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Ground State Prediction
When we add a site to the left block we represent the new basis states as:
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Similarly for the right block:
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The wave-function transformation
Before the transformation, the superblock state is written as:
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After the transformation, we add a site to the left block, and we “spit out” 
one from the right block
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After some algebra, and assuming                           , one readily obtains:
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Solving the t-d Schrödinger Equation
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Let us assume we know the eigenstates of H

In reality, we work in some arbitrary basis
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Mixture of excited states with 
oscillating terms with 
different frequencies

Typically we avoid high freq. oscillations by adding a phase )( 0EHititH ee --- ®



Time evolution and DMRG: First attempts

● Cazalilla and Marston, PRL 88, 256403 (2002). Use the infinite system method 
to find the ground state, and evolved in time using this fixed basis without 
sweeps. This is not quasiexact. However, they found that works well for 
transport in chains for short to moderate time intervals.

This is quasiexact as τ→0 if you add sweeping.

The problem with this idea is that you keep track of all the history of the 
time-evolution, requiring large number of states m. It becomes highly 
inefficient.

t=0 t= τ t=2τ t=3τ t=4τ

● Luo, Xiang and Wang, PRL 91, 049901 (2003) showed how to target 
correctly for real-time dynamics. They target

ψ(t=0), ψ(t= τ) , ψ(t=2τ) , ψ(t=3τ)…

t=0 t= τ t=2τ t=3τ t=4τ



Adaptive Time-dependent DMRG:

S.R.White and AEF, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp. (2004); AEF and S.R.White, 
PRB (2005), Rapid Comm. Based on TEBD ideas by G. Vidal, PRL (94).

...

t=0 Hilbert 
space

In a truncated basis:

t= τ
t=2 τ

t=3 τ t=4 τ t=5τ

We need to 
“follow” the state 
in the Hilbert 
space adapting 
the basis at 
every step



...

Evolution operator

H=          H1 +    H2 +    H3 +    H4 +   H5 +   H6

We would feel tempted to do something like:

...43214321 ...)( HiHiHiHiHHHHiHi eeeeee tttttt ----+++-- »=

But it turns out that                                                   because2121 )( HiHiHHi eee ttt --+- ¹ [ ] 0, 21 ¹HH

This actually would give you an error of the order of t2, similar to a 1st
order S-T expansion…



...

Suzuki-Trotter approach

H=          H1 +    H2 +    H3 +    H4 +   H5 +   H6

HB=         H1 +            H3 +           H5

HA=                     H2 +           H4 +          H6
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Suzuki-Trotter expansions

I.P Omelyan et al., Comp. Phys. Commmun. 146, 188 (2002) and references therein.

We want to write
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We want to choose the a’s and b’s such that they kill the first K coefficients 
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Suzuki-Trotter expansions
First order:
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Second order:
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We kill the second order term by choosing a=1/2; b=1
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Suzuki-Trotter expansions

Fourth order:
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One solution (the most convenient expression) has the form (Forest-Ruth 
formula)
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1st order Suzuki-Trotter decomposition:

So the time-evolution operator is a product of individual link terms.
Each link term only involves two-sites interactions => small matrix, easy to calculate! 

...

Evolution using Suzuki-Trotter

BA HiHiHi eee ttt --- »

...531 HiHiHiHi eeee B tttt ---- = No error 
introduced!



The two-site evolution operator
Example: Heisenberg model (spins)

The two-site basis is given by the states 

|ss’ñ ={|↑↑ñ;|↑↓ñ;|↓↑ñ; |↓↓ñ}
We can easily calculate the Hamiltonian matrix:
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Exercise: Exponentiate (by	hand)	the	matrix	by	following	these	steps:
1. Diagonalize the	matrix	and	calculate	eigenvalues and	eigenvectors
2. Calculate	the	exponential	of	H in	the	diagonal	basis
3. Rotate	back	to	the	original	basis
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Evolving the wave-function 
We want to apply the evolution operator between the two central sites:
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As we've seen before, the link evolution operator can be written as

And the wave function after the transformation:



tDMRG: The algorithm
S.R.White and A.E. Feiguin, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp. 

(2004)

`̀̀̀̀

We start with the finite system algorithm to obtain the ground stateWe turn off the diagonalization and start applying the evolution operatorWe move to the end to start time-evolution

e-iτHij



tDMRG: The algorithm 
S.R.White and A.E. Feiguin, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp. 

(2004)
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e-iτHije-iτHije-iτHije-iτHije-iτHij

Depending on the S-T break-up, a few sweeps 
evolve a time step

Each link term only involves two-sites interactions: small 
matrix, easy to calculate! Much faster than Lanczos!



Time-step targeting method

●We target one time step accurately, then we move to the next step.

●We keep track of intermediate points between t and t+τ

t=0 t=τ t=2τ t=3τ t=4τ

The time-evolution can be implemented in various ways: 

1) Krylov basis: Calculate Lanczos (tri-diagonal) matrix, and exponentiate. (time consuming)
2) Runge-Kutta. (non-unitary!)

AEF and S. R.White, PRB (05). See also P. Schmitteckert, PRB 70, 121302(2004)

What if we don’t have a “nice” Hamiltonian, and S-T cannot be applied





Sources of error
● Suzuki-Trotter error: Can be controlled by using higher 

order expansions, or smaller time-steps
● Truncation error: In principle it can be controlled by 

keeping more DMRG states as the entanglement grows. 
Caveat: only works for “well-behaved” problems, since 
typically the entanglement grows uncontrollably.

● Runge-Kutta/Krylov: the error is dominated by the 
truncation error. 
Recipe: instead of fixing the number of states for the 
simulation, we fix the truncation error, and we let the 
algorithm determine the optimal number of states… until 
the basis grows too large and the simulation breaks 
down. Hopefully this will enable us to go to large times…



S=1 Heisenberg chain (L=32; t=8)

1st order S-T

4th order S-T

time targeting +RK



Fixed error, variable number of states



Comparing S-T and time step targeting
● S-T is fast and efficient for one-dimensional 

geometries with nearest neighbor interactions
● S-T error depends strongly on the Trotter error but it 

can be reduced by using higher order expansions.
● Time step targeting (Krylov,RK) can be applied to 

ladders and systems with long range interactions
● It has no Trotter error, you can use a larger time-

step, but it is more time consuming and you need 
more DMRG states.

● In RK simulations it is a good practice to do an 
intermediate sweep without evolving in time to 
improve the basis.

● Time evolution using RK is non-unitary (dangerous!). 
Krylov expansion is the right choice.



Applications

1. Transport in nano-structures
2. Spectral properties, optical conductivity…
3. Systems driven out of equilibrium, 

quenches.
4. Time-dependent Hamiltonians.
5. Decoherence: Free induction decay, 

Hahn echo, Rabi oscillations, pulse 
sequences…

…



Spin transport
Example: half polarized spin S=1/2 chain



Spin transport
Example: half polarized spin S=1/2 chain



The enemy: Entanglement growth
We have seen that the truncation error, or the number of state that we need 
to keep to control it, depends fundamentally on the entanglement

)(tSS =

We need to understand this behavior if we want to learn how to fight it!

Possible scenarios:
• Global quench
• Local quench
• Periodic quench
• Adiabatic quench
•… 

)(tV

t
All of a sudden, we are no longer in the ground-state, but some high energy 
state. Important questions: thermalization vs. integrability 



E-growth: global quench

Calabrese and Cardy, JStatM (05)



Global quench: qualitative picture

timeBB

2vt<l

Calabrese and Cardy, JStatM (05)
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t=0

t

We assume that entangled pairs of quasi-particles are 
created at t=0, and they propagate with maximum velocity

ctSS +=Þ 0

Region A (lengh l)



Global quench: qualitative picture

time
Region A (lengh l)

BB

2vt>l

Calabrese and Cardy, JStatM (05)

t=0

t

The number of entangled pairs saturates



time

Calabrese and Cardy, JStatM (07)

t=0

t

The perturbation propagates from the center, splitting the 
system into two pieces, inside and outside of the light-cone

Local quench: qualitative picture
l’=vt

Region A Region B

)log(')'log(' 00 vtcSlcSS +=+=Þ



Computational cost
Global quench:

)exp()exp( ctSmctS =»®»

Local quench:
const.)exp()log( tSmvtS =»®»

const.const. »®» mS
Adiabatic quench:



Transport and systems out of equilibrium

References: PRB 78, 195317 (2008); PRA 78, 013620 (2008) ; PRL 100, 166403 (2008) ; 
PRB 73, 195304 (2006); New. J. of Phys (2010) 
Thanks to: F. Heidrich-Meisner, K. Al-Hassanieh, C. Busser, G. Martins, E. 
Dagotto, L. Da Silva, E. Anda



Example: transport in 1d

Spinless fermions with 
interactions.

Typical behavior:

1) Short time transient

2) Plateau (we measure!)

3) Reflection at the 
boundaries. Current 
changes sign.

AEF, P. Fendley, MPA Fisher, C. Nayak, PRL08



Weak link / potential barrier

kF-kF

E



Resonant level / double barrier



Quantum dots 
Quantum dot attached to two leads:

single-level Anderson model

qd
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Non-interacting limit (U=0)

F. Heidrich-Meisner, AEF, E. Dagotto, PRB (09)



tDMRG Results for 1 dot
Kondo Effect and magnetic field

Suppression of Kondo effect: Coulomb Blockade peaks are formed



Accessing the Kondo regime
Wilson leads: 1)(   2/ >LL= -l

lt
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Accessing the Kondo regime
Wilson leads: 1)(   2/ >LL= -l

lt



Entropy growth with Wilson leads



DMRG vs. Bethe Ansatz

F. Heidric-Meisner et al, EPJB (09), N. Andrei, PRL (80), Gerland et al. PRL (00)



I-V characteristics
Particle-hole symmetric point (Vg=-U/2)

F. Heidrich-Meisner, AEF, E. Dagotto, PRB 2009.



I-V characteristics
Finite magnetic field

Eckel, F. Heidrich-Meisner, Jakobs, Thorwart, Pletyukhov, Egger, NJP (10)



Large bias – out of equilibrium

F. Heidrich-Meisner, AEF, E. Dagotto, PRB (09)



Dependence on the initial state



Computational cost and entropy growth



Computational cost and initial conditions

Entanglement entropy grows linearly in time, once the steady state is reached. 



Time-dependent correlation 
functions – Spectral properties

References: AEF and SR White (05) 



Calculating spectral functions



Time dependent correlation functions
S=1 Heisenberg chain



Fourier transform to k and w

Time



S=1/2 Heisenberg chain

L=80;	m=200;	t=0.1

Cu(C4H4N2)(NO3)2 tDMRG



S=1/2 Heisenberg ladder 2xL (L=32)



Spin-charge separation
(seen in photoemission – ARPES)

photon
Photo-
electron

holonspinon

The excitations don’t carry the same quantum numbers as the original electron 
® zero quasi-particle weight



Spin incoherent behavior

q

w Holon band

Spinon bandT~J

See G. Fiete, RMP (07)



ARPES at T=0; J=0.5

PES

IPES

holon spinon

“Shadow” 
bands

kF-kF



Optical conductivity: Peierls-Hubbard model



Finite-temperature DMRG

References: AEF and S. R. White, PRB, Rapid (05)



Liouville representation

å=
jk
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Consider an operator

Another way to define the operator is by working in Liouville space: we 
recast it in the form

å=
jk

jk jkaA
Were

kjjk º

If the dimension of the Hilbert space is d, we need dxd entries to define A



Liouville representation (cont.)

[ ]rr ,Hi
dt
d
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If the operator is the density 
matrix then we can write the 
equation of motion as

It can be rearranged as 
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The Liouvillian L is a superoperator with d2xd2 entries

r
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analogous to the 
Schroedinger equation



From Liouville to Thermo Field 
representation

We need dxd entries to define an operator, so we can define an “ancillary” 
space, which is a duplicate of our Hilbert space

H®HÄH’
For each state               in H, we define a “tilde” state          living in the 
ancillary space (“thermo-field double”).

x~x

Now, we can define a “quantum” state

å=
jk

jkA kja ~y

This state encodes the operator A, and the dxd amplitudes 
contain all the information.

Takahashi and Umezawa, Collect Phenom. 2, 55 (1975)



Thermo Field representation
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If the operator is the density matrix, once again we see

with += HH~ acting on the ancillary states

[ ]å --=
m

mkjmmkjm
jk HHi
dt
d

rr
rIt is easy to verify that:

But we work with quantum states and Hamiltonians, instead of 
operators and superoperators. All the machinery of many-body, 
Green’s function, numerics, can be seamlessly generalized to 
solve the non equilibrium problem!

å=
jk

jk kj ~ry r



Finite temperature

AEF and S. R. White, PRB, Rapid (05), Verstraete PRL 2004, Zwolak PRL 2004

Problem: we want to calculate a thermal average:

as an average using a wave function instead of density 
matrices:

with
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Finite temperature
Let’s consider a two-level system

1~10~11~00~0 11100100 rrrry r +++=

11011000 11100100 rrrrr +++=
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At infinite temperature
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We can perform a “particle-hole” transformation an rewrite it as:
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Note: The sign does not matter, we can also use the singlet as the maximally entangled state



Evolution in imaginary time
Now, let’s prove that the thermal state is equivalent to evolving the maximally 
entangled state in imaginary time. 

å-- ==
n

HH nnee
 states all

2/2/ ~,)0( bb by

Since this expression does not depend on the choice of basis, we can 
assume that the configurations n are actually eigenstates of H
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T-dependent
entanglement

•The ancillas and the real sites do not interact!
•The global state is modified by the action of the Hamiltonian
on the real sites, that are entangled with the ancillas.
•The mixed state can be written as a pure state in an enlarged 
Hilbert space (ladder-like or bi-layer-like in 2D).
•The thermal state is the “square root” of the density matrix.

Evolution in imaginary time
The thermal state is equivalent to evolving the maximally mixed 
state in imaginary time. 
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Purification
We have found that the initial state is:

It is easy to see that it can be written as:

åÕ ===
s
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l

l ss ~,  with  )0( 0
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0 yyby

The maximally entangled state between system and ancillas is 
a product state (totally disentangled) of spin-ancilla pairs!!

At  T=0, the system “decouples” from the ancilla: they become totally 
disentangled, meaning

ancillasg.s.)( Ä=¥=by

å==
n

nn ~)0(by



Example: single spin

|I0ñ= |↑,↓ñ-|↓,↑ñ

We trace over ancilla:
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r

The density matrix corresponds to the physical spin 
at infinite temperature!

↑: “physical” spin

↓: “ancilla”

Takahashi and Umezawa, Collect Phenom. 2, 55 (1975), Verstraete PRL 2004, Zwolak PRL 2004

We introduce and auxiliary spin (ancilla)



|Iñ =∑|n,ññ

|Iñ=|↑↑,↑↑ñ+|↓↓,↓↓ñ+|↑↓,↑↓ñ+|↓↑,↓↑ñ
each term can be re-written as a product of local “site-ancilla” states:

|Iñ=|↑,↑ñ|↑,↑ñ+|↓,↓ñ|↓,↓ñ+|↑,↑ñ|↓,↓ñ+|↓,↓ñ|↑,↑
after a “spin-reversal” (flip) transformation on the ancilla we get

|Iñ=|I0ñ|I0ñ with |I0ñ= |↑,↓ñ+|↓,↑ñ
→ only one product state!
and we can work in the subspace with total Sz=0!!!

Maximally mixed state for β=0 (T=∞)

with |nñ= |s1 s2 s3…sN ñ 2N states!!!

CM: thermofield representation, QI: mixed state purification

(auxiliary field ñ is called ancilla state)

Exercise: prove that the maximally mixed state |Iñ =∑|n,ññ
does not depend on the choice of basis or representation



The initial state in DMRG language looks like:

In this basis, left and right block have only one state!
As we evolve in time, the size of the basis will grow.

Initial state

|Iñ =∑|n,ññ
We have found that the initial state:

Can be written as:

åÕ ==
s

ii
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i
ssIII ~,  with  0
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0

The maximally entangled state between system and ancillas is a 
product state (totally disentangled) of spin-ancilla pairs!!



Thermodynamics of the spin-1/2 chain



Frustrated Heisenberg chain

* TM-DMRG results from Wang and Xiang, PRB 97; Maisinger and Schollwoeck, PRL 98.



Frustrated Heisenberg chain

* TM-DMRG results from Wang and Xiang, PRB 97; Maisinger and Schollwoeck, PRL 98.



The maximally mixed state in the canonical 
ensemble

We need to generate a state: |Iñ =∑|n,ññ
Where the n states are configurations with fixed total Sz, or fixed 
number of particles N

The previous example was in the grand canonical, all spin projections 
contribute:

|Iñ=|↑↑,↑↑ñ+|↓↓,↓↓ñ+|↑↓,↑↓ñ+|↓↑,↓↑ñ
The maximally mixed state in the canonical with Sz =0 would look:

|Iñ=|↑↓,↑↓ñ+|↓↑,↓↑ñ



The maximally mixed state in the canonical 
ensemble (contd.)

Let us focus on the physical spins. Let us generate the symmetric 
superposition of all the spin configurations with Sz =0 : 

|Sñ=|↑↓ñ+|↓↑ñ

It is a and eigenstate of the operator S2 with S =1

In general, we can prove that the symmetric superposition of all spin 
configurations is an eigenstate of S2 with maximum spin S.

Therefore, if we want to generate this state, we calculate the ground state 
of the Hamiltonian in desired Sz subspace
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For fixed with Sz this becomes (except for a constant)
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The maximally mixed state in the canonical 
ensemble (contd.)

Now, we need to add the ancilla, so we use: 

( )( ) ( )( )å
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Recipe: 

1) We prepare the state at infinite temperature as the ground state 
of an artificial Hamiltonian acting on an enlarged Hilbert space 
coupling physical spins and ancillas.

2) We evolve the state in imaginary time, using the time-dependent 
DMRG

AEF, G. Fiete, PRB (2010)



The maximally mixed state in the canonical 
ensemble (contd.)

For fermions:

fermion-
ancilla pair



ARPES at finite T
t-J chain; L=32, N=24, J=0.05

AEF and G. Fiete, PRB (2010)
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