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Brief history and milestones
• (1992) Steve White introduces the DMRG.
• (1995-…) Dynamical DMRG. (Hallberg, Ramasesha et al, Kuhner and White, 

Jeckelmann)
• (1995) Nishino introduces the transfer-matrix DMRG (TMRG) for classical systems. 
• (1996-97) Bursill, Wang and Xiang, Shibata, generalize the TMRG to quantum 

problems.
• (1996) Xiang adapts DMRG to momentum space.
• (2001) Shibata and Yoshioka study FQH systems.
• (2004) Vidal introduces the TEBD. (time-evolving block decimation)
• (2005) Verstraete and Cirac introduce an alternative algorithm for MPS’s and 

explain problem with DMRG and PBC.
• (2006) White and AEF, and Daley, Kollath, Schollwoeck, Vidal generalize the ideas 

within a DMRG framework: adaptive tDMRG.

… the DMRG has been used in a variety of fields and contexts, from classical systems to 
quantum chemistry, to nuclear physics… 



Single particle vs. many body picture

4 configurations
4x4 matrix

EF

The state of the system is a “product state” of single 
particle states. We only need to solve the one-particle 

problem.Think “Hydrogen atom”. 

And similarly for the “down” electrons



Single particle vs. many body picture

16 configurations
16x16 matrix

The state of the system is “highly entangled”. It cannot be written as 
a “product state”, and the behavior of each electron is dictated by 

the behavior of the rest.(Notice that in some case Bethe Ansatz tells 
us that some many-body states can still be reduced to product 

states) 



Exact diagonalization
“brute force” diagonalization of the Hamiltonian matrix.

… anything you want to know… but… only small systems

H |xñ =	E |xñ
H :	Hamiltonian	operator
|xñ :	eigenstate
E	:	eigenvalue	(ENERGY)

Schrödinger's Equation:

All we need to do is to pick a basis and write the Hamiltonian matrix in that 
basis



Symmetries	SH=HS

Reflections

Translations

D'	=	D	/	N

D'	=	D /	2

Particle	number	conservation	=>	Ntotal
Spin	conservations	=>	Sztotal
Spin	reversal	=>	|↑↓ñ ± |↓↑ñ

|ykñ = (1/M)	∑iaki	Ti	|fñ; aki	=exp(ikxi)



Block diagonalization

0

00

0



ED Example: Heisenberg chain

Geometry:
1D chain

Basis:

HHeis= J ∑<i,j> SizSjz+ 1/2 (Si-Sj++Si+Sj-)

Model Hamiltonian:

|↑↓↑↓ñ; |↓↑↓↑ñ;
|↑↑↓↓ñ; |↓↑↑↓ñ; |↓↓↑↑ñ; |↑↓↓↑ñ



Applying translations:

|1ñ=1/(2Ö2){(1+ ei2k )|↑↓↑↓ñ+ eik(1+ei2k)|↓↑↓↑ñ}
|2ñ=1/2{|↑↑↓↓ñ+eik|↓↑↑↓ñ+ei2k|↓↓↑↑ñ+ei3k|↑↓↓↑ñ}

Translations

With k=0,-p/2, p/2, p

k=0) |1ñ=1/Ö2{|↑↓↑↓ñ+|↓↑↓↑ñ}
|2ñ=1/2{|↑↑↓↓ñ+|↓↑↑↓ñ+|↓↓↑↑ñ+|↑↓↓↑ñ}

k= -p/2) |2ñ=1/2{|↑↑↓↓ñ+e-ip/2|↓↑↑↓ñ-|↓↓↑↑ñ+eip/2 |↑↓↓↑ñ}

k= p/2) |2ñ=1/2{|↑↑↓↓ñ+eip/2|↓↑↑↓ñ-|↓↓↑↑ñ+e-ip/2 |↑↓↓↑ñ}

k= p) |1ñ=1/Ö2{|↑↓↑↓ñ-|↓↑↓↑ñ}
|2ñ=1/2{|↑↑↓↓ñ-|↓↑↑↓ñ+|↓↓↑↑ñ-|↑↓↓↑ñ}



Limitations : small lattices
• Hubbard model: 20 sites at half filling, 10↑ and 10↓, 

D=20!(10!10!)x20!(10!10!) = 2.4e+10. After symmetries 
D'=1.1e+8

• t-J model (only |oñ, |↑ñ and |↓ñ states): 32 sites with 4 holes, 
14↑ and 14↓, D = 32!/(14!18!)x18!/(14!4!) = 1.4e+12;  
D'=5.6e9

• Heisenberg model (only |↑ñ and |↓ñ states): 36 sites, 18↑
and 18↓, D = 36!/(18!18!)=9075135300; D' 
=D/(36x2x2x2x2)=1.5e6 states



Exact diag. is limited by system 
size… How can we overcome 

this problem?

Po’ man’s solution: What about 
truncating the basis?



“Classical” analogy
Image compression algorithms (e.g. Jpeg)

We want to achieve “lossless compression”
… or at least minimize the loss of information



Idea	1:	Truncated	diagonalization

|gsñ =∑ ai|xiñ

Usually,	only	a	few	important	states	
possess	most	of	the	weight

,	∑ |ai|2 = 1

Error = 1-∑' |ai|2Cut here



Idea	2:	Change	of	basis

Can we rotate our basis to one where the weights are more concentrated, to 
minimize the error?

|gsñ =∑ ai|xiñ ,	∑ |ai|2 = 1 Error = 1-∑' |ai|2

Cut here Cut here



The case of spins
The two-site basis is given by the states 

|ss’ñ ={|↑↑ñ;|↑↓ñ;|↓↑ñ; |↓↓ñ}

We can easily diagonalize the Hamiltonian by rotating with the matrix:

That yields the eigenstates:



Numerical Renormalization Group



Let’s consider the 1d Heisenberg model
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Building the Hamiltonian a la NRG
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This recursion will generate a 2lx2l Hamiltonian matrix that we 
can easily diagonalize



Another way to put it…
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Adding a single site to the block

1+la
la

1+ls

Before truncating we build the new basis as:

11 ++ Ä= lll saa

And the Hamiltonian for the new block as

...'0,01,1, +Ä+Ä+Ä=+ OOHIIHH lLllLlL

01, OIO llL Ä= -with



|yñ =	∑ijyij|iñ| jñ

Dim=2L

Dimension of the block grows exponentially

Idea	3:	Density	Matrix	Renormalization	Group
S.R.	White,	Phys.	Rev.	Lett.	69,	2863(1992),	Phys.	Rev.	B	48,	10345	(1993)



Block decimation

Dim=2N Dim=m

constant

|yñ =	∑ijyij|iñ| jñ



The density matrix projection

Universe

system

|iñ
environment

| jñ

We need to find the transformation

that minimizes the distance

S=||y'ñ -|yñ|2

|yñ = ∑ijyij|iñ| jñ |y'ñ = ∑m
ajaaj|añ| jñ

Solution: The optimal states are the 
eigenvectors of the reduced density matrix

rii'= ∑jy*
ijyi'j Tr r = 1

with the m largest eigenvalues wa



Understanding the density-matrix 
projection
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Universe

system

|iñ
environment

| jñ
Region A Region B



Properties of the density matrix
yyr

ABABBA tr=

• Hermitian -> eigenvalues are real
• Eigenvalues are non-negative
• The trace equals to unity-> Tr rA=1
• Eigenvectors form an orthonormal basis.

1  and  0   with ; =³= åå
a

aa
a

a wwaawr
AAA



The singular value decomposition (SVD)
Consider a matrix

yij= dimA

dimB

We can decompose it into the product of three matrices U,D,V: 
y =UDV†

• U is a (dimAxdimB) matrix with orthonormal columns-> UU†=1; U=U†

• D is a (dimBxdimB) diagonal matrix with non-negative elements la
• V is a (dimBxdimB) unitary matrix -> VV†=1

= xxy U D V

(we are choosing 
dimB < dimA for convenience)
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This is also called the “Schmidt decomposition” of the state



The SVD and the density matrix
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In general:

In the Schmidt basis, the reduced density matrix is 
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• The singular values are the eigenvalues of the reduced d.m. squared wi=li 2
• The two reduced density matrices share the spectrum
• the singular vectors are the eigenvectors of the density matrix.



Optimizing the wave-function

S=||y'ñ -|yñ|2
We want to minimize the distance between the two states

where |yñ is the actual ground state, and |y’ñ is the variational approximation after 
rotating to a new basis and truncating 

|y'ñ = ∑m
ajaaj|añ| jñ

We reformulate the question as: Given a matrix y ,what is the optimal matrix y’ with  
fixed rank r that minimizes the Frobenius distance between the two matrices. 
It turn out, this is a well known problem, called the “low rank matrix approximation” 
or “pricipal component approximation” (PCA) in machine learning. 
If we order the eigenvalues of the density matrix in descending order w1, w2,…,wm,…,
wr we obtain

S=||y'ñ -|yñ|2 =å
+

r

m
i

1
w Truncation error!



DMRG: The Algorithm
How do we build the reduced basis of states? 

We grow our basis systematically, adding sites to our system at each step, 
and using the density matrix projection to truncate



2) We diagonalize the system and obtain the ground state 
|gsñ=∑y1234|a1ñ|s2ñ|s3ñ|b4ñ

3) We calculate the reduced density matrix r for blocks 1-2 and 3-4.

4) We diagonalize r obtaining the eigenvectors and eigenvalues wi

1) We start from a small superblock with 4 sites/blocks, each with a 
dimension mi , small enough to be easily diagonalized

1 2 3 4m1

H1

The	Algorithm

å=
43

*
34'2'1123421121 ''

b

yyara
s

ss



5) We add a new site to blocks 1 and 4, expanding the basis for each 
block to m'1 = mm2 and m'4 = m3 m

m2m m'1=mm2

7) We repeat starting from 2) replacing H1 by H'1 and H4 by H'4

1 2 3 41 2 3 41 2 3 41 2 3 4

6) We rotate the Hamiltonian and operators to the new basis keeping 
the m states with larger eigenvalues (notice that we no longer are in 
the occupation number representation)



We add one site at a time, until we reach the desired system size

1 2 3 41 2 3 41 2 3 41 2 3 4

The finite size algorithm



1 2 3 41 2 3 41 2 3 41 2 3 41 2 3 41 2 3 41 2 3 41 2 3 41 2 3 41 2 3 41 2 3 41 2 3 41 2 3 4

We sweep from left to rightWe sweep from right to left

The finite size algorithm

…Until we converge



Finite-size DMRG Flow chart



The discarded weight 1-∑m
a=1wa measures the 

accuracy of the truncation to m states



Observations

• Sweeping is essential to achieve convergence
• Run the finite-size DMRG and extrapolate to 

the thermodynamic limit.
• For each system size, extrapolate the results 

with the number of states m, or fix the 
truncation error below certain tolerance. 



Density Matrix Renormalization Group

A variational method without a-priori assumptions 
about the physics.

•Similar capabilities as exact diagonalization.

•Can calculate properties of very large systems (1D and 
quasi-2D) with unprecedented accuracy.

•Results are variational, but “quasi-exact”: Accuracy is finite, 
but under control.



Advantages of the DMRG

• DMRG is very versatile, and easy to adapt to complex 
geometries and Hamiltonians.

• Can be used to study models of spins, bosons, or 
fermions.

• General and reusable code: A single program can be 
used to run arbitrary models without changing a single 
line (e.g. ALPS DMRG) 

• Symmetries are easy to implement.



Limitations of the DMRG

• DMRG is the method of choice in 1d and quasi-1d 
systems, but it is less efficient in higher dimensions.

• Problems with (i) critical systems, (ii) long range 
interactions, and (iii) periodic boundary conditions.

• These limitations are due to:
– The structure of the variational wave function used by the 

DMRG (the MPS ansatz). 
– Entanglement entropy follows area law. 



Technicalities…
Adding a single site to the block

1+la
la

1+ls

Before truncating we build the new basis as:

11 ++ Ä= lll saa

And the Hamiltonian for the new block as

...'0,01,1, +Ä+Ä+Ä=+ OOHIIHH lLllLlL

01, OIO llL Ä= -with



.. and for the right block

Before truncating we build the new basis as:

433 +++ Ä= lll s bb

And the Hamiltonian for the new block as
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Putting everything together to build 
the Hamiltonian…
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Truncation
When we add a site to the left block we represent the new basis states as:
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Measuring observables
Suppose we have a chain and we want to 
measure a correlation between sites i and j

iO jO'

i j
We have two options:
1. Measure the correlation by storing the composite operator in a block
2. Measure when the two operators are on separate blocks

We shall go for option (2) for the moment: simpler and more efficient



Operators on separate blocks

iÔ jO'ˆ

i j

We only measure when we have the following situation:

Then, it is easy to see that:
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We cannot do this if the two operators are in the same block!!!



Operators on the same block

iÔ jO'ˆ

i j

We need to propagate the product operator into the block, the 
same way as we do for the Hamiltonian

Do never do this:
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Targeting states in DMRG

If we target the ground state only, we cannot expect to have 
a good representation of excited states (dynamics).

If the error is strictly controlled by the DMRG truncation error, we say that the 
algorithm is “quasiexact”.

Non quasiexact algorithms seem to be the source of almost all DMRG 
“mistakes”. For instance, the infinite system algorithm applied to finite systems 
is not quasiexact.

Our DMRG basis is only guaranteed to represent targeted states, and those 
only after enough sweeps!



Excited states

gsgsHHH L+=® '

b) At each step of the DMRG sweep, target the ground state, and the ground 
state of the modified Hamiltonian:

For targeting the two states, we use the density matrix:

11
2
1

2
1

+= gsgsr

a) If we use quantum numbers, we can calculate the ground states in different 
sectors, for instance S=0, and S=1, to obtain the spin gap



2D Generalization



Why does the DMRG work???
wa

a

good!

bad!

In other words: what makes the 
density matrix eigenvalues 
behave so nicely?



Entanglement
We say that a two quantum systems A and B  are “entangled” when we cannot 
describe the wave function as a product state of a wave function for system A, and 
a wave function for a system B

For instance, let us assume we have two spins, and write a state such as:

|yñ =|↑↓ñ + |↓↑ñ + |↑↑ñ +
|↓↓ñWe can readily see that this is equivalent to:

|yñ =(|↑ñ+|↓ñ)Ä(|↑ñ+|↓ñ)=|↑ñx
Ä |↓ñx-> The two spins are not entangled! The two subsystems carry information 

independently
Instead, this state: |yñ =|↑↓ñ + |↓↑ñ

is “maximally entangled”. The state of subsystem A has ALL the information 
about the state of subsystem B



The Schmidt decomposition

Universe

system

|iñ
environment

| jñ

å=
ij

BAijAB
jiyy

We assume the basis for the left subsystem has dimension dimA, and the 
right, dimB. That means that we have dimA x dimB coefficients. 
We go back to the original DMRG premise: Can we simplify this state by 
changing to a new basis? (what do we mean with “simplifying”, anyway?)



The Schmidt decomposition
We have seen that through a SVD decomposition, we can rewire the state as:
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Notice that if the Schmidt rank r=1, then the wave-function reduces to a product 
state, and we have “disentangled” the two subsystems.

After the Schmidt decomposition, the reduced density matrices for the two 
subsystems read:
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The Schmidt decomposition, 
entanglement and DMRG

It is clear that the efficiency of DMRG will be determined by 
the spectrum of the density matrices (the “entanglement 
spectrum”), which are related to the Schmidt coefficients:
• If the coefficients decay very fast (exponentially, for 

instance), then we introduce very little error by discarding 
the smaller ones.

• Few coefficients mean less entanglement. In the extreme 
case of a single non-zero coefficient, the wave function is a 
product state and it completely disentangled.

• NRG minimizes the energy…DMRG concentrates 
entanglement in a few states. The trick is to disentangle the 
quantum many body state! 



Quantifying entanglement
In general, we write the state of a bipartite system as:

å=
ij

ij jiyy

We saw previously that we can pick and orthonormal basis for “left” and 
“right” systems such that

å=
a

a aaly RL

We define the “von Neumann entanglement entropy” as:

22 log a
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a llå-=S
Or, in terms of the reduced density matrix:
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Entanglement entropy
Let us go back to the state:

|yñ =|↑↓ñ + |↓↑ñ
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We obtain the reduced density matrix for the first spin, by tracing over the 
second spin (and after normalizing):

We say that the state is “maximally entangled” when the reduced density 
matrix is proportional to the identity. 
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Entanglement entropy

• If the state is a product state:

{ } 0,...0,0,1 =®=®= SwRL aaay
• If the state maximally entangled, all the wa are equal

{ } DSDDDw log,...1,1,1 =®=® a

where D is 

{ }RL HHD dim,dimmin=



Area law: Intuitive picture
Consider a valence bond solid in 2D

singlet

2logcut) bonds of(#2log LS »´=

The entanglement entropy is proportional to the area of the boundary separating 
both regions. This is the prototypical behavior in gapped systems. Notice that this 
implies that the entropy in 1D is independent of the size of the partition



Critical systems in 1D
c is the “central charge” of the system, a 
measure of the number of gapless modes



Entropy and DMRG
The number of states that we need to keep is related to the entanglement entropy:

Sm exp»

• Gapped system in 1D: m=const.
• Critical system in 1D: m=La
• Gapped system in 2D: m=exp(L)
• In 2D in general, most systems obey the area law (not free fermions, or 

fermionic systems with a 1D Fermi surface, for instance)… 
• Periodic boundary conditions in 1D: twice the area -> m2



The wave-function transformation
Before the transformation, the superblock state is written as:
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After the transformation, we add a site to the left block, and we “spit out” 
one from the right block
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What have we left out?

…Exploiting quantum numbers


