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Abstract The fascination for lanthanide optical spectroscopy dates back to the 1880s

when renowned scientists such as Sir William Crookes, LeCoq de Boisbaudran,

Eugène Demarçay or, later, Georges Urbain were using luminescence as an analytical

tool to test the purity of their crystallizations and to identify potential new elements.

The richness and complexity of lanthanide optical spectra are reflected in an article

published in 1937 by J.H. vanVleck: The Puzzle of Rare Earth Spectra in Solids. After
this analytical and exploratory period, lanthanide unique optical properties were taken

advantage of in optical glasses, filters, and lasers. In the mid-1970s, E. Soini and

I. Hemmilä proposed lanthanide luminescent probes for time-resolved immunoassays

(Soini and Hemmilä in Clin Chem 25:353–361, 1979) and this has been the starting

point of the present numerous bio-applications based on optical properties of lantha-

nides. In this chapter, we first briefly outline the principles underlying the simplest

models used for describing the electronic structure and spectroscopic properties of

trivalent lanthanide ions LnIII (4fn) with special emphasis on luminescence. Since the

book is intended for a broad readership within the sciences, we start from scratch

defining all quantities used, but we stay at a descriptive level, leaving out detailed

mathematical developments. For the latter, the reader is referred to references Liu and

Jacquier, Spectroscopic properties of rare earths in optical materials. Tsinghua Uni-

versity Press & Springer, Beijing & Heidelberg, 2005 and Görller-Walrand and

Binnemans, Rationalization of crystal field parameters. In: Gschneidner, Eyring

(eds) Handbook on the physics and chemistry of rare earths, vol 23. Elsevier BV,

Amsterdam, Ch 155, 1996. The second part of the chapter is devoted to practical

aspects of lanthanide luminescent probes, both from the point of view of their design

and of their potential utility.
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Abbreviations

AO Acridine orange

CF Crystal field

CT Charge transfer

DMF Dimethylformamide

DNA Deoxyribonucleic acid

dpa Dipicolinate (2,6-pyridine dicarboxylate)

dtpa Diethylenetrinitrilopentaacetate

EB Ethidium bromide

ED Electric dipole
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EQ Electric quadrupole

FRET Förster resonant energy transfer

hfa Hexafluoroacetylacetonate

ILCT Intraligand charge transfer

ISC Intersystem crossing

JO Judd–Ofelt

LLB Lanthanide luminescent bioprobe

LMCT Ligand-to-metal charge transfer

MD Magnetic dipole

MLCT Metal-to-ligand charge transfer

NIR Near-infrared

PCR Polymerase chain reaction

SO Spin–orbit

tta Thenoyltrifluoroacetylacetonate

YAG Yttrium aluminum garnet

1 Electronic Structure of Trivalent Lanthanide Ions

1.1 Atomic Orbitals

In quantum mechanics, three variables depict the movement of the electrons around

the positively-charged nucleus, these electrons being considered as waves with

wavelength l ¼ h/mv where h is Planck’s constant (6.626 � 10�34 J s�1), m and v
the mass (9.109 � 10�31 kg) and velocity of the electron, respectively:

– The time-dependent Hamiltonian operator H describing the sum of kinetic and

potential energies in the system; it is a function of the coordinates of the

electrons and nucleus.

– The wavefunction, Cn, also depending on the coordinates and time, related to

the movement of the particles, and not directly observable; its square (Cn)
2

though gives the probability that the particle it describes will be found at the

position given by the coordinates; the set of all probabilities for a given

electronic Cn, is called an orbital.
– The quantified energy En associated with a specific wavefunction, and indepen-

dent of the coordinates.

These quantities are related by the dramatically simple Schrödinger equation,

which replaces the fundamental equations of classical mechanics for atomic sys-

tems:

HCn ¼ EnCn: (1)

Energies En are eigenvalues of Cn, themselves called eigenfunctions. In view

of the complexity brought by the multidimensional aspect of this equation
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(3 coordinates for each electron and nucleus, in addition to time) several simplifica-

tions are made. Firstly, the energy is assumed to be constant with time, which

removes one coordinate. Secondly, nuclei being much heavier than electrons, they

are considered as being fixed (Born–Oppenheimer approximation). Thirdly, since

the equation can only be solved precisely for the hydrogen atom, the resulting

hydrogenoid or one-electron wavefunction is used for the other elements, with a

scaling taking into account the apparent nucleus charge, i.e., including screening

effects from the other electrons. Finally, to ease solving the equation for non-H

atoms, the various interactions occurring in the electron-nucleus system are treated

separately, in order of decreasing importance (perturbation method).
For hydrogen, the Hamiltonian simply reflects Coulomb’s attraction between

the nucleus and the electron, separated by a distance ri, and the kinetic energy of the
latter:1

H0 ¼ � 1

ri
� 1

2
Di D ¼ @2

@x2
þ @2

@y2
þ @2

@z2

� �
: (2)

Each wavefunction (or orbital: the two terms are very often, but wrongly, taken

as synonyms) resulting from solving (1) is defined by four quantum numbers

reflecting the quantified energy of the two motions of the electrons: the orbital

motion, defined by the angular momentum ~‘, and the spin, characterized by the

angular momentum ~s. If polar coordinates (r, #, ’) are used, wavefunctions are

expressed as the product of a normalizing factor N, of a radial function <n;‘, of an

angular function Fℓ,mℓ
, and of a spin function Sms

:

Cn;‘;m‘;ms
¼ N � <n;‘ðrÞ � F‘;m‘

ð#; ’Þ � Sms
: (3)

The principal quantum number n is an integer (1, 2, 3, . . .) and represents the

radial expansion of the orbital. The angular quantum number ℓ varies from 0 to

(n � 1) and characterizes the shape of the orbital (designed by letters: s, p, d, f, g,. . .
for ℓ ¼ 0, 1, 2, 3, 4, . . .). The magnetic quantum number mℓ is the projection of the

vector ~‘ onto the z axis and is linked to the orientation of the orbital in space; it

varies between �ℓ and þℓ. Finally, ms is the projection of the vector~s and takes

values of � ½. Pauli’s principle requires that two electrons of the same atom must

at least differ by the value of one quantum number; this implies that only two

electrons of opposite spin can be associated with a given orbital. An electronic shell

consists in all electrons having the same quantum number n. A sub-shell regroups

electrons with same n and ℓ numbers, has therefore (2ℓ þ 1) orbitals, and may

contain a maximum of (4ℓ þ 2) electrons. The shapes of the seven 4f orbitals

(n ¼ 4, ℓ ¼ 3) are represented on top of Fig. 1.

1We use the atomic system units (a.u.) in order to simplify the equations as much as possible.
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1.2 Electronic Configuration

The ground state electronic configuration of LnIII ions is [Xe]4fn (n = 0–14).

It is energetically well separated from the [Xe]4fn�15d1 configuration (DE
> 32,000 cm�1). A far reaching fact is the shielding of the 4f orbitals by the

xenon core (54 electrons), particularly the larger radial expansion of the 5s25p6

subshells, making the valence 4f orbitals “inner orbitals” (bottom of Fig. 1). This is

the key to the chemical and spectroscopic properties of these metal ions.

r2  Ψ
2
/a

.u
.

r /a.u.
0 1 2 3

4f3

Xe core

NdIII

Fig. 1 Top: Shape of the one-electron (hydrogenoid) 4f orbitals in a Cartesian space. From top to

bottom and left to right: 4fx(x2 � 3y2), 4f y(3y2 � x2), 4fxyz, 4fz(x2�y2), 4fxz2, 4fyz2, and 4fz3 (combina-

tions of Cartesian coordinates represent the angular functions). Bottom: Radial wavefunction of the
three 4f electrons of NdIII compared with the radial wavefunction of the xenon core (a.u. = atomic

units); redrawn after [1]
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Each of the n electrons of the 4fn configuration is associated with one of the

seven 4f wavefunctions and may have a spin of�½. There are a number of ways of

associating the n electrons with the 4f orbitals, taking the spin into consideration;

this number corresponds to the multiplicity (or degeneracy) of the configuration and

is given by the following combinatorial formula:

ð4‘þ 2Þ!
n!ð4‘þ 2� nÞ! ¼

14!

n!ð14� nÞ! if ‘¼ 3: (4)

Since there are more than one electron in the configuration, the Hamiltonian in

(2) has to be adjusted to take into account the number of electrons, the apparent

(screened) nucleus charge Z0, and the repulsion between electrons located at a

distance rij:

H ¼
Xn
i¼1

� Z0

ri
� 1

2
Di

� �
þ
Xn
i 6¼j

1

rij
: (5)

A given association of the electrons with the 4f wavefunctions {(mℓ, ms)1, (mℓ,

ms)2, . . ..(mℓ, ms)n} is called amicro state. The latter is characterized with “overall”
quantum numbersML andMS derived from the projections of the sum of the angular

momenta:

~L ¼
Xn
i¼1

~‘i; ~S ¼
Xn
i¼1

~si; ML ¼
Xn
i¼1
ðm‘Þi; MS ¼

Xn
i¼1
ðmsÞi: (6)

A set of micro states such that all theML andMS quantum numbers correspond to

the projections of one value of L and S, respectively, is called a spectroscopic term.
It is written as ð2Sþ1ÞG, where G is a capital letter (S, P, D, F, G. . .) corresponding to
the values of L (0, 1, 2, 3, 4. . .). The multiplicity of a term, i.e., the number of micro

states it regroups, is given by (2S + 1) � (2L + 1). An electronic configuration

contains several terms and the sum of their multiplicities is equal to the degeneracy

of the configuration. The procedure for finding them out is rather tedious, except for

the ground term, for which Hund’s rules make its determination easy. According to

these rules (to be applied in the given order), the ground term has:

Rule 1 The largest spin multiplicity

Rule 2 The largest orbital multiplicity

For instance, for EuIII, 4f6, the largest multiplicity is obtained when each

electron is associated with a unique 4f wavefunction: S ¼ 6 � ½ ¼ 3; therefore,

(2S þ 1) ¼ 7. To obtain the largest orbital multiplicity, these electrons have to be

related with wavefunctions having the largest mℓ values, i.e., þ3, þ2, þ1, 0, �1,
and�2; the sum is 3, henceforth L ¼ 3 and G ¼ F: the ground term is a spin septet,
7F with overall multiplicity 7 � 7 ¼ 49.
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The two movements of the electrons are in fact not independent, they couple and

the strength of the interaction usually increases with the atomic number. To

simplify the treatment of this interaction, Russel and Saunders have proposed to

consider this coupling at the level of the overall angular momenta and not for each

individual electron. This model is valid for lighter elements and not quite adequate

for lanthanides for which an intermediate coupling scheme should be applied;

however, it is in large use in view of its simplicity and we shall keep with it in

this chapter. The Hamiltonian becomes:

H¼
Xn
i¼1

� Z0

ri
� 1

2
Di

� �
þ
Xn
i 6¼j

1

rij
þ l � ~L � ~S with l ¼ � x

2S
: (7)

The spin–orbit coupling constant l is positive if the 4f subshell is less than half

filled and negative if it is more than half filled. A new quantum number J, associated
with the total angular momentum ~J ¼ ~Lþ ~S, has to be introduced with values

ranging from (L þ S) to (L � S). As a consequence, each term is further split

into a number of spectroscopic levels ð2Sþ1ÞGJ each with a (2J þ 1) multiplicity.

Again, the sum of these multiplicities must be equal to the multiplicity of the term.

For instance, the ground term of EuIII is split into 7F0,
7F1,

7F2,
7F3,

7F4,
7F5, and

7F6
with multiplicities 1 þ 3 þ 5 þ 7 þ 9 þ 11 þ 13 ¼ 49. The ground level can be

found with third Hund’s rule:

Rule 3 if n < ð2‘þ 1Þ; J ¼ Jmin; if n > ð2‘þ 1Þ; J ¼ Jmax:

Note that if the sub-shell is half filled, then L = 0 and J = S. Additionally, Jmay

take half-integer values if S is half-integer. The set of levels is referred to as a

multiplet and this multiplet is a regular one if n < (2ℓ + 1), the energy of the levels

increasing with increasing values of J, while it is inverted if n > (2ℓ + 1). This

is illustrated with EuIII (4f6) for which the ground level is 7F0 while it is
7F6 for Tb

III

(4f8). Finally, the energy difference between two consecutive spin–orbit levels with

quantum numbers J and J0 = J + 1 is directly proportional to J0:

DE ¼ l � J0: (8)

The electronic properties of the trivalent 4f free ions are summarized in Table 1.

1.3 The Ions in a Ligand Field

The above developments are valid for free ions. When a LnIII ion is inserted into a

chemical environment, the spherical symmetry of its electronic structure is

destroyed and the remaining (2J þ 1) degeneracy of its spectroscopic levels is

partly lifted, depending on the exact symmetry of the metal–ion site. In view of the
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inner character of the 4f wavefunctions their mixing with the surrounding orbitals

remains small and so is the resulting level splitting (a few hundreds of cm�1), so
that this perturbation can be treated last. Nevertheless, the resulting Hamiltonian

gets very complex, so that a simplifying concept has been put forward by H. Bethe

in 1929: the ligands are replaced by (negative) point charges generating a crystal (or

ligand) electrostatic field which, in turn, interacts with the moving 4f electrons,

generating a ligand-field (or crystal-field, or Stark) splitting of the spectroscopic

levels.

With the parameterization introduced by B. G. Wybourne in 1965, the final

Hamiltonian becomes:

H ¼
Xn
i¼1

� Z0

ri
� 1

2
Di

� �
þ
Xn
i 6¼j

1

rij
þ l � ~L � ~S þ

X
k;q;i

Bk
qC
ðkÞ
q ðiÞ; (9)

where the summation involving i is on all the 4f electrons, Bk
q are ligand-field

parameters, commonly treated as phenomenological parameters, and C(k)
q are

components of tensor operators C(k) which transform like the spherical harmonics

used for the analytical form of the 4f wavefunctions. The running number kmust be

even and smaller than 2ℓ; for 4f electrons it can, therefore, take values of 0, 2, 4,

and 6. The values for q are restricted by the point group of symmetry into which the

LnIII ion is embedded, but in any case, qj j � k.
The Bk

q parameters may be complex numbers but they have to be real for any

symmetry group with a 180� rotation about the y axis or with the xy plane being a

mirror plane. The relationship between the 32 crystallographic symmetry groups

and the Bk
q parameters is given in Table 2. In order to compare the ligand field

strengths in different compounds, F. Auzel has proposed the following expression

for an “average” total ligand-field effect:

Nv ¼ 1

4p

X
k;q

ðBk
qÞ2

ð2k þ 1Þ

" #1=2
: (10)

Table 1 Electronic properties of LnIII free ions

fn Multiplicity No. of terms No. of levels Ground level z/cm�1,a l/cm�1,a

f0 f14 1 1 1 1S0
1S0 – – – –

f1 f13 14 1 2 2F5/2
2F7/2 625 2,870 625 �2,870

f2 f12 91 7 13 3H4
3H6 740 2,628 370 �1,314

f3 f11 364 17 41 4I9/2
4I15/2 884 2,380 295 �793

f4 f10 1,001 47 107 5I4
5I8 1,000 2,141 250 �535

f5 f9 2,002 73 198 6H5/2
6H15/2 1,157 1,932 231 �386

f6 f8 3,003 119 295 7F0
7F6 1,326 1,709 221 �285

f7 3,432 119 327 8S7/2 1,450 0
aFor aqua ions, except for CeIII (Ce:LaCl3) and YbIII (Yb3Ga5O12), from [2]. The first column

refers to f1–7 and the second to f8–14
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Finally, it is worth noting that electrostatic ligand-field effects do not completely

lift the degeneracy of the J levels of odd-numbered electronic configurations; in the

latter case, all ligand-field sublevels are at least doubly degenerate (Kramer’s

doublets) and this degeneracy can only be removed by a magnetic field. A partial

energy diagram, including crystal-field splittings is given in Fig. 2. Due to their

large number, energy levels may extend up to 190,000 cm�1 for n = 6, 7, 8, and are

not yet fully explored, although an extension of Carnall’s diagram up to this energy

has been recently published [4].

The maximum numbers of ligand-field (or Stark) sublevels depend on the point

group of symmetry: they are given in Table 3 versus values of J. This can be

exploited for the determination of the symmetry point group from f–f absorption or

emission spectra, at least when J is integer.

2 Absorption Spectra

Description of the interaction between photons (massless elemental particles of

light) and matter considers the former behaving as waves comprised of two

perpendicular fields, electric and magnetic, oscillating in time (henceforth the

denomination of electromagnetic wave or radiation). When a photon is absorbed,

its energy is transferred to an electron which then may be “pushed” into an orbital

with higher energy. The absorption is promoted by “operators” linked to the nature

of light: the odd-parity electric dipole (ED) operator ~P, the even-parity magnetic

dipole (MD) ~M and electric quadrupole (EQ) ~Q operators:

~P ¼ �e
Xn
i¼1

~ri ~M ¼ � eh

4pmc

Xn
i¼1
ð~‘i þ 2~siÞ ~Q ¼ 1

2

Xn
i¼1
ð~k �~riÞ �~ri: (11)

There are three types of electronic transitions involving lanthanide ions:

sharp intraconfigurational 4f–4f transitions, broader 4f–5d transitions, and broad

Table 2 Non-zero crystal-field parameters for fn electronic configurations and examples of

corresponding crystal hosts [1]

Symmetry Site symmetry Crystal field parameters Example

Monoclinic C1, CS, C2, C2h, B2
0; B4

0; B6
0; <ðB2

2Þ; B4
2;B

6
2; B

4
4; B6

4; B
6
6

LaF3
Rhombic C2v, D2, D2h B2

0; B4
0; B6

0; <ðB2
2; B

4
2;B

6
2; B

4
4; B6

4; B
6
6Þ Y3Al5O12

Trigonal C3, S6 B2
0; B4

0; B6
0; <ðB4

3Þ; B6
3; B6

6
LiNbO3

C3v, D3, D3d B2
0; B4

0; B6
0; <ðB4

3; B6
3; B6

6Þ Y2O2S

Tetragonal C4, S4, C4h B2
0; B4

0; B6
0; <ðB4

4Þ; B6
4

LiYF4
C4v, D4, D2d, D4h B2

0; B4
0; B6

0; <ðB4
4; B6

4Þ YPO4

Hexagonal C3h, D3h, C6, C6h,
C6v, D6, D6h

B2
0; B4

0; B6
0; <ðB6

6Þ LaCl3

Cubic T, Td, Th, O, Oh B4
0; B6

0; <ðB4
4; B

6
4Þ a CeO2

aB4
4 ¼ 5ffiffiffiffi

70
p B4

0; B6
4 ¼ �

ffiffiffiffiffiffiffiffi
7=2

p
B6
0
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charge-transfer transitions (metal-to-ligand, MLCT or ligand-to-metal, LMCT).

Not all transitions are permitted and the allowed ones are described by selection

rules. Laporte’s parity selection rule implies that states with the same parity cannot

be connected by electric dipole transitions; as a consequence f–f transitions are

forbidden by the ED mechanism. However, when the lanthanide ion is under the

influence of a ligand-field, non-centrosymmetric interactions allow the mixing of

Fig. 2 Energy level diagram for LnIII ions doped in a low-symmetry crystal, LaF3. Redrawn

from [3]
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electronic states of opposite parity into the 4f wavefunctions, which somewhat

relaxes the selection rules and the transition becomes partially allowed; it is called

an induced (or forced) electric dipole transition. Magnetic dipole transitions are

allowed, but their intensity is weak; in 4f–4f spectra, however, they often have

intensity of the same order of magnitude as induced electric dipole transitions.

Quadrupolar transitions are also parity allowed, but they are much weaker than MD

transitions so that they are usually not observed. Some induced ED transitions are

highly sensitive to minute changes in the LnIII environment and are called hyper-
sensitive or sometimes pseudo-quadrupolar transitions because they apparently

follow the selection rules of EQ transitions. A listing of experimentally identified

such transitions is presented in Table 4; note, that these transitions are not neces-

sarily the most intense ones in the optical spectra.

In addition to the parity selection rule, other rules are operative, for instance, on

DS (spin selection rule, requiring no change of spin for all three mechanisms,

DS ¼ 0), DL, and DJ; they will be detailed below. The selection rules are derived

under several hypotheses which are not always completely fulfilled in reality (in

particular 4f wavefunctions are not completely pure), so that the terms “forbidden”

and “allowed” transitions are not accurate. Let’s say that a forbidden transition has

a low probability and an allowed transition a high probability of occurring.

2.1 Induced ED f–f Transitions: Judd–Ofelt Theory [5, 6]

Judd–Ofelt (JO) theory has been established within the frame of the crystal-field

concept and it provides a simple model for reproducing the intensities of f–f

transitions both in solids and solutions. It only takes into account the 4fn electronic

configuration, that is inter-configurational 4fn–4fn�15d1 interactions are neglected.
On the other hand, spin–orbit coupling is treated within the frame of the intermediate

Table 3 Number of Stark levels versus the value of quantum number J

Symmetry Site symmetry Integer J

0 1 2 3 4 5 6 7 8

Cubic T, Td, Th, O, Oh 1 1 2 3 4 4 6 6 7

Hexagonal C3h, D3h, C6, C6h, C6v, D6, D6h 1 2 3 5 6 7 9 10 11

Trigonal C3, S6 C3v, D3, D3d

Tetragonal C4, S4, C4h, 1 2 4 5 7 8 10 11 13

C4v, D4, D2d, D4h

Low C1, CS, C2, C2h, C2v, D2, D2h 1 3 5 7 9 11 13 15 17

Symmetry Site symmetry Half-integer J
1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2

Cubic T, Td, Th, O, Oh 1 1 2 3 3 4 5 6 6

All othersa See above 1 2 3 4 5 6 7 8 9
aAll Stark sublevels are doubly degenerate (Kramer’s doublets)
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coupling scheme. The dipole strength in esu2cm2 (¼1036 debye2) of an induced ED

f–f transition between states C and C0 is given by:

DED ¼ e2
X

l¼2;4;6
Ol C Ul

�� ��C0� ��� ��2; (12)

in which e is the electric charge of the electron, wavefunctions C and C0 are full

intermediate-coupled functions fn[SL]J, Ul are the irreducible tensor forms of the

ED operator, and Ol are the phenomenological JO parameters, expressed in cm2.

The bracketed expressions in (12) are dimensionless doubly-reduced matrix ele-

ments which are tabulated (and insensitive to the metal–ion environment). Mathe-

matical treatment of the parity mixing by the crystal-field perturbation leads to the

selection rules for f–f transitions reproduced in Table 5.

JO parameters are adjustable parameters and they are calculated from the

absorption spectrum e (~n). For an isotropic crystal or a solution, the experimental

dipole strength is defined as:

DðexpÞ ¼ 1036

108:9 � ~nmean � XA

ð2J þ 1Þ � 9n

n2 þ 2ð Þ2
 !Z

e ~nð Þd~n; (13a)

Table 4 Experimentally observed hypersensitive transitions for LnIII ions in optical spectra [5].

Energies/wavelengths are approximate

Ln Transition ~n/cm�1 l/nm
Pr 3F2 3H4 5,200 1,920

Nd 4G5/2 4I9/2
a 17,300 578

2H9/2,
4F5/2 4I9/2 12,400 806

4G7/2,
3K13/2 4I9/2 19,200 521

Sm 4F1/2,
4F3/2 6H5/2 6,400 1,560

Eu 5D2 7F0 21,500 465
5D1 7F1 18,700 535
5D0 ! 7F2 16,300 613

Gd 6P5/2,
6P7/2 8S7/2 32,500 308

Tb –b – –

Dy 6F11/2 6H15/2 7,700 1,300
4G11/2,

4I15/2 6H15/2 23,400 427

Ho 3H6  5I8 27,700 361
5G6  5I8 22,100 452

Er 4G11/2 4I15/2 26,400 379
2H11/2 4I15/2 19,200 521

Tm 1G4  3H6 21,300 469
3H4  3H6 12,700 787
3F4  3H6 5,900 1,695

aThe transition 4G5/2 4I9/2 overlaps with
2G7/2 4I9/2

bNone identified positively, but the 5D4 ! 7F5 transition shows sometimes ligand-induced

pseudo-hypersensitivity
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with XA being the fractional population of the initial state while ~nmean is given by:

~nmean ¼
R
~n � e ~nð Þd~nR
e ~nð Þd~n : (13b)

The above equations assume that the absorption bands are symmetrical, i.e.,

either Gaussian or Lorentzian. If not, (13a) has to be replaced with:

DðexpÞ ¼ 1036

108:9 � XA

ð2J þ 1Þ 9n

n2 þ 2ð Þ2
 !Z

e ~nð Þ
~n

d~n: (14)

Finally, (2J þ 1) is the degeneracy of the initial state and the expression

involving the refractive index n is known as Lorentz’s local-field correction.

Calculations of transition probabilities within the frame of JO theory are usually

made assuming that all Stark sublevels within the ground level are equally popu-

lated and that the material under investigation is optically isotropic. The former

hypothesis is only reasonable in some cases, e.g., when transitions initiate from

non-degenerate states such as Eu(7F0). Otherwise, there is a Boltzmann distribution

of the population among the crystal-field sublevels. The second assumption is not

valid for uniaxial or biaxial crystals, but, of course, holds for solutions.

The phenomenological JO parameters are determined from a fit of (12) to the

experimental values defined by (13a), using adequate matrix elements. The exact

procedure is described in details in reference [6]. In the case of EuIII the procedure

is quite simple since O2, O4, and O6 can be directly extracted from the dipole

strength of the 5D2 7F0,
5D4  7F0, and

5L6  7F0 transitions, respectively. An

example is shown on Fig. 3 for europium tris(dipicolinate). Extensive tabulations of

JO parameters can be found in reference [5] while spectra for all LnIII ions are

presented in reference [8]; note that molar absorption coefficients are, with a few

exceptions, smaller than 10 M�1 cm�1 and very often smaller than 1 or even

0.1 M�1 cm�1.

2.2 4f–5d and CT Transitions

The promotion of a 4f electron into the 5d sub-shell is parity allowed; the

corresponding transitions are broader than f–f transitions and their energy depends

Table 5 Selection rules for intra-configurational f–f transitions

Operator Parity DS DL DJa

ED Opposite 0 �6 �6 (2,4,6 if J or J0 ¼ 0)

MD Same 0 0 0, �1
EQ Same 0 0, �1, �2 0, �1, �2
aJ = 0 to J0 = 0 transitions are always forbidden
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largely on the metal environment since the 5d orbitals are external and interact

directly with the ligand orbitals. The 4f–5d transitions have high energies (Fig. 4)

and only those of CeIII, PrIII, and TbIII are commonly observed. Figure 5 shows the

crystal-field splitting of both the 4f1(2F5/2,
2F7/2) and 5d1(2D3/2,

2D5/2) electronic

configurations of CeIII in D3h symmetry. In the spectrum displayed, the third

transition to 2D5/2 is not observed because it lies at too high energy. Conversely,

the CeIII luminescence can be tuned from about 290 to 450 nm, depending on the

matrix into which the metal ion is inserted, because of large crystal-field effects on

the 5d1 excited configuration.

Charge-transfer transitions, both LMCT and MLCT, are allowed and have also

high energies (Fig. 4), so that only the LMCT of EuIII and YbIII (possibly SmIII and

TmIII) are commonly observed in ordinary solvents, contrary to d-transition metal
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ions for which this type of transition is widespread. This is sometimes not well

understood and the literature features many wrong assignments to MLCT transi-

tions made by analogy to d-metal complexes.

3 Emission Spectra

With the exception of LaIII and LuIII, all LnIII ions are luminescent and their f–f

emission lines cover the entire spectrum, from UV (GdIII) to visible (e.g., PrIII,

SmIII, EuIII, TbIII, DyIII, TmIII) and near-infrared (NIR, e.g., PrIII, NdIII, HoIII, ErIII,

YbIII [11]) ranges. Some ions are fluorescent (DS = 0), others are phosphorescent

(DS 6¼ 0), and some are both. The f–f emission lines are sharp because the rear-

rangement consecutive to the promotion of an electron into a 4f orbital of higher

energy does not perturb much the binding pattern in the molecules since 4f orbitals

do not participate much in this binding (the covalency of a LnIII–ligand bond is

at most 5–7%). Therefore, the internuclear distances remain almost the same in

the excited state, which generates narrow bands and very small Stokes’ shifts.

A different situation is met in organic molecules for which excitation leads fre-

quently to a lengthening of the chemical bonds, resulting in large Stokes’ shifts and

since the coupling with vibrations is strong, in broad emission bands (Fig. 6). The

main emission lines observed in LnIII luminescence spectra are listed in Table 6,

together with other key photophysical parameters.

As for absorption, emission of light through f–f transitions is achieved by either

electric dipole or magnetic dipole mechanisms, and the selection rules detailed in
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Fig. 5 Left: Absorption spectrum of [Ce(H2O)9]
3+ and right: its assignment (D3h symmetry)
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Table 5 apply. Important parameters characterizing the emission of light from a

LnIII ion are the lifetime of the excited state tobs = 1/kobs and the quantum yield Q.
A general expression for the latter is simply

Q ¼ number of emitted photons

number of absorbed photons
: (15)

The quantum yield is related to the rate at which the excited level is depopulated

kobs and to the radiative rate constant krad:

QLn
Ln ¼

krad

kobs
¼ tobs

trad
: (16)

Subscript and superscript “Ln” have been added to avoid confusion with the

other definition of quantum yield discussed below. The quantity defined in (16) is

called the intrinsic quantum yield, that is, the quantum yield of the metal-centered

luminescence upon direct excitation into the 4f levels. Its value reflects the extent

of nonradiative deactivation processes occurring both in the inner- and outer-

coordination spheres of the metal ion. The rate constant kobs is the sum of the

rates of the various deactivation processes:

kobs ¼ krad þ
X
n

knrn ¼krad þ
X
i

kvibri ðTÞþ
X
j

kpetj ðTÞþ
X
k

k0k nr; (17)

where krad and knr are the radiative and nonradiative rate constants, respectively; the
superscript vibr points to vibration-induced processes while pet refers to photo-

induced electron transfer processes such as those generated by LMCT states, for

instance; the rate constants k0 are associated with the remaining deactivation paths.

In absence of nonradiative deactivation processes, kobs = krad and the quantum

yield would be equal to 1, which is very rare. Examples are, in solid state and under

E
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excitation at 254 nm, Y2O3:Eu (5%) with Q ¼ 0.99 and terbium benzoate with

Q = 1 [12]; in solution, a terbium complex with a dipyrazoylpyridine bearing

aminocarboxylate coordinating groups was reported having Q = 0.95 [13].

Temperature-dependent vibrational deactivation processes can often be fitted to

an Arrhenius-type of equation [14]:

lnðkobs � k0Þ ¼ lnA� EA

RT
; (18)

where k0 is the rate constant at 0 K (practically: at 4 K, or even at 77 K) which

allows one to decipher which vibration is responsible for it; examples are presented

in references [15] and [16].

Table 6 Ground (G), main emissive (I) and final (F) states for the most important f–f emission

bands, approximate corresponding wavelengths (l), energy gap between the emissive state and the

highest SO level of the receiving state, and radiative lifetime of LnIII ions. More NIR lines are

listed in [11]

Ln G I F l/mm or nma Gap/cm–1,a trad/msa

Ce 2F5/2 5d 2F5/2 Tunable, 300–450 – –

Pr 3H4
1D2

3F4,
1G4,

3H4,
3H5 1.0, 1.44, 600, 690 6,940 (0.05b–0.35)

3P0
3P0

3HJ (J = 4–6)
3FJ (J = 2–4)

490, 545, 615, 640,

700, 725

3,910 (0.003b–0.02)

Nd 4I9/2
4F3/2

4IJ (J = 9/2–13/2) 900, 1.06, 1.35 5,400 0.42 (0.2–0.5)

Sm 6H5/2
4G5/2

6HJ (J = 5/2–13/2) 560, 595, 640, 700, 775 7,400 6.26 (4.3–6.3)
4G5/2

6FJ (J = 1/2–9/2) 870, 887, 926, 1.01, 1.15
4G5/2

6H13/2 877

Euc 7F0
5D0

7FJ (J = 0–6) 580, 590, 615, 650, 720,

750, 820

12,300 9.7 (1–11)

Gd 8S7/2
6P7/2

8S7/2 315 32,100 10.9

Tb 7F6
5D4

7FJ (J = 6–0) 490, 540, 580, 620, 650,

660, 675

14,800 9.0 (1–9)

Dy 6H15/2
4F9/2

6HJ (J = 15/2–9/2) 475, 570, 660, 750 7,850 1.85 (0.15–1.9)
4I15/2

6HJ (J = 15/2–9/2) 455, 540, 615, 695 1,000 3.22b

Hod 5I8
5S2

5IJ (J = 8,7) 545, 750 3,000 0.37 (0.51b)
5F5

5I8 650 2,200 0.8b

5F5
5I7 965

Ere 4I15/2
4S3/2

4IJ (J = 15/2, 13/2) 545, 850 3,100 0.7b

4F9/2
4I15/2 660 2,850 0.6b

4I9/2
4I15/2 810 2,150 4.5b

4I13/2
4I15/2 1.54 6,500 0.66 (0.7–12)

Tm 3H6
1D2

3F4,
3H4,

3F3,
3F2 450, 650, 740, 775 6,650 0.09

1G4
3H6,

3F4,
3H5 470, 650, 770 6,250 1.29

3H4
3H6 800 4,300 3.6b

Yb 2F7/2
2F5/2

2F7/2 980 10,250 1.3 or 2.0f

aValues for the aqua ions [8], otherwise stated, and ranges of observed lifetimes in all media, if

available, between parentheses
bDoped in Y2O3 or in YLiF4 (Ho), or in YAl3(BO3)4 (Dy)
cLuminescence from 5D1,

5D2, and
5D3 is sometimes observed as well

dThe laser transition 5I7!5I8 (2.1–2.2 mm) is used in medical surgery of the eyes
eLuminescence from four other states has also been observed: 4D5/2,

2P3/2,
4G11/2,

2H9/2
fComplexes in solution: 1.2–1.3 ms; solid-state inorganic compounds: �2 ms
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The intrinsic quantum yield essentially depends on the energy gap DE between

the emissive state of the metal ion and the highest sublevel of its ground, or

receiving, multiplet. The smaller this gap, the easier is its closing by nonradiative

deactivation processes, for instance, through vibrations of bound ligands, particu-

larly those with high energy such as O–H, N–H, or C–H. With the assumption that

the deactivating phonons involved have all the same energy �ho, the temperature-

dependent rate constant kvibr(T) for the quenching of a single excited level is

described by the following expression [2]:

kvibrðTÞ ¼ kvibrð0Þ 1� e��ho=kBT
	 
�i

with i ¼ DE
�ho

; (19)

where kB is Boltzmann’s constant (1.38 � 10�23 J K�1 � 0.695 cm�1), i the

number of phonons required to bridge the gap, and kvibr(0) the spontaneous rate at
0 K. The latter heavily depends on the order n of the process. In practice, the excited
level possesses several crystal-field sublevels, the population of which is in thermal

equilibrium. This equilibrium is reached in times short compared to the multi-

phonon decay time, but since phonon-induced decay rates are significantly slower

for the upper levels in view of the larger energy gaps, depopulation of the lower

crystal field sublevel is the major contribution to the deactivation process. A rule of

thumb is that radiative de-excitation will compete efficiently with multi-phonon

processes if the energy gap is more than 6 quanta of the most energetic vibration

present in the molecule. This type of nonradiative deactivation is especially detri-

mental to NIR luminescence [11]: for ErIII, for instance, a C–H vibrator located

outside the inner coordination sphere at a distance between 20 and 30 Å from the

emitting center induces a radiationless rate equal to the radiative one.

Determination of the intrinsic quantum yield with (16) requires evaluation of the

radiative lifetime which is related to Einstein’s rates of spontaneous emission A
from an initial state CJj i, characterized by a quantum number J, to a final state

C0J0j i:

AðCJ; C0J0 Þ ¼ krad ¼ 1

trad
¼ 64p4~n3

3h 2J þ 1ð Þ
nðn2 þ 2Þ2

9
DED þ n3DMD

" #
; (20)

where ~n is the mean energy of the transition defined in (13b), h is Planck’s constant,
n is the refractive index; DED is given by (12) and DMD by (21):

DMD ¼ eh

4pmec

� �2

Ch j Lþ 2Sj j C0j ij j2: (21)

The bracketed matrix elements are tabulated and the radiative lifetime can,

therefore, be extracted from the spectral intensity, that is from (12), (20), and

(21). Except in few cases, this calculation is not trivial and large errors may

occur, including those pertaining to the hypotheses made within JO theory.
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In particular, it has been assumed that the emitting and receiving levels are

(2J + 1)-fold degenerate or, if split by crystal field effects, that all the sublevels

are equally populated. This is obviously not true and in the case of ErIII this may

lead to up to 20% errors. Even larger errors have been found for LnIII tris(dipico-

linate) [7].

On the other hand, if the absorption spectrum corresponding to an emission

spectrum is known, which may be the case when the luminescence transitions

terminate onto the ground level, the radiative lifetime can be simply calculated

from the following equation where NA is Avogadro’s number (6.023 � 1023):

1

trad
¼ 2303� 8pcn2~n2ð2J þ 1Þ

NAð2J0 þ 1Þ
Z

eð~nÞd~n: (22)

In the special case of EuIII for which one transition (5D0 ! 7F1) has pure

magnetic origin, a convenient simplified equation can be derived [17]:

AðCJ;C0J0 Þ ¼ 1

trad
¼ AMD;0 � n3 Itot

IMD

� �
; (23)

with AMD,0 being a constant equal to 14.65 s�1 and (Itot/IMD) the ratio of the total

integrated emission from the Eu(5D0) level to the 7FJ manifold (J = 0–6) to the

integrated intensity of the MD transition 5D0 ! 7F1.

An example of radiative lifetime calculations based on the various procedures

evoked above can be found in reference [7], the results of which are collected in

Table 7. The limits of JO approach are clearly seen both for Eu (error ��20%) and

Tb (error >�100%). On the other hand, (22) and (23) yield trustworthy results: a

radiative lifetime of 1.2 ms has been reported for [Yb(dtpa)]2� [17].

Finally, there are two important points to be stressed here in order to correct

many errors reported in the literature. Firstly, the radiative lifetime is characteristic

of one emitting state. If several excited states of an LnIII ion emit light, then each of

Table 7 Experimental intrinsic quantum yields, observed and radiative lifetimes of M3[Ln(dpa)3]

(M ¼ Na or Cs) samples in solution (0.1 M Tris–HCl, pH 7.4) and solid state at 295 K; 2s are

given between parentheses [7]

Sample QLn
Ln = % tobs/ms trad/msa

(i) (ii) (iii)

Eu, 1.8–3.7 � 10�2 M 41(2) 1.7(0.1) 4.1(3) 3.15 4.0

Eu, solid stateb 68(4) 1.8(0.1) 2.6(2) – 2.7

Tb, 2.0 � 10�2 M –c 1.74(1) – 1.0 –

Tb, solid stateb 72(5) 1.36(2) 1.9(1) – –

Yb, 4.04 � 10�2 M –c 2.23(1)d – – 1.31(2)
aSuccessively: (i) experimental, i.e., from (16), (ii) from JO theory (20), (iii) from (23) for Eu and

(22) for Yb
bRefractive index = 1.517
cDetermination not feasible
dIn ms
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them will have a characteristic radiative lifetime. Moreover, the radiative lifetime is

not a constant for a given ion and a given electronic level. Indeed, there is a

dependence on the refractive index, as clearly shown in (20), so that transposition

of a literature value to a specific compound cannot be made directly, which explains

the wide range of trad values reported for an individual LnIII ion (Table 6).

4 Sensitization of Lanthanide Luminescence

Since the dipole strengths of f–f transitions are very small, direct excitation into the

4f excited levels rarely yields highly luminescent materials, even if the intrinsic

quantum yield is large, unless considerable excitation power is used (laser excita-

tion, given the sharpness of the absorption bands). Therefore, an alternative path

has been worked out which is called luminescence sensitization or antenna effect.
The luminescent ion is imbedded into a matrix or an organic environment such that

the latter is a good light harvester. Energy is then transferred from the excited

surroundings onto the metal ion which eventually gives off its characteristic light.

Note, that several of the LnIII excited states may be implied in this process. The use

of charge transfer or 4f5d states for collecting and transferring energy has long been

well established in inorganic phosphors for lighting applications. On the other hand,

the tuning of the electronic properties of organic ligands to achieve the same goal

starts only to be understood since the process is more involved in view of the

numerous electronic levels and mechanisms which may be implied.

Here, we focus on the latter case for which efficient light-harvesting is mainly

performed by the aromatic (p ! p*) and/or (n ! p*) transitions of unsaturated

ligands displaying large cross sections for one-photon absorption. Alternatively,

singlet states, intra-ligand charge transfer states (ILCT), ligand-to-metal charge

transfer states (LMCT), or 3MLCT states localized on a transition-metal containing

ligand may also play this role [18]. As a result of the poor expansion of the 4f

orbitals, the Ln–ligand bonds are mainly electrostatic and only some minute mixing

of metal and ligand electronic wavefunctions contributes to covalency. It, therefore,

appears justified to consider separately ligand-centered and metal-centered excited

states in lanthanide complexes, and a Jablonsky diagram is adequate for represent-

ing energy migration paths (Fig. 7). In this diagram, grey arrows representing

energy transfer to the metal ion do not point to a specific excited state since several

of them may intervene.

One of the main energy migration path implies Laporte- and spin-allowed

ligand-centered absorptions followed by intersystem crossing (1S* ! 3T*, kISC)
reaching the long-lived ligand-centered triplet state, from which 3T* ! Ln*(ket)
energy transfer occurs. Spontaneous metal-centered radiative emission completes

the light-conversion process. It is to be stressed that although important, this energy

transfer path is by far not the only operative one. Kleinerman who studied over 600

lanthanide chelates pointed out as early as 1969 that excited singlet states may
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contribute to the transfer and may even be the privileged donor states, depending on

the relative values of the rate constants for the various intervening processes [19].

Since triplet states are quenched by oxygen, an easy way of establishing their

involvement in the energy transfer process is to bubble oxygen into the solution:

a reduction in LnIII luminescence proves their role but no effect may simply means

ket > kO2. In fact a workable model of the entire energy-converting mechanism has

shown that considering as many as 20–30 rate constants (including those describing

back transfers) may be necessary [20]. All these potential energy funnels, particu-

larly if ILCT, LMCT, as well as 3MLCT states are included, render difficult the a

priori precise design of highly luminescent lanthanide-containing edifices.

Once the ligand is excited, subsequent intramolecular energy migrations obey

Fermi’s golden rule governing resonant energy transfer (24), whereby WDA is the

probability of energy transfer, ODA is the spectral overlap integral between the

absorption spectrum of the acceptor A and the emission spectrum of the donor D,

while H0 is the perturbation operator in the matrix element < D	AjH0jDA	 > .

WDA ¼ ð4p2=hÞ � j < D	AjH0jDA	 > j2 � ODA: (24)
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Depending on the electromagnetic nature of H0, a double-electron exchange

(Dexter) mechanism or an electrostatic multipolar (Förster) mechanism have been

proposed and theoretically modeled. They are sketched on Fig. 8 for the simple
1S*-3T*-Ln* path. Their specific dependences on the distance d separating the

donor D from the acceptor A, i.e., e�bd for double-electron exchange and d�6 for
dipole–dipolar processes, respectively, often limit Dexter mechanism to operate at

short distance (typically 30–50 pm) at which orbital overlap is significant, while

Förster mechanism may extend over much longer distances (up to 1,000 pm).

In addition, a d�8-dependent dipole–quadrupolar mechanism may also be quite

effective at short to medium-range distances; in fact, depending on ODA, it may be

as efficient as the dipole–dipole mechanism up to distances as long as 300 pm.

For lanthanides possessing low-lying charge-transfer excited states (e.g., EuIII,

SmIII) or for complexes having low-lying ILCT states, the energy transfer process is

further affected by additional nonradiative quenching arising from back energy

transfer onto the ligand (not shown on Fig. 7). Since in this case the accepting states

are quite broad, minute differences in their energy may lead to large differences in

the spectral overlap, and therefore, in the overall quantum yield. YbIII represents a

special case since it has only one, low-lying, excited state (2F5/2) and several

excitation mechanisms have been proposed [11].

For the molecular edifices discussed here, another definition of quantum

yield ought to be made: the overall quantum yield, that is the quantum yield of
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Fig. 8 Dexter (top) and Förster (bottom) energy transfer mechanisms
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the metal-centered luminescence upon ligand excitation. It is related to the intrinsic

quantum yield by the following equation:

QLn
L ¼ �D

pop
�et Q

Ln
Ln ¼ �sens Q

Ln
Ln: (25)

The three components in the middle term represent (1) the efficiency �Dpopwith
which the feeding level (3T, ILCT, LMCT, 3MLCT, possibly a 4f5d state) is

populated by the initially excited state (the corresponding rate constant is ketISC if
1S* is excited and 3T* is the donor level, see Fig. 7), (2) the efficiency of the energy

transfer (�et) from the donor state to the accepting LnIII ion, and (3) the intrinsic

quantum yield. The overall sensitization efficiency, �sens can be accessed experi-

mentally if both the overall and intrinsic quantum yields are known or, alternatively,

the overall quantum yield and the observed and radiative lifetimes:

�sens ¼
QLn

L

QLn
Ln

¼ QLn
L

trad

tobs
: (26)

The lifetime method is especially easy to implement for EuIII compounds since

the radiative lifetime is readily determined from the emission spectrum via (23).

Some data are reported in Table 8.

An important remark at this stage is that the intrinsic quantum yield is directly

proportional to tobs, but not necessarily the overall quantum yield since a change in

Table 8 Quantum yields, observed and radiative lifetimes, as well as sensitization efficiency for

EuIII tris(dipicolinate) and bimetallic EuIII helicates; all data are at room temperature, for solutions

in Tris–HCl 0.1 M (pH = 7.4); 2s are given between parentheses [7, 21]. See Fig. 9 for formulae

Sample QEu
L QEu

Eu tobs/ms trad/ms �sens

[Eu(dpa)3]
3� 0.29(2) 0.41(2) 1.7(1) 4.1(3) 0.76(6)

[Eu2(L
C1)3] 0.24(2) 0.37(4) 2.4(1) 6.8(3) 0.67(10)

[Eu2(L
C2)3] 0.21(2) 0.37(4) 2.4(1) 6.9(3) 0.58(8)

[Eu2(L
C3)3] 0.11(2) 0.36(4) 2.2(1) 6.2(3) 0.30(5)

Fig. 9 Chemical structures of the ligands mentioned in Table 8
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the inner coordination sphere inducing, for instance, a smaller nonradiative deacti-

vation rate may also influence �sens (in one way or the other) through the resulting

electronic changes in the molecular edifice. Another point is that the distinction

between intrinsic and overall quantum yields is often unclear in the literature,

particularly for NIR-emitting ions for which direct experimental determination of

the quantum yield is rarely performed. Authors commonly rely on (16) to evaluate

the intrinsic quantum yield from lifetime determination and from a “literature” value

of t rad, so that extreme caution must be exercised in discussing these estimates [11].

4.1 Design of Efficient Lanthanide Luminescent Bioprobes

The ligand design for building efficient lanthanide luminescent bioprobes (LLBs)

must meet several requirements, both chemical, photophysical, and biochemical:

(1) efficient sensitization of the metal luminescence, (2) embedding of the emitting

ion into a rigid and protective cavity minimizing nonradiative deactivation, (3) long

excited state lifetime, (4) water solubility, (5) large thermodynamic stability,

(6) kinetic inertness, (7) intense absorption above 330 nm, and (8) whenever

relevant, ability to couple to bioactive molecules while retaining their photophysi-

cal properties and not altering the bio-affinity of the host.

From the chemical point of view, it is best when the coordination sphere is

saturated, i.e., when 8–10 donor atoms are bound to the metal ion, and when the

coordinating groups are strong since in vivo experiments require large pLns

(defined as �log[LnIII]free in water, at pH 7.4, [LnIII]t = 1 mM, and [Ligand]t ¼
10 mM; ideally pLn should be >20). Carboxylates, aminocarboxylates, phospho-

nates, hydroxyquinolinates, and hydroxypyridinones are good candidates, while b-
diketonates which have excellent photophysical properties have the tendency to be

less stable. In aqueous solutions, the enthalpy and entropy changes upon complex

formation between LnIII cations and many ionic ligands are predominantly influ-

enced by changes in hydration of both the cation and the ligand(s). Complexation

results in a decrease in hydration, yielding positive entropy changes favorable to the

complexation process. On the other hand, dehydration is endothermic and contri-

bution from bond formation between the cation and the ligand(s) often does not

compensate this unfavorable energy contribution to the variation in Gibbs free

energy, so that the overall complexation process is generally entropy driven.

Therefore, it is advantageous to resort to polydentate ligands for building a coordi-

nation environment around LnIII ions. Macrocyclic complexes based on the cyclen

framework [22] or on cryptands [23] are also proved to be quite adequate, as well as

self-assembled mono- and bi-nuclear triple helical edifices [21].

The photophysical requirements are related to the two aspects described in (25):

energy transfer (�sens) and minimization of nonradiative processes (QLn
Ln). The first

one is difficult to master in view of the intricate processes going on (Fig. 7, [20]).

Some authors have nevertheless tried to establish phenomenological rules. One has,

however, to be cautious in applying them since these rules rely on a rather simple
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and naive picture: the 1S*–3T*–Ln* energy transfer path on one hand, and the

consideration that the only parameter of importance is the energy gap between 3T*

and the emitting LnIII level. Some of the relationships are exemplified on Fig. 10

and examination of these data clearly point to the difficulty in establishing a

dependable relationship. The following lessons can be drawn from these data:

– The maximum values of the quantum yields usually occur when the triplet state

energy is close to the energy of one of the higher excited states of the metal ion,

consistent with the fact that the emissive level is usually not directly fed by the

ligand excited states (except maybe in the case of the Schiff base complexes

depicted at the bottom of Fig. 10). When the energy of the feeding state becomes

closer to the energy of the emitting state, back-energy transfer operates and the

quantum yield goes down: this is true for both EuIII and TbIII and a “safe” energy

difference minimizing this process is around 2,500–3,000 cm�1.
– Inspection of the EuIII quantum yields clearly demonstrates that the energy of

the triplet state corresponding to the larger values depends on the type of ligand:

it is close to the 5D0 level for Schiff base complexes, to the 5D1 level for

b-diketonates, and to the 5D2 level for polyaminocarboxylates.

– For the two series of EuIII and TbIII complexes with the same polyaminocarbox-

ylate ligands, the maximum values reached by the quantum yield of TbIII are

larger than those of EuIII: this reflects the smaller Eu(5D0–
7F6) energy gap

compared to the Tb(5D4–
7F0) gap (Table 6).

It has been shown for calixarenes that more efficient ISC transfers take place

when the energy difference between the singlet and triplet states is around

5,000 cm�1; therefore, ligand designers try to keep to the following phenomeno-

logical rules: DE(1S*�3T*) � 5,000 cm�1 and DE(3T*�Ln* emissive level) in the

range 2,500–3,500 cm�1. These are, however, golden rules only and sometimes

minute energy differences in the ligand states lead to large differences in overlap

between the emission spectrum of the donor and the absorption spectrum of the

acceptor, resulting in large differences in quantum yield [27].

The second aspect, namely minimization of nonradiative deactivation has two

facets: avoiding low-lying LMCT states, essentially for SmIII, EuIII, and YbIII, and

avoiding high energy vibrations in the first and second coordination spheres; the

latter aspect is dealt with in Sect. 5.4.

4.2 Practical Measurements of Absolute Quantum Yields

Quantum yield measurements are simple in their principle, but very difficult to

carry out experimentally, particularly when it comes to the luminescence of lantha-

nide ions and to intrinsic quantum yield, f–f absorptions being faint. There are two

main methods: the comparative method in which the sample under examination is

compared to a standard with known quantum yield, and the absolute method which
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Fig. 10 Relationships between the triplet state energy of the feeding ligand and the quantum yields

of 39 EuIII (top) and TbIII (middle) polyaminocarboxylates [24] and of EuIII Schiff bases (triangles,
[25]) and b-diketonates (squares, [26])

J.-C.G. Bünzli and S.V. Eliseeva



determines the amount of absorbed and emitted light with an integrating sphere

since luminescence is emitted in all directions.

In the comparative method, the quantum yield of the unknown sample (indices x)

is given relative to the quantum yield of the standard (indices S) by:

QLn
L ¼ QS � Ex

ES

� ASðlSÞ
AxðlxÞ �

ISðlSÞ
IxðlxÞ �

nx
2

nS2
; (27a)

with E being the integrated and corrected emission spectrum, A the absorbance at

the excitation wavelength l, I the intensity of the excitation source at the excitation
wavelength, and n the refractive index. In principle, linearity between the intensity

of the emitted light and the concentration of the sample is only achieved if

A < 0.05, so that samples should be diluted to reach this value of absorbance,

while being cautious not to dissociate the complex. In practice, if both the standard

and the sample are excited at the same wavelength lexc (a highly desirable, although
not always achievable situation), measurements can be safely carried out up to

A = 0.5 since the inner-filter effect would be the same for both samples. In this case,

(27a) simplifies to:

QLn
L ¼ QS � Ex

ES

� ASðlexcÞ
AxðlexcÞ �

nx
2

nS2
; (27b)

or to (27c) if the standard and the unknown sample are in the same solvent:

QLn
L ¼ QS � Ex

ES

� ASðlexcÞ
AxðlexcÞ : (27c)

In case Ax 6¼ AS and at least one of them is>0.05, then the absorbances in (27a–c)

should be replaced by:

A! ð1� 10�AÞ; (28)

to take into account the different inner-filter effects. The correction is small for

small differences in absorbances but can become very important: e.g., if AS = 0.1

and Ax = 0.15, 0.2, 0.4, and 0.6, respectively, then the corrected AS/Ax ratios would

be 0.42, 1.79, 2.93, and 3.64 instead of 0.5, 2, 4 and 6, respectively, corresponding

to corrections of �5, �10, �19, �27, and �39%, respectively.

It is also essential that emission spectra are corrected for the instrumental

function established with a standard calibrated lamp. It is wise not to use the

calibration curve given by the manufacturer of the spectrometer and to re-measure

this instrumental function at regular intervals because many items influence it,

particularly the emission intensity of the excitation lamp and the quantum effi-

ciency of the detector (which both decrease with time). In case (27a) is used, the

excitation instrumental function has to be known as well. Regarding the standard, it

is best when its emission spectrum overlaps the emission spectrum of the unknown
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sample; a safe way to proceed is to use two different standards and to measure them

against each other as well. Each measurement should also be repeated several

times. Selected standards useful in lanthanide photophysics are listed in Table 9.

The absolute method using an integration sphere has been in use for a long time,

particularly by physicists or scientists involved in the design of phosphor materials

[30]. A specially designed integration sphere has been produced in our laboratory

which fairly well fulfills the needs of chemists and biochemists. It has a small 2-

inch diameter to ensure maximum sensitivity and is manufactured in Zenith1

Teflon [7]. Samples are put in 2.4-mm I.D. quartz capillaries, themselves inserted

into a protective quartz tube. The modified de Mello et al. method [30] requires the

measurement of (1) La, the integrated intensity of light exiting the sphere when the

empty capillary is illuminated at the excitation wavelength (Rayleigh scattering

band); (2) Lc, the same integrated intensity at the excitation wavelength when the

sample is introduced into the sphere; these two measurements often necessitate

the use of attenuators (transmission 0.01–10%); (3) Ec the integrated intensity of the

entire emission spectrum. The absolute quantum yield is then given by:

Qabs ¼ Ec

½LaðlexcÞ � LcðlexcÞ
FattðlexcÞ ; (29)

whereby Fatt(lexc) is the correction for the attenuators used. Reproducible and

accurate data can be obtained when the fraction of absorbed light a = (La – Lc)/La
is in the range 0.10–0.90 [7]; both solid state samples and solutions (minimum

volume: 60 mL) can be measured. This method also requires carefully established

instrumental functions; it is illustrated in Fig. 11.

5 Information Extracted from Lanthanide Luminescent Probes

The most important applications of lanthanide luminescent stains used as structural

or analytical probes are summarized below. Any luminescent LnIII may act as a

luminescent probe, but some ions either bear more information or are more

Table 9 Selected useful standards for quantum yield determinations at room temperature. More

extensive listings can be found in [28, 29]

Compounda conc./solventb Range (nm) Q

Quinine sulfate aq. H2SO4 (0.5 M) 400–600 0.546

Cresyl violet Methanol 600–650 0.54(3)

Cs3[Tb(dpa)3] 6.5 � 10�5 M, Tris–HCl 0.1 M 480–670 0.22(2)

[Ru(bpy)3](ClO4)3 10�5 M, aerated water 550–800 0.028(2)

10�5 M, de-aerated water 0.043(2)

Cs3[Eu(dpa)3] 7.5 � 10�5 M, Tris–HCl 0.1 M 580–690 0.24(2)

[Yb(tta)3(H2O)2] 10�3 M, toluene 950–1,080 0.0035
abpy = bipyridine; tta = thenoyltrifluoroacetylacetonate
bWhen not given, the concentration should be such that A < 0.1 (usually c < 10�5 M)
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luminescent than others, so that they are preferentially used. This is the case of

EuIII, which will be extensively referred to in the following description [31].

5.1 Metal Ion Sites: Number, Composition, and Population
Analysis

Lanthanide ions have been used as substitutes for CaII and ZnII in proteins to obtain

information on the number of metallic sites (by simple titration) and on their

composition. This may of course be extended to any molecule or materials. One

very useful transition in this respect is the highly forbidden and faint Eu

(5D0 ! 7F0) transition which is best detected in excitation mode by analyzing the

emission of the hypersensitive transition 5D0 ! 7F2; since both the emitting and

end states are non-degenerate, its number of components indicates the number of

different metal–ion sites. Moreover, the energy of this transition depends on the

nephelauxetic effect di generated by coordinated atoms and ions; at 298 K:

~ncalc ¼ 17; 374þ CCN

XCN
i¼1

ni di; (30)

no sample

La Ea = 0 Lc Ec

bafflessample

300
λ /nm

Intensity (a.u.)

La (without sample)

Lc (with sample)

Ec (Tb emission
      x10)

La-Lc =
light
absorbed

300

with sample

400 500 600 700

Fig. 11 Top: Integration sphere and bottom: example of quantum yield determination on a TbIII

sample (this work)
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with CCN being a constant depending on the coordination number and ni the number

of coordinating groups with nephelauxetic effect di. The latter are tabulated for the

most common ligands [32] and some predictions are rather accurate [21], which

allows one to check the composition of the inner coordination sphere.

When several metal ion sites are present in a compound, population analysis can

be carried out in two main ways. For EuIII, since the intensity of the MD transition
5D0 ! 7F1 is independent of the metal–ion environment, a spectral decomposition

of the transition recorded under broad band excitation into its components

measured under selective laser excitation, followed by integration yields the popu-

lation Pi of each site [31]. More generally, one can rely on lifetime measurement,

since the luminescence decay will be a multi-exponential function which may be

analyzed, for instance, with Origin1, using the following equations:

IðtÞ ¼ Aþ I0
Xn
i¼1

Bie
�kit; (31a)

Pi ¼ Bi=kiPn
i¼1
ðBi=kiÞ

: (31b)

In recording the decay, one has to make sure that (1) there is no artifact at the

beginning of the decay (remaining light from the light pulse), (2) the decay is

recorded during at least 5–6 lifetimes, (3) the signal at the end goes back to the

background value, and (4) the decay is defined by a sufficient number of data points.

Even if experimental data are of high quality, it is difficult to determine populations

smaller than 5 % and to decompose decays with more than 2 or 3 exponential

functions or when the two lifetimes are either very different or quite similar. The

example given on Fig. 12 illustrates a bi-exponential analysis of an Eu(5D0) decay.

0 2 4 6 8
–10

–8

–6

–4

–2

0
A   = 0.00033(4)

B1 = 0.088(3)
B2 = 0.938(3)

R2 = 0.9997

P1 = 0.22(2)        P2 = 0.78(2)

EuIII

ln
I(

t)
 

t /ms

–k2

–k1

τ1 = 0.54(1) ms

τ2 = 0.185(1) ms

Fig. 12 Luminescence decay for an EuIII sample with its bi-exponential analysis; straight lines

correspond to the two decay rates and the red line is the calculated fit (this work)
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5.2 Site Symmetry Through Crystal-Field Analysis

This aspect is related to the Stark splitting of the levels described in Table 3. Again

here, EuIII luminescence is the easiest to analyze given the non-degeneracy of the

emissive 5D0 level. When allied to high-resolution selective laser excitation of

components of the 5D0  7F0 transition, symmetry of multi-site molecules and

materials can be worked out easily, based on group-theoretical considerations [31,

33]. Such detailed analyses are not discussed here.

On the other hand, the Eu(5D0 ! 7F1) transition represents an interesting case.

A simple examination of its splitting tells immediately at which crystal system the

compound belongs: cubic if only 1 component is seen, axial (i.e., hexagonal,

tetragonal, or trigonal, labeled A and E in group-theoretical notation) if there are

two components, and low symmetry if the maximum splitting of three appears. For

truly low-symmetry species, the three components are equally spaced and tend to

have the same intensity. However, when the coordination sphere is close to an

idealized higher symmetry, the splitting is unsymmetrical. In this case, three

important pieces of information can be extracted for symmetries close to axial

symmetry: (1) the sign of the B0
2 crystal-field parameter which depends on the

relative energetic position of the A and E sublevels of 7F1, (2) its value thanks to a

phenomenological relationship between DE(A–E) and this parameter [34], and (3)

the extent of the deviation from the idealized symmetry given by the splitting of the

E sublevel. In the example depicted on Fig. 13, the crystal field parameter has a

value of ca�600 cm�1 and the coordination polyhedron EuN6O3 appears to be only

slightly distorted from the idealized D3h symmetry with DE(E–E) equal to 31 cm�1.

5.3 Strength of Metal–Ligand Bonds: Vibronic Satellite Analysis

The analysis depicted above requires high-resolution spectra. It is sometimes

complicated by the occurrence of vibronic satellites which may artificially increase

the number of components of a given transition, so again care has to be exercised.

Vibronic transitions have the tendency to be strongest when associated with

161 cm–1
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E

Fig. 13 Left: Ligand-field
splitting of the Eu(7F1)

sublevel and sign of the

B0
2 parameter. Right:

5D0 ! 7F1 transition in

[Eu2(L
C2)3] (redrawn from

ref. [21], see Fig. 9 for

formula)
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hypersensitive transitions, for instance, Eu(5D0 ! 7F2); in addition, the 7F2 level

corresponds to an energy range (1,000–1,500 cm�1) in which the density of phonon
states is usually large. On the other hand, these satellites provide useful information

on the strength of the Ln–ligand bond: the larger this strength, the more intense the

satellites [35].

5.4 Solvation State of the Metal Ion

Quenching of the lanthanide luminescence by high-energy vibrations is a major

concern in the design of highly luminescent probes. Multi-phonon deactivation is

very sensitive to the metal–ligand distance and the phenomenon can be reasonably

modeled by Förster’s dipole–dipole mechanism [2]. The more phonons needed

to bridge the energy gap, the less likely the quenching phenomenon to occur.

Table 10 illustrates this phenomenon for solutions of complexes in water

(~n(O–H) ¼ 3,600 cm�1) and deuterated water (~n(O–D) ¼ 2,200 cm�1) by listing

the lifetimes of the excited level in these two solvents.

Although detrimental to the emission intensity, vibrational quenching allows

one to assess the number of water molecules q interacting in the inner-coordination
sphere. Several phenomenological equations have been proposed, based on the

assumptions that O–D oscillators contribute little to deactivation and that all the

other deactivation paths are the same in water and in deuterated water and can

henceforth be determined by measuring the lifetime in the deuterated solvent. An

important point for their application is to make sure that quenching by solvent

vibrations is by far the most important deactivation process in the molecule. If other

temperature-dependent phenomena (e.g., phonon-assisted back transfer) are

operating, these relationships become unreliable. This has often been observed

with TbIII [27].

Table 10 Illustration of the energy gap law with respect to quenching of the LnIII luminescence

by high-energy vibrations. Samples are dilute solutions of perchlorates or triflates at room

temperature [11]

Ln DE/cm�1 No. of phonons Lifetime/ms
OH OD H2O D2O

Gd 32,100 9 15 2,300 n.a.

Tb 14,800 4 7 467 3,800

Eu 12,300 3–4 5–6 108 4,100

Yb 10,250 3 4.5 0.17a 3.95

Dy 7,850 2–3 3–4 2.6 42

Sm 7,400 2 3 2.7 60

Er 6,600 2 3 n.a. 0.37

Nd 5,400 1–2 2–3 0.031 0.14
aEstimated from quantum yields in water and deuterated water and from t(D2O)
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Altogether, such relationships, which exist for NdIII, SmIII, EuIII, TbIII, DyIII, and

YbIII, are to be used with care and bearing in mind their peculiar calibration. The

general form of these relationships is:

q ¼ A� ðDkobs � BÞ � C; (32a)

Dkobs ¼ kH2O � kD2O ¼ 1=tðH2OÞ � 1=tðD2OÞ; (32b)

where A, B, and C are phenomenological Ln-depending (and sometimes ligand-

depending) parameters determined using series of compounds with known

hydration numbers. Parameter A describes the inner-sphere contribution to the

quenching, parameter C the outer-sphere contribution of closely diffusing solvent

molecules, while the corrective factor B, which has the same units as k, accounts for
the presence of other deactivating vibrations (e.g., N–H or C–H oscillators). Here

are the most reliable relationships for H2O (and MeOH):

qEuðH2OÞ ¼ 1:11� ðDkobs � 0:31Þ Dkobs in ms�1; ½36
 (33)

qEuðH2OÞ ¼ 1:2� ðDkobs � 0:25� 1:20qNH � 0:075qCONHRÞ
Dkobs in ms�1; ½37


(34)

with qNH being the number of N–H oscillators in the first coordination sphere and

qCONHR the number of coordinated amide groups.

qTb H2Oð Þ ¼ 5:0� ðDkobs � 0:06Þ Dkobs in ms�1; ½37
 (35)

qYb H2Oð Þ ¼ 1:0� ðDkobs � 0:20Þ Dkobs in ms�1; ½37
 (36)

qYb MeOHð Þ ¼ 2:0� kMeOH � kCD3OD � 0:1ð Þ Dkobs in ms�1: ½37
 (37)

A flaw to avoid is to use (33)–(37) with tobs(D2O) set equal to the observed

lifetime measured on the hydrated sample at 77 K because it is not granted that all

vibrational quenching is switched off at this temperature.

Equations calibrated with polyaminocarboxylates and relying on the sole deter-

mination of t(H2O) have also been suggested, but they are less reliable:

qNd H2Oð Þ ¼ 0:36� kobs � 2:0 kobs in ms�1; ½38
 (38)

qSm H2Oð Þ ¼ 25:4� kobs � 0:37 kobs in ms�1; ½39
 (39)

qDy H2Oð Þ ¼ 21:1� kobs � 0:6 kobs in ms�1: ½39
 (40)
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Establishing q for NdIII is really problematic and other relationships have been

put forward, which do not yield very satisfying results, owing to too limited

calibration range, as, by the way, for (38)–(40).

The best way to minimize vibration-induced deactivation processes is to design a

rigid metal–ion environment, devoid of high-energy vibrations and protecting the

LnIII ion from solvent interactions. Such an environment also contributes to reduce

collision-induced deactivation in solution. Further protection may be gained by

inserting the luminescent edifice into micelles, a strategy used in bioanalyses [23].

Recent reports have also demonstrated a considerable weakening of the quenching

ability of O–H vibrations if the coordinated water molecules are involved in strong

intra- or inter-molecular H-bonding. Combining this effect with encapsulation into

a rigid receptor turns the weakly emitting aqua ions into entities with sizeable

luminescence.

5.5 Energy Transfers: Donor–Acceptor Distances and Control of
the Photophysical Properties of the Acceptor by the Donor

Distances between a chromophore and a metal–ion site, as well as between metal

ions, may be inferred from the determination of energy transfer efficiency within

the frame of Förster’s dipole–dipole mechanism. In this case, the following sim-

plified equations hold to estimate the efficiency of transfer between the donor D and

the acceptor A:

�et ¼ 1� tobs
t0
¼ k0

kobs
¼ 1

1þ ðRDA=R0Þ6
; (41)

in which tobs and t0 are the lifetimes of the donor in presence and in absence of the

acceptor, respectively, RDA is the distance between the donor and the acceptor, and

R0 is the critical distance for 50 % transfer, which depends on (1) an orientation

factor k having an isotropic limit of 2/3, (2) the quantum yield QD of the donor (in

absence of the acceptor), (3) the refractive index n of the medium, and (4) the

overlap integral J between the emission spectrum Eð~nÞof the donor and the absorp-

tion spectrum eð~nÞ of the acceptor:

R6
0 ¼ 8:75� 10�25ðk2 � QD � n�4 � JÞ; (42a)

J¼
R
eð~nÞ � Eð~nÞ � ð~nÞ�4d~n

Eð~nÞd~n : (42b)

Estimation of R0 is, therefore, accessible from the experimental optical and

structural properties of the system. If a crystal structure is at hand, the problem

J.-C.G. Bünzli and S.V. Eliseeva



simplifies in that RDA is known and if the lifetimes of (41) can be determined, then

calculation of R0 is straightforward. Energy transfer between lanthanide probes has

allowed determining the distance between CaII and ZnII ions in proteins (substituted

by LnIII ions), as well as the distance between tryptophan chromophores and these

metal–ion sites [40].

Another interesting application of directional energy transfer is the control

of the photophysical properties of a metal ion (nd or 4f) by another one. For

instance, CrIII can be used to populate the excited state of NdIII or YbIII. If the rate

constant of the energy transfer is fast enough and if kobs(Cr) < < kobs(Ln), then
the excited LnIII ions will decay with an apparent lifetime equal to the (long)

lifetime of the 3d partner. In this case, the lifetime on NdIII and YbIII can be

“shifted” in the millisecond range, which is an advantage for time-resolved

detection [41, 42].

5.6 FRET Analysis

In fact, FRET (Förster resonant energy transfer) analysis has the same basis as the

energy transfer described in the above section. It is used either in simple bio-

analyses or to detect protein interactions and DNA hybridization. Its principle is

shown on Fig. 14 in the case of a homogeneous immunoassay [43].

In homogeneous immunoassays, the analyte is biochemically coupled to two

specific antibodies labeled one with a LLB and the other by an organic acceptor.

Emission from the organic acceptor is detected in time-resolved mode because

the population of its excited state by intramolecular transfer from the LLB shifts

its lifetime in the millisecond range. In this way, it is easy to discriminate

between the luminescence emitted by uncoupled and coupled antibody molecules

labeled with A; similarly, since the luminescence of A is spectrally different

from that of the LLB, interference from LnIII luminescence emitted by the

uncoupled antibody labeled with the LnIII chelate is also discriminated. There

is, therefore, no need to wash out unused reactants. A method using FRET for the

D
LLB

A

FRET

Labeled
antibodies

Analyte

Fig. 14 Principle of a

homogeneous immunoassay

based of FRET technology

(redrawn from Ref. [43])
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determination of quantum yields of lanthanide chelates and organic dyes has also

been described [44].

5.7 Ligand Exchange Kinetics

As a starting point, assume that two LnIII complexes are present simultaneously in

solution at equilibrium and are related by a ligand exchange process. The time-

dependence of the luminescence emission following an excitation pulse will depend

on the rate of chemical exchange relative to the photophysical deactivation rates. If

the exchange is slow or fast, no information can be gathered from lifetime measure-

ments. However, if the chemical exchange process occurs at a rate comparable to

the de-excitation rate, the time dependence of the luminescence decay is a function

of both the excited state lifetimes and the interconversion rate. Equations have been

worked out and the exchange kinetics of several EuIII and TbIII complexes has been

elucidated. The EuIII ion lends itself more easily to such experiments because

selective excitation of one species through the 5D0  7F0 transition can be easily

achieved [45, 46].

5.8 Analytical Probes

In analytical applications, the LnIII absorption or emission properties are either

simply detected or modulated by a process depending on the concentration of the

analyte, itself reversibly binding to the lanthanide tag. If absorption is used,

hypersensitive transitions (Table 4) are good reporters in view of their sensitivity

to minute changes in the LnIII environment. When it comes to luminescence, a

much more sensitive technique (especially if time-resolved detection is used), there

are several ways of modulating the emission (Fig. 15). One obvious way is to

modulate the solvation in the first coordination sphere (a); alternatively, interaction

of the analyte with the ligand molecules may modify the energy transfer ability of

the latter (b), and the analyte itself may transfer energy onto the reporter ion (c).

Note that situations may be reverse, in that either sensitization or quenching may be

induced. Cations, anions, pH, pO2, aromatic molecule sensors have been designed

along these lines, while time-resolved immunoassays often take advantage of FRET

technology [23].

Molecular interaction between the luminescent tag and other molecules present

in solution can also result in luminescence quenching and quantitative investigation

of the phenomenon provides both analytical and photophysical information. In

collisional (dynamic) quenching, the quencher molecule diffuses to the luminescent

probe during the lifetime of the excited state; upon collision, the latter returns to the

ground state without emission of light. The average distance that a molecule having
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a diffusion coefficient D can travel in solution during the lifetime of the excited

state is given by:

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtobs

p
: (43)

A typical collisional quencher is molecular oxygen which has a diffusion

coefficient of 2.5 � 10�5 cm2·s�1 in water at 298 K. During the lifetime of the

Eu(5D0) level, typically 1 ms, it can, therefore, diffuse over 2.2 mm, that is a

distance comparable to the size of a biological cell. In some instances, a non-

luminescent complex may result from the collision (static quenching), similar to the

cases shown on Fig. 15. Stern and Volmer have worked out the equation for

dynamic quenching:

E0

E
¼ 1þ KD½Q
 ¼ 1þ kqt0½Q
; (44)

in which KD is the dynamic quenching constant, kq the bimolecular rate constant, E0

and E the emission intensities in absence and in presence of quencher, respectively,

and t0 the observed lifetime in absence of quencher. When collisional quenching

occurs, the lifetime decreases in parallel to the luminescence intensity:

E0

E
¼ t0

t
: (45)

hνν

hνν

hνν

hνν

hννhνν

hνν

hννhνν

hνν

+

an

a

b

c

an

an

Fig. 15 Modulation of

lanthanide luminescence by

an analyte through reversible

binding: (a) removal of

solvent quenching, (b)

modulation of the ligand

ability to transfer energy onto

the LnIII ion, and (c) binding

of a sensitizing analyte to

the ligand(s). Redrawn

from [42]
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A similar equation can be derived for static quenching, with KS being the static

quenching constant:

E0

E
¼ 1þ KS½Q
: (46)

When both dynamic and static quenching occurs, the equations combine into:

E0

E
¼ 1þ KD½Q
ð Þ 1þ KS½Q
ð Þ; (47a)

E0

E
� 1 ¼ KD þ KSð Þ Q½ 
 þ KDKS Q½ 
2: (47b)

Here again, (45) holds and luminescence intensities may be substituted with

lifetimes. It turns out from these equations that if the Stern–Volmer plot is linear, it

reflects the sole presence of dynamic quenching. This is, for instance, the case for

the quenching of the bimetallic [Eu2(L
C2)3] helicate with acridine orange (AO), as

shown on Fig. 16. The corresponding constants are KD ¼ 6.7(1) � 105 M�1 and
kq ¼ 2.7(1) � 108 M�1 s�1. On the other hand, quenching of the same chelate with

ethidium bromide (EB) is typical of both dynamic and static quenching with

KD ¼ 3.0(1) � 104 M�1, KS ¼ 2.0(1) � 103 M�1and kq ¼ 1.23(4) � 107 M�1

s�1. The bimolecular rate constants are relatively small compared to diffusion (�
1010 M�1 s�1) because of the shielding of the EuIII ion embedded inside the helical

edifice. This quenching has been taken advantage of to develop a versatile and

robust method for the detection of various types of DNA and of PCR products [47].
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6 Appendices

6.1 Site Symmetry Determination from EuIII Luminescence
Spectra

The exact site symmetry can be determined usually only if polarization measure-

ments are made, that is, on single crystals. A light with s polarization has its

electric vector perpendicular to the crystallographic c axis and its magnetic vector

parallel to it; the reverse holds for p polarization. The following scheme sketches

how the site symmetries other than cubic (Tx, Ox, see Table 3) may be found from

Eu(5D0) emission spectra. This is the simplest procedure since 5D0 is non-degenerate.

However, site symmetry can be worked out with other luminescent ions as well and,

also, from absorption spectra.

5D0
7F1

5D0
7F1

5D0
7F1

5D0
7F4

5D0
7F4

5D0
7F6

5D0
7F6

3 2 AxialLow symmetry

5
C1, C2, CS

4 C2v 3 D2 1σ+2π
S4

2σ D3

2σ+1 π

3σ+2π
C3v

3σ+3π
C3

1σ

2σ+2π
C3h

2σ+2π
1σ D6

1σ+1π

2σ+1π
D3h

3σ+1π
D4

2σ+2π
C6v

2σ+3π
C6

Number of components in the transition

1  Cubic (Oh, O, Th, Td, T )

6.2 Examples of Judd–Ofelt Parameters

Table 11 Judd–Ofelt parameters for LnIII aqua ions in dilute acidic solution [8]

Ln 1020 O2/cm
2 1020 O4/cm

2 1020 O6/cm
2

Pr 32.6 5.7 32.0

Nd 0.93 5.00 7.91

Sm 0.91 4.13 2.70

Eu 1.46 6.66 5.40

Gd 2.56 4.70 4.73

Tb 0.004 7.19 3.45

Dy 1.50 3.44 3.46

Ho 0.36 3.14 3.07

Er 1.59 1.95 1.90

Tm 0.80 2.08 1.86
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Table 12 Judd–Ofelt parameters for NdIII in selected environments [11, 48]

Sample 1020 O2/cm
2 1020 O4/cm

2 1020 O6/cm
2

Nd:YAG 0.37 2.29 5.97

Cs3[Nd(dpa)3]/H2O 7.13 3.78 13.21

Nd(ClO4)3/MeCN 1.2 7.7 7.8

Nd(ClO4)3/DMF 1.2 8.9 8.4

Nd(NO3)3/MeCN 11.8 2.1 6.6

Nd(NO3)3/DMF 6.7 5.0 7.6

6.3 Examples of Reduced Matrix Elements

Table 13 Doubly reduced matrix elements used in the calculations of the dipole strengths for

absorption and emission of Cs3[Eu(dpa)3], from [7]

Transition Element Value Transition Element Value
5D2 7F0 C U2

�� C0k� ��� ��2 0.0008 5D0!7F2 C U2
�� C0k� ��� ��2 0.0032

5L6 7F1 C U6
�� C0k� ��� ��2 0.0090 5D0!7F4 C U4

�� C0k� ��� ��2 0.0023
5L6 7F0 C U6

�� C0k� ��� ��2 0.0155 5D0!7F6 C U6
�� C0k� ��� ��2 0.0002

5D4 7F0 C U4
�� C0k� ��� ��2 0.0011

6.4 Emission Spectra

In the following we give typical examples of luminescence spectra of the LnIII ions,

with emission from the main luminescent levels. Depending on the chemical

environment of the ion, the shape of the spectra may differ substantially (for

instance, the relative intensity and CF splitting of the bands), but the energy of

the transitions remains relatively insensitive; in addition vibronic transitions as well
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Fig. 17 (continued) Typical examples of LnIII emission spectra under ligand excitation (320–

340 nm): microcrystalline samples of dimeric [Ln(hfa)3(L)]2 (L = 4-cyanopyridine N-oxide) for
Ln = Pr(a), Nd, Sm, Dy, Ho, Tm, Yb [49]; solutions of [Pr(b)(L1)2(NO3)] in CH2Cl2 (L

1 = dihy-

drobis-[3-(2-pyridyl)pyrazolyl]borate) [50] and Cs3[Ln(dpa)3] � 2–3.7 � 10�2 M in Tris–HCl

0.1 M (pH 7.4), Ln = Eu, Tb [7]. Emission of Gd is measured on a microcrystalline sample of

Gd2O3 and of Er (up-conversion, lexc = 980 nm) on a doped sample of NaYF4:Yb/Er (18/4 %) (this

work). All spectra are recorded at room temperature (except for Tm, Ho, and Pr(a) in the visible

range, 77 K), corrected for the instrumental function, and normalized
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as emission from other levels may also show up. In the case of PrIII, the two spectra

shown are quite different because different emissive states are sensitized.
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