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The representation problem
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The # of configurations/coefficients 𝜓 𝑠!, 𝑠", 𝑠#…𝑠$ grows exponentially and 
cannot be stored.

Variational solution:
Propose a functional form/analytical expression for the coefficients in terms 

of a reduced set of M free parameters.

More concretely:

with
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What’s a variational wave function?

Black Box
𝛼!, 𝛼", 𝛼#…𝛼$

| ⟩𝑠!, 𝑠", 𝑠#…𝑠$ 𝜓 𝑠!, 𝑠", 𝑠#…𝑠$

Input Output



Example: Matrix product states (MPS)
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Quantum spin systems
Each site is occupied by a bound electron with two degrees of freedom (spin up 
and spin down,↓).

A typical spin configuration is represented as | ⟩𝑠!, 𝑠", 𝑠#…𝑠$ = | ⟩↑↑↓⋯↑

We have 2L of such configurations (less if considering symmetries)

We sill consider the problem in the context of the Heisenberg model

J1
J2



Example: Jastrow wave-function
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Further simplification, in terms of a single parameter 𝛼%& =
𝛼

|𝑖 − 𝑗|

S. Sorella, PRL 2005

Horsch and von der Linden (1988), Huse and Elser (1988), Liu and Manousakis (1989), and Manousakis (1989) (See Manousakis RMP (1991)) 

Its simple form is derived from spin-wave theory.
Breaks SU(2) symmetry, but gives the correct physics in the thermodynamic limit.
Good for ordered phases.

L variational 
parameters with 
translational symmetry



Restricted Boltzmann Machines
• In machine learning they are used to represent probability densities of 

binary vectors (spins). A joint probability between the real/visible spins and 
latent hidden spins is given by a Boltzmann distribution with interaction between 
the visible and hidden.

• For VWF , the weights are made complex allowing all possible phases.
• Representational power for VWF is surprisingly good for their relative simplicity.

biases
weights biases

Visible 
layer Hidden 

layer
G. Carleo, M. Troyer, Science (2017)

It goes beyond Jastrow by introducing many-body terms. 



Representability

| -𝜓'.,'/,'0…'1

Hilbert Space

Variational states

In reality, the picture is more like 
this…

By adding more variational 
parameters or changing the 
“geometry” of the wave function, 
we can improve its “expressivity”



Variational solution
The variational coefficients are obtained by minimizing a loss function, in 
this case, the variational energy:

𝐸' =
𝜓' 𝐻 𝜓'
𝜓' 𝜓'

It can be easily re-expressed as 

𝐸' =0
{+}

𝑃+ 𝐸+ 𝑃+ =
| 𝑠 𝜓' |"

∑{+} | 𝑠 𝜓' |"

It clearly looks like a Boltzmann distribution, where the Boltzmann weight is 
replaced by the wave-function coefficient squared. 
Still, sampling over all the configurations is a formidable task, however…we 
know the analytical expression of these coefficients and we can carry out the 
equivalent to “classical Monte Carlo” : Variational MC



Sampling with Variational Monte 
Carlo



Variational optimization (I)



Variational optimization (II)
“Stochastic reconfiguration” (or “Natural gradient descent”): minimize the distance 
between quantum states following the exact and variational imaginary-time revolution

𝜓

𝛾
𝜑



Natural Gradient descent vs gradient descent

Euclidian metric “Natural” metric

https://medium.com/xanaduai/optimizing-quantum-computations-with-the-quantum-natural-gradient-ba0636ebdb86



Natural Gradient descent vs gradient descent

Fisher information matrix

1.α, the learning rate, is replaced with ηₜ to make it clear that the step size may 
change in each iteration
2.An additional term F(θₜ)₋₁ has been added to the normal gradient.

https://towardsdatascience.com/natural-gradient-ce454b3dcdfa



Natural gradient descent as imaginary time evolution
The main idea to obtain an approximation to the ground-state consists of evolving the 
wave-function in imaginary time:

We need to minimize the following projection error:

For a review: Lucas Hackl, et al, SciPost (2020). J. Martens cs/1412.1193. See also Sorella’s “Stochastic reconfiguration”. 

In general, when we have a variational wave-function 𝜓 and a target wave function 
𝜑, we use the loss function

Where 𝛾 is the so-called Fubini-Study metric.
This minimization leads to a set of equations to update the 
variational parameters 𝛼 in terms of the derivatives 

𝜓

𝜑
𝛾𝑑

𝑑𝛼-
⟩|𝜓'

(Notice lack of normalization)
Gradient descent: Euclidian geometry of the parameter space
Natural GD: “information geometry” of the variational manifold



Geometric interpretation NGD as a 
time-evolution process



Restoring symmetry



Lanczos recursion



Results for the ground state



Results (cont’d)



Conclusions

• RBM wave functions, initially deemed too simple, 
can be used as building blocks for complicated 
wave functions with much more representation 
power by enforcing the internal symmetries of the 
model and the point group symmetries of the 
lattice.
• The Lanczos method offers an effective solution to 

further improve the variational energy. With 
symmetry averaged RBM wave functions, it can 
produce the state-of-the-art accuracy for the 
ground state calculation of the model on square 
lattice.



Thermodynamics using VMC
Current approaches:



Typical thermal states 



Initialization



Results (Energy)
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Results (Specific heat)
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Results (Magnetic Susc.)
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Conclusions

• We propose a new method to carry out 
thermodynamic simulations of quantum many-body 
models using a neural network representation of the 
wave functions.
• The method does not suffer from the sign problem 

and offers an alternative to matrix product states for 
studying two dimensional models.
• This method is general and can be extended to other 

variational forms.



Spectral functions with VMC

Our approach: expanding the spectral function in terms of Chebyshev polynomials, 
and using restricted Boltzmann machines as variational wave function



Spectral functions: The correction vector

“Correction vector”

We introduce the two auxiliary states:

We first define the Green’s function:

E. Jeckelmann, Phys. Rev. B 66, 045114 (2002).
T. D. Kühner and S. R. White, Phys. Rev. B 60, 335 (1999).

For spins



Variational optimization

Same as before, we use the Fubini-Study metric

The problem consists of solving the equation

The target function is | ⟩𝐴 and we need to solve for | ⟩𝜒
So, we are solving a system of (complex) linear equations, 
where the solution is encoded in the form of an RBM.

Notice that the problem has to be solved for each value of z (or 
w ) -> hundreds of VMC runs in parallel.



Results - Benchmark
Heisenberg chain L=10



Results
Heisenberg chain L=30



Results
Heisenberg chain L=30



Chebyshev polynomials
They are defined by simple recursion relations

𝑇. = 1; 𝑇! = 𝑥
𝑇/0! = 2𝑥𝑇/ − 𝑇/1!

Each polynomial is bounded by 1 in the interval [-1,1]

They are orthogonal according to

=
1!

!

𝑇/(𝑥)𝑇2(𝑥)
𝑑𝑥
1 − 𝑥"

= @
0 𝑖𝑓 𝑛 ≠ 𝑚

𝜋 𝑖𝑓 𝑛 = 𝑚 = 0
𝜋/2 𝑖𝑓 𝑛 = 𝑚 ≠ 0

According to this, a function f:[-1,1]→ℝ can be expanded as

𝑓 𝑥 =
1

𝜋 1 − 𝑥"
𝜇. + 20

/

𝜇/𝑇/(𝑥)

with 𝜇/ = =
1!

!

𝑇/ 𝑥 𝑓(𝑥)
𝑑𝑥
1 − 𝑥"

“Chebyshev moments”



Chebyshev expansion of spectral functions
If the energy spectrum of H is defined between (-1,1) one can show 
that the spectral function can be expanded as:

𝐴 𝜔 = 𝜓 𝐴%0𝛿(𝐸. +𝜔 −𝐻)𝐴& 𝜓 ≈
1

𝜋 1 − 𝑥"
𝑔.𝜇. + 20

/

𝑔/𝜇/𝑇/(𝜔)

(Here, the g coefficient are “damping factors” that suppress spurious oscillations if we truncate 
the series to a finite number of moments).

The Chebyshev moments in this case are given by:

𝜇/ = 𝜓 𝐴%0𝑇/ 𝐻 𝐴& 𝜓

We introduce the (non-orthogonal) Chebyshev vectors:

⟩|𝑡. = 𝐴%| ⟩𝜓 ; ⟩|𝑡/ = 𝑇/ 𝐻 𝐴&| ⟩𝜓 “Chebyshev vectors”

The moments are obtained as: 𝜇/ = 𝑡3 𝑡/

⟩|𝑡! = 𝐻| ⟩𝑡. ; ⟩|𝑡/0! = 2𝐻 ⟩|𝑡/ − ⟩|𝑡/1!

We can generate the Chebyshev vectors with the recursion

A. Holzner, A. Weichselbaum, I. P. McCulloch, U. Schollwöck, and J. von Delft, PRB 83, 195115 (2011). 
F. A. Wolf, J. A. Justiniano, I. P. McCulloch, and U. Schollwöck, Phys. Rev. B 91, 115144 (2015).



Results - Convergence
Heisenberg chain L=32



Results
Heisenberg chain L=32; 100 moments



Results
Heisenberg chain L=32; 100 moments



Results
Heisenberg chain L=32; 100 moments



Results in 2D
Heisenberg on the 6x6 square lattice



Conclusions
• We have developed two variational algorithms to calculate the spectral function of 

quantum many-body systems based on machine learning ideas. The information 
about the wave functions is encoded in the form of an RBM. 

• Our work establishes new variational formulations to calculate Green's functions 
directly in the frequency domain using variational Monte Carlo. 

• This formulation can be extended to other variational forms beyond neural networks 
and can help to overcome the curse of the area law that plagues methods such as 
tensor networks.

• Limitations stem from the expressivity of the RBMs and the computational cost of 
optimizing it.


