Strong coupling and strange quark mass from lattice QCD

Rainer Sommer

IFSC - USP, Sao Carlos, April 3, 2013

The talk is based on

► old work [ALPHA]

▶ N_f = 2 running

[Nucl.Phys. B713 (2005) 378, Michele Della Morte, Roberto Frezzotti, Jochen Heitger, Juri Rolf, RS, Ulli Wolff

[Nucl.Phys. B729 (2005) 117, Michele Della Morte, Roland Hoffmann, Francesco Knechtli, Juri Rolf, RS, Ines Wetzorke, Ulli Wolff

Scale setting

Strange quark mass and the Lambda parameter in two flavor QCD, Fritzsch, Leder, Knechtli, Marinkovic, Schaefer, S, Virotta, 2012

Recent development

Fritzsch & Ramos, arXiv:1301.4388

▲圖▶ ▲屋▶ ▲屋▶

Fascinating strong interactions

jets at large energies

hadrons at small energies

nuclei at even smaller energies

Fascinating strong interactions

THEORY

jets at large energies

hadrons at small energies

nuclei at even smaller energies

Believed to be described by a most beautiful theory: Q C D

Rainer Sommer

Strong coupling and strange quark mass from lattice QCD

Q C D

Q C D

Q C D

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g_0^2} \text{tr}\{F_{\mu\nu}F_{\mu\nu}\} + \sum_{f=1}^{N_f} \overline{\psi}_f\{D + m_{0f}\}\psi_f$$

• $N_{\rm f} + 1 = 7$ (bare) parameters

- at low energy essentially 4 parameters
- in the following: u, d quarks mass-degenerate s-quark quenched
 - 3 parameters

Strong force

A way to define the strong force is $F(r) = \frac{\mathrm{d}}{\mathrm{d}r} V(r), \ r = |\mathbf{x} - \mathbf{y}| \qquad \qquad \underbrace{\mathbf{v}}_{Q}^{x} < \mathbf{v}$

Perturbation theory (Feynman graphs)

$$F(r) = \frac{4}{3} \frac{1}{4\pi r^2} g^2 + O(g^4) \qquad \text{coulombic}$$

・日・ ・ ヨ・ ・ ヨ・

Strong force

Perturbation theory (Feynman graphs)

Strong coupling

Perturbation theory (Feynman graphs)

$$F(r) = \frac{4}{3} \frac{1}{4\pi r^2} g^2 + O(g^4) \qquad \text{coulombic}$$

æ

Perturbation theory (Feynman graphs)

$$F(r) = \frac{4}{3} \frac{1}{4\pi r^2} g^2 + O(g^4) \qquad \text{coulombic}$$

A way to define the strong coupling is

$$lpha_{
m qq}(\mu) = rac{ar{g}_{
m qq}^2(r)}{4\pi} \equiv rac{3}{4}r^2F(r)\,, \quad \mu \equiv 1/r$$

It is r-dependent: "it runs"

Running and Renormalization Group Invariants

$$\begin{aligned} \mathsf{RGE:} \quad \mu \frac{\partial \bar{g}}{\partial \mu} &= \beta(\bar{g}) \qquad \bar{g}(\mu)^2 = 4\pi\alpha(\mu) \\ \beta(\bar{g}) \quad \stackrel{\bar{g}\to 0}{\sim} & -\bar{g}^3 \left\{ b_0 + b_1 \bar{g}^2 + b_2 \bar{g}^4 + \dots \right\} \\ b_0 &= \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3} N_{\mathrm{f}} \right) \end{aligned}$$

A-parameter $(\bar{g} \equiv \bar{g}(\mu)) =$ Renormalization Group Invariant = intrinsic scale of QCD

$$\Lambda = \mu (b_0 \bar{g}^2)^{-b_1/2b_0^2} \mathrm{e}^{-1/2b_0 \bar{g}^2} \exp\left\{-\int_0^{\bar{g}} \mathrm{d}g [\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g}]\right\}$$

- there is a similar formula relating $\overline{m}_i(\mu)$ and M_i : RGI quark masses
- \blacktriangleright Λ , M_i have a trivial dependence on the "scheme"

scheme \leftrightarrow definition of $\bar{g}\,,\,\bar{m}$

they are the fundamental parameters of QCD

- ► A is a fundamental constant of Nature, just like $\alpha_{\rm em} = 1/137.0359997$ for atomic physics
- $\alpha(\mu)$ at high scale is needed for the search of new particles at the LHC.
 - E.g. the Higgs.
- It is an important constraint for possible theories at higher energy scales.

イロト イポト イヨト イヨト

"Experimental" determinations of $\alpha_{\overline{\mathrm{MS}}}$

▲ 御 ▶ → ミ ▶

< E

"Experimental" determinations of $lpha_{\overline{\mathrm{MS}}}$

There is a considerable spread. Errors seem often too agressive. Theory uncertainties are usually dominating.

- E

Determination of Λ from lattice QCD

・ 回 ・ ・ ヨ ・ ・ ヨ ・

æ

Lattice determination of α_{qq}

A⊒ ▶ ∢ ∃

-

Lambda parameter from $lpha_{ m qq}$

A realistic estimate of the uncertainty is impossible. (Other members of the group come to a different conclusion

[Jansen, Karbstein, Nagy, Wagner, 2011])

A ■

The basic problem and its solution

Finite size effect as a physical observable; finite size scaling!

・ 回 と ・ ヨ と ・ ヨ と …

The step scaling function

It is a discrete β function:

$$\sigma(\bar{g}^2(L)) = \bar{g}^2(2L)$$

determines the non-perturbative running:

$$u_0 = \bar{g}^2(L_{\max})$$

$$\downarrow$$

$$\sigma(u_{k+1}) = u_k$$

$$\downarrow$$

$$u_k = \bar{g}^2(2^{-k}L_{\max})$$

The step scaling function: $\sigma(u) = \bar{g}^2(2L)$ with $u = \bar{g}^2(L)$

- On the lattice: additional dependence on the resolution a/L
- g_0 fixed, L/a fixed:
 - $\bar{g}^2(L) = u, \qquad \bar{g}^2(2L) = u',$ $\Sigma(u, a/L) = u'$

continuum limit:

$$\Sigma(u, a/L) = \sigma(u) + O(a/L)$$

(g,)²

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

everywhere: m = 0 (PCAC mass defined in $(L/a)^4$ lattice)

Rainer Sommer

Strong coupling and strange quark mass from lattice QCD

 $\Sigma(2,u,1/4)$

Continuum limit ($N_{ m f}=4$)

Constant fit:

$$\Sigma^{(2)}(u, a/L) = \sigma(u)$$

for L/a = 6, 8

- Global fit: $\Sigma^{(2)}(u, a/L) = \sigma(u) + \rho u^4 (a/L)^2$ for L/a = 6, 8 $\rightarrow \rho = 0.007(85)$
- L/a = 8 data:

$$\sigma(u) = \Sigma^{(2)}(u, 1/8)$$

ALPHA (S., Tekin & Wolff, 2010); update: M. Marinkovic, 2013

3

$$\frac{\Lambda_{\overline{MS}}^{(2)}}{F_{K}} = \frac{1}{F_{K}L_{\max}} \times \frac{L_{\max}}{L_{k}} \times L_{k}\Lambda_{SF}^{(2)} \times \frac{\Lambda_{\overline{MS}}^{(2)}}{\Lambda_{SF}^{(2)}}$$

$$\Gamma(K \to \mu\nu_{\mu})$$

$$aF_{K} = L_{\max}/a$$

$$g^{2}(L_{\max}) \xrightarrow{\text{non-perturbative SSF's}}{\text{massless } N_{f} = 2 \text{ theory}} \xrightarrow{g^{2}(L_{k})^{3-lp}} \sqrt{\int_{SF}^{(2)}} (exact)$$

$$\mu$$

$$\mu = 0$$

$$m_{b} = M_{Z} \longrightarrow 0$$

$$\frac{\Lambda_{\overline{\rm MS}}^{(2)}}{F_{\rm K}} = \frac{1}{F_{\rm K}L_{\rm max}} \times \frac{L_{\rm max}}{L_k} \times L_k \Lambda_{\overline{\rm MS}}^{(2)}$$

*F*_K has been missing

• needs K-meson \rightarrow "large" volume: $L > 2 \, {\rm fm} \, , \, 4/m_{\pi}$

(4回) (4回) (日)

æ

$$\frac{\Lambda_{\overline{\rm MS}}^{(2)}}{F_{\rm K}} = \frac{1}{F_{\rm K}L_{\rm max}} \times \frac{L_{\rm max}}{L_k} \times L_k \Lambda_{\overline{\rm MS}}^{(2)}$$

*F*_K has been missing

$$\blacktriangleright \quad F_{\rm K} m_{\rm K} = \langle K({\bf p}=0) | \bar{s} \gamma_0 \gamma_5 u | 0 \rangle$$

- needs K-meson \rightarrow "large" volume: $L>2\,{
 m fm}\,,\;4/m_{\pi}$
- issues
 - extracting ground state "plateau"
 - autocorrelations (sufficient statistics) and error analysis
 - extrapolation to physical quark masses
 - renormalization ...

(4) (5) (4) (5) (4)

Plateaux 64³128 lattice $m_{\pi} = 270 \,\mathrm{MeV}$

Rainer Sommer

Strong coupling and strange quark mass from lattice QCD

Error analysis, $F_{ m K}$, 64³128 lattice $m_{\pi}=270\,{ m MeV}$

 Done as proposed in Critical slowing down and error analysis in lattice QCD simulations [Schaefer, S, Virotta, 2011]

The tail contributes about 60% of the error.

Extrapolation to physical light quark masses

∃ >

Extrapolation to physical light quark masses

- systematic expansion including *M*, *M* log(*M*), *a*², not *M* × *a*² [there are some checks]
- agreement also with simple linear extrpolation (no M log(M))

 $F_{\rm K}L_{\rm max}$

combine $L_{\rm max}/a = L_1/a$ with $aF_{\rm K}$

< 🗇 🕨

< ≣ >

< ≣ >

æ

N_{f}	$\overline{m}_{ m s}(2{ m GeV})$	Experiment	Theory		
0	97(4)	$m_{ m K}$ + scale	LGT, ALPHA		
2	103(4)	$m_{ m K}+{ m scale}$	LGT, ALPHA		
3	96(3)	$m_{ m K}+$ scale	LGT, BMW		

- Firm results
- Before lattice gauge theory, (still in the 90's) values between 100MeV and 200MeV were given

高 とう モン・ く ヨ と

$N_{ m f}$ dependence of $\Lambda_{\overline{ m MS}}$ and comparison to phenomenology

 $\Lambda_{\overline{\rm MS}}[{\rm MeV}]$

		N _f :	0	2	3	4	5
Experiment	Theory						
$M_K, K \rightarrow I2, I3$	SF [ALPHA]		238(19)	310(20)			
M_K, M_ρ	SF [PACS-CS]			362(23)(25)		239(10)
							(6)(-22)
DIS, HERA	PT, PDF-fits [<mark>/</mark>	ABM11]				234(14)	160(11)
DIS, HERA	PT, PDF-fits [MSTW09]			285(23)	198(16)
"world av. " [2011]	PT						212(12)
$e^+e^- ightarrow$ had (LEP)	4-loop PT						275(57)

- Non-trivial, non-perturbative $N_{\rm f}$ -dependence.
- Small errors are cited, but overall consistency is not that great.
- More precision and rigor (PT only at high energy) will be very useful.

- 4 同 ト 4 臣 ト 4 臣 ト

Towards even better precision: Gradient Flow and SF

Gradient flow [Lüscher, 2010; Lüscher & Weisz, 2011]

new observables

- UV finite (proven to all orders of PT)
- excellent numerical precision
- renormalized coupling in finite volume with pbc [BMW, 2012]
- Flow in finite volume, SF [Fritzsch & Ramos, arXiv:1301.4388]
 - Iowest order PT to define a new coupling
 - numerical investigation shows excellent precision

General idea

$$\begin{split} &x = (x_0, \mathbf{x}), \quad t = \text{ flow time} \\ &A_{\mu}(x) = \text{ quantum gauge fields }: \quad \mathcal{Z} = \int \mathrm{D}[A_{\mu}(x)] \dots \\ &B_{\mu}(x, t) = \text{ smoothed gauge fields }, \quad B_{\mu}(x, 0) = A_{\mu}(x) \\ &\frac{\mathrm{d}B_{\mu}(x, t)}{\mathrm{d}t} = D_{\nu} G_{\nu\mu}(x, t) + \text{gauge fixing} \\ &\sim -\frac{\delta S_{YM}[B]}{\delta B_{\mu}} \end{split}$$

correlation functions of *B*-fields at arbitrary points are $\underline{#inite} \ge \mathbf{F} \cdot \mathbf{e}$

$$\frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} \equiv \dot{B}_{\mu}(x,t) = \underbrace{\underbrace{D_{\nu}G_{\nu\mu}(x,t)}_{\uparrow}}_{\uparrow} + \underbrace{\underbrace{D_{\mu}\partial_{\nu}B_{\nu}(x,t)}_{\uparrow}}_{\uparrow} \quad (*)$$

$$\sim -\frac{\delta S_{YM}[B]}{\delta B_{\mu}} \quad \text{eliminate by a } t\text{-dependent gauge traf}$$

in PT:
$$A_{\mu}(x) = g_0 \bar{A}_{\mu}(x)$$

 $B_{\mu}(x,t) = B_{\mu,1}(x,t)g_0 + B_{\mu,2}(x,t)g_0^2 + \dots$
 $G_{\nu\mu} = [\partial_{\nu}B_{\mu,1} - \partial_{\mu}B_{\nu,1}]g_0 + O(g_0^2), \quad D_{\nu} = \partial_{\nu} + O(g_0)$
 $\rightarrow \dot{B}_{\mu,1}(x,t) = \partial_{\nu}\partial_{\nu}B_{\mu,1}(x,t)$

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Gradient Flow

• in PT:
$$A_{\mu}(x) = g_0 \bar{A}_{\mu}(x)$$

 $B_{\mu}(x,t) = B_{\mu,1}(x,t)g_0 + B_{\mu,2}(x,t)g_0^2 + \dots$
 $G_{\nu\mu} = [\partial_{\nu}B_{\mu,1} - \partial_{\mu}B_{\nu,1}]g_0 + O(g_0^2), \quad D_{\nu} = \partial_{\nu} + O(g_0)$
 $\rightarrow \dot{B}_{\mu,1}(x,t) = \partial_{\nu}\partial_{\nu}B_{\mu,1}(x,t)$

heat equation

$$\begin{array}{lll} B_{\mu,1}(x,t) &=& \int \mathrm{d}^D p \, \mathrm{e}^{i p x} \, b_\mu(p,t) \\ && \dot{b}_\mu = -p^2 b_\mu \quad \rightarrow \quad b_\mu(p,t) = b_\mu(p,0) \mathrm{e}^{-p^2 t} \\ B_{\mu,1}(x,t) &=& \int \mathrm{d}^D y \, \, \mathcal{K}_t(x-y) \, \bar{A}_\mu(y) \,, \quad \mathcal{K}_t(z) = (4\pi t)^{-D/2} \mathrm{e}^{-z^2/(4t)} \end{array}$$

- smoothing over a radius of $\sqrt{8t}$
- gaussian damping of large momenta

(本部) (本語) (本語)

æ

Gradient Flow

• in PT:
$$A_{\mu}(x) = g_0 \bar{A}_{\mu}(x)$$

 $B_{\mu}(x, t) = B_{\mu,1}(x, t)g_0 + B_{\mu,2}(x, t)g_0^2 + \dots$
 $G_{\nu\mu} = [\partial_{\nu}B_{\mu,1} - \partial_{\mu}B_{\nu,1}]g_0 + O(g_0^2), \quad D_{\nu} = \partial_{\nu} + O(g_0)$
 $\rightarrow \dot{B}_{\mu,1}(x, t) = \partial_{\nu}\partial_{\nu}B_{\mu,1}(x, t)$

heat equation

$$\begin{split} B_{\mu,1}(x,t) &= \int d^D p \, \mathrm{e}^{i p x} \, b_{\mu}(p,t) \\ \dot{b}_{\mu} &= -p^2 b_{\mu} \quad \rightarrow \quad b_{\mu}(p,t) = b_{\mu}(p,0) \mathrm{e}^{-p^2 t} \\ B_{\mu,1}(x,t) &= \int d^D y \, \mathcal{K}_t(x-y) \, \bar{A}_{\mu}(y) \,, \quad \mathcal{K}_t(z) = (4\pi t)^{-D/2} \mathrm{e}^{-z^2/(4t)} \end{split}$$

- smoothing over a radius of $\sqrt{8t}$
- gaussian damping of large momenta
- ► all correlation functions of B_{μ} are finite (t > 0) [Lüscher & Weisz, 2011] in particular $\langle E(t) \rangle$, $E(t) = -\frac{1}{2} \text{tr} G_{\mu\nu} G_{\mu\nu}$

・ロト ・回ト ・ヨト ・ヨト

3

For
$$\langle E \rangle$$
, $E = -\frac{1}{2} \operatorname{tr} G_{\mu\nu} G_{\mu\nu}$

$$\begin{aligned} \langle E \rangle &= E_0 g_0^2 + E_0 g_0^4 + \dots \\ E_0 &= \langle \operatorname{tr}[\partial_{\mu} B_{\nu,1} \partial_{\mu} B_{\nu,1} - \partial_{\mu} B_{\nu,1} \partial_{\nu} B_{\mu,1}] \rangle \\ &\sim \int_{p} \mathrm{e}^{-p^2 2t} [p^2 \delta_{\mu\nu} - p_{\mu} p_{\nu}] D_{\mu\nu}(p) \text{ finite (also with cutoff reg'n)}! \end{aligned}$$

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

use the flow in finite volume (SF): $T \times L^3$ world with Dirichlet BC in time, T = L define

$$\begin{array}{ll} \langle E(t) \rangle &\equiv & -\frac{1}{2} \langle \operatorname{tr} \mathcal{G}_{\mu\nu} \mathcal{G}_{\mu\nu}(x,t) \rangle_{x_0 = \mathcal{T}/2} = \frac{\mathcal{N}}{t^2} \, \overline{g}_{\mathrm{MS}}^2(\mu) \left(1 + c_1 \overline{g}_{\mathrm{MS}}^2 + \ldots \right) \\ \overline{g}_{\mathrm{GF}}^2(L) &\equiv & \mathcal{N}^{-1} \, t^2 \langle E(t) \rangle \Big|_{t = c^2 L^2/8} \end{array}$$

This is a family of schemes characterized by c (dimensionless)

・ロン ・回と ・ヨン・

3

use the flow in finite volume (SF): $T \times L^3$ world with Dirichlet BC in time, T = L define

$$\begin{array}{ll} \langle E(t) \rangle &\equiv & -\frac{1}{2} \langle \operatorname{tr} \mathcal{G}_{\mu\nu} \mathcal{G}_{\mu\nu}(x,t) \rangle_{x_0 = \mathcal{T}/2} = \frac{\mathcal{N}}{t^2} \, \overline{g}_{\mathrm{MS}}^2(\mu) \left(1 + c_1 \overline{g}_{\mathrm{MS}}^2 + \ldots \right) \\ \overline{g}_{\mathrm{GF}}^2(L) &\equiv & \mathcal{N}^{-1} \, t^2 \langle E(t) \rangle \Big|_{t = c^2 L^2/8} \end{array}$$

This is a family of schemes characterized by c (dimensionless)

$$\mathcal{N}(c) = \frac{c^4(N^2-1)}{128} \sum_{\mathbf{n},n_0} e^{-c^2 \pi^2 (\mathbf{n}^2 + \frac{1}{4}n_0^2)} \\ \times \frac{2\mathbf{n}^2 s_{n_0}^2(T/2) + (\mathbf{n}^2 + \frac{3}{4}n_0^2) c_{n_0}^2(T/2)}{\mathbf{n}^2 + \frac{1}{4}n_0^2}$$

the lattice version is known (and needed)

Gradient Flow and SF-coupling

statistical precision: variance

relative variance
$$= \frac{\langle E^2 \rangle - \langle E \rangle^2}{\langle E \rangle^2}$$

should be finite as $a \rightarrow 0$, $L/a \rightarrow \infty$

Numerically, Fritzsch & Ramos:

Strong coupling and strange quark mass from lattice QCD

Gradient Flow and SF-coupling statistical precision

autocorrelations scale as expected: $au_{
m int} \propto a^{-2}$

Statistical precision is good and theoretically understood. There will be no surprises on the way to the continuum limit.

Gradient Flow and SF-coupling

systematic precision

keeping old SF-coupling $\bar{g}_{SF}(L)$ fixed (defines L), compute

small cutoff effects → ready for applications → ... → precise Λ-parameter

Rainer Sommer

Strong coupling and strange quark mass from lattice QCD

4 B M 4 B M

 Λ , M_i

 refer to the asymptotic high energy behavior of QCD and therefore Nature

 Λ , M_i

- refer to the asymptotic high energy behavior of QCD and therefore Nature
- nevertheless they can be connected non-perturbatively through lattice simulations to hadron masses (and properties)

 Λ , M_i

- refer to the asymptotic high energy behavior of QCD and therefore Nature
- nevertheless they can be connected non-perturbatively through lattice simulations to hadron masses (and properties)
- firm and precise results can be obtained

 Λ , M_i

- refer to the asymptotic high energy behavior of QCD and therefore Nature
- nevertheless they can be connected non-perturbatively through lattice simulations to hadron masses (and properties)
- firm and precise results can be obtained
- ▶ the precision will be improved even further in the near future