
Hydrogen-Deuterium Mass Ratio

1 Background

1.1 Balmer and Rydberg Formulas

By the middle of the 19th century it was well established that atoms emitted light at discrete
wavelengths. This is in contrast to a heated solid which emits light over a continuous range of
wavelengths. The difference between continuous and discrete spectra can be readily observed
by viewing both incandescent and fluorescent lamps through a diffraction grating; hand held
gratings are available for you to do this in the laboratory.

Around 1860 Kirchoff and Bunsen discovered that each element has its own characteristic
spectrum. The next several decades saw the accumulation of a wealth of spectroscopic data
from many elements. What was lacking though, was a mathematical relation between the
various spectral lines from a given element. The visible spectrum of hydrogen, being rela-
tively simple compared to the spectra of other elements, was a particular focus of attempts
to find an empirical relation between the wavelengths of its spectral lines. In 1885 Balmer
discovered that the wavelengths λn of the then nine known lines in the hydrogen spectrum
were described to better than one part in a thousand by the formula

λn = 3646× n2/(n2 − 4) Å (angstrom), (1)

where n = 3, 4, 5, . . . for the various lines in this series, now known as the Balmer series.
(1 angstrom = 10−10 m.) The more commonly used unit of length on this scale is the nm
(10−9 m), but since the monochromator readout is in angstroms, we will use the latter unit
throughout this write-up.

In 1890 Rydberg recast the Balmer formula in more general form as

1/λn = R(1/22 − 1/n2) (2)

where again n = 3, 4, 5, . . . and R is known as the Rydberg constant. For reasons to be
explained later, its value depends on the mass of the nucleus of the particular isotope of the
atom under consideration. The value for hydrogen from current spectroscopic data is

RH = 109677.5810 cm−1[1],

and the current value for an infinitely heavy nucleus is

R∞ = 109737.31568525(73) cm−1[2].

A generalization of the Rydberg formula to

1/λ = RH
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(3)
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suggested that other series may exist with n1 taking on the values 1, 3, 4, 5, . . ., subject to the
restriction that n2 > n1. This proved to indeed be the case. In 1906 Lyman measured the
ultraviolet spectrum of hydrogen and found the series, now bearing his name, corresponding
to n1 = 1. In 1908 Paschen measured the infrared spectrum of hydrogen and discovered
the series, now bearing his name, corresponding to n1 = 3. Figure 1 shows some of the
lines in these series. The vertical axis in this figure is linear in energy (given in units of
electron-volts, or eV, at the right), so you can get some sense of the relative energies of the
different series.

Figure 1: Energy level diagram of atomic hydrogen showing the transitions giving rise to the
Lyman (UV), Balmer (visible) and Paschen (IR) spectra.

The remarkable success of the Rydberg formula in describing the spectrum of atomic hy-
drogen was in stark contrast to theoretical understanding of the atom in the early 1900’s.
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Attempts to understand the emission of light at discrete wavelengths, or frequencies, using
principles of classical mechanics and electrodynamics proved fruitless, as classical theory
does not allow for an electron to circulate about a nucleus in a stable orbit. Rather, classical
theory predicted that the negatively charged electron, circulating about the positive nucleus
under the influence of a Coulomb potential, would emit radiation due to the centripetal ac-
celeration associated with circular motion (recall that accelerating charges emit radiation).
As the electron emitted radiation and lost energy, the orbit would shrink and eventually (in
a predicted 10−12 seconds!) the electron would spiral into the nucleus, emitting a contin-
uum of radiation in the process. The stability of atoms, and discrete atomic spectra clearly
demonstrate that such a theory does not describe atomic behavior.

1.2 The Bohr Postulates

in 1913 the Danish physicist Niels Bohr, working at Ernest Rutherford’s laboratory in Manch-
ester, England, proposed a blend of classical and radically new ideas to describe atomic
behavior. His three postulates were:

1. The electron moves in a circular orbit about the nucleus under the influence of the
Coulomb potential, obeying the laws of classical mechanics;

2. In contrast to the infinite number of orbits allowed classically, the electron can occupy
only orbits for which its orbital angular momentum is quantized in units of ~, i.e., L =
orbital angular momentum = n~ where n = 1, 2, 3, . . .. Electrons are stable in such
orbits, i.e., they have a well defined energy and do emit radiation even though they
are undergoing centripetal acceleration. Bohr termed these orbits stationary states;

3. Radiation is emitted when an electron transitions from one stationary state to another.
The energy of the radiation, E = hν, is equal to the difference in the energies of the
initial and final stationary states.

The first postulate is clearly based on classical theory; however the second and third postu-
lates marked a radical departure from classical concepts. Applying these postulates to the
hydrogen atom, Bohr’s model predicted the total energy of an electron in a stationary state
with orbital angular momentum L = n~ to be

En = − mZ2e4

(4πε0)22~2
1

n2
(4)

where m is the mass of electron, Z is the number of protons in the nucleus (Z = 1 for
hydrogen) and e is the charge of the electron [3]. A transition from a state of higher energy
to one of lower energy should result in the emission of radiation with energy

Ei − Ef =
hc

λ
=

mZ2e4
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where ni~ and nf~ are the electron orbital angular momenta of the initial and final states,
respectively. Comparing this formula with the Rydberg formula we find that RH should be

RH =
me4

8ε20h
3c
.

That Bohr’s theory resulted in an expression for the Rydberg constant in terms of fundamen-
tal constants was a great triumph as it allowed for evaluation of the above expression and
comparison to the value derived from spectroscopic data. Then current values for m, e, h and
c indicated good agreement between RH calculated from Bohr’s theory and experimentally
derived values.

But doubters of Bohr’s theory remained, with skepticism on the continent being particularly
strong. His brother Harald wrote Bohr in the fall of 1913 from Göttingen, Germany, saying
that the physicists there considered Bohr’s model to be too “bold” and too “fantastic”.
Rutherford himself was skeptical, asking Bohr, “How does the electron decide what frequency
it is going to vibrate (radiate) at when it passes from one stationary state to another? It
seems to me that you would have to assume the electron knows beforehand where it is going
to stop.”

And skeptics were buttressed by new experimental results. Measurements of the spectral
lines of singly ionized helium (one electron orbiting around a nucleus with two protons)
showed that the ratio of the wavelengths of corresponding helium and hydrogen lines (same
ni and nf ) was not 1:4 as predicted by Bohr’s formula, but rather 1:4.0016. (The ratio 1:4
results from increasing Z from one to two in the above expressions for the electron energy.)
Bohr quickly revised his postulates, now requiring that the total angular momentum, the
combined angular momentum of both the electron and the nucleus, be quantized in units
of ~. The result of this requirement is that in the expression for the electron energy, the
electron mass m must be replaced by the reduced mass µ,

µ = mM/(M +m) (6)

where M is the mass of the nucleus. (See the appendix for a derivation of this result.)
The expression for the radiation energy of hydrogen-like ions (i.e., one electron orbiting Z
protons) is now

Ei − Ef =
hc
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where µ
X

is the reduced mass of atom X. According to Bohr’s revised theory, the wavelength
ratios between corresponding hydrogen and helium lines should be 4µ

He
/µ

H
. It turns out

that
µ

He

µ
H

= 1.0004 ,

(you may wish to verify this) resulting in complete agreement between theory and observa-
tion. When Einstein learned of this latest success of the Bohr theory, he responded: “This
is an enormous achievement. The theory of Bohr must then be right.”

The inclusion of the nuclear mass M into the equation for the spectral energies indicates that
different isotopes of the same element should show different spectra, since these atoms would
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have different reduced mass. The existence of the isotope of hydrogen, deuterium, whose
nucleus contains one neutron and one proton, was discovered by Harold Urey and his co-
workers around 1930 using spectroscopic methods after they successfully produced samples
of deuterium-enriched hydrogen by a distillation process [4]. Harold Urey was awarded the
Nobel Prize in Chemistry in 1934, “for his discovery of heavy hydrogen.”

2 The experiment

Experimental Goal: measure the hydrogen-deuterium nuclear mass ratio.

In this experiment you will measure the wavelengths of both the hydrogen and deuterium
spectral lines for four transitions in the Balmer series. From a measurement of the wavelength
difference for a given transition, you will derive the ratio of the masses of the hydrogen and
deuterium atoms. The four results can then be combined into a final result for the mass
ratio.

The spectral lines are produced by a gas discharge lamp. In our setup, the lamp contains
hydrogen enriched with deuterium so that both spectra are produced simultaneously. En-
richment of the hydrogen is necessary as the natural abundance of deuterium is about .015%.

From the Rydberg formula corrected for reduced mass, Eq. (7), we see that the wavelength
of light emitted from a particular transition is inversely proportional to the reduced mass:

1/λX ∝ µX . (8)

Because of this proportionality, we see that the nuclear masses of hydrogen and deuterium,
MH and MD, are related to the different wavelengths of light produced by each isotope:

λH − λD
λH

=
1/µ

H
− 1/µ

D

1/µ
H

=
1−MH/MD

1 +MH/m
. (9)

The mass MH is, of course, just the mass of the proton Mp, and the ratio of the proton and
electron masses is well known, Mp/m = 1836.15. Combining this with the results of your
measurements, the ratio of the masses of the two nuclei, MH/MD can easily be derived and
compared to established values:

MH

MD

=
1.007276

2.013553
= 0.500248 .

Extension Ideas

1. Try to measure the Hε peak and compare to your other measurements. Investigate the
λ dependence of your measured ratio, if any.

2. Derive the shape of the peak based on the optics of the monochromator.

3. Repeat the experiment with a scope or another instrument instead of the plotter. Also
try performing it manually, using just the wavelength knob and the digital readout on
the PDA-700. Compare the uncertainties in each case.
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Figure 2: Apparatus used to measure the spectral lines of the hydrogen-deuterium lamp.

4. Write a labview program to digitally record the PMT current while simultaneously
recording counts of the number of stepper motor steps. Use this to record the data.

5. Use the setup to measure the emission spectrum of a light source of your choice (some
bulb, a mobile phone LED, etc).

3 Apparatus and Procedure

Before describing the apparatus and measurement process, it is instructive to observe the
difference between continuous and discrete light sources. Turn off the bright fluorescent tube
lights in the experiment area and turn on the smaller overhead lights in the cylindrical shades.
Take one of the slide-mounted diffraction gratings and look at the two overhead lights in
the cylinders near the experiment and near the desk area. One of the bulbs is incandescent
and the other fluorescent. The fluorescent bulb emits light at discrete wavelengths in the
mercury spectrum, and the incandescent bulb emits light over a continuum of wavelengths.
The colored images overlap, so make sure you identify which image goes with which bulb.
Describe the images you see from each bulb, and justify your claim as to which one is the
fluorescent bulb.

3.1 Apparatus

A diagram of the apparatus is shown in Fig. 2. Light from a discharge tube containing
both hydrogen and deuterium is focused by a lens onto the entrance aperture (slit) of the
monochromator. (A monochromator is just a spectrometer that detects one wavelength
at a time.) The dispersive element, i.e., the element which separates light according to its
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component wavelengths, inside the monochromator is a diffraction grating—a fancier version
of the hand held grating you used to look at the overhead lights. The angle of the grating
and mirrors inside the monochromator can be varied with the wavelength-adjust knob to
select the wavelength of the light passing through the exit slit and on to the detector. The
detector is a photomultiplier tube (PMT) located inside the housing attached to the exit slit
port. The readout dial on the front of the monochromator indicates the wavelength of the
detected light to the nearest angstrom.

The output of the PMT is a current, typically a fraction of a microampere at maximum
detected light intensity in this experiment. The PDA-700 amplifier converts this current to
a voltage which is recorded on a strip chart or X-Y recorder. To record the output light
intensity over a wavelength interval, a stepper-motor + reduction-gear drive is attached to
the wavelength adjust shaft. Here are some numbers to help you get a sense of the scan rate:

Stepper motor: 200 steps per revolution of output shaft
Reduction gear ratio: 1:36
wavelength adjust shaft: 20 Å per revolution.

You don’t want to record data slowly and smoothly, but you don’t want it to take all day.
You also want to maximize your use of the available plotter space. The following exercise
will help you develop a good first set of scanning parameters, you may adjust them from
there at your discretion.

Exercise 1 As an initial estimate of the experimental parameters, calculate the difference
in wavelengths of the hydrogen and deuterium α lines, assuming that the mass ratio is 1:2.
Then calculate the wavelength scan rate (in Å per second) for a stepper motor rate of 5 steps
per second. Finally, estimate a desirable chart scan speed so that the peaks associated with
the two lines are separated by about 2-3 inches (assuming a stepper motor rate of 5 steps per
second).

Feel free to speed up or slow down the stepper motor rate and chart scan speed from these
starting values as you see fit. However, once you are comfortable with your scanning rate,
it is recommended to use the same set of values for all of your measurements, because the
Na calibration described below will need to be repeated each time either of these parameters
are changed.

The monochromator does not detect light at just a single wavelength but rather detects light
over a small spread of wavelengths centered about the wavelength indicated on the readout
dial. Here we face the common trade-off between signal strength and resolution. The width
of the entrance and exit slits is variable, and is set (for both slits simultaneously) by the slit
width control. Increasing the slit width allows more light to come through, but degrades the
resolution of the monochromator. For the purposes of this experiment, a slit width of about
50 microns allows for a good signal level and more than adequate resolution; the slit readout
should show “0 0 50”.
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3.2 Calibration standards

As mentioned above, the readout dial indicates the absolute wavelength to the nearest
angstrom. We are working with wavelength differences on the order of 1 Å, and will want
to measure the λH− λD interval to fractions of an angstrom, which is not possible using the
wavelength readout.

To calibrate the monochromator output, the wavelength difference between the two lines of
the yellow sodium doublet, the 32S–32P transition, is used as a standard. The wavelengths
of these two lines are

D1: 5895.92 Å
D2: 5889.95 Å

The calibration procedure will be described in detail below.

For reference in the next section and for use in data analysis, we also state the wavelengths
of the hydrogen lines under investigation:

Hα: 6562.852 Å
Hβ: 4861.33 Å
Hγ: 4340.47 Å
Hδ: 4101.74 Å

It is possible, with some effort, to measure higher energy lines in this series as well.

Exercise 2 Determine the wavelengths of the next three higher-energy lines in the Balmer
series.

3.3 Procedure

Turn on the power supply for the sodium discharge lamp. Press the white button on the
power supply if the lamp does not start. It will take a little while for the lamp to reach
full intensity, but you can begin aligning the optics and looking for a signal before it is fully
warmed up.

The wavelength interval of the sodium lines is used to calibrate the chart recorder, and the
peak separation is much greater for the sodium doublet than for the hydrogen-deuterium
splitting, so it is best to run the sodium scans first to establish the scan settings. If you are
careful, you can get all of your data on one sheet of paper.

Turn on the power to the SRS Model PS 325 high voltage power supply and the PDA-700
amplifier. The PDA-700 should be on the .xxxx microamp range.

If the stepper motor drive coupling is still attached to the wavelength adjust shaft, remove
it and put the knob back on the shaft. Make sure to leave a small gap between the knob and
the faceplate so that the knob does not rub when you turn it. Allen wrenches are available
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for attaching and removing the knob and coupling from the shaft. Set the wavelength to
approximately 5890 Å.

Remove the plastic dust cover from the lens. Check that the distance from the sodium lamp
to the lens is about 240 mm and that the distance from the lens to the entrance slit is also
about 240 mm. The focal length of the lens is 120 mm, so these distances will result in the
formation of an image of the lamp with magnification 1 at the entrance slit. Adjust the lamp
position to optimize the focus of the image on the entrance slit.

Check that the high voltage setting is 1000 volts. This is the number that should be displayed
at the center of the high voltage power supply. Turn on the high voltage with the switch
at the lower left of the front panel. The output voltage should read −1000 volts (polarity
is negative) within a volt or two. Slowly scan by hand through the D2 line at 5890 Å while
watching the PDA-700 reading; you should see an increase in the PMT output current as
you scan through the line. Keep turning the knob and scan through the second D-line, D1

at about 5896 Å to verify that you are seeing both peaks. Scan back through the lines and
set the wavelength on D2 to give maximum output current, typically about 0.1 microamp
for a slit width of 50 microns. (Note: the exact value is unimportant, and your value may be
very different depending on how warmed up your lamp is and how well aligned your setup
is.) Then fine-tune the lens position by alternately moving it transversely with the yellow
screw and longitudinally along the track so as to maximize the output current, and also
fine-tune the focus by moving the lamp carriage along the track, again looking for maximum
output. If you are having trouble getting any output, consult with the TA, Professor or Lab
Manager.

Once you are getting a signal from the sodium lamp, turn on the power to the chart recorder
and set the chart sweep speed as you estimated above. Do not put a pen in the recorder
carriage yet. As a starting point, set the recorder sensitivity to its least sensitive setting,
e.g., 50 mV/inch. Check that the RC filter switch is ON (filter is in small metal box), and
observe the displacement of the pen carriage on the recorder as you manually scan through
the D lines. If you see too much displacement of the pen carriage (or not enough), change
the range of the PDA-700 and Y-axis sensitivity on the recorder appropriately. Note that
the ranges on the PDA-700 change by factors of ten, but the ranges on the X-Y recorder
allow for finer increments. You may also vary the signal intensity by changing the slit width,
but avoid opening the slit more than 70 microns, or else you will lose resolution. The pen
carriage should displace between 2 and 3 inches (2-3 large squares on the graph paper) as
you scan through the lines.

Make sure that the switch box between the function generator and the stepper motor con-
troller is off, and turn on the power to the digital function generator. (When the function
generator first powers up, it is set at a frequency of 10 kilohertz, which is much too high for
the stepper motor controller to handle.) Set the function generator frequency to 20 Hz by
using the keypad on the front panel: push FREQ/PER, then 2, 0, then Hz ms dBm if you
are using a Wavetek 29. Then turn on the switch box briefly to verify that the motor shaft
turns. You may safely run the function generator up to 100 Hz for small adjustments, but
for data taking, the frequency should be set at a value between 5 and 20 Hz, depending on
chart speed.
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Set the wavelength 1–2 angstroms less than the D2 wavelength. Remove the knob from the
wavelength adjust shaft and connect the stepper motor drive coupling to the shaft. Select
the increasing wavelength direction on the stepper motor controller, and turn on the power
to the controller.

Without putting a pen in the recorder, run a “dry” scan to check that your choice of stepper
motor speed and chart scan speed are optimum. Start the stepper motor by flipping the
switch on the box between the generator and the stepper-motor controller on, then imme-
diately start the scan by flipping the Time Base switch on the X-Y recorder from RESET
to SWEEP. You should see the pen carriage drop and start to move across the cart. Watch
to see where the sodium peaks will be recorded. After you have scanned through the lines,
RESET the time base and turn off the pulse train with the switch box. Do not turn off the
stepper motor controller power.

Your goal should be to have the peaks spaced on either side of the chart page. A separation
of about 10 inches is optimum. Adjust either the stepper frequency or the chart speed, and
run additional dry scans until it looks good. Then and only then pop a pen in the
carriage and record the sodium calibration scan.

IMPORTANT: Once you decide on a stepper-motor frequency and chart speed,
you must stick with it for all of the measurements, otherwise your calibration
will be ruined. Also, it is a good idea to scan in the same direction of “increasing
wavelength” for all runs.

While you are taking your good calibration scan, turn on the H-D discharge lamp and the
cooling fan (separate power supply). The discharge tube runs very hot, and cooling it with
the fan will help extend the lifetime of this expensive ($500) tube.

After the sodium scan is finished, turn the sodium lamp off, and carefully loosen the carriage
screw and lift the carriage and lamp off the track. Place it on the track behind the H-D
lamp, and then slide the carriage for the H-D lamp into the same position as the sodium
lamp was.

Remove the stepper motor drive and replace the knob. Dial in the approximate wavelength
value for the Hα line (see table in the calibration standards section). As you did before, scan
slowly through the Hα and Dα lines by hand. Adjust the lens setting and image focus by
maximizing the signal on the PDA-700 and chart recorder.

The image of the H-D lamp is much narrower than that of the sodium lamp, so alignment
is critical here. Check that the image of the lamp falls on the curved entrance slit to the
monochromator (may be necessary to dim lights to see this). To see the slit better, you may
want to open it up to 100 microns or more. Note that the lamp needs to be slightly tilted to
maximize the coverage of the slit with the image of the lamp, as the slits are off-center of a
circle at the focal plane of the monochromator (see Fig. 2) If the image does not fall on the
slit, it may be necessary to move the lens back and forth across the light path with the small
brass adjust screw marked with yellow tape at the base of the lens holder. If the beam is far
out of alignment, it may be necessary to move the entire base on which the lamp and lens
are mounted. If this seems to be necessary, please ask for help from the TA, Professor or Lab
Manager. After checking the image alignment, reduce the slit width back to approximately
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50 microns.

The sodium lamp is considerably more intense than the H-D lamp so it may be necessary to
increase the sensitivity of the PDA-700 and/or chart y-axis sensitivity. Do not change the
x-axis settings on the chart recorder or function generator! If you do, you will have to repeat
the Na calibration.

Adjust the Y-axis zero offset on the X-Y recorder so that the H-D scan is vertically separated
from the sodium calibration scan. Run a scan (dry first, to set the gain of the PDA-700 and
Y-axis input) through both the Hα and Dα lines. The result of the scan should be a trace
showing a pair of peaks of unequal height (fractions of H and D in tube are not equal), with
each peak having a symmetric or nearly symmetric shape. If you are not satisfied with the
results of the scan, you can repeat it: switch to “decreasing λ” on the controller, dial the
frequency up to 80–100 Hz, run the wavelength back down through the lines, and then repeat
the above procedure. Don’t forget to reset the frequency on the generator to the correct value.

Caution: when you reverse the scan direction, you need to allow the “backlash” in the gears
to be taken up before recording your lines. If you fail to do this, you may see significant
distortions in your trace: a peak will have a large flat part in the middle of it.

After successfully recording the Hα and Dα lines, remove the stepper motor drive coupling
from the shaft and reinstall the knob. Adjust the wavelength to near the Hβ line and repeat
the checkout and scan process as above. The signal strength of the Hβ and Dβ lines is
different from that of the α lines. This is due to both a difference in light intensity at these
wavelengths, and in sensitivity of the photomultiplier tube. (Study the sensitivity chart
for the tube in the book which describes the apparatus; does it make sense?) It may be
necessary to switch the PDA-700 to a different range to achieve a suitable pen displacement
on the recorder.

After successfully recording the β lines, proceed to record the γ and δ lines. As the line
strength decreases, you may need to adjust the Y-axis input scale or the PDA-700 gain to
obtain peaks of reasonable height. You will want to use much of the available vertical space
on the page to minimize peak position uncertainty.

After recording the four pairs of lines to your satisfaction, turn off the H-D lamp. You should
have at least 5 scans on your chart: the sodium lines and the four pairs of H-D lines. Make
sure that you note which scan is which pair of lines and which direction shows increasing
wavelength. It is OK if the scans overlap somewhat. The important thing is to be able to
see each peak clearly.

Make a copy of the data for each partner. Each person must carry out the data analysis
separately.

After finishing collecting all of your data, please turn off all lamps and electronics, put the
plastic cover over the lens, and remove the pen and put the cap back on it.
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Appendix – Reduced mass

Consider a classical system of two particles of mass M and m interacting via central forces
(i.e., Coulomb or gravity). Let the position vector between the two particles be ~r. When no

external forces act on the system, the center of mass ~R will be at rest with respect to some
inertial reference frame S. The center of mass is defined as

~R =
M ~X +m~x

M +m
, (10)

where ~X and ~x locate the particles of mass M and m with respect to the origin of S, and
~x = ~X + ~r. Since the center of mass is at rest with respect to S, a physically equivalent
reference frame S ′ has its origin at the center of mass itself; in S ′, the center of mass of the
system

~R
′
=
M ~X

′
+m~x′

M +m
= 0 . (11)

Hence M ~X
′
= −m~x′. It is still true that ~r = ~x′ − ~X

′
, since ~x and ~X are related to ~x′ and

~X
′

by a simple translation. These two equations can be solved to yield

~X
′

= − m

m+M
~r , (12)

~x′ =
M

m+M
~r . (13)

In S ′ the energy of the two particle system is given by

E =
1

2
mẋ′

2
+

1

2
MẊ ′

2
+ V (r) , (14)

where the “dot” notation indicates a derivative with respect to time and V (r) is the poten-
tial energy between the two particles. Upon taking derivatives of Eqs. (12) and (13) and
substituting the result into the energy equation one obtains

E =
1

2

(
mM

m+M

)
ṙ2 + V (r) . (15)

Clearly, the expression in parenthesis in the above equation is the reduced mass µ. An
advantage of expressing the energy in terms of µ is that one transforms the problem of two
particles of masses m and M into a problem of one particle of mass µ. A similar calculation
shows that one can write the angular momentum about the center of mass in a similar way:

~L
′
=
(
~x′ ×m~̇x′

)
+

(
~X
′
×M ~̇X

′
)

= ~r × µ~̇r . (16)

In the Bohr model and in the subsequent Schrödinger theory, these classical results translate
directly into their quantum equivalents.
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