
5: Thermionic Emission

Purpose

While we think of quantum mechanics being best demonstrated in processes that show
discontinuous change, historically quantum mechanics was first revealed in systems where
a large number of particles washed out the jumps: blackbody radiation and thermionic
emission. In this lab you will investigate these two phenomena in addition to classical
space-charge limited electron emission: Child’s Law.

Introduction

Metals, as demonstrated by their ability to conduct an electric current, contain mobile
electrons. (Most electrons in metals, particularly the “core” electrons closest to the nucleus,
are tightly bound to individual atoms; it is only the outermost “valence” electrons that are
somewhat “free”.) These free electrons are generally confined to the bulk of the metal. As
you learned in E&M, an electron attempting to leave a conductor experiences a strong force
attracting it back towards the conductor due to an image charge:

Fx = − e2

4πǫ0(2x)2
(5.1)

where x is the distance the electron is from the interface and e is the absolute value of the
charge on an electron. Of course, inside the metal the electric field is zero so an electron
there experiences zero (average) force. You can think of these valence electrons as bouncing
around inside a box whose “walls” are provided by the image-charge force. (Odd to think:
the “walls” are non-material force fields; the “inside” of the box is filled with solid metal.)
Since temperature is a measure of random kinetic energy, if we increase the temperature of
the metal, the electrons will be moving faster and some will have enough energy to overcome
the image-charge force (which after all becomes arbitrarily small at large distances from the
interface) and escape. This is electron “evaporation”. The higher the temperature the
larger the current of escaping electrons. This temperature induced electron flow is called
thermionic emission. Starting in 1901, Owen Richardson studied this phenomenon and in
1929 he received the Nobel prize in Physics for his work.

A hot wire will be surrounded by evaporated electrons. An electric force can pull these
electrons away from the wire — the larger the electric force, the larger the resulting current
of electrons. The precise relationship between the voltage and the resulting current flow
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Figure 5.1: A planar cathode and a planar anode are separated by a distance b. A positive
potential difference VA attracts electrons from the cathode to the anode, so the speed of the
electrons v(x) increases as they approach the anode. The moving electrons constitute an
electric current from anode to cathode. The resulting steady current density is called JA.

is called Child’s law1 (or the Child-Langmuir law, including Langmuir who independently
discovered it while working at G.E.). In this experiment you will measure both Child’s Law
and the Richardson Effect.

Child’s Law

Consider a planar interface between a metal (x < 0) and “vacuum” (x > 0). Vacuum is
in quotes because this region will contain escaped electrons—a ‘space charge’—rather than
being totally empty2. The number of electrons per volume (i.e., the number density) is
denoted by n.

In this experiment, the metal will be heated (i.e., its a ‘hot cathode’ or filament) which will
result in a supply of electrons ‘evaporated’ from the metal into the vacuum. An additional
conducting sheet (the anode) is located at x = b. A positive potential difference, VA,
between the cathode and the anode plane provides a force pulling these electrons from the
vicinity of the cathode towards the anode. The result is a stream of moving electrons (a
current); the number density n(x) and speed v(x) of these electrons will depend on location,
x, between the plates. The negatively charged electrons moving to the right constitute a
steady electric current density to the left, i.e., a steady conventional electric current from
the anode to the cathode:

J = −en(x)v(x) = −JA (5.2)

Since the electrons leave the metal with (nearly) zero speed at zero potential, we can
calculate their speed along the path to the anode using conservation of energy:

1

2
mv2 − eV (x) = 0 (5.3)

v =

√

2e

m
V (x) (5.4)

1Clement Dexter Child (1868–1933) Born: Madison, Ohio, A.B. Rochester, Ph.D. Cornell
2In fact a perfect vacuum is not possible, so the word “vacuum” actually refers simply to a region with

relatively few particles per volume
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where V (x) is the potential difference (“voltage”) at x and m is the mass of an electron.
Because the accelerating electrons constitute a steady current (i.e., JA doesn’t depend
on position), n(x) must decrease as the electrons speed toward the anode. The varying
space charge density affects the electric potential in the “vacuum” according to Poisson’s
equation3:

∂2V

∂x2
= −ρ(x)

ǫ0
=
en(x)

ǫ0
(5.5)

Putting these pieces together with have the differential equation:

d2V

dx2
=

JA

ǫ0v(x)
=

JA

ǫ0

√

2e
m V (x)

(5.6)

Since the electric field will be zero at the interface, we have a pair of initial conditions:

∂V

∂x

∣

∣

∣

∣

x=0

= 0 (5.7)

V |x=0 = 0 (5.8)

This differential equation looks a bit like Newton’s second law:

d2x

dt2
=

1

m
F (x(t)) (5.9)

as you can see if in Newton’s second law you substitute:

t −→ x

x(t) −→ V (x)

1

m
F (x(t)) −→ JA

ǫ0

√

2e
m V (x)

Recall that force problems are often most simply solved using conservation of energy and
that conservation of energy was proved using an integrating factor of dx/dt. If we try the
analogous trick on our voltage problem, we’ll multiply Poisson’s equation by dV/dx:

dV

dx
× d2V

dx2
=

JA

ǫ0

√

2e
m

V −
1

2 × dV

dx
(5.10)

(

1

2

[

dV

dx

]2
)

′

=
JA

ǫ0

√

2e
m

(

V
1

2

1
2

)

′

(5.11)

1

2

[

dV

dx

]2

=
JA

ǫ0

√

2e
m

V
1

2

1
2

+ constant (5.12)

The initial conditions require the constant to be zero, so

1

2

[

dV

dx

]2

=
JA

ǫ0

√

2e
m

V
1

2

1
2

(5.13)

3Poisson’s equation is derived in the Appendix to this lab.
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or
dV

dx
=

√

√

√

√

4JA

ǫ0

√

2e
m

V
1

4 (5.14)

This differential equation is separable:

dV

V
1

4

=

√

√

√

√

4JA

ǫ0

√

2e
m

dx (5.15)

V
3

4

3
4

=

√

√

√

√

4JA

ǫ0

√

2e
m

x (5.16)

where again the initial conditions require the constant of integration to be zero. Finally:

V (x) =





9JA

4ǫ0

√

2e
m





2

3

x
4

3 (5.17)

Of course, V (b) is the anode voltage VA, so we can rearrange this equation to show Child’s
law:

JA =

[

4ǫ0
9b2

√

2e

m

]

V
3

2

A (5.18)

Much of Child’s law is just the result of dimensional analysis, i.e., seeking any possible
dimensionally correct formula for JA. Our differential equation just involves the following
constants with dimensions (units) as shown:

b : L (5.19)

VA :
E

Q
=
ML2/T 2

Q
(5.20)

ǫ0

√

2e

m
≡ k :

Q2

EL

Q
1

2

M
1

2

=
Q

5

2

M
3

2L3/T 2
(5.21)

JA :
Q/T

L2
(5.22)

where the dimensions are: L=length, T=time, M=mass, E=energy, and Q=charge. To
make a dimensionally correct formula for JA, we just eliminate the M dimension which we
can only do with the combination:

VAk
2

3 :
Q

2

3

T
2

3

(5.23)

We can then get the right units for JA with:

(

VAk
2

3

)
3

2

b2
=

k

b2
V

3

2

A :
Q/T

L2
(5.24)

Thus the only possible dimensionally correct formula is

JA ∝ k

b2
V

3

2

A (5.25)
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Figure 5.2: Coaxial cylinders: an inner wire (radius a) and outer cylindrical anode (radius
b), form a vacuum tube diode. The cathode is heated so electron evaporation is possible,
and a potential difference VA attracts electrons from the cathode to the anode. The speed
of the electrons v(r) increases as they approach the anode. The moving electrons constitute
a steady electric current from anode to cathode. Since the same current is spread out over
larger areas, the current density, J , between the cylinders must be proportional to 1/r.

The exact proportionality constant, found from the differential equation, is (as usual) is not
hugely different from 1.

We have derived Child’s law for the case of infinite parallel plates, but you will be testing
it in (finite length) coaxial cylinders. The inner wire (radius a) is the cathode; the outer
cylinder (radius b) is the anode. Your cylinder with have some length ℓ, but we will below
consider infinite length coaxial cylinders. Note that dimensional considerations require that
the anode current per length should be given by a formula like:

I/ℓ ≡ j ∝ k

b
V

3

2

A (5.26)

although we could have an arbitrary function of the radius ratio: b/a on the right-hand-side.

From Poisson’s equation4 we have:

∇2V =
J

ǫ0v(r)
=

I

2πrℓǫ0v(r)
=

j

2πrǫ0

√

2e
m

V −
1

2 (5.27)

Using the Laplacian in cylindrical coordinates we find:

∂2V

∂r2
+

1

r

∂V

∂r
=

j

2πrǫ0

√

2e
m

V −
1

2 (5.28)

There is no known formula for the solution to this differential equation, but we can make
considerable progress by writing the differential equation in terms of dimensionless quanti-

4Poisson’s equation is derived in the Appendix to this lab.



106 Thermionic Emission

ties:

r/a = ρ (5.29)

V =





ja

2πǫ0

√

2e
m





2

3

f(ρ) (5.30)

yielding:
∂2f

∂ρ2
+

1

ρ

∂f

∂ρ
= f ′′(ρ) +

1

ρ
f ′(ρ) =

1

ρ
f−

1

2 (5.31)

with initial conditions:

f(1) = 0 (5.32)

f ′(1) = 0 (5.33)

We can numerically solve this differential equation using Mathematica:

NDSolve[{f’’[p]+f’[p]/p==1/(p Sqrt[f[p]])}, f[1]==0, f’[1]==0, {f},{p,1,200}]

It’s actually not quite that simple. The cathode, at ρ = 1, is actually a singular point of
the differential equation (i.e., f ′′(1) = ∞). However the situation very near the cathode is
well approximated by the planar case, where we’ve shown:

V (x) =





9JA

4ǫ0

√

2e
m





2

3

x
4
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9I

2πaℓ4ǫ0

√

2e
m





2

3

(r − a)
4
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9ja

2π4ǫ0
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2e
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3
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a
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4
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(5.34)

So, near the cathode (i.e., ρ slightly larger than 1):

f(ρ) ≈
[

9

4

]
2

3

(ρ− 1)
4

3 (5.35)

We can use this approximation to start our numerical differential equation solution at a
non-singular point (like ρ = 1.00001).

Real devices are designed with b/a = ρanode ≫ 1. The behavior of f for large ρ can be
determined by finding A and α for which f = Aρα is a solution to the differential equation.
One finds:

f =

(

9

4
ρ

)
2

3

(5.36)

A useful approximation for the range: 100 < b/a < 1000 is:

f =

(

9

4
ρ

)
2

3

+ 2 (5.37)

(For example, the device used in lab has b/a = 121.5. For this value, the differential
equation gives f = 44.136; the above approximation gives: f = 44.130.)
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Figure 5.3: The plot on the left displays the dimensionless voltage f obtained by numerical
solution to the differential equation. The plot on the right compares various approximations
for f to this numerical solution.

We recover Child’s law by rearranging (5.30):

2πǫ0

√

2e
m

a

[

VA

f(b/a)

]
3

2

= j = I/ℓ (5.38)

Note: Langmuir’s original work (Phys. Rev. 22, 347 (1923)) on this subject is expressed in
terms of β where:

β2(ρ) ≡ 4

9

f
3

2

ρ
=







−→
ρ→1 (ρ− 1)2

−→
ρ→∞ 1

(5.39)

So:

8πǫ0ℓ
√

2e
m

9bβ2
V

3

2

A = I (5.40)

β2 = 1.072 for the device used in lab.

Richardson’s Law

Most any thermal process is governed by the Boltzmann factor:

exp

(

−∆E

kT

)

= e−∆E/kT (5.41)

where k is the Boltzmann constant. Approximately speaking the Boltzmann factor ex-
presses the relative probability for an event requiring energy ∆E in a system at (absolute)
temperature T . Clearly if ∆E ≫ kT , the probability of the event happening is low. If an
electron requires an energy W (called the work function) to escape from the metal, The
Boltzmann factor suggests that this would happen with relative probability e−W/kT . Thus
you should expect that the current emitted by a heated metal would follow:

I ∼ e−W/kT (5.42)
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Clearly you should expect different elements to have different work functions, just as differ-
ent atoms have different ionization potentials. What is surprising is that the proportionality
factor in the above equation includes a universal constant — that is, a constant that just de-
pends on the properties of electrons (and, most importantly, Planck’s constant, h) and does
not depend on the type of material. (This situation is similar to that of blackbody radia-
tion, in which photons rather than electrons are leaving a heated body, which was Planck’s
topic in discovering his constant. We will take up this topic on page 113.) Thermionic
emission probes the quantum state of the electrons statistically, whereas the photoelectric
effect probes much the same physics electron by electron. (The next level problem is to
explain why this universal constant (the Richardson constant, A) in fact does depend a bit
on the material.) To show:

J = AT 2e−W/kT (5.43)

where

A =
4πemk2

h3
= 1.2 × 106A/m2K2 (5.44)

Quantum Theory: Free Electron Gas

Instead of thinking about electron particles bouncing around inside a box, de Broglie invites
us to consider standing waves of electron probability amplitude:

ψ = N exp(ikxx) exp(ikyy) exp(ikzz) = Neik·r (5.45)

Recall 5 that vector ~k is the momentum, p = mv, of the electron and ~ = h/2π. Periodic
boundary conditions on the box (which we take to be a cube with one corner at the origin
and the diagonally opposite corner at the point r = (L,L,L)) require each component ki

to satisfy:

ki =
2π ni

L
(5.46)

where each ni is an integer. Thus each wave function is specified by a triplet of integers: n =
(nx, ny, nz), the n-vector. Applying Schrödinger’s equation, we find that this wavefunction
has energy:

E(n) =
~

2k2

2m
=

(2π~)2n2

2mL2
=

(2π~)2(n2
x + n2

y + n2
z)

2mL2
(5.47)

Notice that there is a definite relationship between the velocity vector of the electron and
the n-vector.

v =
2π~

mL
n (5.48)

Another way of saying the same thing is that allowed quantum-state velocities form a cubic
lattice with cube-side 2π~/mL. The number of states with electron velocities in some
specified region (for example a velocity-space parallelepiped with sides: ∆vx∆vy∆vz) can
be found from the number of 2π~/mL sided cubes that fit into the region, which is the

5For a review see: http://britneyspears.ac/physics/dos/dos.htm
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Figure 5.4: Electrons in the metal experience a constant confining potential of depth U .
Possible quantum mechanical states for these electrons are displayed as horizontal lines.
Electrons fill all the available states up to the Fermi energy, EF . The work function, W ,
is defined at the minimum energy needed to remove an electron from the metal. As shown
above: W = U − EF .

volume of that velocity-space region divided by (2π~/mL)3. Hence:

number of states with velocity between v and v + ∆v =
∆vx∆vy∆vz

(2π~/mL)3
(5.49)

number of states per volume with velocity between v and v + ∆v =
∆vx∆vy∆vz

(2π~/m)3

=
( m

2π~

)3

∆vx∆vy∆vz = N∆vx∆vy∆vz (5.50)

where N is the (constant) density of states in velocity space.

Quantum Theory: Fermi Energy

Fermions (half-integer spin particles), in contrast to bosons (integer spin particles), cannot
group together. Since the electron is “spin 1

2
”, each of the above states can hold at most 2

electrons: one spin up and one spin down. The probability that a particular fermion state
with energy E will be occupied is given by a generalization of the Boltzmann factor called
Fermi-Dirac statistics:

f(E) =
1

1 + exp
(

E−EF

kT

) (5.51)

where EF is called the Fermi energy. The Fermi energy is basically a disguise for the number
of electrons, as, approximately speaking, it is the dividing line between occupied states and
unoccupied states. (If the Fermi energy is high, there must be lots of occupied states and
hence lots of electrons.) Note that if E ≫ EF , the exponential factor is huge and we can
neglect the “+1” in the denominator so

f(E) ≈ exp

(

− E − EF

kT

)

(5.52)
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Figure 5.5: Consider just those electrons with some particular x-velocity, vx. In order to
hit the wall during the coming interval ∆t, an electron must be sufficiently close to the
wall: within vx∆t. The number of such electrons that will hit an area A will be equal to
the number of such electrons in the shaded volume (which is the perpendicular extension
of A a distance vx∆t into the volume). Note that many electrons in that volume will not

hit A because of large perpendicular velocities, but there will be matching electrons in
neighboring volumes which will hit A. To find the total number of hits, integrate over all
possible vx.

that is, if E ≫ EF Fermi-Dirac statistics approximate the Boltzmann factor.

Classical Theory: Electron Escape

The density of states combined with the Boltzmann factor gives us the number of free
electrons per unit volume with a particular velocity. In order for an electron to escape
during some time ∆t, it must have vx sufficient to overcome the image-charge barrier and it
must be sufficiently close to the wall. All the electrons with vx >

√

2U/m within a distance
vx∆t, will escape, where U is the depth of the potential well for the electrons. Thus the
number of electrons escaping through area A during ∆t is:

∫

∞

√
2U/m

dvx

∫

∞

−∞

dvy

∫

∞

−∞

dvz 2N f(E) Avx∆t

= 2N eEF /kTA∆t

∫

∞

√
2U/m

e−mv2
x/2kT vxdvx

∫

∞

−∞

e−mv2
y/2kTdvy

∫

∞

−∞

e−mv2
z/2kT dvz

=
4πm(kT )2

(2π~)3
A∆t exp

(

−(U − EF )

kT

)

(5.53)

where we have used the Gaussian integral:
∫

∞

−∞

e−αz2

dz =

√

π

α
(5.54)

The electric current density is the electric charge escaping per time per area:

J =
e× number escaping

A∆t
=

4πem(kT )2

h3
exp

(

−W

kT

)

(5.55)

which is Richardson’s equation, with work function W given by U −EF .
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Table 5.1: G.E. FP-400 Specifications

Filament (W) length 3.17 cm (1.25”)
Filament diameter 0.013 cm (0.005”)
Anode (Zr coated Ni) I.D. 1.58 cm (0.620”)
Maximum filament voltage 4.75 V
Maximum filament current 2.5 A
Maximum anode voltage 125 V
Maximum anode current 55 mA
Maximum anode dissipation 15 W

Experiment: Richardson’s “Constant” is Material Dependent!

Experimentally it is found that Richardson’s constant depends on the material6 Why?

1. The work function depends on temperature (due to, for example, thermal expansion
of the lattice of atoms). If the data analysis assumes it’s constant, the resulting A
will be grossly in error.

2. Classically reflection requires a turning point (where vx = 0), whereas quantum me-
chanical reflections are possible just due to sharp changes in potential. Quantum
mechanical reflection at the metal boundary was not included in our calculations; we
assumed every energetic electron headed toward the wall went through the wall.

3. Surface contamination can affect emission probability. In fact, it was originally
thought that thermionic emission was 100% due to surface contamination. (You can
think of surface contamination as a locally varying work function.)

4. Even in the absence of surface contamination, in typical experiments, the metal is
polycrystalline and different crystal surfaces have different work functions.

Experiment

This experiment involves thermionic emission from the hot tungsten filament of a G.E.
FP-400 vacuum tube.

Temperature Determination

Often temperature measurement in physics experiments is easy. In the “normal” range of
temperatures there are many types of transducers which convert temperature to an electrical
quantity (e.g., Pt resistance thermometers, thermocouples, thermistors, ICs). However at
the extremes of high and low temperature, measurement becomes tricky. Questions like

6This should remind you a bit of the material dependent emissivity, ǫT , for blackbody radiation to be
discussed on page 113.
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Figure 5.6: Circuit diagram (note tube pin labels) for thermionic emission experiment.

“What exactly defines temperature?” must then be answered. This experiment requires
“high” temperatures in a vacuum, so we do not have direct contact with the material whose
temperature we seek. In addition the FP-400 tube was not built by us, so we have limited
direct information about the device.

One common way to measure temperature is by using the temperature dependence of resis-
tance. The resistance of metals is approximately proportional to temperature. Jones and
Langmuir7 have published a table of resistance vs. temperature for tungsten, from which
Kirkman has found an approximating formula:

Tr = 112 + 202x− 1.81x2 (5.56)

where x is the ratio of the hot resistance to that at 293 K.

A problem with this approach is that the measured resistance, Rmeasured, will include both
the resistance of the tungsten8 filament, RW and the wires supporting it in the vacuum tube,
Rsupport. Thus the quantity we seek (tungsten filament resistance, RW ) must be calculated
as the small difference between two numbers:

RW = Rmeasured −Rsupport (5.57)

a situation that produces big relative errors. Additionally, we have no independent way of
measuring Rsupport (we can’t take the tube apart); In the end you will measure Rsupport at
room temperature and then assume it is constant9.

There is a further problem with any measurement of voltage when parts of the system are
at different temperatures: thermally induced emfs (thermocouples). If the ends of the tung-
sten filament are at different temperatures, there will be a voltage induced approximately
proportional to the temperature difference between the two ends. This additional voltage
source confuses the resistance determination. The phenomena can be detected and cor-
rected by reversing the direction of current flow (which reverses the Ohm’s law voltage, but
does not affect the sign of the thermal voltage.) Thermal voltages are generally less than a
mV, and so are negligible once our measured voltages approach one volt.

7GE Rev 30, 310 (1927)
8The chemical symbol for tungsten is W from the German Wolfram
9See “Assuming Away Variation” page 18 in Chapter 0
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Figure 5.7: The temperature dependence of tungsten-filament resistance from the data of
Jones & Langmuir with an approximating curve. The x-axis is the ratio of the hot resistance
to that at 293 K.

Another approach is suggested by Jones & Langmuir. In a vacuum the temperature of a
current-carrying wire is the result of an equilibrium between electrical power dissipated in
the wire and energy lost in the form of radiation. (We assume that energy lost through
conduction — either through the wire-supports or residual air in the “vacuum” — is neg-
ligible.) According to the Stefan-Boltzmann law, the power radiated from the surface of a
hot black-body is given by:

P = σT 4A (5.58)

where σ is the Stefan-Boltzmann constant, T is the temperature of the body, and A is the
surface area of the body. (In fact tungsten is not a black-body, so when applied to tungsten
the above should be multiplied by a “fudge factor”, the total emissivity ǫT , about 0.3.)
Using just crude approximations, we equate the electrical power dissipated to the power
radiated:

I2T
ℓ

d2
∼ I2T

ℓ
π
4
d2

∼ I2R = ǫTσT
4πdℓ ∼ T 4dℓ (5.59)

where d is the diameter of the wire and ℓ is the length of the wire. On the right hand side
we’ve assumed that the resistivity of tungsten is proportional to temperature, and on the
left hand side we’ve assumed ǫT doesn’t depend on temperature. We conclude:

I2 ∼ T 3d3 (5.60)

[

I

d
3

2

]
2

3

∼ T (5.61)

Absent the above approximations we can hope that temperature is a function of a ≡ I/d
3

2 .

Once again Jones & Langmuir provide us with calibrating data for this expected relation-
ship. For temperatures 400 K < T < 3000 K, Kirkman finds:

Ti = 117 + 56a0.5 + 0.00036a1.8 (5.62)
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Figure 5.8: The temperature of an in-vacuum tungsten filament as a function of current
from the data of Jones & Langmuir with an approximating curve. The x-axis is the current
divided by the diameter of the wire (in cm) raised to the 3

2
power.

Finally, attaining thermal equilibrium10 is a problem that affects most any temperature
measurement. The balance between electrical power in and heat lost is not immediately
achieved. The parts of the system with large heat capacities (particularly the filament sup-
ports and other large structures in the tube), will only gradually approach equilibrium. Thus
“soak” time is required following each jump in heating power. The effect of this “thermal
inertia” is seen in “hysteresis”: temperatures obtained while increasing the temperature
disagree with those found while decreasing the temperature. This will be an important
source of uncertainty.

Hands-on Electrical Measurements

Support Resistance: Rsupport

As shown in Figure 5.6, the tungsten filament (cathode) is powered by a Keithley 2420
source-meter. The filament+support voltage is measured directly at the socket with a
Keithley 192 voltmeter. By combining the current through the filament (measured from
the 2420) with the voltage across the socket (from the 192), a resistance, Rmeasured, can
be determined. At room temperature, the filament resistance, RW , can be calculated from
the filament geometry (see Table 5.1) and the resistivity of W-filament material at room
temperature: ρ293 = 5.49 µΩ · cm. (You should calculate: RW ∼ .1 Ω.) Then:

Rsupport = Rmeasured −RW (5.63)

Because room temperature Rmeasured is ‘small’ (and hence error prone), you will make

10See “Special Problem: Temperature” page 17 in Chapter 0
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three distinct measurements of it. Begin by sourcing 1 mA and then 10 mA into the
room temperature filament (using the 2420), reading the resulting voltages on the 192, and
calculating the corresponding Rmeasured. Follow up those two measurements with a four-
terminal resistance measurement just using the 192. (If Rmeasured is substantially larger
than ∼ .2 Ω, confirm that you have firm, low-resistance contacts between the socket and
the tube. Working the socket-tube contact may be required to find the lowest resistance
spot.)

Maximum Filament Current, 2420 Voltage Compliance Limit

Following your determination of Rsupport in a room temperature tube, check out the con-
ditions required to stay just below the tube’s maximum ratings (4.75 V, 2.5 A). Using the
2420, successively source filament currents of 2.0 A, 2.1 A, 2.2 A, . . . to directly determine
the maximum current you can use without exceeding the 4.75 V limit across the tube’s
filament. Note that at just below maximum conditions, the 2420 will probably need to
produce voltages above 4.75 V (because of the resistance of the external wires: the volt-
age drop across the connecting wires is not zero). Record the maximum 2420 voltage and
tube current allowed by the tube’s ratings; you will need these numbers in step #2 of your
computer program.

Data Collection Plan

You will be collecting two types of data at the same time: thermal characteristics of the
filament and the thermionic properties of the tube (anode current/voltage relationship).
Starting at a filament current of 0.9 A, increase the current flowing through the filament
in steps of 0.1 A to a maximum current (found as described above, about 2.4 A) and then
reverse those steps down to a filament current 1.0 A. The up-sweep in filament current
followed by the down-sweep will allow you to test for hysteresis. At each step in current,
allow the filament to approach thermal equilibrium (wait, say, 15 seconds) and then measure
the voltage across and current through the cathode/anode. Calculate filament temperature
two ways (Equations (5.56) and (5.62)). Average the two to estimate the temperature, and
use half the absolute value of the difference to estimate the uncertainty.

You see above a classic example of systematic error. The temperature is measured two
different ways. Direct application of error propagation formulas to these temperatures
calculated from 6-digit meter values would suggest small uncertainties. However the two
temperatures in fact disagree. If only one method had been used to measure temperature,
we would have badly underestimated the error.

T 4 vs. Power: Testing Stefan-Boltzmann

By conservation of energy we know that the power dumped into the filament (mostly from
electrical heating, but also from other sources like radiation from the room temperature
environment to the filament) should equal the power out of the filament (from black-body
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radiation and other factors like conduction down the supports). Thus:

ǫTσAT 4 = I2RW + constant (5.64)

T 4 =
1

ǫTσA
I2RW + constant (5.65)

y = bx+ a (5.66)

A graph of T 4 vs. power should be a straight line from which you will determine ǫT . (Note
that the error in power is quite small, so we have properly used it as an x variable.) In
order to test this relationship you will want to make a file containing the filament power,
T 4 (use the average of the two temperatures: (T 4

i + T 4
r )/2), and the error in T 4 (use half

the difference from the two temperatures: |T 4
i − T 4

r |/2).

IA vs. VA: Testing Child and Richardson

You will collect anode current vs. voltage curves for each different filament (cathode) tem-
perature. Use the Keithley 2400 to sweep the anode voltage logarithmically from 2 V to
120 V. (Note the maximum limits for the anode: 0.055 A or 125 V. Do not exceed either!)

According to Child’s law, the anode current, IA, should increase in proportion to V
3

2

A . Of
course, at sufficiently high voltage the current will be limited by the maximum electron
evaporation rate, and a current plateau forms at a level given by Richardson’s law. At
the maximum filament current (corresponding to the maximum filament temperature and
evaporation rate), plateau formation occurs at very high voltage and you have the longest
run of data following Child’s law. Make a file containing VA, IA, and δIA which you can
use to fit to the Child’s law functional form:

IA = k1 (VA − k2)
3

2 (5.67)

In addition, you will want to make a big continuous file containing: VA, IA at every temper-
ature tested. The current plateaus can be extracted from this file and fit to the Richardson
relationship:

IA = k1 AT 2 e−k2/T (5.68)

Computer Data Collection

As part of this experiment you will write a computer program to control the experiment.
Plagiarism Warning : like all lab work, this program is to be your own work! Programs
strikingly similar to previous programs will alarm the grader. I understand that this will
often be a difficult and new experience. Please consult with me as you write the program,
and test the program (with tube disconnected!) before attempting a final data-collecting
run.

Your program will control all aspects of data collection. In particular it will:

0. Declare and define all variables.

1. Open (i.e., create integer nicknames—i.e., iunit—for) the enets gpib2 and gpb1.
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2. Initialize meters—requires knowing the gpib primary address—i.e., iadd—of the me-
ter and the iunit it is attached to. Get the status of each meter after you have
initialized it.

(a) Each source-meter must be told the maximum voltage and current it must pro-
duce during the experiment. Initialize the 2400 (anode voltage/current) for the
tube maximum ratings.

(b) Initialize the 2420 (filament voltage/current) for the near tube-maximum ratings
found above11. In the following I assume the current maximum is 2.4 A, but it
may be different for your tube.

(c) Initialize the 192 for autorange DC voltage measurements.

3. Open the files:

(a) filament.dat (intended for: If , Vf , Tr, Ti of filament).

(b) stefanB.dat (intended for: power, T 4, δT 4 of filament).

(c) VI.dat (intended for: all VA, IA of anode, with comments (‘!’) for filament
If , Tr, Ti).

(d) child.dat (intended for: VA, IA, δIA of anode at maximum filament current).

(e) child-.dat (like above but intended for a downsweep of anode voltage).

(f) rich.dat (intended for: Ti, Tr, IA — i.e., the estimated temperatures and the
corresponding maximum anode current for Richardson’s Law).

4. Tell the 2420 source-meter to source a filament current of 0.9 A.

5. Let the system sleep for 60 seconds to approach thermal equilibrium.

6. Do a sequence of measurements where the filament temperature is sequentially in-

creased (i.e., a temperature up-sweep) with filament currents ranging from 0.9 A to
some maximum (e.g., 2.4 A) current in steps of 0.1 A.

(a) Tell the 2420 source-meter to source a filament current (If ).

(b) Let the system sleep for 15 seconds to approach thermal equilibrium.

(c) Request a logarithmic sweep of the anode voltage (controlled by the 2400 source-
meter) from 2 V to 120 V. Receive the resulting arrays: VA and IA.

(d) Turn off the anode voltage.

(e) Repeat (a) thus receiving an updated version of the filament current (it will be
very close to the requested current).

(f) Read the 192 to get the filament voltage (Vf ).

(g) Using Eqs. (5.56) and (5.57), calculate Tr based on the calculated tube resistance
Rmeasured, the calculated room temperature filament resistance and Rsupport.

(h) Calculate Ti from Eq. (5.62)

(i) Write a line to the file filament.dat reporting: If , Vf , Tr, Ti.

(j) Write a line to the file stefanB.dat reporting: filament power (RW I2
f ), T 4, and

δT 4 (see p. 116).

11See Hands-on Electrical Measurements, p. 114. Recall: the 2420 maximum voltage will need to be a bit
above 4.75 V. If you have not yet completed those measurements, temporarily initialize with 4.75 V.
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(k) Write a comment line (i.e., starts with ‘!’) to the file VI.dat reporting filament
data: If , Tr, Ti.

(l) Write the anode sweep data (one data-pair per line) in the file VI.dat.

(m) Write a line to the file rich.dat reporting Ti, Tr, IA. Use IA at VA=120 V as the
estimated plateau current. (When the experiment is over, you will need estimate
δIA based on hysteresis, and may need to delete IA values if, for example, the
current did not plateau or if cold emission substantially added to the plateau
current.)

(n) Increment the filament current by 0.1 A and return to (a).

7. Collect data for Child’s Law. Begin by repeating a normal anode sweep at the max-
imum filament current; follow all the steps (a)–(m) outlined in 6 above. In addition,
write the anode sweep data (VA, IA, δIA) in the file child.dat (one data-triplet
per line). In this case, δIA will be calculated from the manufacturer’s specs: per-
cent+digits; the fortran function eAk2400 can do this error calculation automatically.
Now check for hysteresis by doing a reverse anode sweep: from 120 V down to 2 V.
Write this reverse anode sweep data (VA, IA, δIA) in the file child-.dat.

8. Do a sequence of measurements where the filament temperature is decreased (i.e., a
temperature down-sweep) by sequentially sourcing filament currents from one step
down from maximum (e.g., 2.3 A) back to 1.0 A. Follow steps (a)–(m) used in the
temperature up-sweep (part 6 above) and then:

(n) decrement the filament current by 0.1 A and return to (a).

9. Turn off the output of the 2420.

10. Close all files.

Note that the 0.9 A filament current data is just trash collected so the 1.0 A filament current
data is taken on a pre-warmed filament.

Observations

While the computer collects the data observe the light from the filament. (There is a 1
16

”
diameter hole in the anode allowing light from the mid-point of the filament to escape.)
Initially the filament will not appear to be incandescent (i.e., not a source of light at all:
dark) so it may help to turn off the lab lights to better observe the beginning of visible
incandescence. According to the Stefan-Boltzmann law the light energy radiated depends
on T 4, so small changes in T produce big changes in light intensity. In addition to changes
in light intensity, you should look for the more subtle change in light color: from a dull red
to a brilliant yellow. Record your observations! At what filament temperature did you first
see the filament producing light?
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Figure 5.9: The temperature dependence of thermionic emission in a FP-400 vacuum tube.
Each curve shows the anode current-voltage relationship at a particular filament temper-
ature. At high filament temperatures and low anode voltages the anode current follows
Child’s law: an upward sloping straight line on this log-log plot. At sufficiently high anode
voltage, the filament current plateaus at a value given by Richardson’s law. At low filament
temperatures and high anode voltages, “cold emission” may augment (distort) the plateau.
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Data Analysis

Beginnings

The main result of this experiment is a plot similar to Figure 5.9 showing the anode current-
voltage relationship at various filament temperatures. Production of such a multi-plot is a
bit complex, and you will almost certainly need further detailed instructions12 from your
instructor on using the program Nplot. Each curve in the multi-plot represents a anode
voltage sweep, which for small anode voltage VA follows the nearly power-law relation-
ship discovered by Child (power laws look linear in the log-log plot) but then levels out
(‘plateaus’) at a current given by Richardson’s Law. The curves are paired: each fila-
ment current was done once when the temperature was being increase and once when the
temperature was being decreased.

The first check you should make is: is a proper plateau achieved for every filament current?
If the high-temperature V I sweep reaches a plateau, then Child’s Law will not apply at
high VA so child.dat will require editing; if it does not reach a plateau, then Richardson’s
Law does not apply to that sweep so rich.dat will require editing.

The anode current, IA at the maximum anode voltage VA = 120 V has been stored in the file
rich.dat as a candidate plateau along with temperature estimates Tr and Ti (all currently
lacking error estimates). While the actual Richardson’s Law relationship (Eq. 5.69) is not
on the list of WAPP+functions, we can arrange a quick but useful approximation.

According to Richardson’s law, these plateau currents should satisfy:

IA = AAT 2 e−W/kT = k1 AT 2 e−k2/T (5.69)

where A is the tungsten filament surface area. Clearly the largest (if unknown) error is in T ,
so the standard approach would be to put T on the y-axis and I on the x-axis: the opposite
of what is implied by the above equation. However, we can’t simply solve the above equation
for T without some approximations. It turns out that e−k2/T is the significant factor in the
above equation, so we start by ignoring the T 2 and assume:

I = K e−k2/T (5.70)

for some constant K. Now if we take loge of both sides:

log(I) = log(K) − k2

1

T
(5.71)

or
1

T
= log(K)/k2 −

1

k2

log(I) (5.72)

This equation is now in a form13 known to WAPP+. Thus you can quickly WAPP+(I, T )
data from rich.dat (of course still lacking x-errors and y-errors) and find an approximating

12Documentation on the plot program can be found in Appendix A. It is also worth noting that since a
log-log plot is requested, negative values—commonly negative anode currents—must be removed from the
file VI.dat. As a general rule: do not destroy your original data, in this case simply rename the edited file
something like VI2.dat.

13Inverse-Natural Log: 1/y = A + B log(x)
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Figure 5.10: Simplified analysis suggests Richardson’s Law data can be fit to the Inverse-
Natural Log relationship of Eq. 5.72. The filled-square points use y = Ti, the unfilled-square
points use y = Tr. Systematically different temperature measurements yield systematically
different B (slopes in the above plot) and hence systematically different work functions
W = −k/B. Note the inexact pairing of the data due to temperature hysteresis. Note that
the rightmost datapoint is aberrant.: a non-plateau.

curve. Retain hardcopy14of the fit results. Request (and hardcopy) a linearized plot of your
data with x-scale: log and y-scale: inverse as in Fig. 5.10. This should allow you to check
for aberrant data points. (Usually the high temperature curve has not plateaued, and so
the high temperature data point must be removed. Occasionally the low temperature data
points are also aberrant.)

But what should be used for T ?. . . You have two values (Ti and Tr) and they are not the
same! The answer is both: fit/plot once with Ti and then again with Tr. The systematically
different temperature scales will result in different fit parameters— in particular you will
get an upper-limit and lower-limit for the work function from the two B values of your two
fits, as W/k = k2 and k2 ≈ −1/B. δW can then be taken as half the difference between
these two extreme values. (Note an oddity: you’ve determined a value for δW , but not
yet found the best value for W .) Take this opportunity to delete the aberrant data from
rich.dat (and, say, save as rich2.dat).

We can also a quick but useful check of the Child’s law data using WAPP+. Once again the
proper functional form (Eq 5.76) is not available in WAPP+, but a power law is somewhat
similar. In this case the files child.dat and child-.dat include a y-error estimate based
on the k2400 specifications. (In fact these book-based errors very much underestimate the
deviations you will experience: expect a horrendous reduced χ2). Check that WAPP+’s B
is nearly 1.5, record the A value (you will need it as an initial estimate for k1 when you do
the fit to the proper functional form), make a log-log plot (no hardcopy yet!) to check for

14You should retain a hard and/or soft copy of every successful fit. Hardcopy ends up taped into your lab
notebook. I retain softcopy by copy&paste into a generic text file, e.g., using kwrite.
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Figure 5.11: A test of the Stefan-Boltzmann law: that power radiated is proportional to
T 4. Note that the fit line hits well within each error bar. The χ2 for this fit will be
“small”. Evidently the average temperature is a better measure of temperature than you
might expect from the deviations between Ti and Tr.

aberrations (like a plateau at large VA).

Finally, the Stefan-Boltzmann Law can be properly evaluated using WAPP+, as a line is
the expected function. The file stefanB.dat has the required data with y-errors (x-errors
are small). Produce a plot (and hardcopy fit report) similar to Fig. 5.11. I expect you’ll find
a small reduced χ2 due to the large systematic error in temperature, so a bit of additional
work will be required to estimate δǫT .

Stefan-Boltzmann Law II

You should have already checked for an approximately linear relationship between electrical
power in and T 4:

Power = ǫTσAT 4 (5.73)

and found a reduced χ2 indicative of large systematic uncertainty in temperature. We now
seek an estimate for ǫT (with error) at the highest temperature. The best value for ǫT
can be found by plugging in our best estimates for T 4 and the measured power (found in
the file stefanB.dat), and A (calculated based on the dimensions recorded in Table 5.1).
Alternatively ǫT could be calculated based on slope as suggested by Eq. 5.66. But how
should we incorporate the large systematic errors in T 4 and the unknown systematic error
in A? For the surface area A, all we know is the ‘book’ values for the dimensions of the
filament. Based on the sigfigs in the reported values, I estimate:

δA
A ≈ 10% (5.74)
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Figure 5.12: A plot of the space-charge limited thermionic emission in a FP-400 vacuum
tube (Child’s law). The data was taken at a filament current of 2.4 A. Every other data
point has been eliminated so the fit line is not obscured. Note that the fit line systematically
misses the data, sometimes a bit high others a bit low. The measurement errors are tiny, so
these small misses do result in a “too-large” χ2. Nevertheless, the law provides an excellent
summary of the data over a huge range of variation.

(mostly due to the filament diameter, where a ‘small’ uncertainty leads to a large fractional
uncertainty). We can then use the ‘high-low’ method or use the proper formula in Appendix
E to estimate the range of possible values for ǫT , given the range of possible values for T 4

and A (assume the error in power is negligible).

Child’s Law II

At sufficiently high filament temperature (and low anode voltage), Child’s law governs the
anode current-voltage relationship:

IA =
8πǫ0ℓ

√

2e
m

9bβ2
V

3

2

A (5.75)

(see vicinity of Eq. 5.40, page 107, for a definition of symbols) At the highest filament
temperature (e.g., filament current of 2.4 A) you have saved the (VA, IA, δIA) data in the
file child.dat. Now fit15 this data to the functional form:

IA = k1 (VA − k2)
3

2 (5.76)

(where k2 represents a small offset between ground and the actual average voltage of the
filament). The program fit will required an initial guess for k1; use the WAPP+value for A

15The program fit is documented in Appendix B. Note that plotting and fitting now are handled by two
different programs, not a combined program like WAPP

+
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found above. (In fit the default initial guess for parameters is zero; that is reasonable for
k2.) Do not be surprised if you get a huge reduced χ2. Find an estimate for k1 error either
by a ‘fudged fit’ or a bootstrap. As always retain a copy of your full fit report, including the
covariance matrix. Plot your data and best-fit function using the program plot, producing
a result similar to Fig. 5.12.

Follow exactly the same process for the downsweep data in the file child-.dat. Often you
will find that the k1 values for the two sweeps differ by more than computer-based value of
δk1. Systematic error (here a type of hysteresis) is responsible. Note that the usual reduced
χ2 alerts us to a problem, but measuring twice (in different ways) provides an estimate
(perhaps still an under-estimate) for δk1: half the difference between the two values of k1.

We expect that

k1 =
8πǫ0ℓ

√

2e
m

9bβ2
(5.77)

so using the tube dimensions in Table 5.1, the electron charge-mass ratio e/m can be
calculated. Since the FP-400 is a finite length cylinder (rather than the infinite cylinder
discussed in our theory) use the effective length16 = 0.7 × ℓ as the length of the cylinder.
But what can we use as errors for the ‘book’ values for b and ℓ? Thermal expansion of the
filament should, by itself, change ℓ by about 1% (notice the spring-tensioned support for
the filament in the FP-400). Based on the sigfigs in the reported values, I estimate:

δ(b/ℓ)

(b/ℓ)
≈ 3% (5.78)

Calculate e/m and its error. Compare to the ‘known’ value (citation required!).

Richardson-Dushman Law II

You should have already checked for an approximately exponential-inverse relationship be-
tween T and IA, edited out aberrant data (e.g., not yet plateaued), and have a range of
possible values (due to systematic error in temperature) for k2 in the expected relationship:

IA = k1 AT 2 e−k2/T (5.79)

We now seek a treatment incorporating the hysteresis error in IA and the proper functional
form, to obtain the best possible value for k2. We will need to manipulate17 the data in
rich2.dat to bring together equivalent data from the temperature upsweep and downsweep.
An easy way to get the data into the gnumeric spreadsheet, is to type it to the screen using
the linux command18 cat:

cat rich2.dat

16This effective length corrects for current loss through the ends of the cylinder under space-charge sit-
uations. A smaller correction should be applied when large anode voltages are designed to sweep up all
evaporated electrons, i.e., for Richardson’s Law, where 90% electron collection seems appropriate. The
details of handling such corrections to theory may be found in reference 1.

17This processing could very easily have been done within the program itself. I’ve instead opted to make
the program as simple as possible at a cost of additional ‘by-hand’ processing in a spreadsheet.

18from concatenate—commonly this command is used to combine several files
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Figure 5.13: A Richardson Plot of thermionic emission in a FP-400 vacuum tube. Each
data point displays the plateau anode current at a particular filament temperature. The
curve through the data fits for the work function; the slightly steeper curve uses the book
value for the work function.

You can then copy and paste19 this data into gnumeric. Our aim to put together data with
the same filament current, i.e., to combine the first line of data with the last; to combine
the second line of data with the next-to-last; etc. This is easily accomplished by typing the
data bottom-to-top to the screen using the linux command20 tac:

tac rich2.dat

The results can be copy and pasted next to the previous data so that the data we aim to
combine (e.g., both If = 1 A) is on the same line. The best estimate for T is the average of
the four T s (the two Ti should be nearly identical); the best estimate for IA is the average
of the two IAs; for δIA use half the difference between the two values of IA (|IA1 − IA2|/2);
for δT use half the difference between Tr and Ti (average the two differences). The result
of this ‘data reduction’ is half as many data points, but with a value for δIA based on
hysteresis. (The alternative for δIA would be the meter manufacturer’s specifications, and
we know they are way to small from analysis of Child’s Law.)

Report the relative importance of hysteresis and calibration in temperature uncertainty
determination. For If = 1.2 A record the difference between the two Tr due to hysteresis
and the difference between Tr and Ti which is a temperature calibration uncertainty.

Copy and paste this reduced data into a new file, and fit it to Eq. 5.79. (As always retain
a copy of the full fit report.) You should have an estimate for k2 from WAPP+; use the
book21 value for A, 0.72 × 106 A/m2K2, as an initial guess for k1. Produce a plot similar
to Fig. 5.13; include lines both for your best fit and the ‘book’ values of k1 and k2.

19Note use of “See two two separators as one”: Alt-e
20clever or what?
21Blakemore, Solid State Physics
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The work function is an atomic quantity, and it is usually expressed in the atomic scale
unit eV22. Calculate the work function from your value of k2 in joules and eV and compare
to the book20 value of 4.5 eV.

Since our temperatures are so uncertain, particularly at the low end, the best estimate for
the Richardson constant A comes from substituting the book value of the work function and
the plateau (T, IA) measurement for the highest valid filament temperature into Eq. 5.69.
We can then estimate the systematic uncertainty in A by using the ‘high-low’ method of
191 (A+ → I+, T−,A−).

Report Checklist

1. Write an introductory paragraph describing the basic physics behind this experiment.
For example, why did higher cathode currents produce ever higher plateaus of anode
current? (This manual has many pages on these topics; your job is condense this into
a few sentences and no equations.)

2. Calculations (no errors) of room temperature RW . Measurements (4-wire ohmmeter
and direct voltage/current) of Rmeasured at room temperature. Calculation of Rsupport.

3. Observations of the light intensity and color as a function of filament temperature.

4. Data files and computer program: Leave them in your linux account. Print out a copy
of your program, the file filament.dat, and the data you used to fit Richardson’s
Law; Tape them into your lab notebook. Document how your Richardson’s Law data
was calculated in your spreadsheet. (I would self-document the spreadsheet, then
File◮Print Area◮Set Print Area to select just the relevant 4 columns, including the
self-documentation of those columns, and then print.)

5. Plots similar to Figures 5.9, 5.13 (with fit curve Eq. 5.68 and also the Richardson
function using “book” values for k1 and k2), 5.12 (with fit curve Eq. 5.67), 5.11
(with line Eq. 5.66) and 5.10 (two separate WAPP+plots one with Tr data and the
other with Ti data). Note that Figure 5.9 is complex to produce. Use a file of Nplot
commands and feel free to talk to me about how to go about doing this. Carefully
note the use of log and inverse scales (which requires positive data—edit to achieve
this!). Include a fit report for each fit curve.

6. Experimental values (with error range) for: W (in eV), A, e/m and ǫT .

7. Show the missing steps leading to Equations (5.31) and (5.36). Substitute the ρ→ 1
approximation (Eq. 5.35) into the differential equation Equation (5.31). Show that
while we do not have an exact solution to the differential equation, the singular parts
(i.e., those that approach infinity as ρ→ 1) cancel.

8. Make a final results table, recording your numerical results from #6 (with proper
units and sigfigs) adjacent to the corresponding ‘book’ values. Don’t forget to record
your tube’s identifying letter!

221 eV = 1.6022 × 10−19 J is the energy an electron gains in going through a potential difference of 1 V.
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Comment: Classical vs. Quantum

I said above that the presence of an ~ in Richardson’s constant shows that the process is
governed by quantum mechanics. It is not quite so simple. The evaporation of water is not
fundamentally different from that of electrons, while the former (due to the larger mass of a
water molecule) is well-approximated by a classical calculation. Classical evaporation can be
calculated much as quantum evaporation using the Maxwell-Boltzmann speed distribution
and the number density (of water molecules) rather than the disguised version of this: Fermi

energy (E
3

2

F ∝ number density). We can write the classical rate in terms of the quantum
with no ~ visible:

classical flux =
4

3
√
π

[

EF

kT

]
3

2

× quantum flux (5.80)

The different temperature dependence23 for the classical flux (T
1

2 e−W/kT vs. T 2e−W/kT )
cannot be detected experimentally: the Boltzmann factor overwhelms all other temperature
dependencies. On the other hand, since EF ≫ kT , the expected classical rate is much larger
than the quantum rate. This played a role in the mistaken idea that thermionic emission
was due to surface contamination: the experimental rate seemed too small to be thermal
evaporation. On the other hand a more fruitful interpretation of the “low” rate was that
only a fraction (∼ kT/EF ) of the electrons were thermally active. This connected with
other observations (like the “small” specific heat of the electron gas) and provided a link to
the idea of a degenerate Fermi gas.

Comment: Uncertainty

Inspection of Figures 5.9-5.13 shows that something “funny” is going on. (I can’t say “ab-
normal” or “unusual” as it is neither.) Figure 5.11 shows the unmistakable signs of “small
reduced χ2”: The fitted line goes nearly dead-center through all 30 error bars, never coming
even close to an edge. For error bars sized at one standard deviation (σ), you should expect
total misses of the error bar about 1/3 of the time. In addition recall that each data point
is really a double: the same filament current was sourced as part of a temperature up-sweep
and as part of a temperature down-sweep. These repeated measurement should also fre-
quently miss by a standard deviation, but here they are so close that the two points often
look like just one. The answer to this puzzle is that the error bars are not displaying sta-
tistical (‘random’) error. Instead the temperature was measured two different ways (Ti and
Tr), and the error bar represented the deviation between these two measurement methods.
When different methods of measurement produce different answers for the same quantity,
we have a textbook example of systematic error (in contrast to statistical error). Notice
that if we had used the statistical deviation of just one measure of temperature, we would
seriously underestimated the error. Furthermore since quite accurately measured electrical
quantities were used to calculate the temperature (via Equation 5.62 or Equation 5.56),
application of the usual error propagation methods would also have produced very small
errors in T . The full range of our uncertainty in temperature is made evident only by
measuring T two different ways. (This is typically how systematic errors are detected.)

23Saul Dushman ( Phys. Rev. 21, 623–636 (1923)), while working at G.E., provided a general thermody-
namic argument for the T 2 dependence and the universal nature of A. The resulting relationship is therefore
sometimes known as the Richardson-Dushman relationship.
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Having detected systematic errors, we should seek an explanation. . . In addition to the
problems previously cited (particularly use of book values for filament dimensions and
the problems associated with Rsupport), nonuniform filament temperature due to filament
supports may be the problem. Koller (p. 89) reports the filament temperature 0.5 cm from
a support is reduced by 15% (and of course the effect is greater closer to the support).
Thermionic emission is reduced a similar amount 1.3 cm from a support. Thus the quantity
we are seeking (a filament temperature) does not even exist, so it is hardly surprising that
different measurements give different results. (It turns out the Tr is something like the
average temperature; whereas Ti is something like the central temperature.) These effects
have been investigated, and Koller gives the theory to correct such measurements, but such
considerations are beyond the scope of this experiment.

Figure 5.9 shows the opposite problem, “large reduced χ2”: The fitted line systematically
misses almost every error bar. In this case, the miss might be called “small”, but the error
bar is smaller still. Once again, errors were not calculated statistically (manufacturer’s
specifications were used), so “reduced χ2 = 1” should not really be expected. In this case,
my guess is that the problem is with our simplified theory (we assumed: infinite cylinders,
no random component to the electron velocity [zero electron temperature], uniform filament
[temperature, voltage, emissivity, . . . ], perfect vacuum, no incipient current plateau). We
could of course test these hypotheses by further experiments with different tubes, but such
work is beyond the scope of this experiment. (Indeed you most likely have detected VA-
sweep hysteresis; correction for this dramatically reduces reduced χ2, but not all the way
to ∼ 1.)

Summary: Very large or very small reduced χ2 suggests significant non-statistical errors, a
very common —perhaps even the usual— situation. Computer generated errors are some
sort of none sense in this circumstance. Presumably your theory and/or measurement
methods are less than perfect. That is, of course, No Surprise. Science next requires you
to guess and perhaps further investigate which imperfections are the leading source of the
problems, i.e., what changes to the experiment would ameliorate the problem.
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Figure 5.14: Gauss’ Law is used to calculate the charge between two plates of area A
separated by a distance ∆x. Since (by assumption) the potential just depends on x, the
electric field is in the x direction and is given by E = −dV/dx.

Appendix—Poisson’s Equation

Equation 5.5 and Equation 5.28 made reference to “Poisson’s Equation”, which is really a
topic for Physics 341, rather than part of Physics 200. In this appendix, Poisson’s Equation
is derived starting from two Physics 200 results: Gauss’ Law: that the electric flux leaving
a region depends just on the charge enclosed by that region:

∮

~E · n̂ dA = Qenclosed/ǫ0 (5.81)

and the relationship between electric field and electric potential (voltage):

Ex = − dV

dx
(5.82)

Poisson’s Equation is a differential equation equivalent to Gauss’ Law. It is usually written
in terms of the Laplacian (∇2), which in turn can most easily be expressed in terms of
second derivatives w.r.t. x, y, and z:

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= −ρ/ǫ0 (5.83)

where ρ is the electric charge density. We need Poisson’s Equation only in cases where
the electric potential depends on just one variable (x or cylindrical r), which simplifies the
required proofs considerably.

As shown in Figure 5.14, if V is a function of x alone: V (x), we can find the charge between
two plates of area A using Gauss’ Law:

Qenclosed = ǫ0A (E(x+ ∆x) − E(x)) ≈ ǫ0A
dE

dx
∆x (5.84)

Thus the charge density between the plates is given by:

ρ =
Qenclosed

volume
=
ǫ0A dE

dx ∆x

A∆x
= ǫ0

dE

dx
= −ǫ0

d2V

dx2
(5.85)
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thickness: ∆r
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Figure 5.15: Gauss’ Law is used to calculate the charge between two coaxial cylinders of
length l separated by a distance ∆r. Since (by assumption) the potential just depends on
r, the electric field is in the r direction and is given by E = −dV/dr.

which provides what is needed for Equation 5.5.

As shown in Figure 5.15, if V is a function of r alone: V (r), we can find the charge between
two coaxial cylinders using Gauss’ Law:

Qenclosed = ǫ0l {2π(r + ∆r)E(r + ∆r) − 2πrE(r)}
= ǫ0l {2πr(E(r + ∆r) − E(r)) + 2π∆rE(r + ∆r)}

≈ ǫ0l

{

2πr
dE

dr
+ 2πE(r)

}

∆r (5.86)

Thus the charge density between the cylinders is given by:

ρ =
Qenclosed

volume
=
ǫ0l {2πr dE/dr + 2πE(r)}∆r

2πrl∆r
= ǫ0

{

dE

dr
+

1

r
E

}

(5.87)

= − ǫ0

{

d2V

dr2
+

1

r

dV

dr

}

(5.88)

which provides what is needed for Equation 5.28.


