancelled by the spatial derivative term

V?E = -0*F/9*2 = -K*E,
therefore the next order term

. |dEy . do
-2 — —iFEy—| U
Zw[dt i Odt] (2)
must be kept. After these operations, and separation of the real and imaginary
parts, Eq. 7.23 becomes two equations, one for the amplitude, the other for the
phase, of the electric field:

dEy o w

—— ‘Ey, = —-s=v"E .24
@i a0 S e (7.24)
do _ w,

il +w=-Q) = -s 5 X (7.25)

Equation 7.24 says that the field amplitude decays through the conductivity and
grows by —x”, the growth rate of the field is —wx” /2, reduced by the filling
factor s of the resonator mode volume. The growth rate of the intensity I is
twice that of the field. Multiplying the whole Eq.7.24 by Ey converts it into

an intensity equation:

dl o

— + T = —sw)"I 7.26

TR swX (7.26)
The right-hand side of Eq.7.26 is the rate of growth of light intensity. The
energy comes from the medium. Using Eq.7.15 to replace x” with the cross

section o, we rewrite the above equation as:
dl o,
— + —1 =sccANI 7.27
dt + €0 ( )
Equation 7.27 is the second of the rate equations. The quantity cAN is the
optical gain per unit length, and cc AN is the optical gain per unit time, or
growth rate. This equation can be written in a slightly different form. Dividing
the equation by ¢ and replacing cdt by dz, we have

£+UC
dz  egc

I = soANT. (7.28)
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This equation describes the propagation of a travelling wave through a gain
medium.

Equation 7.25 determines the oscillation frequency w. The real part of the
susceptibility x’ is zero only at the transition line center wy. If the resonator
is not tuned to wy, then w must be determined from Eq. 7.25; it will be neither
) nor wy but a value between the two.

Finally, to relate the fictitious conductivity to resonator loss, consider a
resonator whose mirror reflectivities are R; and Ry, and the loss in the atomic
medium is « per unit length along its length I. Integrating Eq.7.28 without
gain for one round trip time Ty inside the resonator, we have

I(Tn) = 1(0)e~(7e/0)Tr

Now if we follow the light in one round trip, the fraction returned is R Rpe™ 2.

SO
e~ (7e/e0)TrR — R Rye20! (7.29)

7.3 Steady-State Solution to the Rate Equations

Solving the rate equations in the steady state leads us to several important
concepts, and gives us the most important information on the laser. Concepts
introduced are: small-signal or unsaturated gain; saturated gain; oscillation or
lasing threshold; and saturation intensity. In terms of the saturation intensity
and the degree that the unsaturated gain is above threshold, the laser intensity
can be immediately calculated. Then, the phase equation will be examined
to see the effect of frequency pulling and pushing on the oscillation frequency.
Although the solution is formally for the steady state, i.e., all quantities do not
vary in time, it is also valid when the laser operates in a pulsed mode, if the
pulse is longer than the population decay time T3 .

With all time derivatives set to zero, the rate equations, Eqs. 7.22 and 7.27
become

AN 1
?1 = scoANT (7.31)
0

The population inversion AN can be found from Eq. 7.30 in terms of I:

RpumpTl
1+1/I5
ANO
1+ 1/1s

AN

(7.32)

where we have introduced the saturation intensity

hw

Ig= —
o O'T1

(7.33)
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and the small-signal population inversion
A]VO = RpumpTl

which is the population inversion when there is no light (I = 0) or when the
light is weak (I << Is). The optical gain (per unit length), at the presence of
light, called saturated gain, is

O’ANO

AN =TT,

(7.34)

The numerator c ANy on the right-hand side is the gain (per unit length) when
there is no light (I = 0) . It is called the small-signal or unsaturated gain.
The saturated gain is smaller than the unsaturated gain because the population
inversion has been lowered by stimulated emission to provide energy to the light.

Equation 7.31 allows two solutions, below and above threshold. We can
imagine operating a laser by gradually increasing the pumping (ANp). When
the pumping is low, so is the gain scc ANy (the right-hand side of Eq. 7.31) and
is less than o./eg (the left-hand side of Eq.7.31). To satisfy the equation, I
must be zero: the gain is not enough to overcome the loss and the laser is not
operational. The laser is said to be below threshold. The threshold is reached
when sco ANy is equal to o./cg. We define the threshold population inversion
AN}, such that

Oc

scc ANy = — (7.35)

o
Increasing pumping further increases the small-signal gain; but the saturated
gain, pulled down by the now non-zero intensity, remains constant and equal to
the loss o./eq:

scocAN = Je
€o

or
AN = ANpy,

when ANy > ANry,.
Substitution AN from Eq. 7.34 into Egs. 7.30,7.31 yields the intensity above
threshold:
I =1Is[ANy/ANry, — 1] (7.36)

This is an important result, in words: The light intensity inside a laser is equal
to the saturation intensity of the lasing transition, multiplied by the fraction
that the pumping is above threshold.

Figure 7.2 shows AN and I versus pumping as represented by ANy. Below
threshold I = 0, and the saturated gain is equal to the unsaturated gain. Above
threshold, I rises linearly with pumping, while the saturated gain is pinned to
the loss.

Suppose one mirror of the resonator is perfectly reflecting, R; = 1, the other
transmits a fraction T' = 1 — Ry of the incident intensity. The cross-sectional
area of the beam is determined by the resonator design, taken up in Chapter 8,
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AN, |

ANy |= = — — - AN

ANy, ANg

Figure 7.2: Population inversion AN and light intensity I versus ANy. Thresh-
old is defined as ANy,. Below threshold AN = ANy, and I = 0. Above
threshold, AN = AN, and I = I;[ANy/AN,] — 1]

but suppose it is A. The light intensity consists of two equal counterpropagating
parts, one towards the transmitting mirror. Then the output power of the laser
is

1
Pout = §TAI

1
5 TAIS[ANy /AN, — 1] (7.37)

In practice, pumping usually cannot be too close to, or too much above, thresh-
old. The laser tends to be unstable when it is too close to threshold. When it
is well above threshold, many problems like heating and undesirable nonlinear
effects can occur. It is therefore a useful rule of thumb that the intensity of
the laser beam inside the resonator is on the same order of magnitude as the
saturation intensity of the lasing transition.

Let us revisit the threshold condition,

o
scoANy = ==
€0

From Eq.7.29 and noting that ¢T'r = 2L, we can rewrite the condition as

RiRseexp [2Lsc ANy —2al] =1 (7.38)

Finally, we examine graphically the steady-state solutions to the amplitude
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and phase equations, Eqgs. 7.24 and 7.25, in the frequency domain,

O w

S PO
W= = —s2x()

In almost all cases, the gain width I' is much broader than the spacing between

two adjacent resonator resonances, as indicated by the vertical lines in Fig.7.3(a)

where we show wq closer to the resonance on the left, which is the mode that

will oscillate. The two equations are not independent, because x’ and X" are

both dependent on the population inversion and w. Close to wg, X" is nearly

independent of w whereas ' is nearly linear in w —wg. From Eq.7.14, we have
!/

X' = —[(w—wo)/T]x". Since x"(w) =~ x" (wo) , we have

O, W —Wp

sx'(w) = o T

and therefore
Oc Wy —w

v 2~ (w0€0 r

The left-hand side is the deviation of w from the resonator frequency whereas the
right-hand side is its deviation from the gain peak (Fig7.3(b)). The intersection
of the two yields w which is in between 2 and wy. In practice, one often can
tune by maximizing the output laser power so that w = wy.

Rate equations are powerful tools. We have only considered optical inter-
actions, but with minor modifications, rate equations for other processes can be
written down immediately. For example, in a gaseous medium where pump-
ing is achieved by electron impact, the pumping rate can be written as ¢ NF'
where o is the electron excitation cross section, N the atomic density, and F'
the electron flux which is the electron density times electron velocity.

7.4 Applications of the Rate Equations

We will now look at a few examples to illustrate how to apply the results ob-
tained above to calculate the pumping thresholds and output powers of two
lasers, and the gain of an amplifier. Most atomic media in lasers are too com-
plex to be treated in full, and they must be simplified in order to keep focus on
the essential processes. We have been discussing two-level atoms. However, it is
impossible to have population inversion and therefore a laser in a medium with
only two levels®, because stimulated emission would de-excite the atom to the
lower level as soon as there was any inversion. A third level must be involved.
The rate equations apply to the two lasing levels, as well as any other pair of
levels interacting with light.

8The only exception is the excimer laser. The excimer molecule is formed in the upper
state. The lower state is unstable from which the molecule dissociates into its component
atoms.
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Figure 7.3: (a) Imaginary part of the susceptibility x” versus frequency. The
gain is proportional to —x”. Two adjacent resonator modes are separated by
27 times the inverse round trip time, or 27 [¢/2L]. (b) Real part of the suscep-
tibility ¥’ versus frequency. The intersection of —x’ and w — Q yields the lasing
frequency.
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Figure 7.4: (a) Energy levels of Nd ions in YAG. The pumping is from ground
level 0 to level 3, which relaxes quickly to level 2, the upper level of the lasing
transition. The lower level of the lasing transition is level 1, which relaxes quickly
to level 0. (b) Schematic of a longitudinally pumped Nd:YAG laser. The left
mirror transmits the pumping wavelength but reflects the lasing wavelength.
The right mirror transmits a small percentage of the lasing power.

7.4.1 The Nd:YAG Laser

The Nd:YAG laser is one of the most widely used lasers in engineering and sci-
entific research. Pumped by a semiconductor laser, it is efficient (~ 10%). Its
temporal and spatial output characteristics are close to ideal. It can be oper-
ated in a single-frequency mode for spectral purity, or mode-locked for a train
of short pulses, or pulsed for a single, high-energy pulse, or frequency-doubled
to pump other lasers. The active atoms are neodymium ions in the Yttrium-
Aluminum-Garnet (YAG) crystal, with a concentration of about 1 per cent.
The energy levels are rather complicated, and only the levels that participate in
the pumping and lasing action are drawn in Fig. 7.4a, with their spectroscopic
notations. There are several possible pumping transitions, all optical, but we
only consider the pumping transition at 0.8 pm, from the ground level 0 to
level 3. From level 3, the ion quickly relaxes to level 2, the upper level of the
lasing transition. The lower lasing transition, level 1, also has a very fast decay
time back to the ground state. The decay from level 2 to level 1 is almost
completely by spontaneous emission with a much longer lifetime 77 ~ 1073 sec.
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The lasing transition line width I', caused by interaction between the ion and
its surrounding vibrating atoms (phonons), is about 27 x 1.3 x 10*! sec™!. The
transition wavelength is 1.06 ym. The stimulated emission cross section og is
calculated from Eq.7.18 to be 1078 cm?.

We now calculate the threshold pump power requirement, and the output
power of the laser. We leave the details of the resonator to Chapter 8, and
simply assume that the field is confined to a cross-sectional area A inside the
resonator. We will even ignore the refractive index of the YAG host. We
assume that the main loss is the output mirror which transmits 2% and re-
flects 98% of the lasing wavelength (R; = 0.98); the other mirror reflects 100%
(Ry = 1). The pumping can be longitudinal from one end, or transverse from
the side. We will consider longitudinal pumping through one mirror which
transmits 100% of the pump wavelength, with the pump beam cross-sectional
area matching that of the lasing beam, and the YAG long enough to absorb all
the pumping power. The simplified Nd: YAG laser is illustrated in Fig. 7.4(b).

Let us first calculate the pumping power needed to reach lasing threshold.
One could write down a rate equation for each of the four levels; however,
because of the fast decays from levels 3 and 1, we can make the approximation
that these two levels are empty. Ions excited to level 3 from the ground level by
the pump light immediately decay to level 2, therefore the pump rate to level 2
is the rate at which the ions are pumped out of the ground level, or

AJVO Ipump
=0a4—N,
T, " hwy °

where Ipymp is the pump light intensity incident on the ion, o 4 the cross section
of the transition between levels 0 and 3, and w4 is the photon energy of the
pump. Because of the fast decay of the upper pump level 3, the pump transition
is not saturated, and the pump beam decreases exponentially into the medium
at the rate of 04 Ng. We define the effective gain length to be the inverse of
this rate, or I = 1/(c4Np). The gain per round trip at the lasing transition is
exp(2ANyogl), which at threshold must be equal to Ry Re=0.98. ANyl, from
the equation above and the definition of I, is equal to T1Ipymp/(hwa), which
yields the threshold pumping intensity of 5 W/cm?. The pumping beam is
focused onto the same area as the lasing beam area A, therefore the threshold
pump power, denoted as Ppymp,th, is 5A watts with A in cm?.

To calculate the output power of the laser, we need the saturation intensity
I of the lasing transition, iwg/(cgT}), where fiwg is the photon energy of the
lasing transition at 1.06 pm. It is 200 W/cm?. If the pumping power is Ppymp,
then the output power of the laser is, by Eq. 7.37,

1—Ry) Poump

Pout: ( D) AIS(

~1).

Ppump,th

For example, if we let A=0.2 cm?, the threshold pumping power is 1 Watt.
The output power, at twice the pumping threshold or 10 W, is 0.8 W. The



7.4. APPLICATIONS OF THE RATE EQUATIONS 147

differential efficiency dPyyt/dPpymp can be easily calculated to be wg/wa ~ 0.8,
which means one photon of the pump is converted into one photon of the lasing
emission.

In the calculation just performed, the inverse absorption length of the pump,
Nyo 4 is cancelled out and is not needed. The value is needed for transverse
pumping. At about 1% concentration, the absorption length is a few millime-
ters.

Problem 7.1 The titanium:sapphire laser is one of the most widely used lasers
in the laboratory. With a line width of 2m x 10 sec™!, it serves well both as
a tunable single-frequency source and femto-second pulse source. The lasing
transition, centered near 0.73 pum, is between two bands of vibration modes, as
s the optical pumping transition. It can be modelled as a four-level system
with an energy diagram similar to that of the Nd:YAG. Like the Nd:YAG, the
lifetime from the upper pump level to the upper lasing level, and the lifetime of
the lower lasing level, are much shorter than the lifetime of the upper lasing level
(approzimately equal to the radiative lifetime of 4 psec). Suppose the pump is
from a frequency-doubled YAG laser (0.53 um), and the resonator is designed
so that the cross section of the laser beam in the Ti:sapphire material is 1 mm,
and the output mirror transmits 5%. Find the threshold pumping power and
the output power at 50% above threshold. Assume that the pumping transition
cross section is approzimately equal to the lasing transition cross section, and
the titanium density is 3 x 1019 ecm=3.

7.4.2 The Erbium-Doped Fiber Amplifier

Having seen a four-level system in the Nd:YAG laser and the Ti:Sapphire laser,
we now turn to a three-level system: the erbium-doped fiber amplifier (EDFA).
An optical fiber is a cylindrical waveguide. The waveguide confines light to an
inner core which has a slightly higher index of refraction. The EDFA is the key
element in present fiber systems for long-distance high-data-rate transmission:
by direct amplification of optical signals, it eliminates repeaters (which convert
optical signals to electrical signals, then amplify them and convert them back
to optical signals). The erbium ion, which provides optical gain, is a three-level
system. This three-level system has one important difference compared to the
four-level system, in that the ground state is the lower level of the amplifying
transition. Since the atoms are normally in the ground state, and there cannot
be gain unless the upper level is more populated than the lower, ground state,
the three-level system cannot provide any gain until at least half of the atoms
have been depopulated from the ground state. The gain threshold is therefore
very high. Still, the erbium fiber amplifier is being widely used because it pro-
vides gain at the 1.5 um wavelength region where the loss is minimum in fibers.
Erbium ions are embedded in the glass molecules of the fiber. The ground state
and the first two excited states are shown in Fig.7.5. Fach state, labelled in
the standard Russell-Saunders spectroscopic notation 2°+1L;, actually consists
of 2J+1 sub-levels, which are separated in energy through interaction with the
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Figure 7.5: Energy levels of erbium ion in fiber. The lower level of the amplifying
transition, level 1, is the ground level. Light of wavelength 0.98 ym pumps the
ions from level 1 to level 3, from which they relax quickly to level 2, the upper
level of the amplifying transition.

electric fields of the surrounding glass molecules. An electron in one of these
sub-levels is scattered into other sub-levels by interacting with the vibrations of
the glass molecules (phonons). The net result of these two effects is that all
the sub-levels together appear like a single level whose energy width is approxi-
mately 4 x 10'2 Hz. The main decay mechanisms of level 2 and 3 are different.
Level 2 decays mainly by radiation to level 1, with a lifetime of about 10 ms.
Level 3 decays mainly by phonon interaction to level 2, with a lifetime of about
20 ws, almost 3 orders of magnitude faster than the decay of level 2. From
these parameters, the transition cross section between levels 2 and 1, og, can
be calculated to be 5 x 1072! cm?, and that between levels 1 and 3, o4, 2 x
1072' cm?. In application, a semiconductor laser emitting at 0.98 ym is coupled
into the fiber to pump the erbium ions from level 1 to level 3, from which the
ions quickly decay to level 2, the upper level of the amplifier transition. Be-
cause ions in level 3 decay so quickly to level 2, we can make the approximation
* that the population of level 3 is zero. In the presence of a pumping beam of
intensity Ip, and signal beam, which the amplifier amplifies, of intensity g4,
the populations of levels 1 and 2 are changed by three mechanisms: decay from
level 2 to level 1; stimulated emission and absorption of I;4; and absorption of
Ip. The rate equations for the population densities of levels 1 and 2, N; 5 are
then

dN1 N2 O'AIle UEIsig

a T hwp hwE(l 2)

s
dt

where iwp and hw, are the energy difference between levels 3 and 1, and between
levels 2 and 1, respectively. The total population density, Ny, remains constant,
and is given by

NO:N1+N2+N32N1+N2.
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JFrom these two equations, we can solve for the populations in terms of light
intensities, in the steady state:

1 +Isig/IS
1 +2-[sig/IS JrIp/ITh

N1 =Ny

and
Ip/Iry + Lsig/Is

1+ 21,/Is + Ip/Irn

where we have introduced two normalization intensities, the saturation intensity
Ig of the transition

Ny = No

hwE
I prm—
s O'E'T1
and the threshold intensity I7p:
hwp
Iy, = ——.
Th oAl

The reason for the name “threshold intensity” will become clear. The small
value of I (4 kW /cm?) means that the amplifier is easily saturated. For a fiber
whose radius is 5 pm, the saturation power is about 3 mW. The rate equations

for the intensities are

dI
ZP AN Ip
dz

and dl
% = og(Ny — N1)1Lsig.

Substitution of N7 and Ny from above into these equations yields two coupled
equations for the intensities:

dlp 1+Isig/IS

dz A 01+2Isig/IS+IP/ITh r
dl; Ip/Ir), —1
Ulsig O'EN() P/ Th

Tsio.
dz 1+215ig/IS+IP/ITh g

The second equation shows that, for the signal to grow, the right hand side
must be positive, i.e., Ip > I;,. Because the gain threshold depends on pump
intensity, EDFAs usually have smaller core areas than regular fibers to minimize
the pump power. To find the gain of the amplifier, divide the first equation by

the second:
dlp oA 1+Isig/IS Ip

dIsig B OF IP/ITh -1 Isig .

Separating the two intensities and integrating from the initial to the final values
(at z =0 and z = L, respectively) of the intensities,

Ip(L) 1 1 Isig(L) 1 1
oo [ (L) [ (L)
A Jip(0) Ip Iy T.ig(0) Lig  Is
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Although the integration is elementary, we make some simplifying assumptions.
We assume that the length L of the fiber is chosen such that Ip(L) ~ Ipy,. If
the fiber is too much longer, then the signal will be absorbed again. If it is
too much shorter, the amplifier will provide less gain than allowed by the input
pump. We also assume that the initial pump intensity Ip(0) is much greater
than I7;. The above equation then yields

P () el

]; Isig(o):| .

The gain can then be plotted for given input signal and pump intensities. The
small signal gain, when I ;; < Ig, can be cast in a simple form. In this case,
for significant gain, the logarithmic term is much larger than the second term
on the right-hand side of the above equation, and

U_EIP_(()))_

Lig(L) =~ I4i4(0) exp (UA Trr

The gain for signal is often expressed in decibels per watt of pump power:

1010810 [Luig (L) /Tsig(0)] ~ 10 <“—EIP(O)) logo(€).

oa Irn
For an EDFA with a core radius of 5 um, the gain is about 1 db/0.8 mW; an
amplifier providing 30 db of small signal gain requires a pump power of 24 mW.
Now to find the length of the fiber, we integrate the differential equation for Ip
in the absence of the signal, the length L of the EDFA is given approximately
by 04Nt L ~ Ip(0)/I7s. For a doping density Nt of 1018c¢m ™3, an input pump
power of 24 mW, core radius 5 um, L is about 15 m.

Problem 7.2 A piece of erbium-doped fiber of length L is joined at the ends
to form a loop. The fiber is pumped by a laser at 0.98 um to make a fiber
laser.  The pump is coupled through another piece of undoped fiber which is
placed closely to the loop. The coupler transmits 100% of the pump and 10%
of the erbium lasing wavelength of 1.5 um. An isolator is placed within the
loop so that light can only travel in one direction. At 1.5um, the attenuation
in the fiber due to Rayleigh scattering is 0.2 db/km. If L is approximately the
absorption length of the pump, what is the threshold pump power?  What is
the output power at twice the pumping threshold? Use the data in the EDFA
Ezxample

7.4.3 The Semiconductor Laser

The semiconductor laser is probably the most important commercial laser. It
is used in fiber communication systems, as well as many other applications. It
is also the smallest laser, being only a fraction of a millimeter long. It comes
in many different structures, and with different materials, operates at different
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Figure 7.6: Schematic of a semiconductor laser. Electrons in a current passing
through the laser from top to bottom make transitions in the gain region from
the conduction to the valence band.

wavelengths. The most important wavelength ranges are 0.8 pum, 1.3 um, 1.5
pum. It is an opto-electronic device: a diode pumped by the current passing
through it. The optical transition is between two bands of levels, the upper
band called the conduction band and the lower, valence. Gain is provided by
electrons going from the bottom of the conduction band to the top of the valence
band. The theory developed so far for two-level atoms is, strictly speaking, not
applicable; at the least, it must be extended to include the distributions of levels
in the two bands. Furthermore, the interaction between light and matter has
been assumed to be dipolar, which means that the wave functions of the matter
“do not extend to a significant part of the optical wavelength. This is not true in a
semiconductor, where the electronic wave functions are extended. Nevertheless,
it is found that the gain per unit length in a semiconductor is approximately
proportional to the electron density N in the conduction band. One can then
define a transition cross section o as the proportionality constant so that the
gain per unit length is ¢ IN. ¢ depends on frequency, material, and the structure
of the diode, but is typically in the neighborhood of 10716 cm?. Electrons in
the conduction band decay back to the valence band, mostly by spontaneous
emission, with a typical lifetime 77 of a few nanoseconds. Because of the
great variety of devices available, and the complexity of these devices, a fair
treatment of this laser requires a specialized book. Here, we will be contented
with obtaining order-of-magnitude values for some important parameters under
typical conditions.

We consider the structure illustrated in Fig. 7.6 It is a typical quantum-well
laser. The optical resonator consists of a dielectric waveguide within which most
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of the light is confined. Its width is w, typically a few microns; its height is h,
typically one pum or less; light travels along a length of L, typically a few hundred
wm’s. At the ends of the waveguide, light is reflected by the semiconductor/air
interface, with a reflectivity R of about 30%, although in some devices higher
reflectivities are obtained by coating. The gain is provided by a quantum
well layer inside the waveguide. The thickness d of the quantum well layer is
typically about 10 nm. Surrounding the waveguide are semiconductor materials
to make up the rest of the diode and guiding structure with which we will not
be concerned. An electrical current passing through the waveguide excites the
electrons in the quantum well from the valence band to the conduction band
and provides the optical gain. We will first calculate the threshold current ir,.
The threshold condition is given by Eq. 7.38, in which we insert the filling factor
d/h and ignore the loss «:

R? exp <QZUNThL) =1

or
d 1
QEO'NT}LL =1In <§) . (7.39)
To relate the threshold electron density N to the current, we note the current
is simply the change of charge in time. The total number of electrons in the
quantum well, each with charge —e, is NppdwL. The electrons decay with a
time constant T7. So the threshold current is

. eNThde
'Th = —F

We next calculate the output power at a pumping current ¢:. ;From Eq.7.36,
the intensity inside the resonator is, since ¢ is proportional to ANy,

I:Lq(%—l).

where I is the saturation power Aiw/(oT1). The power inside the resonator is
I times the cross-sectional area of the waveguide wh. This power multiplied by
the mirror transmission (1 — R) is the output power:

Pout = (1 — RywhIs(— —1).
1Th
For w =3 pum, h =1 pm, L = 200 pum, R = 30%, 0 =5 x 10716 cm?, T}, = 3
ns, and at a wavelength of 1.5 pum, irp= 3.6 mA, and at twice the threshold
current, P,y is about 2 mW. One common measure of the performance of the
laser is the change of output power versus the change of current,

St = 0w = () (7)
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The second factor hw/e on the right-hand side means one photon per electron,
which is the most that can be obtained in this device. For R = 30%, the laser
output increases by 0.48 mW when the current is increased by 1 mA. Some
semiconductor lasers have their facets coated to increase the mirror reflectivities.
The first factor on the right-hand side approaches unity when R approaches
unity.

Problem 7.3 Suppose the pumping term in the rate equation for population
INVersion is
ANy = ANpe + dNy cos(27 ft)

where the first term on the right is time-independent and much larger than
the second term.  Apply perturbation methods to the rate-equations and find
the frequency response of the light intensity. Use the data in the Example
on semiconductors to calculate the frequency at which the response is down 3
db from the zero-frequency value. Semiconductor lasers are used to transmit
data up to 10 Gb/sec. by modulating their pumping currents. Is your answer
consistent with this fact?

7.5 Multi-mode Operation

So far, we have discussed only homogeneously broadened laser media, whose
atoms all have the same resonance frequency and interact with the same elec-
tromagnetic field. We saw that, by gain saturation, the gain at frequencies
away from the oscillating frequency is less than the loss and therefore fields at
those frequencies are prevented from oscillation. Thus the laser oscillates in
one mode. There are several circumstances under which a laser can oscillate
in more than one mode. Depending on the application, multi-mode operation
can be desirable or even necessary, as in the mode-locked laser to generate ultra-
short pulses; or undesirable, as in optical fiber communication; or unimportant,
as in a laser pointer. Even in a homogeneously broadened laser, multi-mode
operation can occur, because the fields of different modes have different spatial
distributions and therefore interact with atoms at different locations. Spatially
selective saturation of the atomic gain due to the field distribution is called
spatial hole-burning.

7.5.1 Inhomogeneous Broadening

Inhomogeneously broadened laser media have atoms with different resonance
frequencies, the origin of which can be the Doppler effect as in a gaseous laser
like the helium-neon, or different environments the atoms are in as in the solid-
state Nd:glass laser. Because of the different resonance frequencies, different
laser modes, with different frequencies, interact with different groups of atoms
and multi-mode operation is a natural outcome. Consider, for example, the
helium-neon laser. The lasing which produces the familiar red beam at 0.63 pm
is between the 5s and 3p levels of the neon atoms in the gas. The density of the
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gas is low enough so that collisions do not contribute significantly to the line
width, and the dominant broadening mechanism of the transition is Doppler
broadening. As discussed in Chapter 4, section 4.3.3, in a gas at temperature
T, the atoms move randomly with a kinetic energy roughly up to kg7, where
kp is the Boltzmann constant. When an atom moves with a velocity v in the
axial direction of the resonator, the transition resonance frequency is shifted,
to an observer stationary with the tube, by an amount (v/c)fo where fy is the
resonance frequency of the atom at rest. The spread of the velocity Av is given
by kgT = (Av)?/(2M) where M is the mass of the atom, and the spread of
the resonance frequency Af is equal to (Av/c)fy. For the He-Ne laser, Af ~2
GHz. The axial mode frequencies of the laser resonator are separated by ¢/(2L),
where L is the length of the resonator. (The theory of resonators is discussed in
detail in Chapter 8, but the mode separation frequency can be easily derived by
accepting the fact that, because of the boundary conditions at the end mirrors,
there must be an integral number of half wavelengths within L, each number
corresponding to a mode.) Now if Af > ¢/(2L), and ¢/2L is in turn greater
than I', the homogeneous line width of the transition, then each mode interacts
with a group of atoms whose Doppler-shifted resonance frequency coincides with
the mode frequency, within one homogeneous line width. For the He-Ne laser,
I" is the spontaneous emission rate, approximately 100 MHz, and L is typically
about 30 cm, so that ¢/(2L) ~500 MHz. The distribution of the atoms as
a function of resonance frequency is depicted in Fig.7.7(a). The unsaturated
gain follows the atomic inversion and is shown in Fig. 7.7(b). For a mode to be
excited, the unsaturated gain must exceed the loss, so the oscillating modes are
confined within the frequency range between the points where the unsaturated
gain intercepts the loss (Fig.7.7(b)). At every interval of ¢/(2L) within that
range, there is an oscillating mode and the saturated gain is equal to the loss
(Fig.7.7)b. The output spectrum is shown in Fig.7.7c. Between two modes,
there is no optical field and the gain is not saturated and hence retains the
unsaturated value and the saturated gain dips to the loss level at resonator
resonances. This phenomenon is known as spectral hole-burning. The different
modes are normally independent of each other, as they interact with different
groups of atoms. The phase of each mode fluctuates slowly and randomly,
which yields the line width §f of that mode (see Appendix 7.B). The relative
phase between the modes varies slowly in time; after a time of ~1/df, it will
have changed completely. The total output is the superposition of these modes.
It is not constant in time but varies periodically with a period of 2L/c. The
shape of the waveform changes in a time~ 1/df., as the relative phase changes
completely in that time.

7.5.2 The Mode-locked Laser

To generate short pulses in time, by Fourier transformation, many modes at
different frequencies are required. Moreover, to obtain the shortest pulses re-
producibly, these modes must be locked in phase. It is interesting that to date,
the shortest pulses are obtained, by the method of mode-locking, from homo-
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Figure 7.7: (a) Distribution of moving atoms versus resonance frequency. The
peak frequency fy is the resonance frequency of atoms at rest. (b) Unsaturated
and saturated gain versus frequency. Atoms whose resonance frequency coin-
cides with a resonator mode lase in that mode, and the gain at that frequency
saturates to the loss level. Three lasing modes are shown. (c¢) The light output
spectrum for the gain in (b)
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Figure 7.8: Mode locking of a laser to generate short pulses. Upper diagram:
a light pulse circulates inside the resonator, which contains a gain medium and
a modulator. The modulator is a device which attenuates light periodically in
time, with a period equal to the round trip time in the resonator. Middle trace:
time variation of the modulator loss and saturated gain versus time. The gain
is assumed to be saturated by the average intensity, and the period of the loss
is equal to the round trip time in the resonator. Near the minima of loss, the
saturated gain exceeds the loss, and in between the minima the loss exceeds
the gain. Light passing through the modulator near the loss minimum will be
amplified repeatedly; light passing through the modulator between loss minima
will be attenuated repeatedly. Lower trace: the pulse train generated.

geneously broadened lasers whose natural tendency is single-mode operation,
rather than from inhomogeneously broadened lasers which tend to emit many
frequencies. The reason behind this seeming paradox is that in the homoge-
neously broadened laser, the modes are generated by a coherent process and
are automatically excited in phase, whereas in an inhomogeneously broadened
laser, the modes are present, without the definite phase relationship with one
another that the mode-locking process has to create and maintain.
Quantitative theories of mode-locking are beyond the scope of this Chapter.
Only a qualitative description is given here. There are many ways to excite
and phase-lock the axial modes of a laser. The most straightforward method
is placing a modulator inside the resonator, which modulates the loss of the
resonator at the round trip frequency of the resonator (Fig.7.8). As light



7.5. MULTI-MODE OPERATION 157

Nonlinear Medium

\

Aperture

Higher Intensity |
~ — ’\
_— |

Lower Intensity

Figure 7.9: An aperture place after a nonlinear medium. The index of refraction
increases slightly with light intensity so that the peak of a pulse diverges less
than the wings. The aperture transmits more of the peak than the wings.

passes through the resonator, the part that sees the least loss in one round trip
will see the least loss in subsequent trips and therefore will be amplified most.
Similarly, the part that sees the most loss will be attenuated in each subsequent
round trip, and a pulse is formed which circulates inside the resonator. The
pulse cannot be narrowed indefinitely as there are elements inside the resonator
which broaden the pulse, such as the finite gain bandwidth or dispersive optical
components. When the modulation is induced by the light pulse itself such
that higher intensity suffers less loss, we have a very efficient pulse narrowing
process called passive modelocking. One such mechanism which can be used to
this effect is the nonlinear refractive index of a medium. The refractive index
changes with light intensity. By itself the nonlinear refractive index is not lossy.
However, in passing through the nonlinear medium, the peak of a pulse sees a
different refractive index than the wings, and therefore the divergence angles are
different at the peak and at the wings. If the nonlinearity is chosen properly so
that more intense light diverges less than light at lower intensity, then through
an aperture the lower intensities at the wings will be filtered out, and the pulse
is sharpened (Fig.7.9).
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7.6 Further Reading

The laser theory developed in this chapter follows the line in

e M. Sargeant III, Marlan O. Scully, Willis E. Lamb, Jr., Laser Physics,
Addison-Wesley, Reading, Massachusetts 1974.

A thorough treatment of the similarity between lasers and classical oscillators
can be found in

e A. E. Siegman, Lasers, University Science Books, Mill Valley, California
1986.

An excellent book that describes many laser systems, with an elementary
yet careful and thorough treatment of the semiconductor laser is

e O. Svelto, Principles of Lasers, 4th Ed., Plenum Press, New York, 1998.
Laser mode-locking and injection-locking are treated in

e H. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, Upper
Saddle River, New Jersey 1984.

Extensive references on ultrashort-pulse lasers and techniques can be found
in

e L. Yan, P.-T. Ho and Chi H. Lee, Ultrashort Laser Pulses, in FElectro-
optics Handbook, 2nd Ed. edited by R. Waynant and Edinger, Academic
Press, Boston 2000. A thorough treatment on ultra-short laser pulses and
techniques is

e J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomenon: Fun-
damentals, techniques and applications on a femtosecond time scale, Aca-
demic Press, Boston, 1996

The theory of electronic oscillators follows

e K. Kurokawa, An Introduction to the Theory of Microwave Circuits, Aca-
demic Press, Boston 1969.

Another treatment of the theory of the electron oscillator and its frequency
width can be found in

e A. B. Pippard, The Physics of Vibration, Cambridge University Press,
Cambridge 1989,

which also has a very insightful discourse on spontaneous emission, and a
delightful quantum-mechanical theory of vacuum electronic oscillators.
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7.A The Harmonic Oscillator and Cross-Section

7.A.1 The Classical Harmonic Oscillator

In the semiclassical theory of matter-light interaction, quantum mechanics comes
in only in the treatment of matter, here simplified to a two-level system. Tran-
sition between the two levels constitutes a harmonic oscillator. The quantum
mechanical theory of matter culminates in the complex susceptibility x. It is
interesting to see how to obtain the same result, heuristically, from the classi-
cal harmonic oscillator. The rate equations for the population density can be
obtained from energy conservation.

Consider a particle of mass m and charge ¢ sitting on a spring under an
electric field E(t) = (Eoe ™" + Epe"). The equation of motion for the
displacement x of the particle from equilibrium is, by Newton’s law,

d2

moy +mwiz = qE(t)

where wyg is the natural resonance frequency of the mass-spring system. The
macroscopic polarization P = 1(Pye~™!+Pge™") of a collection of these charges
is the statistical average of Nqz, where N is the number of oscillators per unit
volume. Multiplying the equation above by N¢ and statistically averaging over
the oscillators, we obtain the equation for the macroscopic polarization:

d*P dP 2

7 A+ WiP = N%E(t)
where we have introduced a dephasing time constant I'. We now cast the
innocent-looking factor ¢2/m on the right hand side into a different form. In
classical physics, whenever a charge is accelerated, it radiates. The time-
averaged power P,.,4 radiated by an oscillating dipole is, from classical elec-
trodynamics,

q2:z:2w4

P, -
rad = 12mepc3
which is a special case of Larmor’s formula. The energy stored in a harmonic
oscillator is mw?2?/2. The classical radiative rate 7. can be defined as the
ratio Praq/(mw?z?/2) or

Pw?

Ye =
6megme?

In terms of ., the factor ¢?/m is equal to (67egc® /w?)7e, and the equation for

P becomes ) 5

d*P dP 67reoc

dt2 QFE +(.UOP N ’)/(;E( )
This equation yields the classical susceptibility Wthh has exactly the same form
as that of the quantum mechanical oscillator if 7. is replaced by the spontaneous
emission rate v = As;. v can be obtained in a heuristic way by using Larmor’s

formula once again. The energy stored in a quantum mechanical oscillator is
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hw. The power lost by spontaneous emission is hw~y. If we equate hwy to Prgq
, identify gz with the dipole moment 24, we obtain

1208

Te =Y = 3megc3h

The classical harmonic oscillator always absorbs energy from the field. We
know that if we have population inversion, the reverse happens. We therefore
replace oscillator density N by Ny — No = —AN, with which the right-hand
side of the equation for P becomes

= 2%’ P ANE(t)

and a susceptibility is immediately obtained which is the same obtained in
Chapters 2 and 7

7.A.2 Cross Section

The concept of interaction cross section is very useful in visualizing, and con-
venient in quantifying, the strength of an interaction. The cross section is
an imaginary surface area, although in rare cases it may be the same as some
physical surface area, like the dish antenna used to receive satellite TV signals.
The stimulated emission cross section was derived in Chapter 2 and Chapter 7.
Here, as a simple example, we derive the cross section of scattering of a plane
electromagnetic wave by a single, free electron.

Consider an otherwise free electron in the electric field of an incident plane
wave. The equation of motion of the electron is:

mi = —eE et .

The power radiated by the electron, averaged over one cycle, is given by Larmor’s
formula above: )

Prog = L7

rad T o repcd

The incident wave intensity (power/area) I, averaged over one cycle, is

1
I = —¢ycE? .
2 00
If we divide the scattered power by the incident intensity, we get a measure of
the strength of the scattering process. The ratio, which has the dimension of
area, is the scattering cross section for the free electron, og:

8m e? 8 9
op=—|—"—=) =712
f 3 \dmwegmc? 3

We have defined the quantity within the brackets to be 7., which is the classical
electron radius. If we imagine that the charge of the electron is distributed
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uniformly over a spherical surface of radius ., then the stored potential energy
is, to within a factor of two, e?/(4megre). Equating this energy to the energy
of the rest mass of the electron mc? yields the formula for r., which can be
evaluated to be about 3 x 10715 meter. The cross section is a fictitious surface
presented to the incident plane wave by the electron. The power incident on that
surface is absorbed and re-radiated, i.e, scattered by the electron. To illustrate
the application of this physical interpretation, we calculate the attenuation of
the incident wave intensity by scattering. Suppose there are N electrons per
unit volume. Along the wave propagation direction z, the total number of
electrons contained in an infinitesimal volume of area A and width dz is N Adz.
Each electron presents an area op to the wave, so that the total fictitious,
absorbing surface presented to the incident wave is o N Adz, and the energy
absorbed from the incident wave is I(z)ogNAdz. The incident power is I(2)A,
and the power after passing through the volume is I(z + dz)A. By energy
conservation, the difference between them must be equal to the power absorbed
by the electron:

I(z)A—I(z+dz)A = 1(z)or NAdz

or

dI
— = —oxNI(2).
dz at (2)

The attenuation coefficient per unit length is og V.

Now if we add a restoring force and a damping term to the electron equation
of motion and go through the process again, we will find that the scattering cross
section oy, of the harmonic oscillator is enhanced over that of the free charge:

Oho(W) = Tfree { (w— w;;z/jj (v/2)? } .

At resonance w = wy,

Oho (WO) = UfreeQ2

where @ = wg/7 is the quality factor of the oscillator, which is the number
of cycles the oscillator undergoes before 1/e of its energy is dissipated. The
apparent radius of the harmonic oscillator is increased by a factor of Q) over
that of the free electron. Now if the damping is caused by scattering alone, i.e.,
Y = Ye, then

3
Oho(wp) = by A2

which is the same as Eq.7.19.

Problem 7.4 (a) Ezpress the classical radiative life-time . in terms of the
transit time through a classical electron radius and the oscillation frequency.
What is ~. at 0.5um wavelength?

(b) Calculate the spontaneous emission life-time at 0.5um when p is (i) ag;
(1)0.01ay where ag is the Bohr radius.
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Problem 7.5 In Chapter 6, the dissipative force on the atom is interpreted as
proportional to the rate of absorption of photon momentum, hk. The force
can also be interpreted classically as discussed in Chapter 4, section 4.1.2. In
classical electrodynamics, the Poynting vector divided by the speed of light is the
radiation pressure P which has the dimensions of force per unit area. Show that
under a plane wave, the force on the atom, Eq. 4.48, can be cast in the form

Fabs = Po.

where o, the effective area, is equal to the interaction cross section.

7.B Circuit Theory of Oscillators and the Fun-
damental Line width of a Laser

7.B.1 The Oscillator Circuit

At a fundamental level, the laser is not different from an electronic oscillator
in its function of generating a coherent signal, except that, because of its short
wavelength compared to the device size, the output of the laser is spatially
confined and its spatial properties must be considered. Here we develop a
circuit theory of oscillators using a negative resistance as the gain. Negative
resistance in an electronic element refers to a negative differential of voltage
versus current at some bias voltage or current. At the bias point of negative
resistance, energy is transferred from the element to the rest of the circuit. It is
intuitively acceptable, as a positive resistance leads to energy dissipation. The
biasing circuit, unnecessary for the following discussion, is omitted from the
electronic oscillator circuit.

The oscillator circuit model is shown in Fig. 7.10 It consists of a resonator
(the inductor L and the capacitor C'), a gain element (the negative resistance
—R,; — iX), a positive resistance R which represents the output coupling from
the resonator, and an injection voltage source vs. We have added a reactive
(imaginary) part X to the negative resistance, which plays the same role as
the real part of the susceptibility of an atomic transition. When X is non-
zero, the oscillating frequency will deviate from the resonance frequency of the
L — C resonator. The real part of the negative resistance, Ry, depends on the
amplitude of the current passing through it, as energy conservation requires it to
be saturable. Both R, and X are frequency-dependent. The injection signal v,
is used to represent two sources: (i) an outside signal used to lock the oscillator
frequency, a process called injection locking; and (ii) noise. In either case, the
injection signal is treated as a perturbation, a method familiar to students of
quantum mechanics.

To find the current flowing in the circuit loop, we assume, as in light-matter
interactions, an almost purely harmonic signal. The current I and the volt-
age across the negative resistance, V', are defined in Fig.7.10 From elementary
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Negative Resistance

'f*4| R, -iX

+ \Y; - R

+
v (V) c
- L

Figure 7.10: Circuit diagram of an electronic oscillator. The voltage source can
be an injection signal or noise. Gain is represented by the negative resistance.
Resonance is provided by the inductor and the capacitor. The resistor represents
coupling loss in the oscillator.

circuit theory, the equations for I is:

LdQIJerI N I av N dvg
dt2 da  C  dt dt

We assume
V=(-Ry, —iX)I,

which means that the negative resistance reacts fast enough to following the
current. The current [ is to take the form

I(t) = A(t) exp[—iwt — i¢p(t)]

where w is the oscillating frequency, and the amplitude A and phase ¢ are real,
varying slowly in one period. Ignoring second time derivatives of A and ¢, and
separating the real and imaginary parts, we obtain from the equation for I two
equations for A and ¢:

dA R R, 1 .
ot EA = EA + ERG {vs(t) expliwt + i¢]} (7.40)
do X 1 . )

where Q = 1/1/(LC) is the resonance frequency of the L — C resonator. Note
the similarity of these equations to Egs. 7.24, 7.25 and the corresponding physical
quantities. We now solve the equations in three particular cases.
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Figure 7.11: Gain (negative resistance R) versus amplitude A of current passing
through it. The steady-state A is obtained at the point where the saturated gain
equals the loss R. The slope at that pint is negative, so that slight fluctuations
in A are damped.

7.B.2 Free-running, steady-state

In this case, there is no injection signal, vs = 0. The equations above then
become

R = Ry(4)
X
(w-9) = %L

The first equation says that the positive resistance is equal to the negative
resistance, i.e., loss equal to gain. The second equation determines the steady-
state oscillation frequency w. In general, the negative resistance decreases with
increasing current amplitude A, as shown in Fig. 7.11, the intersection of R with
R,(A) determines the steady-state oscillation amplitude A,.

7.B.3 Small harmonic injection signal, steady-state

A small, pure harmonic injection signal
vs(t) = v, exp(—iwst)

is applied, with frequency ws which may be different from the free-running os-
cillation frequency wgy determined above. The question is whether the oscillator
can be locked to the external injection signal and oscillate at the injection fre-
quency. This is a common and useful technique in locking several oscillators to
a reference. For example, the oscillator (“slave”) may not be as stable, or as
pure, as the injection (“master”). It is possible, by this method, to obtain a
better, more powerful source from a weaker, more stable source, in electronics
as well as in lasers.
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Figure 7.12: Injection locking range. Upper trace: the detuning dw is the
difference between the injection signal frequency and the free-running oscillator
frequency. The angle ¢ is the phase between two signals. it has a range of
+7/2. When the injection is successful, the oscillator oscillates at the injection
frequency and has a well-defined phase ¢ relative to the injection signal. Lower
trace: Increased current amplitude due to injection. It is maximum when ¢ =
0(0w = 0), and is zero at the limits of the locking range, ¢ = +7/2.

We assume that injection is successful, and the oscillator is in the steady-
state, oscillating at the injection frequency ws. The amplitude A and frequency
ws of the current differ slightly from those free-running:

A=A+ AA, w, =wy+ Aw

where the subscript 0 denotes free-running values and A denotes deviations
caused by injection. In applying perturbation to Egs. 7.40,7.41 we expand the
negative resistance at Ay :

AR,
dA
The derivative —s is negative, indicating saturation, as shown in Fig.7.11. For

simplicity, we ignore the change of X with respect to A and w. With this
definition, we have from perturbation,

Ry(Ao+ AA) ~ Ry(Ag) + =2AA =R, — sAA.

Vo .
Aw = ST A, sin(¢)
Vo
sRAA = icos(gﬁ)

¢ is the phase difference between the free-running current and the injection
signal. These two equations are plotted in Fig.7.12. Since |sin¢g| < 1, the
maximum locking range of Aw is
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We can write this equation in terms of more general physical quantities by
multiplying and dividing the right-hand side by the output coupling resistance
R. A,R is the output voltage, and R/L = Aw, is the frequency width of the
“cold” resonator formed by the passive elements R, L and C. Since a voltage
is proportional to the square root of power P, we have

_ Awe Pinjection
max 9

|Awl

Poutput

This equation for the maximum locking range is called the Adler equation.
Since by assumption Pipjection < Poutput, the frequency locking range is smaller
than the cold resonator width.

AA is positive within the locking range (|¢| < 7/2), which means that the
power under injection is higher than that free-running, and that the saturated
gain R, is less than that free-running. The latter says the saturated gain is less
than the loss, the deficiency being made up by the injecting power.

7.B.4 Noise-perturbed oscillator

When the injection signal represents noise and fluctuates randomly in time,
Eq. 7.41 can only be solved in a statistical sense. In particular, we are interested
in the phase fluctuation, which determines the ultimate finite frequency width
of an oscillator (or a laser). The amplitude fluctuations are damped, as can be
seen from Fig.7.11, since a decrease in the amplitude, for example, leads to an
increase in the gain which restores the amplitude. The noise source fluctuates,
but within a narrow frequency band near the oscillation frequency. In the phase
equation, the term d¢/dt consists of a possible constant part which goes into the
steady-state oscillation frequency; the fluctuating part of the phase is governed
by the following equation:

do 1

- I
dt ~ 2LA,

[Us(t)efm] .

Note that the driving term within the square brackets varies slowly, its center
frequency being cancelled by the factor exp(—iwt). This equation describes
random walk.

Before proceeding to solve the equation, some mathematical preliminaries
are in order. We denote [1/(2LA)|Im [v,(t)e=™*] by Vi(t). Vg varies ran-
domly. If we multiply Viq(t) by Viq( t'), and average over many such products,
we expect the average to vanish, since any one product is equally likely to be
positive or negative, except when ¢t = t/, in which case we get the average of the
magnitude squared. This argument leads to

(Vag()Viq(t))) = Do (t — 1)

where D is spectral power density of V,,, as a dimensional analysis or a straight
forward calculation in Fourier transform shows. The quantity on the left hand
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side is the correlation function of V4, and as it depends only on the difference
in the two times ¢ and ¢’ and not on ¢ and ¢’ separately, we can rewrite it in
term of the time difference 7:

(Vsq(1)Vsq(0)) = Do(7)

The spectrum of the current is the Fourier transform of its correlation func-

tion
(I(7)1(0))
If we ignore the small, well-damped amplitude fluctuations, then
(I(1)1(0)) = A* {exp(—iwoT)} {exp —i[6(7) — ¢(0)]) .

The calculation of the angled-bracketed quantity is lengthy®. It is performed
by expanding the exponential. In the expansion, products with odd number
of terms (which are purely imaginary) averaged to zero, and the re-summation
of the products with even number of terms (which are real) leads to a simple
result:

fexp=ifo(r) = 6(0)) = exp | (lof7) ~ 60) )]

The quantity in the exponent can be calculated by directly integrating Eq. 7.41
and performing the statistical average:

Td¢ T
/0 Lt = /OdtVsq(t),

(o1 =oF) = [ ar [t < VW) >
- /Tdt’/TdtD(S(t—t')
0 0

= Dl
and hence
(I(7)1(0)) = A2 {exp(—iso)} exp(~2 [7]).
Now we can obtain the spectrum of I(¢) by inverse Fourier transform

(1(©)?) / dr (I(1) " (0)) exp(iQ7)

D
AQ/dT exp(—; || — dwoT + 127)

AQ
(= wo)? +(D/2)*
The spectrum is a Lorentzian centered on the unperturbed frequency wg with

a full width of D. To use this result in more general cases than the particular
L — C resonance circuit here, let us recast D in more general physical quantities.

9See the book by Sargeant, Scully, and Lamb.
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7.B.5 Oscillator line width and the Schawlow-Townes for-
mula

By definition,
Do(r) = (Vag(T)Viq(0))

_ (2L1A0>2 (Imu, (7)e~ v, (0))

Fourier transforming the above equation yields

D= (ﬁ)QQImUS(Q)F}

where the bracketed quantity is the in-quadrature noise voltage squared per unit
frequency, a constant for white noise assumed here (“white” over the resonator
width). Manipulating the right-hand side as in the case of injection locking,
we can re-write D as

Pnoise(Q)

output

D = Auw? (7.42)
where Poise(€2) is the noise power per unit frequency into the load resistor R.
Note the dimension of Pyeise(€2) is energy. This is a very important and general
result that deserves further discussion. The line width of an oscillator is not the
passive (“cold”) resonator width Aw,; rather, it is that width reduced by the
ratio AwePhoise(2)/Poutput-  Since Awe Phoise(£2) is the total noise power into
the resonator bandwidth, the ratio is simply noise power over signal power.

In a resonator with many resonances or modes, Ppise(£2) is the noise power
per unit frequency into one mode. In a laser, the fundamental, unavoidable
noise source is spontaneous emission, which accompanies any stimulated emis-
sion. In this case, Pyoisc(§2) is particularly simple: it is equal to one photon
energy hw. This is from a well-known result from statistical mechanics, de-
rived heuristically below, which says the spontaneous emission into one mode is
one photon per unit bandwidth. Substitution into Eq. 7.42 yields the Schawlow-
Townes formula for the fundamental line width of a laser:

hw

output

D = Aw?

In almost all lasers, the line widths are limited by extraneous factors like mirror
vibration, thermal fluctuation of the refractive index of the medium. The only
laser whose line width is fundamentally limited by spontaneous emission noise is
the semiconductor laser, because of its large Aw, and small Pyytpus. In passing,
we note that the Schawlow-Townes formula is the high-frequency version of the
microwave oscillator line width limited by thermal radiation, where the unit of
thermal energy kT replaces fuw.

We now calculate Peise(€2) into one mode of a laser resonator. The laser
resonator is the subject of Chapter 8, from which we use some results. Consider
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a laser resonator consisting of two mirrors separated by a distance L. For
simplicity, we assume the lasing atoms completely fill the space between the
mirrors. The oscillating mode has a cross-sectional area A. If there are No
atoms per unit volume in the upper state, the total radiation power emitted by
spontaneous emission is

where 7 is the spontaneous emission rate. This power is distributed in frequency
and in space. In frequency, it is distributed over the line width I', but we are
limited to one axial mode of width ¢/(2L). In space, the power is radiated over
the full solid-angle 47. The solid angle subtended by the mode is approximately
(A/VA)? = \2/A, where A/v/A is the diffraction angle of the mode beam. The
fraction of power radiated into the mode is therefore (A\2/A)/(47). Moreover,
the radiation can be in either of the two independent polarizations, so the power
radiated by spontaneous emission into one mode is

¢/2L  NJA 1

Pnoise(Q) = (NQAL) h,{,d’}/ X T X e X 5
L 27
= Ny [ — )21 .
e (167r)\ F)h“’

The factor within brackets is, within a numerical factor, the stimulated emission
cross section . So

Pnoise<Q) ~ CNQO'hw
= Awhw.

where the last line follows from the fact that ¢Nyo is the gain/time, which must
be equal to the loss/time Aw,.

Problem 7.6 Use the Schawlow-Townes formula to estimate the intrinsic line
width of a semiconductor laser and a dye laser. Data on the semiconductor are
in the Ezample. For the dye laser, assume a resonator length of 1 meter, 5%
output mirror coupling, and 50 mW output power.



172



Chapter 8

Elements of Optics

8.1 Introduction

So far, we have treated light as a plane wave in its interaction with atoms.
This is an excellent approximation, as the size of an atom is much smaller
than an optical wavelength, and the light field is uniform across the extent of
the atom. In the laboratory, however, we manipulate light on a scale much
larger than a wavelength. To do this effectively, we need to understand the
propagation of light beyond the plane wave approximation. This brings us to
the subject of optics. In this chapter, we restrict ourselves to light propagating
in homogeneous media, thus leaving out the important subject of waveguides.
We begin with geometrical or ray optics, and introduce the ABCD matrices
which are a convenient way to follow the propagation of light. Ray optics
is the limiting case of very short wavelengths. The defining features of waves,
interference and diffraction, are lost in ray optics. In an analogy with mechanics,
ray optics is like the classical limit of particle mechanics. Unlike the wave
function of quantum mechanics which applies only at atomic scales and below,
the wave nature of light is more readily observed because optical wavelengths,
on the order of a micrometer, are much longer than de Broglie wavelengths of
particles. In many circumstances, therefore, a more accurate, wave description
of light is needed, which is developed after geometrical optics. Both theories
developed here, geometrical and wave, apply only to light rays and waves of
small divergence angles, such as beams from lasers, or light from a distant
source. Furthermore, the wave field is scalar, whereas the electric field of
a light wave is a vector. However, close to the axis of a laser beam, the
polarization is almost uniform with only one component for which the scalar
field is a good approximation. Once the scalar field is found, we will show
how to find the vector fields from the scalar field. Our treatment combines
the traditional Fresnel diffraction theory and Gaussian beams of laser optics.
We consider Gaussian beams as a special case of the general Fresnel diffraction
theory. Finally, the ABCD matrices are applied to the Gaussian beams for the
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design of laser resonators.

In our presentation of diffraction theory, we value mathematical simplicity
above all else. In particular, since all the important concepts can be understood
with waves in two-dimensional space, we will only develop the theory in detail in
two dimensions. Corresponding results for the more physical three-dimensional
waves are stated with no proof or with proof briefly sketched. Moreover, only
monochromatic waves are considered. Most optical experiments are now per-
formed with laser light, for which a monochromatic wave is a good approxima-
tion in most cases. To apply the theory to incoherent light, simply add the
intensities of each frequency component at the end.

8.2 Geometrical Optics

Traditional optical designs begin with paraxial geometrical optics, followed by
necessary corrections and refinements. In manipulation of laser light, often a
knowledge of wave optics is required. Still, paraxial geometrical optics provides
quick and intuitive, and often correct, answers. We expect the readers of this
text to have had some previous exposure to geometrical optics which will serve
us as a conduit to many concepts and techniques. We can only touch upon the
bare essentials of geometrical optics in this section; design of optical components
is a subject in itself and must be left to specialized books. As geometrical optics
is a limiting case of wave optics, logically one would expect to study wave optics
first, then take the short wavelength limit to geometrical optics. This approach
turns out to be a rather difficult mathematical problem. Instead, we illustrate
their relationship by working out several examples in both geometrical and wave
optics.

When light is considered as rays propagating along an axis through a line of
optical elements, each ray is completely characterized by two parameters: the
distance r of the ray from the axis, and the angle r’ the ray makes with the axis
at that point (Fig.8.1). An optical element may be a lens, a mirror, or simply
a stretch of space or material spanning a distance d. We only consider small
angles. This is not a severe restriction in practice. For incoherent sources like
lamps, most of the time we only intercept light at a distant point; laser beams
usually have small divergence angles. The parameters (r2,75) of a ray leaving
any of the optical elements considered here are related linearly to those (r1,77).
Since a linear relationship can be represented by a matrix, we write:

(i;;):(gg)(:i) (8.1)

The transmission of a ray through an optical element is completely characterized
by the ABCD matrix of the element. It is remarkable that the same matrix
applies to the propagation of a Gaussian beam, for two different parameters
which characterize the Gaussian beam. Note the dimensions of the matrix
elements: A and D are dimensionless; C' has the dimension of length while D,



8.2. GEOMETRICAL OPTICS 175

Light
Ray

 Optical
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Figure 8.1: Ray displacement and slope. A light ray is characterized by its
displacement from the optical axis and the slope of the ray at that point.

inverse length. For our purposes, we need the matrices of only two elements:
homogeneous material of length d, and a thin lens of focal length f.

8.2.1 ABCD Matrices

We now derive the ABCD matrices for the two optical elements mentioned
above. For rays going through a distance d in a homogeneous medium, consider
a ray displaced by r1 from the optical axis and propagating at a slope r{. After
a distance d, the displacement becomes 1 4 dr}, and the slope remains ] i.e.,
ro =11 +dr} and 75, = r}. Or, the ABCD matrix for homogeneous material of

length d is
(8 5)-(2 )=

where the matrix has been identified by the subscript d. For a thin lens of
focal length f, we can follow a ray as it enters, propagates inside, and exits
the lens, and relate the exit (r,7’) parameter to the entrance. However, it
is simpler to use the focusing property expected of a thin lens to derive the
ABCD matrix. First, “thin” means that the ray is not displaced by travelling
through the lens. We expect rays parallel to the optical axis entering the lens
(r1,77 = 0) to be focused to a point at a distance f away from the lens on the
axis, (ro = 7,75 = —r1/f). Hence A=1, C = —1/f. Similarly, rays passing
through the optical axis at a distance f in front of the lens, (r1,r] = r1/f), are
collimated, i.e., (r; = 71,75 =0). Hence B=0and D =1. The ABCD
indexABCD matrix!ray matrix for a thin lens is therefore

(ég>:<1l/f(1))EMf (8.3)

where the matrix has been identified by the subscript f. A lens with negative f
is a divergent lens. Let us illustrate the application of the matrices by applying
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Figure 8.2: Imaging by a thin lens. An image of an object formed by a thin
lens at a distance d;. The object is shown at a distance d, from the lens, where
do > f > 0. The image is real and inverted.

them to a familiar problem.

Example 8.1 Imaging by a single thin lens

An object of height h is located at a distance d, to the left of a lens of focal
length f (Fig. 8.2). Let us find the location and size of the image. An image is an
exact replica of the object, with the possibility of magnification or rotation. The
light rays leaving a point of the object at any angle must converge on the same
point at the image. This fact allows us to find the image. A ray characterized by

. N r r .
(r1,7}) from a point on object is transformed to 2 ) = My L) in front
’ T o\ ]

of the lens. The lens transforms the ray to ( :3 > = My ( :2 ) At the image
3/ 2/

. ) r r
a distance d; from the lens, the ray is transformed to ( r4 ) = My, ( 7"3 )
4 3/

(;: ):MdiMfMdo(:ll/ )

The above equation illustrates a very important fact: In passing through a series of
optical elements, a ray is transformed by a matrix which is the product of the ABCD
matrices of the individual elements, the order of the matrices is in the reverse order
of the elements. In this example,

L—di/f do(1—di/f)+d;
MdiMfMdo:< —1/f ' 1L—do/f )

Therefore

Now all rays, regardless of initial slope from the object, must arrive at the same
point at the image, then r4 must be independent of r/, therefore the element C of
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the matrix product must be zero: do(1—d;/f)+d; = 0, or by dividing the equation
by d;dg, we get the familiar lens equation:

1 1 1

— 4+ == 8.4

do " di f ®4)
which yields the position of the image. With this equation, the matrix for the
imaging lens above can be simplified to

< _—dli?;lco —d?/do >

Applying this matrix, we obtain
r4 = —(di/do)r1

which means, physically, that the object is magnified by the factor d;/dy. By
definition, d, is positive. If f is positive and the object is outside the focal length
(do > f) then d; > 0 and r4/r; < 0, which means that a real, inverted image
is formed on the opposite side of the lens from the object. If dy < f, then the
solution for d; from the lens equation is negative, and r4/r; > 0. The image is
on the same side of the object and is upright. However, the image is virtual, as
the rays do not converge on, but only appear to emanate from, the image. The
common hand-held magnifying glass is used in this way for reading, with f ~ 8’
and dy ~ 3” resulting in a magnification of about 150%. For f < 0, the image is
always virtual, upright, and on the same side as the object.

One limitation of geometrical optics can be pointed out immediately in this
example. Suppose the object is at infinity. The incident rays are then essentially
parallel. Geometrical optics predicts a zero image size. The actual image size can
only be calculated using wave optics.

This may be a good place for a few remarks on the imperfections of optical
systems ignored in paraxial optics, but that traditional optical engineers must
deal with, using the single lens as an example. We used the focusing prop-
erties of the a single lens to derive its ABCD matrix. The only parameter
characterizing the lens is its focal length, irrespective of the lens shape. In re-
ality, lenses of the same focal length but different shapes can have very different
characteristics. For example, a double convex lens focuses a beam better than
other shapes. In the professional parlance, the double convex lens has the least
spherical aberration. And in using a plano-convex lens to focus a beam, better
focus is achieved by orienting the convex face to the incident parallel beam than
orienting the plane face. Of course there are other considerations than spheri-
cal aberration. For example, despite its largest spherical aberration of all lens
shapes, the meniscus, a lens formed by two convex or two concave surfaces, is
used for spectacles, because at the large angles in normal vision, the image dis-
tortion is least. Mirrors perform similar functions as lenses. The choice between
them depends on application. For example, the focal lengths of mirrors do not
depend on wavelengths as much as those of lenses (a property called chromatic
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Figure 8.3: The spherical mirror. (a) A ray entering the mirror at an angle 0;
relative to the mirror normal is reflected back at an angle 8, = 6;. (b) The
optical axis is normal to the mirror surface at the point of intersection. Rays
parallel and close to the optical axis are all reflected to pass through the axis
at a point which is half a radius from the mirror. The focal length of a mirror
is therefore half of its radius.

aberration), but mirrors return incident beams to the incident direction which
can be inconvenient in some applications. A ray incident on a mirror is totally
reflected at an angle equal to the incidence angle (Fig. 8.3a). Rays parallel to
the optical axis incident on the mirror at small angles converge on the optical
axis half way between the center and the apex of the spherical mirror surface
(Fig.8.3b). The focal length of the mirror is therefore equal to half of the mirror
radius. In optical systems containing mirrors, instead of following the actual
direction of the rays upon each reflection and therefore changing the direction
of the optical axis, we usually trace the rays in one direction only, a practice
called “unfolding” the system. The reflection from a mirror then is equivalent
to the transmission through a lens of focal length equal to half of the mirror
radius. Large astronomical telescopes use mirrors for reasons of weight, size,
and chromatic aberration.
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Plane

Figure 8.4: The compound lens. (a) A two-element compound lens. (b) Rays
parallel to the optical axis are focused to a point which is f.f; from the 2nd
principal plane. The principal plane is where the extended incident ray and the
extended exit ray meet.

Example 8.2 The compound lens

A compound lens consisting of two simple lenses has much greater flexibility
and functionality than a single simple lens.  Compound lenses are used widely
to compensate for lens aberrations, a subject beyond this book. Two simple
lenses together solves many problems impractical for one. For example, when a
large magnification is needed, even with a perfect lens, the image distance may be
impractically large. By changing the ratio of the focal lengths and their ratio to the
separation between them, one can design different instruments like the microscope,
the telescope, and the beam expander. We discuss the compound lens in this
example to illustrate the use of ABCD matrices and to introduce some common
terms in optics (principal planes, effective focal length).

Consider the system of two lenses, of focal lengths f; and fs, separated by a
distance d (Fig.8.4). We find the ABCD matrix for the system by multiplying the
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matrices for the lenses and the space as follows:

(11/f2 (1)>((1) (f)(ll/fl (1)>

( 1—d/fi d )
—(fitfa—d)/(fifz) 1-d/fs

= (L ) -
- (g g)cpd. (8.6)

where we have defined an effective focal length forr as fifo/(f1 + fo—d). The
reason will become clear immediately. Suppose a ray parallel to, and at a distance
r from, the optical axis enters from the left. The exit distance and angle are given

by
(¢ 5),.(0) =" )

The exit ray intercepts the optical axis at a distance f.f¢(1 — d/f1), independent
of the initial ray distance r (Fig.8.4b). Hence a bundle of parallel rays from the
left will all converge on that point, which is called the second focal point of the
compound lens. Now if we extend the exit ray back towards the lens, and extend the
incident ray, the two will intercept at a distance f.ys from the second focal point.
The plane perpendicular to the optical axis and passing through this intercept is
called the second focal plane.

Similarly, a ray parallel to the optical axis entering from the right will intercepts
the optical axis at a distance f.;7(1 — d/f2) from the front of the lens, called the
first focal point. The plane passing through the extended incident and exit rays is
called the first principal plane.

The simple lens formula Eq.8.4 applies to the compound lens, if the object
distance is measured from the first principal plane, the image distance measured
from the second principal plane, and the focal length replaced by the effective focal
length.

Example 8.3 The beam expander

The beam expander enlarges a parallel beam of radius a to a parallel beam of radius
b. It requires at least two lenses since one single lens will focus the incident parallel
beam which subsequently diverges. Let the focal lengths of the lenses be f; and
fa, and the distance between them d. The results from the example of compound
lens above can be applied immediately.

(e 5),.(0) = (R
(D)
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a)

b)

5 ’,

Figure 8.5: The two-element beam expander. (a) Expander with one positive
lens (f2) and one negative lens (f1). The distance between the lenses is fo — f.
The incident beam is expanded by the negative lens and diverges. The positive
lens re-focuses the beam. (b) Expander with two positive lenses. The distance
between the lenses is equal to the sum of the focal lengths. The entering beam
is focused by the first lens, diverges, and is then re-focused by the second lens.
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a)

b)

Figure 8.6: Imaging by a single and compound lens

Thus
b=a(l—d/f1)

and a/fegr =0 or
fitfa=d

These two conditions lead to f2/f1 = —b/a. The expander is illustrated in Fig. 8.5a.
There is another solution. If we set the ray output to be (-b,0) instead, then
f2/f1 = +b/a. This arrangement is shown in Fig. 8.5b.

Problem 8.1 The lens law can be derived using ray tracing instead of ABCD
matrices.

Simple lens

(i) Refer to Fig.8.6(a). Consider two rays from a point P of the object
at a distance d,, one parallel to the optical axis, the other passing through the
focal point. After going through the lens, the first ray must pass the focal point
at the other side of the lens, and the second ray must be parallel to the optical
axis. The image of P is the point at which these two rays meet. Prove that
the distance d; of the image from the lens is given by the lens law.

(i) Figure 8.6(a) is for the case d, > f > 0. Conuvince yourself that the
lens law holds for the other cases (f > d, >0, f <0) as well.

Compound lens

Use the same technique to prove that the lens law holds for a compound lens,
provided d, and d; are measured from the first and second principal planes, and
fers is used for the focal length (Fig. 8.6(b)).
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We conclude geometrical optics with a discussion on ray transmission through
a dielectric interface, which is governed by Snell’s law and is the starting point of
calculating the transmission through many optical elements like lenses, prisms,
and waveguides. In general, when light comes to a dielectric interface, it will
be partially reflected and partially transmitted. We will ignore the reflection.
Consider a ray entering an interface between two dielectric media. The inter-
face need not be plane. The ray enters the interface from medium 1 at an angle
#, from the normal to the interface, and is transmitted to the second medium
at angle 05 to the normal (Fig.8.7a).

By Snell’s law,

nq sin(fy) = no sin(bz)

where ny; and ng are the refractive indices of medium 1 and medium 2. At
small angles,
n1601 ~ ngbsy

7 !
but r; ~ 601, 1y ~ 02, so
!’ i
niry = nary.

In applying this equation to find the transmission through a curved interface,
the surface of a lens for example, we have to consider the incident ray at an
arbitrary point, and the normal to the surface at that point is the local optical
axis, which must then be related to the axis of the lens. Figure 8.7b shows
a ray passing through a plano-convex thin lens one of whose surfaces is plane
and the other a sphere of radius R. The term “thin” means the change in the
distance r inside the lens can be ignored. Applying the above formula to trace
the ray through the lens, and comparing with the ABCD matrix for a thin lens,
the focal length f of the lens can be found to be

1 n-1

fF- R

Problem 8.2 The optics of the Hubble Space Telescope (HST) (see Fig.8.8)
consists of a concave mirror of radius of curvature 11.04 m and a convexr mirror
or radius of curvature 1.37 m.  The mirrors are separated by 4.9 m. The
diameter of the concave mirror is 2.4 m.

(a) What is the equivalent lens system of the HST?

(b) What is the ABCD matriz for the lens equivalent of the HST? The in-
put is Tight in front of the first lens, and the output is right after the second lens.

(c) An object of height h, is at a large distance d, from the HST. Use the
ABCD matriz to find (i) the image distance d; from the second lens; (ii) the
image height h;; (iii) the angular magnification or power (h;/d;)/(ho/d,). You
will find that the power is not very different from that of an inexpensive tele-
scope. What do you think makes the HST such a valuable instrument?
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a) b)

Figure 8.7: Dielectric interface and plano-convex lens. (a) A ray entering from
one dielectric to another is deflected. With angles measured relative to the nor-
mal of the interface, Snell’s law leads to the relationship n160; = nofs, provided
the angles are small. (b) The path of a ray through a thin lens is deflected
twice, one at entrance and once at exit. Each time, the deflection depends on
the incident angle relative to the normal of the interface at the point of inci-
dence. For a plano-convex lens with one surface of radius R, the focal length is

f=R/(n—1).

Q= 11.04 m

R2=-1.37 m*x

Z

49m

Figure 8.8: Optics of the Hubble Space Telescope
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(d) The closest distance of the planet Jupiter to the earth is 45 million miles.
What is the diameter of the smallest area on Jupiter that HST can resolve, and
what is the size of the image of that area? The diameter of Jupiter is 86 thou-
sand miles. What is the size of the image of Jupiter?

(e) Wouldn’t the front mirror and the hole in the back mirror make a dark
spot in the center of the image?

8.3 Wave Optics

8.3.1 General Concepts and Definitions in Wave Propa-
gation

We consider monochromatic waves of frequency w. Other waveforms in time
can be synthesized by superpositions of waves of many frequencies. We also
restrict any detailed discussions to scalar waves. Light waves of electric and
magnetic fields are vectors, but near the center of an optical beam the fields are
very nearly uniformly polarized and a scalar wave representing the magnitude
of the field is a very good approximation. The field ¥ (r,t) is governed by the
scalar wave equation

1 0%y

C_QW . (8.7)

Vi) =
Let % be of the form
¥(r,t) = A(r) exp{i [¢(r) — wit]}

where A and ¢ are real functions of space. A is the amplitude of the wave,
and the exponent within the square brackets is called the phase of the wave.
Sometimes, where the context is clear, we also call ¢ the phase. In this form,
it is implicit that the rapid variations in space and in time are contained in the
phase. The surface obtained by setting the phase equal to a constant

¢(r) — wt = constant

is called a wave or phase front. Since there are infinitely many possible con-
stants, there are infinitely many possible wave fronts. The rapid motion asso-
ciated with a wave can be followed by following the motion of a particular wave
front. The interference pattern between two waves is largely formed by the
wave fronts of the two waves. The velocity at which a particular wave or phase
front moves is called the phase velocity. Suppose we follow a particular wave
front at time t. At time ¢t + At, the wave front will move to another surface.
A point r on the original surface will move to another point r + Ar (Fig. 8.9):

d(r + Ar) — w(t + At) = ¢(r) — wt = constant.
Expanding ¢(r + Ar) ~ ¢(r) + V¢(r) - Ar, we obtain from above
Vo(r) - Ar = wAt.
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—
r+Ar,t+At
" ) /w
o Iy At

r+Ar

=

Figure 8.9: Propagation of a wave front. Wave fronts are surfaces of constant
phase. Shown are a wave front at time ¢ and at another time ¢ + At. A point
on the wave front at ¢ moves to another point on the wave front at ¢ + At, the
displacement between these two points is Ar.

V¢(r) is normal to the phase front, and is called the wave vector. Ar is smallest
if it lies in the direction of V¢, and the wavefront travels with the speed

[ar] _ w
At [Vo(r)]

which is the phase velocity. The phase velocity can vary from point to point in
space. We now look at a few examples.

Example 8.4 Plane wave

P(r,t) = A, explik - r — iwi].

Substituting ¢ into the scalar wave equation (Eq. 8.7) yields |k| = w/c when A, is
constant. The wave front is defined by

k - r — wt = constant,

or, at a given ¢, k-r = wt+constant which is a plane perpendicular to the vector k.
Since ¢ =k -r, V¢ =Xk, and the phase velocity w/|V¢|=c. Along the direction
of k, the wave is periodic in space. The period, called the wavelength ), is given
by k| = 27/A.
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Example 8.5 Spherical wave

Y(r,t) = Ao explikr — iwt].
T

Note the expression is in spherical coordinates, and ¢ = kr is not a scalar product
of two vectors but a product of two scalar quantities. Again, k = w/c = 27/, but
V¢ = k7 where 7 is a unit vector in the radial direction. The inverse dependence
of the amplitude on r is a result of energy conservation.

Example 8.6 Superposition of two plane waves

P(r,t) = A, expliky - r — iwt] + A, expliks - T — iwt].

Let us choose the wave-vectors ki and ks to lie on the x — z plane with a common
z-component and equal but opposite z-component (Fig. 8.10a):

ki = kcos(0)z+ ksin(0)z
ko = kcos(0)2 — ksin(0)7.

We have used the hat” to indicate unit vectors. The resultant wave is then
P(r,t) = 24, coslk sin(8)z] exp[ik cos(0)z — iwt].

The phase fronts are planes normal to the z-axis, and the phase velocity is now
w/kcos(f) = ¢/ cos(f) > c. The phase velocity is greater than ¢ because along z,
the wave front travels a distance ¢/ cos(6) in one period (Fig.8.10b).

8.3.2 Beam Formation by Superposition of Plane Waves

The last example of superposition of two plane waves serves well as an intro-
duction to the subject of this section. Plane waves extend to all space, and
are uniform in the direction transverse to the propagation direction (“axis”),
whereas an optical beam is confined in the transverse direction. However, as
we have seen in the last example, by superimposing two plane waves, we can
obtain a resultant wave which varies sinusoidally in the transverse direction
through interference of the two component plane waves. If we carry this one
step further and superimpose many plane waves, it is possible, by interference,
to construct any wave amplitude distribution in the transverse direction. The
propagation of a confined wave is the core of the diffraction theory. A particular
case is the Gaussian beam. For mathematical simplicity and ease of visualiza-
tion, we will restrict ourselves to waves on the two dimensional z — z plane.
Only in the final stage will we present the results for full three dimensional
Gaussian beams.

Before going into detailed calculations, let us look at the last example again.
By superimposing two plane waves each of which propagates at an angle 6 to
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Figure 8.10: Superposition of two plane waves. (a) The wave vectors of two
plane waves. They have equal components in the z—direction, equal and op-
posite components in the z—direction. The equal and opposite components in
the z—direction results in a standing wave. (b) The phase velocity along the
z—direction is greater than c, the speed of light; because in one period, the wave
front of either component wave propagates a distance A, but along the z—axis,
a distance of A/ cos(6).

the z-axis, we obtain a resultant wave which propagates in the z-axis with a
phase velocity greater than ¢, and whose amplitude varies sinusoidally in the
transverse x—direction. A simple physical explanation can be given. The wave
vectors k1 and ko are drawn in Fig. 8.10(a), together with their components in
the z- and z-directions. Their common component in the z-direction results in
wave propagation in that direction. The equal and opposite components in the
x-direction form a standing wave which varies sinusoidally in that direction with
a spatial frequency ksin(f) ~ k6 for small . We now come to a very important
property of wave diffraction. Suppose, to confine the wave in the transverse
direction, we keep adding plane waves each of which propagates at a different,
small angle 6 to the z-axis, so that the amplitude adds constructively within
the range |z| < Az and destructively outside. By the Uncertainty Principle
which results from Fourier analysis and applies to this case as well,

A(k) - Az > 1

or

A
>
AvZ m2Ax

In words, confining a beam to a width of Ax requires a spread of plane waves
over an angular range of at least \/2rAxz. The angular spread means that
the beam will eventually diverge with an angle Af. There is a simple physical
explanation to the phase velocity apparently being great than the speed of
light: draw two phase fronts separated by one wavelength for either of the two
plane waves (Fig.8.10b). In one period, the wave front moves one wavelength;
however, the intercept of these two wave fronts with the z—axis is A/ cos(#), the
apparent distance the composite wave has travelled along the z—axis.

(8.8)
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8.3.3 Fresnel Integral and Beam Propagation: Near Field,
Far Field, Rayleigh Range

We now superimpose plane waves to form a beam. For mathematical simplicity,
we only look at beams on the x — z plane. These beams are “sheets,” infinite
in extent in the y-direction. The results for the more realistic waves in three
dimensions are very similar and will be given afterwards. We choose the beam
propagation direction to be z. Each component plane wave propagates at an
angle € to the z-axis and has an amplitude A(6)df, so that the resultant wave,
with the harmonic time variation omitted, is

Y(x,z) = /dHA(G) explik sin(0)z + ik cos(0)z].

In what is called the paraxial approximation, A(f) is significant only over a
small angular range near zero; meaning, from Eq. 8.8, that the beam transverse
dimension is large compared to the wavelength. The limits of integration can
be extended to oo for mathematical convenience if needed. We expand the
trigonometrical functions to 62:

Y(x,2) =~ /d&A(G) explikfz + ik(1 — 62 /2)z]

2
= é“/ﬁmﬂmwpkmzmi%. (8.9)

It is necessary to keep the quadratic term, otherwise the field would be inde-
pendent of z other than the propagation factor exp(ikz). The wave can be
regarded as a plane wave e’** modulated by the integral in Eq.8.9. Equation
8.9 completely describes the propagation of the wave if the wave is known at
some point, say at z = 0. In fact, at z = 0, Equation 8.9 is a Fourier transform:

Y(x,0) = Po(x)

= /d@A(G) explikfz] (8.10)
and we can find the angular distribution by inverse transformation:
k
A(0) = o /dfﬂ/%(m/)exp[—ikx’é].
T

Substitution of A(#) back into Eq. 8.9 yields

P(z,2) = %eikz/de/dx'wo(x') exp [ikOz — ikz'0 —ik(0%/2)z] . (8.11)

We can first integrate over 6 and obtain the field at z as an integral over the
field at z = 0, ¥,(x). The integral is performed by completing the square in
the exponent, and is detailed in an appendix to this chapter. The result is

. _ N2
i et /d@ explikfr — ikx'0 — ik(6%/2)z] = k exp [zk’z + ik(z = a)”

o i2nz 2z
hz—1',z2), (8.12)
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which, variously called the impulse response, kernel, propagator, or Green’s
function, has a very simple physical interpretation: it is the field at (z, z) gen-
erated by a point source of unit strength at (z’,0), and is a (two-dimensional)
spherical wave in paraxial form. The field of a two-dimensional spherical wave
(i.e., a circular wave) with its center at (z’,0) is:

\/T explikr],
,

where r = /(x — 2/)?2 + 22. (Instead of 1/r as in three dimensions, the am-
plitude decreases as /1/r in two dimensions.) Near the z-axis, r ~ z + (z —
2')?/(22), and the spherical wave is approximately

1 - _ 2
\ﬁ exp [zkz N M} ,
z 2z

the same expression as h(x — z/,2) in Eq.8.12. Note that in expanding r,
we have kept the quadratic term in the exponent, because that term, although
small compared to z, may not be small compared to the wavelength so that
when multiplied by k, it may not be a small number. Equation 8.9 becomes

W(w,2) = / da' o (2 )h(z — o, ) (8.13)
= ’L'QIjTZeikZ / da',(2') exp [M] (8.14)

We will call this integral the Fresnel integral. It is the mathematical expression
of Huygens’ principle: the field at (z,z) is the sum of all the spherical waves
centered at each previous point (x’,0) whose strength is proportional to the field
strength at (2’ 0).

Equations 8.9 and 8.14 represent two equivalent ways to calculate wave prop-
agation. Equation 8.9 calculates the wave from the angular distribution of its
component plane waves. When the angular distribution is Hermite-Gaussian,
a Gaussian beam results. Equation 8.14 calculates the wave field at a later
point z from the field at the initial point z = 0. The is the traditional Fresnel
diffraction theory. A Gaussian beam also results if 9, is a Hermite-Gaussian.

Before any detailed calculations and examples, it is possible to get a good
general idea on the propagation from these two formulations, and in the process,
introduce the important concept of near and far fields. Let us first look at the
wave in the near field, i.e., at a distance z small enough so that the quadratic
term in the exponent of Eq. 8.9 is much less than unity, then that term can be
ignored, and

(x,2) =~ eikz/dQA(H)exp[ika]
_ eikzwo(x)

IThe spherical wave is in paraxial form, and the interpretation for close z is rather subtle.
See Siegman for full discussion on this point.
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where the second line follows from Eq.8.10. The near field, at zeroth approx-
imation, is just the field at z = 0 multiplied by the propagation phase factor
exp(ikz). We will examine the first order correction presently. Let us define
“near” more precisely. It was determined by the condition

k9?2 << 1,

the question is then what is the maximum angle 87 It is not 7/2; rather, it is
the angular spread A# over which A(6) is significantly different from zero. Put
in another way, if the wave varies significantly within a distance Az, then by
Eq. 8.8, the inequality above becomes

T Az?

>> z/2.

The quantity on the left, called the Rayleigh range, is the demarcation between
near and far fields. A simple physical interpretation for this quantity will be
given below.

Let us look at the other limit, of large z or far field, using Eq.8.14. When
1, is confined to Az and if z is large enough so that the quadratic factor

kx'?/(22) << 1,

or
T Az?
A

then it can be ignored and the integral becomes

<< z

W(z,2) ~ exp [ikz + ika®/(2z)] /dm'wo(x’) exp <—ik;;wc’) :

12mz
The integral is a Fourier transform. The magnitude of the far field is the
magnitude of the Fourier transform of the field at z = 0. It is not an exact
Fourier transform because of the quadratic phase factor kz?/(2z) in front of the
integral above.?

Let us return to the near field and calculate the first order correction. For
small z = Az, we can expand the exponent in Eq.8.9:

Y(x, Az)

12

2
pikAz /d9A(9)(1 — ik%Az) exp [ikfx]
eikAzwo(x) _ eikAzikAz/Q/dQA(e)HZ exp [ikbz] .

The integral in the last line is

R
k2 O0x2

1 02, (x)

k2 922

/d9A(9)02 explikfx] = /d&A(G) explikfx] =

2In fact one can perform an exact Fourier transformation by a lens of focal length f to
correct the quadratic phase factor. See Problem 8.5 below.
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so that the correction term is

iAz 0?9 (x,0)
2k Ox2

Note that it is in quadrature with the zeroth order term, if 1, is real. The
second derivative can be viewed as a diffusion operator, as the second derivative
of a bell-shape function is negative in the center and positive in the wings so
that when added to the original function, the center is reduced whereas the
wings are increased. The quadrature means that the correction is in the phase,
not in magnitude. This phase diffusion is the cause of diffraction.

We can generalize a little further. Near z = 0, from above,

0l 52) = e [y(,0) 4 B2 V0

2k Ox?
Suppose we write v as a plane wave e*** modulated by a slowly varying function
u(z, 2), ‘
U(z, 2) = ulz, 2)e™?
then

iAz 0%u(w,0)

2k 0x2

This relationship was derived at one particular point on the z—axis, z = 0.
However, there was no particular requirement for this point and the relationship
applies at any z. So taking the limit Az — 0, we have

u(z, Az) — u(z,0) =

ou  0%u
2ik— 4+ — =0. 8.15
0z  0x? (8.15)
This equation is called the paraxial wave equation. It is an approximate form of
the scalar wave equation, and has the same form as the Schriodinger’s equation
for a free particle. The equation can be generalized to three dimensions by a

similar derivation: 5 92 o2
U u U
20k — —+—] =0. 8.16

' 82+(5‘x2+8y2> (8.16)

The Fresnel integral is the solution of the paraxial wave equation with the given
boundary condition of 1) at z = 0. In an appendix, we outline how a three-

dimensional wave can be built up from two-dimensional waves. The resulting
Fresnel integral in three dimensions is

k(z —2')?

. 1 ik _ 2\2
ezkz/dm/dy/wo(m/7y/) exp |:l 5 G (y y)
z

2z

(8.17)
where v, (z,y) is the field distribution at z = 0. Note that, as required by
energy conservation, the field, in three dimensions, decays as 1/z, not as /1/z
in two dimensions. And note that the three-dimensional impulse response is
essentially the product of two two-dimensional impulse responses. Finally, we

k
U(x,y,2) = o } exp
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Figure 8.11: Rayleigh range. The distance from (0, 0) to (0, z) is z. The distance
from (0, Az) to (0, 2) is approximately z+Az?/(2z). The difference is Az?/(22).
Hence a wave originating from (0,0) and another from (0, Az) will acquire a
phase difference of kAz?/(2z) when they reach (0, z). The phase difference is
unity when z equals the Rayleigh range.

discuss the physical meaning of the Rayleigh range. The reference of near or
far field is always to a particular plane, chosen to be z = 0 in this case. At
z = 0, the field extends to Az. Consider the two points (0,0) and (Az,0) and
the distances from them to a point (0, z) on axis (Fig.8.11). The distances are
z and VAz2 + 22 ~ 2z + Az?/(2z) respectively. If a spherical wave emanates
from (0,0) and another from (Az,0), when the waves reach (z = 0, z), they
will have picked up, from propagation, phase factors of kz and kz + kAx?2/(22)
respectively. The difference between these phase factors is kAx2/(2z). This
difference is unity at the Rayleigh range. The phase difference is negligible in
- the far field but significant in the near field.

8.3.4 Applications of Fresnel Diffraction Theory

We will apply the Fresnel diffraction integral, Eq.8.14, to a few cases, to illus-
trate its use and the difference between wave and geometrical optics.

Diffraction through a slit

Suppose a uniform plane wave of amplitude A travelling in the z-direction im-
pinges on a screen at z = 0 which is opaque save for an opening at |z| < Ax/2.
What is the field at z > 07

The exact field distribution at the opening z = 0 is a difficult boundary value
problem. However, intuition suggests that it is equal to the incident amplitude
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A for |z| < Az and zero otherwise. The field at z > 0 is, by the Fresnel integral,
(Eq.8.14) with ¢,(x) = A,

R ey [ [ =)
Y(x,z) = ot A[Awdx exp [T .

The integral cannot be evaluated in closed form. For numerical integration, it is
convenient to normalize the spatial variables. A natural scale for the transverse
coordinate is the aperture size Az. Denote z/Ax and z'/Az by T and @', the

field becomes
1 AV
Pz, 2) = e““ZAq/ é/ dx’ exp {M] ,
iz J_4 Z

where the normalized axial coordinate Z is z/b and b is the Rayleigh range

TAz?
b= .
A

For large Z or in the far field, we ignore the quadratic term Z'?, and the integral
becomes a Fourier transform, as discussed in Section 8.3.3. For small Z, the
exponent is large and the exponential function fluctuates rapidly, except when T
is close to @', i.e., the integrand approximates a delta function, and we are in the
near field where the wave changes little. When A approaches zero compared to
the aperture size, the Rayleigh range approaches infinite, and the fringes of the
far field, which are characteristics of waves, will not appear. The magnitude of
1 is plotted for several Z in Fig. 8.12. Note how the field evolves from its initial
box distribution to the final sinc function: the change is most rapid where the
field changes fastest, i.e., at the edges.

In terms of geometrical optics, rays pass through the slit undeflected, so that
the intensity distribution faithfully duplicates the slit. This distribution is a fair
approximation for the near field (short wavelength limit) but fails completely
in the far field.

Problem 8.3 a) Consider the diffraction through a slit, 0 < x < d, with d— co.
The problem then becomes one of diffraction through a straight edge. FEvaluate
and plot the transmitted field versus x at a few points from the edge. Compare
the diffracted field from a straight edge related to that of the near field diffracted
from a slit.

(b) A wave is incident normally on a screen of perfect conductor which has
an opening at -d/2 < x < d/2. Calculate the reflected wave. How is the
reflected wave related to the transmitted wave?

(c) A wave is incident normally on a strip of perfect conductor at -d/2<
x <d/2. Calculate the reflected wave and transmitted wave. How are these
waves related to those in (b)?
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Figure 8.12: Diffraction through a slit: field magnitude at different distances
from the slit. Vertical axis: Normalized magnitude of the transmitted wave
through a slit at different distances from the slit. The distance is normalized to
the Rayleigh range. Horizontal axis: transverse distance normalized to half of
the slit width. Note the change of scale.

The pin-hole camera

The pin-hole camera is a rudimentary imaging device. There is an opening
(pin-hole) on one face of an otherwise closed box, and the image is projected
by the object through the pin-hole onto the inside face opposing the opening.
The pin-hole camera is used in X-ray imaging. The vision of many organisms is
afforded by pin-hole cameras®. To illustrate the effects of geometrical and wave
optics, we will calculate the size of pin-hole for maximum spatial resolution.
Let the radius of the pin-hole be a, and the distance between the hole and
the image plane d (Fig.8.13(a)). Light from the object at a far distance D
>> d may be considered as emanating from many points on the object. A
point illuminating the opening will, by geometrical optics when a is large, create
an image of dimension approximately equal to the pin-hole size a (Fig.8.13(b)).
Better resolution, i.e., smaller image size of the point, is achieved by reducing
the hole. When a is reduced sufficiently, however, according to wave optics,
light after passing through the pin-hole will diverge, with an angle of about
A/(wa), therefore the size of the image is about d - \/(wa), which increases with
decreasing hole size (Fig.8.13(c)). The minimum image size is then obtained
when the geometrical optical image size is equal to the wave optical image size,
a~d-\/(ma), or d ~ ma?/\, the Rayleigh range of the pin-hole (Fig.8.13(d)).

3See the fascinating account The Forty-fold Path to Enlightenment in Richard Dawkins,
“Climbing Mount Improbable,” Norton, 1996
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Figure 8.13: Pin-hole camera and the image of a distant point. (a) The pin-hole
camera. (b) The image of a distant point according to geometrical optics. (c)
The image of a distant point by diffraction through the hole. (d) Image size
of a distance point versus hole radius. The image size is minimum at a radius
such that the depth of the camera is equal to the Rayleigh range of the hole.
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Figure 8.14: The plano-convex lens. One surface of the lens is plane, the other
spherical with radius R. The thickness of the lens at the center is d. At a
distance z from the center, the thickness is d — 2% /2R

The same conclusion can be reached using the Fresnel integral, but there is
no closed form solution when the opening is “hard.” When the transmission
through the opening is approximated by a Gaussian, a closed form solution can
be found and will be treated with Gaussian beams below.

Action of a thin lens

A lens is “thin” if its thickness is much smaller than the Rayleigh range as
defined by of aperture of the lens, so that in passing through the lens, a beam
is not diffracted. The beam, however, picks up a phase factor which varies
quadratically in the transverse dimension. That phase factor depends on the
focal length of the lens and affects the subsequent diffraction of the beam. As
an example, take the case of a plano-convex lens (Fig.8.14). It is a dielectric
material one surface of which is plane, and the other spherical of radius R. The
index of refraction is n and the thickness at = 0 is d. The difference between
d and the thickness of the dielectric at = is R — vV R? — 22 ~ 22/(2R). Define
the entrance and exit planes of the lens as the plane of the flat surface and
the plane touching the apex of the lens respectively, then a plane wave in the
z-direction passing through the lens picks up at x a phase factor of kz2/(2R)
from travelling through air, and nk[d—z2/(2R)] from travelling in the dielectric.
The total phase shift is nkd — (n — 1)k2?/(2R). Plane waves travelling at small
angles to z pick up the same phase factor to order 2. The same consideration
applies to lens of other quadratic surfaces. The constant phase factor nkd can
be ignored, and the proportionality constant of the quadratic phase shift defines
the focal length f of the lens, so that the exit field from and the entrance field
to a lens are related by:

¢em’t = eXp [_kaQ/(Qf)] z/}entrance (8]—8)
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As a simple check, a plane wave incident on the lens emerges as a spherical wave
with the center at a distance f from the lens.

Problem 8.4 (a) A hand-held magnifier, with a focal length of 5 ¢cm and a
diameter of 4 cm, is used to focus sunlight which on a bright day can be as
intense as 100 mW/cm?. What is the light intensity at focus? What is the
depth of focus? Use an average wavelength of 0.5 um.

(b) The published angular resolution of the Hubble Space Telescope is 0.053
arcsec for visible light. How does that compare with the angular resolution lim-
ited by diffraction?

Imaging with a thin lens - the lens law revisited

We will look again at the lens law, Eq. 8.4, derived earlier by ray optics. From
the wave theory, a couple of important points will emerge which cannot be
obtained or are not obvious from ray optics. One is the resolution limit imposed
by the size of the lens. The other is the nature of the image field, which turns
out not to be exactly a scaled replica of the object field even if the lens is ideal.
Again, the object is at a distance d, from the lens. The field of the object is
¥o(x). Right in front of the lens, the field, according to Eq.8.13, is

P1(x) = /d:c’i/}o(x’)h(:v -2, d,).
After the lens, the field is, according to Eq. 8.18,

¥1(x) exp [—zk:cQ/(Zf)] )

At the image distance d; from the lens, the field, by Eq. 8.13 again, becomes,

P(x) /dz"z/q (z'") exp [—ikx"z/(Zf)] h(z — 2", d;)

= /dx/dx”wo(x’) exp [—ika?/(2f)] Mz — 2", d;)h(z" — 2, d,).
In each of the impulse response functions h there is a quadratic phase factor;

there is another quadratic phase factor from the lens. Together, the quadratic
phase factors add up to

“oF T2, T

o |: 1,//2 (x _ x//)2 (:U” o 1,/)2

The quadratic terms in z” will cancel and the integration over the linear phase
terms x” can be performed if the lens law holds, i.e., if:

11
—+ =0
tota

|
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The integration over z” is

1 1.0
da expik { - 22 T L 8.19
/ 7" expi { i 7 ( )

The integration limits are the lens aperture. But suppose for the moment the
lens is large enough to approximate the limits by infinity, then the integral yields

a delta function
5 £ + .’t_,
d; d,

and the image field is, apart from a intensity scaling factor and a constant phase
factor k(d, + d;),

/dx’wo(x’)exp [ik { ;; + ;”; H 6 (; + j)
= o it - (%) b o -duajan.

Thus the image field is a scaled version of the object field, multiplied by a
quadratic phase factor. This quadratic phase factor is usually -but not always-
inconsequential. Indeed, this additional phase factor is crucial in one convenient
way of analyzing multi-mirror optical resonators, discussed below.

Let us return to the finite lens aperture and Eq.8.19. If the lens diameter
is D, then the integral becomes, instead of a delta function, a sinc function:

sin [% (di + 5—;)}

kD [ !
Ea (z + z)

and the image field is

2 ” /
’ / . x T . kD [z T
/dxwo(:c)exp [Zk{Zdi+2do}] smc[ 5 (di+d0>:|

which has the form of a convolution of the object field with the sinc function.
The sinc function integrates 1, (z’) over its (the sinc function’s) width d,\/D.
Two points in 9, separated by Az’, are separated in the image only if they are
separated by more than d,\/D, or

Ax’ - A
d, D’
The left hand side is the angle subtended by the two points in the object at the
lens, and the right-hand side, the diffraction angle of the lens aperture. The
resolution improves with larger aperture or shorter wavelength.

Problem 8.5 Prove, by direct application of the Fresnel integral, that the field
a focal length behind a lens is the Fourier transform of that a focal length in
front of the lens. The proof is rather formal. For a physical discussion, see the
reference to Haus in the section on Further Reading at the end of this chapter.
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Diffraction through a thin periodic structure

A widely used optical component is the grating. The grating can take many
forms, but basically it is a periodic structure that, through multiple interfer-
ence, sends an incident wave to different directions depending on the wavelength
of the wave. Most practical gratings have periods on the order of the wave-
lengths for which they are designed, so that wave diffracted from the grating
can spread over a large angle, and the Fresnel diffraction theory developed may
not apply. However, as seen immediately below, the diffracted wave consists of
well separated, narrow lobes; over each lobe, Fresnel diffraction is valid. More-
over, the essential features of gratings come from their periodicity, and we will
consider diffraction through a thin structure whose period A is larger than the
optical wavelength \. Let a plane wave exp(ikz) be incident on a thin periodic
structure located at z = 0 whose transmission is

T(z) =T(xz+nA)

where n is an integer ranging from 1 to N, N being the number of periods
through which the incident wave passes. After emerging from the structure,
the plane wave is modulated in the transverse direction, and is

According to Fresnel diffraction theory, when the wave propagates further in the
z-direction, it will remains approximately unchanged for a distance wA?/), the
Rayleigh range corresponding to the structure period A. At a larger distance
in the Fraunhoffer region, where z >> 7(NA)?/\, the Fresnel integral simplifies
and the wave becomes

¥(z,2) = : exp [ike + ika® /(2z2)] /dx/%(x')exp <_iixz/>

12Tz

/dx’¢o(x’) exp (—i]zxx/)

N nA o /
Z/ dx'T(z') exp ( zk;mx )
n=1 (

n—1)A

K

where we have broken the integral over the whole periodic structure into N
section, each of which over one period. The integral can be recast by making
use of the periodicity of T":

nA : 1
—ik
/ da'T(z") exp ( W >
(n—1)A Z

/oA dr'T (' — (n — 1)A) exp <_iixx/) exp [—ikz(n —1)A/7]

[ /OA da'T(2') exp (_Zixx/)] exp [—ikz(n — 1)A/z].
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The integral within the square brackets is the Fourier transform of one period
of T.  Thus the wave emerging from one period is a product of two terms,
one is the Fourier transform of one period, which is the same irrespective of
the position of the period, and the other is a phase factor that depends on the
position of the period but independent of the specific transmission function.
Putting the expression back into the sum, we have

A —ikzr | &
P(z,2) o [/0 dx'T(z") exp( IZ )] Zexp [—ikz(n — 1)A/z]

_ [/OA dx’T(x')eXP(_ik;xm/)} [sin [NkAm/(Zz)]]

sin[kAx/(22)]

Thus the far field is a product of two terms. The first term is the Fourier
transform of one period. The second, called the form factor, is an interference
term that is the result solely of the periodicity and independent of the details
of the structure. It is the second term, when the structure is used as a grating,
that is responsible for its ability to resolve wavelengths. The spatial dependence
of the field can be written in terms of the angle § = z/2. As will be seen
immediately below, the form factor is negligibly small except near several angles,
called orders, at which all the waves from all the periods add in phase. The
variation of the first term in 6 is much more slowly than the second, as the
former is the far field of just one period whereas the latter is that of N periods.
Over the angular range where the form factor varies rapidly from almost zero
to a maximum and back to zero again, the first term hardly changes. Thus
the first term, or the specific transmission on one period, only determines the
efficiency of the diffraction into the orders.

Let us now examine the form factor and see how it determines the wavelength
resolving power of the structure. In terms of § = z/z and A = 27 /k, it is

sin [NwA6/A]

FONO) =5 Tae]

F(\,0) = N for all A, and this is called the zeroth order. It rapidly drops to zero
at a small angle d60 = (A\/A)/N. As 6 increases further, F' remains small until
we come to the first order, at § = A\/A when its magnitude becomes N again.
Now if two nearly equal wavelengths A1 and Ao pass through the structure, they
will be diffracted into two different angles 8; = \;/A in the first order, and they
can be separated only if |61 — 62| = |\ — A2 /A > 66 = (A/A)/N, or ouly if

Ml 1

A1 - N
Thus the resolution of the structure is equal to the number of periods that the
incident wave passes through. This result can also be derived from physical

considerations. At the first order angle, waves diffracted from each period of the
grating add in phase. Consider two waves from the bottom of two consecutive
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Figure 8.15: Diffraction from a grating. The grating period is A. At a diffraction
order, the waves diffracted from all the periods add in phase. When two waves
originating at points one period apart, their path difference must be whole
wavelengths. For first order, the path difference is one wavelength A\. The
diffraction angle @ is therefore given by A = A 6.

periods (Fig.8.15). The path difference must be A, i.e., A0 ~ A. On the other
hand, the diffracted beam diverges with an angle 6, ~ \/(NA). A different
wavelength )\, to be separated from A, must be diffracted to angle 6’ so that
|0/ — 6] > 04, or |N — A|/A > A/(NA), the same result as above.

Problem 8.6 So far, we have not considered the effect of polarization in diffrac-
tion. Suppose a grating is made of parallel long metallic strips. Will it better
diffract waves polarized parallel or perpendicular to the strips?

Problem 8.7 (a) A plane wave is incident on a lens (of focal length f) at an
angle 0 from the optical axis. Prove that it is focused at a point f6 above the
azis on the focal plane (Fig. 8.16).

(b) A field distribution 1,(x) can be decomposed as a superposition of plane
waves at different angles from the optical axis. If a lens is placed at some
distance from it, use the result in (a) to show that the field on the focal plane is
the far field of v,.

(c) A beam with irreqular profile can be smoothed and re-collimated with a
pair of lenses and a pin hole.  The positive lenses are separated by the sum of
their focal lengths, with the pin hole between the lens at the focal plane of the
first lens.  Ezplain the smoothing.

8.3.5 Further comments on near and far fields, and diffrac-
tion angles

In many cases, the field ¥, (x) changes significantly over a distance much smaller
than the extent of ¥,(x). The grating just discussed above is an example: a
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Figure 8.16: Focusing of an oblique plane wave by a lens. A plane wave
travelling at an angle 6 from the optical axis is focused by a lens (of focal length
f) to a point on the focal plane, at a distance f 6 from the axis.

plane wave passing through it varies significantly in z within one period A,
which is much smaller than the size of the grating, NA. Now ,(z) has two
characteristic lengths, A and NA. Which one determines the near and far
fields? For the near field, the wave transmitted by each period does not change
appreciably within the Rayleigh range as determined by A. Farther than that,
the waves from adjacent periods begin to overlap and interfere, and we are no
longer in the near field. But we are not yet in the far field. The far field,
it will be recalled, is given by the condition that the quadratic phase factor
kz'?/(22) in the Fresnel integral be much less than unity, so k(NA)?/(22) << 1,
or z >> m(NA)2/\. The far field is determined by the grating size NA; the
near field by one period A.

The far field of the diffracted light from a grating may be too far for the
laboratory. For example, for 1 um light covering 1 cm of grating, the far field
is ~300 m from the grating. The standard method to observe the far field in a
shorter distance is to use a lens. The field distribution on the focal plane (one
focal length behind the lens) is the far field. The proof follows from the fact
that a plane wave travelling at an angle 8 from the optical axis is focused by the
lens to a point = f6 on the focal plane (Fig. 8.16) where f is the focal length of
the lens (see Problem 8.7a). Now if we consider that wave leaving the grating,
¥o(x), as a superposition of plane waves at different angles with distribution
A(9), then the intensity at the focal plane represents |A(#)|?. (From Eq.8.10,
A(6) is the Fourier transform of ¢,(x), as is the far-field of ¢,(z) (within a
phase factor).

Another interesting property of grating is the far field diffraction angles.
The far field is, from above, proportional to

A , ’ . ’ sin[NkAe/Q]
l /0 dz'T (") exp(—ikbx )1 {W}
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where § = x/z. The second factor is periodic. In each period there is a narrow
lobe with an angular width A/(NA), which is diffraction angle of the whole
grating. The first factor is the Fourier transform of one period, so that the
angular width is ~ A/A, much wider than the lobes of the second factor. The
diffraction pattern is therefore a series of lobes in different angles (orders) whose
widths are determined by the whole grating, with an envelope whose width is
determined by one period.

8.4 The Gaussian Beam

A very important class of waves, the Gaussian beam, is obtained when the
angular distribution A(6) is a Hermite-Gaussian function. The Gaussian beam
is what comes out of almost all lasers, because it is the normal mode of optical
resonators formed by spherical mirrors. We will examine the two-dimensional
fundamental Hermite-Gaussian beam in detail, then give the expressions for
the three-dimensional Gaussian beams. We will see that inside a resonator
consisting of two spherical mirrors, a Gaussian beam can reproduce itself in one
round trip if the optical frequency is correct, i.e., a mode is formed.

8.4.1 The fundamental Gaussian beam in 2 dimensions

When the angular distribution is a Gaussian,

A(8) = Ay exp l— (;)] ,

where A, and 6, << 1 are constants, we can extend the limits of the integration
over 0 to +oo, since A(f) is significant over a small angle range of 6,, and the
integration can be carried out in closed form by completing the square in the
exponent to obtain the full expression for 1 (x, z). In anticipation of this rather
complex result, let us first introduce one of the several parameters by Fourier-
transforming A(f) to obtain the field at z = 0 (Eq. 8.10):

2
Po(x) = /dﬁAoeXp [ (:) + ikOz

70 Ay exp [ (k00x>2] |

2

The field at z = 0 is a Gaussian, with width w, which will be called the beam
waist

Note that

0, = (8.20)
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is the manifestation of the Uncertainty Relationship for this particular beam.
1, can be written in terms of w,,

Yo(x) = Ao\/;\wo exp [— <ufo>2] :

Related to w, is the Rayleigh range b,

Tw W,

A0,
The field at z # 0 can be obtained from either Eqs. 8.9 or 8.14. The result is
bole.2) VemA, < @ )2
s = —_— . eX — EE—
0 4/k2(22 +b2) p w(z)

)  ka? 1 z
- exp {zkz + zm} - exp [—15 arctan (5)] . (8.21)

2
o

b

where we added a subscript 0 to ¥(z, z) in anticipation of higher-order beams.
1o has been separated into four factors: (i) amplitude; (ii) beam size; (iii) radius
of curvature; and (iv) phase factor.
The first factor
V2r A,
v k(22 + b?)

is a direct result of energy conservation: as the beam expands, the field ampli-
tude must decrease to keep the total power constant. This becomes apparent
once it is re-cast in terms of the spot size defined immediately below.

The second factor
e z \°
<p | —
P )

quantifies the transverse extent of the wave as a function of z. The spot size
w(z) is

(8.22)

w(z) = w2 + (20,)? (8.23)

= we\/1+ (2/b)% (8.24)

Note that at large distance z > b, w(z) — z6,, and the spot size diverges
linearly with an angle 6,,.
The third factor defines the spherical phase front, approximately quadratic

near the z—axis:
2

exp |ikz + sz
P 2R(z) |
The radius of curvature is
R(2) = 2z +b*/z. (8.25)
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Figure 8.17: Parameters of a Gaussian beam. Parameters of a two-dimensional
Gaussian beam as a function of distance from the beam waist. The distance is
normalized to the Rayleigh range b. (1) Beam size w(z) normalized to the beam
waist w,; (2) Radius of curvature R(z) normalized to b; (3) Axial phase shift
(1/2) arctan(z/b) in radians. The asymptotic values at large |z/b| is £ /4.

At large z, R(z) — z, and the large spherical wave front centers at the origin.
The fourth factor

exp [—z; arctan (2)] (8.26)

is a phase shift which results in a change of phase velocity on the optical axis.
The first, energy conservation factor can be re-written as

A, W,
NG / w2 (8.27)

. Note that all the parameters which vary along the z—axis, w(z), R(z), and
arctan(z/b) all have the Rayleigh range b as the characteristic length. They
are plotted in Fig.8.17. We define the Gaussian modulation function w,(z, 2)
as

iy = [t o - () ity - ot () . (529

so that the Gaussian beam is a plane wave exp[ikz] modulated by wu,.

Problem 8.8 A Fabry-Perot interferometer consists of two parallel, partially
transmitting plane mirrors. A gaussian beam is incident onto the interferometer
with the beam waist on the front mirror. In the far field of the transmitted beam,
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fringes (rings of bright and dark rings) appear. Explain. What is the spacing
between two adjacent bright rings?

8.4.2 Higher-order Gaussian beams in two dimensions

Beside the fundamental Gaussian beam, there are infinitely many other confined
beams, among which of particular importance are the higher-order Gaussian
beams. The fundamental and higher-order Gaussian beams form an orthogonal
and complete set: any other beam can be expressed as a superposition of these
beams, and they are the eigenmodes or normal modes of optical resonators
formed of spherical mirrors that are used almost universally in lasers.

The higher-order Gaussian beams ¥, (z, z) are fundamental Gaussian beams
amplitude modulated by Hermite polynomials H,, and phase modulated by an
additional phase factor —m - arctan(z/b) :

Um(z,2) = Hp(V2x/w(z))exp[—imarctan(z/b)] - ¢ (z, 2)
= um(z, 2) - exp(ikz), (8.29)

where we have defined the Hermite-Gaussian beam modulation function ., (z, z),

wm(z, 2) = \/% Hy, (V22 /u(2) ) exp l_ <$ﬂ exp {in—i)]exp[_wm (2)]

(8.30)
and the axial phase

P (z) = <m + ;) arctan(z/b)

These beams are obtained from Hermite-Gaussian angular distributions. The
Hermite-Gaussians are the same functions seen in solutions of the quantum-
mechanical harmonic well problem. The first few Gaussian beams are plotted
in Fig. 8.18.

8.4.3 Three-dimensional Gaussian beams

With initial Hermite-Gaussian distributions in Eq. 8.17, three-dimensional Gaus-
sian beams are formed which, in Cartesian coordinates, are products of two
2-dimensional Gaussian beams:

UV (T, Y, 2) = um(x, 2) - un(y, 2) - exp(—ikz). (8.31)

In the above expression, it is possible to have different beam waists w,, and we,
in the z— and y—directions, and therefore different Rayleigh ranges b, and b,
in u, (x,z) and uy,(y, z) respectively. The asymmetry results in elliptical spot
sizes and wave fronts. The phase angle when m = n = 0 is arctan(z/b), twice
as that in two dimensions. The fundamental, symmetric Gaussian beam is

. w, 224y k(2?4 y?)
= X —_ 1
07 w(2) P w(z)? 2R(z)

— darctan(z/b)
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Figure 8.18: The first four Hermite-Gaussians

In cylindrical co-ordinates, different expressions of Gaussian beams emerge,
but they can be regarded as superpositions of Cartesian Gaussian beams. For
example, the “donut mode” is a superposition of two Cartesian beams of equal
beam waist:

1/)10(%11,2) +i1/101($»y72) ~ (‘T+Zy) exp[i(xQ +yz)/U}2(Z)
~  rexp[—r?/w?(2)].
8.4.4 Gaussian beams and Fresnel diffraction

Since the Gaussian beams are special cases of Fresnel diffraction, and they form
a complete set, diffraction of an initial, arbitrary field distribution ¥(z,y) can
be handled using Gaussian beams as well as the Fresnel integral, by expansion
in a series of Gaussian beams:

\I](:E?y?’z = 0) = ZAmnwmn(xay,Z = 0)

In subsequent diffraction, the field becomes

\I/(l’,y, Z) = ZAmn'll)mn(xa Y, Z)

Since the transverse field distribution of the Gaussian beams remain Hermite
Gaussians in propagation, the diffraction of ¥(z,y, 2) is a result solely of the
relative axial phase shifts

(m + n) arctan(z/b).
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Figure 8.19: Diffraction through a slit as a superposition of two Hermite-
Gaussian beams. The wave immediately after passing through the slit is ap-
proximated by adding the fundamental and 2nd order Hermite-Gaussian beams
(solid line). In the far field, the two Gaussian beams acquire a relative phase
shift of 7 and they subtract (broken line). The wave now resembles a sinc
function.

To illustrate this important point, let us look at the passage of a plane wave
through a slit again. Let us keep only the first two non-zero terms in the series
for U(z,z = 0) and just make the expansion coefficients equal:

U(z,0) = to(z,z2=0)4+2(x,z=0)
exp [—z?/w}] {1 + Hg(\/ia:/wo)} .

The magnitude of W is plotted in Fig.8.19. At z > 0, the axial phase of each
of the Hermite-Gaussian ,, is different, so

U(z, 2)

Yol 2) + Pa(, 2)
\/%exp {—xz/wQ +ika® /2R — z% arctan(z/b)]
. {1 + H, (\/ix/w) exp [—i2 arctan(z/b)]} .

In the far field z >> b, arctan(z/b) — 7/2, and the sign of 15 changes:
U(z, 2 >> b) o exp [—2? /w?] {1 — Hg(ﬁx/w)} .

The magnitude of ¥ is again plotted, and we can see the shape of the expected
far field pattern begins to emerge.
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8.4.5 Beams of vector fields, and power flow

So far, we have treated the optical field as a scalar quantity. In an area small
compared with the spot size, the field is approximately linearly polarized, and
we can take 1 to be the electric field amplitude. In building up two-dimensional
beams from plane waves, one can superimpose vector, instead of scalar, plane
waves, and the resultant fields will be vectorial. ~Suppose the electric field
of a component plane wave with its wave vector inclined at angle 6 to the
z-axis lies on the x — z plane. The previous scalar amplitude A(#) is now
interpreted as the magnitude of the electric field. The z—component of the
electric field is —A(0) sin(f) ~ —6A(f). The x—component of the electric field
is A(0) cos(f) ~ A(f). The total electric field component in the z-direction, F,
is

2

E.(x,z) =~ —/dGA(H)Oexp[iksin(G)x—|—ikcos(0)z}

10 _ ,
o /d@A(Q) explikfx + ik cos(6)z]

1 0ve.)
ik Or

12

Similarly, the total electric field component in the x—direction is
E.(x,z) ~Y(z, z).

The magnetic field in this case is entirely in the y—direction and proportional
to .

It turns out that the expressions above for the electric field components are
valid also in three dimensions, if the we take 9 (x,y, z) to be the z—component
of the vector potential A. The magnetic field can be calculated from

B(z,y,2) = VxA
8Am2
dy

12

ikA,y —

and the electric field calculated from the magnetic field through one of Maxwell’s
Equations:

—E = VxB

~ kQAxfi + ikan Z
or

Near the optical axis, the beam is linearly polarized. The average intensity flow
is given by the Poynting vector

1

1 1 A,
—ExB*~ _k?A, A%% — —z’kAi‘;a X
2 2 S T

1. 04, ., .
8mx+52k Ary

oy %
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The power flow is dominant in the propagation direction, along which the Poynt-
ing vector is real, indicating real power flow. In the transverse directions, it is
complex; imaginary power flow indicates oscillatory power storage, not power
flow or dissipation, and is a signature of evanescent waves. The complexity
of power flow is important in guided waves. In unbound structures it has be-
come important in light of recent developments in near-field optical microscopy
where the traditional practical limit of resolution to one wavelength has been
circumvented. The source is of dimensions much smaller than a wavelength.
An object close to the source converts the evanescent fields to propagating fields
which are detected and analyzed at a distant point.

8.4.6 Transmission of a Gaussian beam

We saw in Section 8.2.1 that the transmission of rays through optical elements
is facilitated, in the paraxial approximation, by the use of the ABCD matrices.
It is remarkable that the same ABCD matrices can be applied to the Gaussian
beam, although the parameters related by the matrices are different. The
parameter that the ABCD matrix transforms is the g-parameter. To introduce
the parameter, let us derive the fundamental Gaussian beam from a spherical
wave with a mathematical transformation. The spherical wave near the z—axis

is
1 ( ,k;rQ)
—exp | ikz+i— ).
z 2z

We translate the origin by an imaginary length
z—z—ib=gq (8.32)

where b is a constant. The paraxial spherical wave is transformed into the
fundamental Gaussian beam. Comparing the quadratic factor in the exponent

kr? kr? o kr?z kr2b

“D—ib) ' 2q 22 +b2)  202+02)

with the quadratic factors in the exponent of the Gaussian beam modulation
function, Eq. 8.28, it can be seen that

1 1 A

- = — . 8.33

g R(z) 7mw?(2) (8.33)
At 2 = 0,q = —ib, R=00 and w(0) = w,, so b = mw?2/\, the Rayleigh range.
The imaginary part can be regarded as the inverse of the Rayleigh range of the
Gaussian beam at z.

If the ¢ parameter of a Gaussian beam before and after an optical element

is q1 and g2 respectively, and the optical element is characterized in ray optics
by the matrix elements ABCD, then the ¢ parameter is transformed by:

Ag + B

= ———. 8.34
Cq+C ( )

q2
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The proof of this general relationship is beyond the scope of this text and can
be found in the references. The reader can, using ray optics, prove that the
relationship holds for spherical waves where ¢ = R, the radius of the wave,
and thus provide himself with a plausibility argument by viewing the inverse
g-parameter as a generalized inverse radius of curvature. We only need two
special cases, both can be verified directly: two points in space separated by a
distance d, and a thin lens of focal length f. Cascading of optical elements are
handled by multiplication of the matrices of the respective optical elements, as
in ray optics.

In free space, g2 = q(z + d), ¢1 = q(z). By Eq.8.32, g2 = ¢1 + d. For free
space, the ABCD matrix elements are A =1, B=d, C =1, D = 0. The
same result is obtained from Eq.8.34 In going through a thin lens, the change
in spot size w is negligible. The radius of curvature is changed from 1/R to
1/R—1/f. So1/g2 =1/q1 —1/f. The ABCD matrix elements for a lens are
A=1,B=0,C=—-1/f, D =1, therefore Eq.8.34 yields g2 = q1/(—q1/f + 1)
or1/g2 = 1/g1—1/f. Proof of cascading ABC D matrices for a series of optical
elements is left, again, to the references.

Finally, one must remember that the third important parameter of a Gaus-
sian beam, the axial phase shift

marctan(z/b)

is not included in the g-parameter. If we are only dealing with a single Gaussian
beam, an axial phase shift is usually not an issue. However, the phase shift
must be tracked carefully when the beam propagates in a resonator, or if the
beam is a superposition of Gaussian beams because the diffraction of the beam
is determined completely by the relative axial phase shifts of the component
Gaussian beams.

8.4.7 Mode matching with a thin lens

A common operation in the laboratory is matching the beam from a laser onto
an optical component like a fiber or a resonator. First consider mode-matching
a laser beam to a single mode fiber. By that we mean we want to couple as much
light into the fiber as possible. When a wave propagates inside, and is guided
by, a single mode fiber, the optical field is well defined. It can be approximated
by

Efip(x, y)e’™,

where, near the center of the fiber, Ey; (2,y) is approximately a Gaussian
exp[—(2? + y?)/a?] of waist a. Now if we shine the beam directly onto the
fiber, chances are more of the light will be reflected and scattered than going
into the fiber and propagating as a mode with the field distribution above. In
mathematical terms, the incident field is being decomposed as a superposition
of the fields of the modes of the fiber, including those that radiate away. To
maximize the coupling, the field amplitude E;, (z,y) of the laser beam right at
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Figure 8.20: Mode-matching by transformation of beam waist with a lens. A
Gaussian beam of waist w, is transformed by a lens to a Gaussian beam of
waist a. With the focal length of the lens as a parameter, the distances d; and
ds can be found using the ABCD matrices. The fiber is positioned so that the
transformed beam enters it with waist a.

the entrance of the fiber must be as close to Ey;;, as possible. This is measured
quantitatively by the coupling coefficient, which is proportional to

/ dedyEon (2,9) (2, v).

(The student may note the similarity in finding Fourier expansion coefficients.)
Since Fy,(x,y) is a Gaussian beam, it might be thought that if its spot size
is made equal to the spot size a of the fiber field, then the coupling will be
maximized. This alone is not enough. As can be verified by performing the
above integration, the radius of curvature must also be infinite, i.e., the beam
waist must be at the entrance to the fiber. So the coupling problem reduces
to transforming a Gaussian beam of waist w, to another value a. This can
often be accomplished with a single lens. The solution according to ray optics
is one of imaging by the lens, with w,/a equal to d; /da where d; is the distance
between the lens and the waist w, and dy that between the lens and the waist
a. We saw in the previous section on Fresnel diffraction theory that the image
has an additional spherical wave front, and this solution is therefore inaccurate.
The accurate solution by Gaussian beam optics can be obtained using ABCD
matrices. First, by measuring the spot size at two places, the waist w, and its
position can be deduced. Then set 1/q; to —iX\/(mw?2) or g1=ib;. At a distance
dy from the beam waist there is a lens of focal length f. At a distance do from
the lens the beam is focused again and the beam waist is a and

g2 = ima®/\ = iby;

see Fig.8.20. Through the distance d;, the lens, and the distance ds, the se-
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quence of matrices is

o) (1) (0 %)
( 1:1d/2]{f d +1di;1c}}d2/f > _ ( A B ) .

g2 is related to ¢; through the ABCD matrix by Eq.8.34. The real and imagi-
nary parts of the equation yield two equations relating the three quantities f, d;
and do. This means that the solution is not unique. In practice, the choice of
f is limited by available lenses, so let us find d; and dy using f as a parameter,
subject to the constraint that d; and dy be positive. First, because ¢» is purely

imaginary,
A + B 1Aby + B
R =Re(——=)=Re|({————=] =0
e(2) e(Cq1+D> e<i0b1+D>

which yields

R (4 -1) | 536)

2
b/ 17+ (4 1)
Substituting ds into the imaginary part of go yields

by _(a)’_ 1 ,
by (w) (bl/f)2+(d71_1>27 (8.37)

from which d;/f can be found, and substituting it back in Equation 36 da/f
can be found. The results are

Wo
d1—f=izvf2—b1bz
a
dy— f =+ /77— bybo.
Wo

Thus the focal length of the lens must be greater than /bjby.  Ostensibly
there are two solutions. When w, and a are vastly different, however, only the
positive-sign solutions are valid. In this case, one of d; and ds is very large,
the other very close to f. If the distance is too large to be practical, a second
lens may be introduced. A limiting case is f2 >> b1bo, then the solutions lead
to do/dy ~ a/w,, as predicted by ray optics using the lens equation.

The solutions for d; and ds can also be applied to a system consisting of
more than one lens, like the compound lens discussed in Example 8.2, if f is
taken as the effective focal length of the system, and d; and ds are measured
from the principal planes.

The solutions can also be applied to mode matching with a resonator. In
its simplest form, the resonator consists of a pair of mirrors between which a
beam self-reproduces as it bounces back and forth. As seen below, the beam
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between the mirrors is a Gaussian beam if the mirrors are spherical. The beam
waist is either inside the resonator, or at a point outside which can be found
by extending the Gaussian beam beyond the mirrors. Mode matching to the
resonator is accomplished by transforming the original Gaussian beam so that
the new waist coincides with the resonator mode beam waist in both position
and size.

Problem 8.9 The field distribution at the output of a semiconductor laser can
be approximated by an asymmetric Gaussian

@6
exp |~ (£) ] exp [~ (4) ]
a b
where a >b. The output beam propagates in the z-direction.
(a) Calculate and plot the spot size on the z-z plane and on the y-z plane as
a function of z, with A = a/2 =b/10 = 1.5 pm.
(b) Mode-match the beam to a fiber with a spherical lens and a cylindrical

lens. A cylindrical lens can be formed by splitting a cylindrical rod lengthwise.
The core of the fiber is 90 um in diameter.

8.4.8 Imaging of a Gaussian beam with a thin lens

Let us now discuss briefly the image of a Gaussian beam. Since a Gaussian beam
maintains its intensity profile of a Hermite-Gaussian throughout its propagation
distance, and passing the beam through a lens does not change the intensity
profile, the meaning of imaging is at first sight not at all clear. The meaning
becomes clear when we take not one, pure Gaussian beam but a superposition of
Gaussian beams, i.e., we expand the object field in a superposition of Gaussian
beams of different orders. As remarked earlier, the axial phase of each order
propagates differently. Imaging then means re-grouping these axial phases to
their original values of zero, modulus 7 (not 27, as the image may be inverted).
Using the lens law and the ABCD matrices, it is an exercise in algebra to prove
the last statement.

8.4.9 The pin-hole camera revisited

The problem of the resolution of the pin-hole camera can also be solved with
a Gaussian beam. If we approximate the field at the pin-hole by a Gaussian
with a waist a equal to the half of the diameter of the hole, then the subsequent
propagation is that of a Gaussian beam. In particular, the spot size at the back
wall, after travelling the depth d of the camera, w(d), is given by

w?(d) = a® (1 + Z—i)

where b = ma?/)\ is the Rayleigh range of the hole. We can view the first
term on the right hand side, which increases with a, as the contributing term
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from geometrical optics, and view the second term which decreases with a, from
diffraction. Minimizing w?(d) with respect to a? leads to d = b, the same result
as obtained before.

8.5 Optical Resonators and Gaussian Beams

A resonator serves several important, related functions. It allows energy stor-
age; it discriminates signals; it provides positive feedback. The resonator is one
of two indispensable elements of an oscillator.* Light is on resonance with the
resonator if it reproduces itself upon one round trip, with a possibly diminished
amplitude due to loss.® The reproduction has two conditions: the spatial dis-
tribution of the field must reproduce itself, and the total optical phase in one
round trip must be an integral number of 2w. Each possible self-reproducing
field distribution is called a mode of the resonator. For a given mode, only light
of particular frequencies, called resonance frequencies, satisfies the condition on
the total optical phase.

The simplest optical resonator consists of a pair of mirrors aligned on a
common axis facing each other. Light travelling along the axis is reflected back
from one mirror to the other. The resonator is completely characterized by
the distance between the mirrors d, the radii of curvature of the mirrors, R,
and Rs, and any additional loss suffered by the light in one round trip. The
parameters d/R; and d/Ry determine whether light can reproduce itself in a
round trip between the mirrors. The condition of self-reproduction is called the
stability condition. We will discuss the two-mirror resonator in detail. Multi-
mirror resonators can be analyzed by reducing them to equivalent two-mirror
resonators using imaging, as discussed below.

There are several important parameters which characterize a resonator. The
quality factor, @, and the related finesse, F, quantify the frequency selectivity of
the resonator, or equivalently, the storage time of the resonator once an amount
of energy is injected inside. @ is equal to the number of cycles the optical field
oscillates, F the number of round trips the optical field makes, before the energy
is depleted. The frequency-selective characteristics of the optical resonator is
periodic in frequency. The periodicity in frequency is called the free spectral
range (FSR). The approximate number of modes supported by the resonator
in one FSR is given by the Fresnel number Ny . These parameters will be
discussed in due course.

8.5.1 The two-mirror resonator

A resonator consists of two spherical mirrors facing each other (Fig.8.21). A
light beam starting at a location inside towards one mirror is reflected to the
other and back to the original location. When the beam reproduces itself in
one round trip, it is a mode of the resonator. Not all beams do; it turns out

4The other indispensable element is gain.
5Tt cannot reproduce itself in more than one round trip if it cannot reproduce itself in one.
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Figure 8.21: The two-mirror resonator. Two mirrors separated by a distance d.
The mirrors have intensity reflectivities Ry and Ry. The two parameters d/R;
and d/ Ry determine the modes of the resonator.

that each of the Gaussian beams, fundamental and high-order, does, and they
are called the normal modes of the resonator. The parameters of the resonator,
mirror radii R; and Ry, and mirror separation d, define the parameters of the
Gaussian beams, the beam waist and the location of the beam waist. These
parameters are determined by the boundary conditions at the mirrors.

Boundary condition at the mirror

The requirement of self-reproduction leads to the boundary condition at the
mirror that immediately before and immediately after the mirror the field is
identical, except for a possible constant phase shift caused by a dielectric mirror
for example. Consider a Gaussian beam incident on a mirror of radius R. Recall
that a mirror of radius R acts like a lens of focal length R/2, and a light passing
through a lens picks up a curvature 1/f. Right before the mirror, let the radius
of curvature be R’. Upon reflection from the mirror, the radius of curvature is

changed to R” given by,
1 1 2

TR R
The negative sign on the left hand side is due to the fact that the beam has
changed its propagation direction upon reflection. The requirement of self-
reproduction means R’ = R’, therefore the above equation leads to

R =R.
In other words, at the mirror of a resonator, the radius of curvature of a mode
must be equal to the radius of curvature of the mirror.

Stability conditions of a resonator

Consider a resonator with mirrors of radii Ry and R, separated by a distance
d. Let the beam waist of a Gaussian mode be at a distance d; from the mirror
R; (Fig.8.22). ;From the boundary conditions at the mirrors,
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Figure 8.22: Gaussian beam inside a resonator The beam waist w, and its
location dy are determined by the resonator parameters d/R; and d/Rs.

Ry = —dy—Vb*/dy
Ry = (d—dy)+b*/(d—dy)?

where b = mw? /) is the Rayleigh range of the Gaussian mode. If the beam waist
is located outside the resonator, say to the left, then d; is negative. The two
unknowns defining the mode, b and d;, can be found from these two equations.
Eliminating b? from the equations yields

Ry —d

dy=d—"2"%
YT RI YRy —2d

Substituting d; into the first equation yields

(R1 —d)(Ry — d)(Ry + Ry — d)

¥ =d
(Rl + Ry — 2d)2

That b must be real and positive leads to the resonator stability condition.
Although three parameters define the resonator, the stability condition depends
only on the relative magnitude of the mirror radii to the mirror separation, and
it is more convenient to re-write b in terms of two parameters g; and g9, defined
as

g1 El—d/Rl, ggEl—d/Rg. (838)

After some algebraic manipulation,the formula for 52 becomes

1—
b2 — 2 9192(1 — g192) (8.39)

(91 4+ 92 — 2g192)%

Thus the stability condition is
0<g192 < 1. (8.40)

Figure 8.23 depicts the regions of stability where the above relationship is sat-
isfied on the g1 — g2 plane. The resonator configuration in each of the stable
region is illustrated in Fig. 8.24.
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d/Ry

Figure 8.23: Stability diagram of a two-mirror resonator. Resonators with pa-
rameters in the shaded regions are stable.

;
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d/Ry

Figure 8.24: Resonator configurations. Resonator configurations in different
parts of the stability diagram. The centers of mirror curvature are shown with
dots.
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Unstable resonators

There are special resonators that fall outside of the stability regions, called
unstable resonators. They are used in pulsed, high-powered lasers. The reader
is referred to Professor Siegman’s book cited at the end of this chapter.

Resonance frequencies, the confocal resonator, and the scanning Fabry-
Perot

Self-reproduction of the optical field includes the axial phase factor, which must
change by an integral number of 27 after one round trip. This condition leads
to the resonance frequencies of the resonator modes. The total axial phase shift
of the mn*" order Gaussian beam is

kz + ¢mn(2) = kz — (m +n + 1) arctan(z/b) (8.41)

Since the different higher-order ( m # 0 or n # 0) modes have different phase
shifts, they have different resonance frequencies. As the axial coordinate is
measured from the beam waist, the total axial phase shift in one round trip, is,
from the equation above,

2kd — 2¢mn(d1) — 2¢mn(d — dy)

2kd —2(m+n+1) [arctan (%) + arctan (d _bdl )} (8.42)
= 2N

where NV is an integer. The resonance frequencies, which depend on the indices
N as well as mn, are, from above,

C C d1 d— dl
=N—+ — 1 — . 4
UNmn 57 + 5 (m+n+1) {arctan ( 5 ) -+ arctan ( 7 )} (8.43)

The first term which depends on N only is the round trip frequency of a plane
wave along the optical axis. Sometimes the index NV is called the axial or
principal mode number, with the indices m and n called the transverse or higher-
order mode numbers associated with the mode N. A typical spectrum is
illustrated in Fig.8.25. Usually the resonance peaks decrease, and the width
increase, with increasing transverse mode order because of increasing diffracting
loss around the mirrors.

A simple explanation for the different resonance frequencies is that the phase
shift is a manifestation of the different phase velocities of the different Gaussian
beams. In the ray picture, the higher-order modes propagate at larger angles
to the axis and the phase velocities are correspondingly larger, leading to higher
resonance frequencies.

The resonator is often used as a scanning Fabry-Perot interferometer to
measure the frequency spectrum of an optical signal. The signal beam is coupled
into the resonator, and the length of the resonator d is varied slightly, often
less than one wavelength, so that the resonance frequencies are varied slightly.
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Figure 8.25: Spectrum of a resonator. The spectrum is periodic in frequency.
One period is called the free spectral range. The principal modes are highest
and narrowest. The peak decreases and the width increases with transverse
mode number.

When a resonance frequency coincides with a frequency of the incident beam,
the transmission of that frequency from the beam through the resonator is high,
as shown below. By scanning d the spectral distribution of the beam can be
measured. However, when the beam is coupled into the resonator, unless care is
taken to match the beam to one resonator mode, each frequency component in
the beam will be coupled into many higher-order modes of the resonator, each
of which has a different resonance frequency, and measurement by scanning will
lead to erroneous results. This problem can be circumvented by designing the
resonator so that all of the higher-order resonances coincide either with an axial
mode resonance, or with another higher-order resonance. In particular, if the
arc tangents in Eq.8.43 add to /2, then the resonance frequencies simplify to

c

N 1).
4d(2 +m+n+1)

VUNmn =
The frequencies are periodic, with a periodicity of ¢/(4d), as if the resonator were
doubled in length but with all the higher-order modes banished. If d is adjusted
so that the spectral width of the incident beam is smaller than ¢/4d, then the
spectrum can be unambiguously measured without careful mode matching into
one single mode of the resonator. This design can be realized most simply with
a symmetric resonator, Ry = Ry. By symmetry, d; = d/2 and we require

d —d
arctan | — | + arctan d—d =7/2
b b
arcta i =T
i g ) T

or
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which is to say, d = 2b. From Eq. 8.25, this leads to
Ry = Ry =d.

This is the confocal resonator.

Number of modes in a resonator

The transverse dimension of a Hermite-Gaussian beam increases with the mode
order. As the mode order increases, eventually the transverse dimension will
approach the finite mirror size. When this happens, we take this mode to be
the highest order mode that can be supported by the resonator. This number
necessarily varies with each resonator, but we will take the confocal resonator
to make an estimate of a typical number.

First, let us estimate the extent to which the value of a Hermite-Gaussian
function H,, (&) exp(—£2/2) is significant. Recall that H,,(£) is a polynomial of
order n, so for large £ the dominant term is £". Approximating the Hermite-
Gaussian at large £ by £"exp(—£2/2) and setting its derivative to zero, we
find the approximate maximum to be at £ = /n. For the Gaussian beam
in a confocal resonator, £ = v2x/w. At the mirrors |z| = d/2 = b, hence
w = /2w, and the n** order Hermite-Gaussian mode extends to approximately

Vnw, = \/nAb/m. If the mirror diameter is D and we equate \/nAb/m to D /2,
we find

D\? 1 D\? 2 mirror area
n=n|—] —=a(—=)] —~ .
2) X 2 ) Ad  wavelength x resonator length
This number is also called the Fresnel numberof the resonator.

Frequency selectivity and energy storage

An important property of a resonator is its frequency selectivity. Related to
frequency selectivity is energy storage. To illustrate this, we consider a par-
ticularly simple resonator, the symmetric resonator consisting of two identical
mirrors separated by a distance d. The radius of curvature of the mirrors is
R, the field reflectivity p and field transmittance 7 so that, in the absence of
diffraction loss around the mirror edge, by energy conservation |p|? 4 |7]? = 1.
Suppose an incident Gaussian beam from the left is mode matched to a res-
onator mode mn. The Gaussian beam inside the resonator consists of two
counter-propagating beams reflected into each other by the mirrors. Let the
field of the right-travelling beam be E; at the left mirror and Fs at the right
mirror; let the field of the left-travelling beam be E3 at the right mirror and
FE, at the left mirror. Just outside the left mirror there is the incident beam
E; travelling to the right and the reflected beam FE, travelling to the left, and
just outside the right mirror there is the transmitted beam FE; travelling to the
right. The fields are illustrated in Fig.8.26. By symmetry, the beam waist is
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Figure 8.26: Waves of a resonator. The waves at the two mirrors of a resonator,
with an incident wave F; from the left.

in the middle of the resonator. The boundary conditions at the left mirror are

Ey = TEi+pEs
E,« = ’7'E47
and at the right mirror,
E; = pEs
Et = TE2 .

Now because of the symmetry of the resonator,
Es/Ey = Ey/E3 = exp [ikd — 2ipmn(d/2)] .

JFrom these equations, we can find the field inside the resonator, say FE1, in
terms of F; and the resonator parameters:

T

Ei = E;
"1 = p2exp [2ikd — din (d/2)]
as well as the transmitted field
2 . _ . 2
B 7% exp [ikd — 2ipmn (d/2)] B

T 1= pexp [2ikd — digy (d/2)]

Let R =|p|?, T =|7|?>. The ratio of the field intensity inside the resonator to
the incident intensity is

|E\]> T

| E;]2 o (1-— R)Q + 4RSi1’12(k‘d — (bmn) (8.44)

and the ratio of the transmitted field intensity to the incident intensity is

E* _ 7 _ LB

_ = 8.45
|Eil2 (1 —R)2+ 4R sin?(kd — ¢mn) |E;)? (8.45)
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The frequency dependence of |E1|? and |E;|* is in the argument of the sine
function, kd — ¢un(d/2). The frequency dependence of ¢,y,, is arctan(d/2b).
For the small fractional frequency changes considered here, the corresponding
change in the Rayleigh range b is small. On the other hand, since d is usually
many wavelengths, change in kd is substantial. So for the following discussion,
all the frequency dependence can be placed on the factor kd. Now suppose
the frequency of the incident beam is such that the argument of the sine in the
above two expressions is equal to N7, where N is an integer, a condition called
resonance, and further if the diffraction loss is negligible so that 7 =1 —R, then

By |? 1 1

El? (1-R) T
and

B>

|Eil?
The field inside the resonator builds up to a value much higher than the incident
field intensity when the mirror reflectivity is high (R approaching unity). The
intensity enhancement is directly related to the frequency selectivity of the res-
onator, as seen immediately below. The transmitted field intensity, on the other
hand, is equal to the incident field. By energy conservation, the reflected field
is zero. It should be noted that total transmission is a result of two necessary
conditions: the mirrors have equal reflectivity, and the resonator has no loss
other than transmission through the mirrors (absorption or diffraction around
the mirror edges is negligible).

The resonator is often used as a frequency selective element. When the
frequency is slightly off resonance, the transmitted field drops off rapidly. When
the frequency changes from resonance so that

d(kd) = 5—wd = j:ﬂ

c 2VR
the transmitted intensity drops by half. Since the periodicity of the function
sine squared is 7, the transmission is periodic in angular frequency with a pe-
riodicity of we/d, or in frequency, ¢/(2d). This frequency period is called the
free spectral range (FSR) of the resonator. When the resonator is used to
measure the spectrum of a signal, the signal spectrum must be narrower than
the FSR, otherwise at any moment the signal is transmitted through at least
two resonance peaks and the spectral measurement is invalid. A measure of
the frequency selectivity is given by the ratio of the FSR and the full frequency
width of the resonance peak. This ratio, called the finesseF of the resonator,

is

™R

1-R
The finesse has another simple physical interpretation: it is the number of round
trips the entrapped field undergoes before leaving the resonator.® Consider the

F=

6 As apparent from a glance at Eq. 8.44, it is also equal, within a factor of m, to the ratio
of the intensity inside the resonator on resonance to the incident intensity.
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case when R approaches unity. Follow the field intensity as it is reflected
between the two mirrors. Let the intensity on the n'® round trip be |E|2.
After another round trip, it is

|E|i+1 = 732|E|i
Therefore
ElZ — B[, = —(1-R*)|E|Z = —(1+ R)(1 - R) |E[} ~ —2(1 - R)|E3.

Hence
B[} ~ |E[§ exp [-2(1 — R)n] =~ | B[ exp [-27n/F].

So that the intensity decays to e 2™ of its original value after F round trips.

Related to the finesse is the quality factor Q of the resonator, which is the
ratio of the resonance frequency (not the resonance periodicity) to the resonance
width, or N times the finesse. But the resonance index N is just the number
of half wavelengths in the resonator length d, and therefore Q) is the number of
oscillations the field intensity undergoes before leaving the resonator.

8.5.2 The Multi-mirror resonator

Many optical resonators have lenses or mirrors between the two end mirrors.
The modes and stability of such resonators are determined by the same condi-
tions as the two-mirror resonator, that is, self-reproduction after one round trip
and reality and positiveness of the beam waist. The ABCD matrices facilitate
analysis by reducing the problem to a multiplication of matrices. Alternatively,
using the fact that the wave curvature must be the same as the mirror radius,
one can construct an equivalent two-mirror resonator by successive imaging of
all but one of the lens sequence in the resonator. To illustrate the method, we
use one simple example whose solution can be easily obtained directly.

Consider a resonator consisting of two plane end mirror with a lens in the
middle (Fig.8.27a). Obviously a symmetric system, the beam curvature R at
the lens is equal to +£2f, where f is the focal length of the lens. The beam
waist at the plane mirror, or equivalently the Rayleigh range b, is then to be
solved from

R=d+b*/d

or

b= /d(R—d) (8.46)

where d is the half length of the resonator.

Now let us solve the same problem by imaging the right-hand end plane
mirror with the internal lens. The image position d; from the lens is given by
the lens law

di = fdf (d—f).

Recall from our discussion on imaging with a thin lens, the image acquires a
phase curvature of fd;/d = f?/(d — f). The image of the plane mirror is
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a)

b)

|

Figure 8.27: A three-element resonator and its equivalent two-mirror resonator:
(a) A symmetric resonator with a lens in the middle and plane mirrors at the
ends. (b) The equivalent two-mirror resonator. The left, curved mirror is the
image of the right-hand plane mirror formed by the lens. The resonators are
equivalent in the sense that when the beams inside the resonators are extended
to a common region, they are identical.
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Ti:Sapphire

Figure 8.28: Compound resonator design

therefore a spherical mirror of radius R’ = f2/(d — f), at a distance d’ = d — d;
from the left end mirror. The left end mirror and the image spherical mirror
is the equivalent two-mirror resonator of the original three-element resonator
(Fig.8.27b). The Rayleigh range b’ of the mode at the plane mirror of the
equivalent resonator is given by the same formula as Eq. 8.46,

V= IR =)

which, after simplification, is

Y =+/d(R—d),

same as that given by Eq.8.46. Once the position and magnitude of the beam
waist is known, the Gaussian beam is completely characterized.

Problem 8.10 Design a resonator for the titanium sapphire laser discussed in
Chapter 7. The laser, as illustrated in Fig. 8.28, is to have two curved mirrors
and one plane mirror, with the beam waist in the sapphire between the two curved
mirrors.  The pump beam is to be focused in the sapphire so that it overlaps
with the lasing beam as much as possible, with a Rayleigh range designed to be
equal to the absorption length. The round trip time in the resonator is to be 10
ns.

8.6 Further Reading

e All the topics in this Chapter are covered at greater length and depth in
H. A. Haus, Wawves and Fields in Optoelectronics, Prentice-Hall 1984, and
A. E. Siegman, Lasers, University Science Books, 1986.
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e The discussion on multi-element resonator follows H. Kogelnik, Imaging
of optical mode - resonators with internal lenses, Bell Sys. Tech. J. 44,
455-494, March 1965.

e References on optical signal diagnostics using intensity correlation func-
tions can be found in Li Yan, P.-T. Ho and Chi H. Lee, Ultrashort optical
pulses: sources and techniques, in Electro-optics Handbook, 2nd Edition,
ed. R. W. Waynant and M. N. Ediger, McGraw-Hill 2000.
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8.A Construction of a three-dimensional beam

A two-dimensional beam propagating in direction 2’ is, from Eq. 8.9,

2
/d@Ax(Q) exp {ik@x + ik (1 — %) z'} :

where A, is the angular distribution. This beam has a finite extent in the
x—direction but unconfined in y’. Suppose we add such two-dimensional waves
each of which has amplitude A, (¢)dy and propagates in a direction 2z’ inclined
at an angle ¢ from z:

2
Z,:ZCOS(¢)+ySiH(gD) ~ z <1— %) + yep.

The composite wave is then

2

V(@ 2) = / 4 / do A, (8) A, () exp [ik;@:c ik <1 _ %) z}

/d&/d@Az(e)Ay(fﬁ) exp [ik@x +ik (1 - 92—2) (Z (1 - %2) - ‘Wﬂ

) 02 2
etk / df A, (0) exp {ik&x — kﬂ / dpA,(¢) exp {ik(éy — m%}

where the higher order terms y ¢ 6%/2 and 62¢?/4 in the exponent has been
discarded. In this form, z and y are separated. Repeating the derivation
which leads to Eq. 8.14, one can prove, from the above equation, Eq.8.17.

8.B Coherence of Light and Correlation Func-
tions

The very high frequencies of light prevent direct electronic measurement. Since
the response time of the measurement system is much longer than an optical
cycle, some averaging is made when a measurement of light is made. In addition,
in many situations, the light itself varies in some random fashion, making its
measurement statistical in nature. In quantitative terms, the measurements are
expressed as correlation functions of different orders. In practice, correlation
functions of first and second orders are sufficient to characterize the light. The
correlation functions of the optical field also measure the degree of coherence of
light. The more coherent the light, the more predictable it is. Coherence is
often classified into temporal and spatial coherence. Temporal coherence refers
to the degree of predictability of light at a point in space at a later time given
its field at one time at the same point in space. Spatial coherence is further
classified into longitudinal and transverse coherence, referred to the direction of
propagation. Spatial coherence refers to the degree of predictability of light at
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some point in space given the field at another point at the same time. A few
examples will follow the definition of the first order correlation function.
The normalized first order correlation function of an optical field E(r,t) is

(E(r,t)E*(r', 1))
VIHE P, 1)[?)

where the angular brackets denote ensemble average. It turns out that the
correlation function depends only on the differences of the arguments, not the
individual values, so the correlation function can be written as

(B DE0,0)
ViEworeoom T

Two particular cases are familiar. F (1)(0,0) is just the normalized average
intensity. The Fourier transform of F(1)(0,7) with respect of 7 is the power
spectrum, a result known as the Wiener-Khinchine theorem, and is the entity
measured by the scanning Fabry-Perot discussed in Section 8.5.1. The time
difference 7 by which F") decreases to 1/2 is called the correlation time. The
longer the correlation time, the more coherent the field. The inverse of this
correlation time, by Fourier transform, is roughly the spectral width of the field.
Similarly, the distance over which F(!) decreases to 1/2 is called the correlation
distance. Sunlight, viewed from the earth, is from a point source. The light
consists of many frequencies so that in a very short time the field changes
completely and the correlation time is extremely short, and the light is usually
called temporally incoherent. It is spatially coherent in a direction transverse
to the line between the sun and the earth, since the difference in propagation
time to these two points is shorter than the correlation time; it is spatially
incoherent along the line. Temporally incoherent light from an extended source
like a lamp is spatially incoherent. If the light is viewed after passing through
a very narrow band filter, then it can become temporally coherent as well as
spatially coherent over a finite distance. Light from a laser is both temporally
and spatially coherent.

The availability of lasers capable of generating ultrashort pulses shows up
the inadequacy of F). F() cannot distinguish between coherent pulses, noise
bursts, and continuous light which fluctuates randomly, if they all have the same
power spectrum. Even with coherent pulses, F(!) cannot distinguish those that
are transform-limited and those that are not transform-limited. All these cases
can be diagnosed with the addition of the second order correlation function:

(E(O)E(0)E(M)E* (1)) = (I(0)I(7))

where I is the intensity and we have omitted the spatial variable as spatial
correlation is rarely measured with second order correlation. The intensity
correlation functions for coherent pulses, noise bursts, and continuous, random
light are shown in Fig.8.29. Proof is left to the references.

The treatment in this Appendix is for single frequency fields which are tem-
porally coherent. Multi-frequency fields can be treated in the same way and
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AT

Coherent Pulse Noise Burst Noise

I(t+oI(E)

I(t)

Figure 8.29: Common optical signals and their 2nd-order correlation functions.
The upper traces are 2nd-order correlation functions versus time delay. The
lower traces are intensities in time.

the result obtained by superposition. For temporally incoherent fields, usually
the intensity is sought. The cross-frequency terms average to zero in this case.

8.C Mathematical Appendix

An integral used many times in this Chapter is

1 E/ dx exp [—Ax2 — B;v] .

— 00

First, we will evaluate the simpler integral

J E/ dx exp [—xﬂ .

J can be evaluated by first evaluating its square, J2, through a transformation
from rectangular to polar coordinates:

J? = / dx exp [fxz}/ dy exp [—y?

—00 — 00

_ /0 r /O " drexp [—17] = 27 /0 h @) a (%) exp [~17]

= .
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Hence J = /7.
Now the exponent in the integral of I can be made into a perfect square by
adding and subtracting a constant term:
B\® B?
Az’ + Bz = A — ] - —.
vrbe <x * 2,4) 1A

Substituting this into I, changing the integration variable to z’ = \/Z(x + %),
and using the result J = /7, one arrives at the final result

e’} B2
/ dx exp [—AxZ — Bx} = ,/%exp [ﬂ] .

This result also applies when A is a purely imaginary number. In this case,
the integrand does not vanish at infinity and the integral is undefined. This
difficulty can be circumvented by adding a small, positive real number € to A
before integration, then after integration, let € — 0.
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