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Why does the DMRG work???

Mg In other words: what makes the
density matrix eigenvalues
behave so nicely?

good!

badlo




Entanglement

We say that two quantum systems A and B are “entangled” when we cannot

describe the wave function as a product state of a wave function for system A, and
a wave function for a system B

For instance, let us assume we have two spins, and write a state such as:

W =TV + [T H T+ V)

We can readily see that this is equivalent to:

W) =(THHDS(THHL DT @ [L);

-> The two spins are not entangled! The two subsystems carry information
independently

Instead, this state: ‘\V> :‘ /]\ \l/> + ‘\l/ /]\>

is “maximally entangled”. The state of subsystem A has ALL the information
about the state of subsystem B



The Schmidt decomposition
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We assume the basis for the left subsystem has dimension dim,, and the
right, dimg. That means that we have dim, x dimg coefficients.

We go back to the original DMRG premise: Can we simplify this state by
changing to a new basis? (what do we mean with “simplifying”, anyway?)



The Schmidt decomposition

We have seen that through a SVD decomposition, we can rewire the state as:

V) =2 ala) ),

Where

r =min(dim ,,dim;); 4, =20 and ‘a>A; a>B are orthonormal

Notice that if the Schmidt rank r=1, then the wave-function reduces to a product
state, and we have “disentangled” the two subsystems.

After the Schmidt decomposition, the reduced density matrices for the two
subsystems read:

r
Pap = Z /12 ‘ a>A/B A/B <0{‘
a



The Schmidt decomposition,
entanglement and DMRG

It is clear that the efficiency of DMRG will be determined by

the spectrum of the density matrices (the “entanglement

spectrum”), which are related to the Schmidt coefficients:

 |f the coefficients decay very fast (exponentially, for
instance), then we introduce very little error by discarding
the smaller ones.

* Few coefficients mean less entanglement. In the extreme
case of a single non-zero coefficient, the wave function is a
product state and it completely disentangled.

* NRG minimizes the energy...DMRG concentrates
entanglement in a few states. The trick is to disentangle the
guantum many body state!



Quantifying entanglement

In general, we write the state of a bipartite system as:
) =2 vl )
Ij

We saw previously that we can pick and orthonormal basis for “left” and
“right” systems such that

V)= T o)

We define the “von Neumann entanglement entropy” as:
. 2 2
S=-> 2 logh,
(94
Or, in terms of the reduced density matrix:

PL = Zﬂi‘OlLXOtL ‘ =05 = _Tr(pL logpL)



Entanglement entropy

Let us go back to the state:

) =)+ )

We obtain the reduced density matrix for the first spin, by tracing over the
second spin (and after normalizing):

1/2 0
Pr =
0 1/2
We say that the state is “maximally entangled” when the reduced density
matrix is proportional to the identity.

1 1 1 1
S=——log———log—=10g2
2 g2 2 g2 5



Entanglement entropy

* If the state is a product state:

v)=|a,)az) > w, ={,0,0,..; = S =0

* If the state maximally entangled, all the w, are equal

—>w, = %,%),%),...}—)SzlogD

where D is

D =min{dim H,,dim H , }



Area law: Intuitive picture

Consider a valence bond solid in 2D
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S =log2x(#of bonds cut) = Llog?2

The entanglement entropy is proportional to the area of the boundary separating
both regions. This is the prototypical behavior in gapped systems. Notice that this
implies that the entropy in 1D is independent of the size of the partition



Critical systems in 1D

C .
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Entropy and DMRG

The number of states that we need to keep is related to the entanglement entropy:
m=expS

* Gapped system in 1D: m=const.

e Critical system in 1D: m=L%

* Gapped system in 2D: m=exp(L)

* In 2D in general, most systems obey the area law (not free fermions, or
fermionic systems with a 1D Fermi surface, for instance)...

* Periodic boundary conditions in 1D: twice the area -> m?



Ground State Prediction

When we add a site to the left block we represent the new basis states as:

‘Sl+1>

) | & :> %)

‘0‘1+1> = Z <0‘1+1 ‘UJ{H‘ 0‘151+1>‘ 0‘1> ® ‘ Sl+1>
Similarly for the right blogf(l:’al

‘Sl+3>

‘ |,Bl+4>

‘ﬂl+3> — Z<ﬂl+3 ‘U52+3‘Sl+3ﬁl+4 >‘ Sl+3> ® ‘ IBI+4>

1438144

pa— B




The wave-function transformation

Before the transformation, the superblock state is written as:

‘Sl+1> ‘Sl+2>

‘0[1> ‘ ‘ ‘ﬁl+3>

“//> = Z <051S1+1S1+2:BI+3 “//>‘ 0{,> ® ‘ Sl+1> ® ‘ S1+2> ® ‘ :Bz+3>

Q814155142 P43

After the transformation, we add a site to the left block, and we “spit out”
one from the right block

‘ ‘//> = Z <0‘1+1S1+2S1+3181+4 ‘ ‘//>‘ 051+1> ® ‘ Sl+2> ® ‘ S143 > ® ‘ 181+4>
1415814255143 P4a

After some algebra, and assuming Z‘%X% ‘ ~ 1, one readily obtains:

Q

<0‘1+1S1+2SI+3131+4 ‘W> ~ Z <az+1 H S ><0‘1S1+1SZ+2131+3 ‘W><S1+3IBI+4 H :Bz+3>

a;,8141-P143



The DMRG transformation

When we add a site to the block we obtain the wave function for the
larger block as:

‘0‘1>: Z<0‘z ‘UI{‘O‘I—151>‘0‘1—1>®‘S1>

S15Q

Let’s change the notation...

Als, ]al,al_l =(|U]|as)
— ‘az> = ZA[SZ]aZ,al_I‘al—l> ®‘Sz>

S1,q

We can repeat this transformation for each /, and recursively we find

o) = [Sz]%az...A[S,]a“al | S)...8,)
{s}

Notice the single index. The matrix corresponding
to the open end is actually a vector!




Some properties the A matrices

Recall that the matrices A in our case come from the rotation matrices U

AtA=

\.

/

<>
r N
2m
\. 7
r N\
W J =1

This is not necessarily the case for arbitrary MPS’s, and normalization is

usually a big issue!



Left canonical representation

1x2 ~— —
2 x4 - - - = : 2x1

4x8 S G S A PR S 4 x 2




The DMRG wave-function in more
detail...

We can repeat the previous recursion from left to right...

| B1) = ZB[Sl]ﬂlaﬂm Blsalp, py-BLSL g, 18150)
s}

At a given point we may have

‘l//> = Z<azﬁz+1 ‘W> ) | Bry) =

a;.p
Z A[Sl ]0‘1 A[S2 ]alaaz '"A[Sl ]0‘1—10‘1 <alﬂl+1 ‘ l//>B[Sl+1 ]ﬂmaﬂnz B[Sl+2 ]ﬂl+2’ﬁl+3 "'B[SL ]ﬂL | 51 "'SL>
{s}
Without loss of generality, we can rewrite it:

) = ZM[SI]% M8y, 0 MI8y1, o MIs,1, |8).5,)
{s}

MPS wave-function for open boundary conditions




Diagrammatic representation of MPS

The matrices can be represented diagrammatically as

Asl,=a | 5 Asl=, |

And the contractions, as:

S, S,

& ‘052‘ ;5

The dimension D of the left and right indices is called the
“bond dimension”



MPS for open boundary conditions

) = ZM[SI]% M$,1y o --MI851, o MIs, 1, |55,




MPS for periodic boundary conditions




Properties of Matrix Product States

avl avz aL < ‘
Inner product: @

<§0‘W> S 8.0 851 S, Y/
& |&, 2 ‘W>

Addition: ‘W>:ZM1M2“'ML|S1"'SL>;‘¢>: MM,.M,|s,..s,)



Gauge Transformation

o« ||l _ o]

X-l

— X

There are more than one way to write the same MPS.

This gives you a tool to othonormalize the MPS basis



Operators

O 1s a matrix with elements <s |O| S'>

1

O

o | »

The operator acts on the
spin index only




Pairwise unitary tranformations

The two-site time-evolution operator will act as:

S, S,
U

S, S, S, - S

o |, |a | o
S, S

Which translates as:
S; 8 §; S's Sy
a, |a2 ‘0@ | a, a, |as| o o ‘ aN‘ a,
84,8
Z A4 [S'4 ]a4a5 Usi,ss's AS [S'S ]a5a6

§'48's




Matrix product basis

la,) = ZA[SI]% A8, 10 0, Al 1 o 15108)
{s}
S, S, S; 8, S,

“left canonical”

1 51) = ZB [s;)s 5., BUSials 5 -Blsp 1, [ $).081)
{s}

SZ+1 Sro Sz Sy S
g | |
ﬂl+1ﬂl+2 '

|H

“right canonica

&

As we saw before, in the < | ' > .
dmrg basis we get: A&y )=




The DMRG w.f. in diagrams

Z A[Sl a A[S2 : ) "'A[Sl : a2 <alﬂl+1 ‘ W>B[Sl+1 ]ﬂmaﬂnz B[Sl+2 ]ﬂz+2 PBrs '"B[SL ]ﬁL | 51 "'SL> -

Z A[Sl o A[S2 : ap,a; "'A[Sl : a9 Wazﬂm B[Sl+1 ]ﬂm DB B[Sl+2 ],31+2 Piis "'B[SL ]ﬂL | 51 "'SL>

S, S, S; 8, S S1+1802 Si3 AY;

ooy a1
‘ ‘ l l - ZIIBI+ZIBZ+3 L

(It’s a just little more complicated if we add the two sites in the center)



The AKLT State

H 7 = ZSi S +§(Si 'Si+1)2 with § =1

We replace the spins S=1 by a pair of spins S=1/2 that are completely
symmetrized

8, =11,
0, =—=( 1) J4), +[). 1), )
=11,

... and the spins on different sites are forming a singlet

0,9,

-

e

Singlet Projector



The AKLT as a MPS

The singlet wave function with singlet on all bonds is

v )=>>%, .2, .5 . |{ab}) with =,-

{s} a,b o

1
J2
0

0
1
J2
The local projection operators onto the physical S=1 states are

1

0 —
N 1 0 5 B 0 0
M, = ;Mz?b: 1 \/_ M, =
0 0 ELER 0 1
V2

The mapping on the spin S=1 chain then reads
Sy Sy
Z ZMal by Maz byt MaL by,
{s} a,b
Projecting the singlet wave-function we obtain

WAKLT>:P‘WZ> ZMa blzbl azMsz bzzbz MSLb
{s}

{s}){{a.b}|

{s})

LT b ,a

W oair) = ZAal A2 LAY {sY) with A) =M, S

ar.d a,ap a;,b; = b;,a,
{s}




Variational MPS

We can postulate a variational principle, starting from the assumption that the
MPS is a good way to represent a state. Each matrix A has DxD elements and
we can consider each of them as a variational parameter. Thus, we have to

minimize the energy with respect to these coefficients, leading to the following
optimization problem:

min{(y 1]y~ Ay |v)]

DMRG does something very close to this...



